JP2511059B2 - Buried pipeline - Google Patents

Buried pipeline

Info

Publication number
JP2511059B2
JP2511059B2 JP62193298A JP19329887A JP2511059B2 JP 2511059 B2 JP2511059 B2 JP 2511059B2 JP 62193298 A JP62193298 A JP 62193298A JP 19329887 A JP19329887 A JP 19329887A JP 2511059 B2 JP2511059 B2 JP 2511059B2
Authority
JP
Japan
Prior art keywords
marker
detection signal
buried
coil
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62193298A
Other languages
Japanese (ja)
Other versions
JPS6438688A (en
Inventor
仁一郎 中村
米数 山田
敏 三ツ石
温敏 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEISEI DENKI KK
Sekisui Chemical Co Ltd
Original Assignee
MEISEI DENKI KK
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEISEI DENKI KK, Sekisui Chemical Co Ltd filed Critical MEISEI DENKI KK
Priority to JP62193298A priority Critical patent/JP2511059B2/en
Publication of JPS6438688A publication Critical patent/JPS6438688A/en
Application granted granted Critical
Publication of JP2511059B2 publication Critical patent/JP2511059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、地中に構築される例えばガス管や水道管の
ような埋設管路に関し、特に構築後、地上から探知信号
を送出する探知装置によりその埋設位置を精度よく探知
することのできる埋設管路に関する。
Description: TECHNICAL FIELD The present invention relates to a buried pipeline such as a gas pipe or a water pipe constructed in the ground, and particularly to a detection signal transmitted from the ground after the construction. The present invention relates to a buried pipeline which can detect the buried position with high accuracy by a device.

(従来の技術) 管体等の地中埋設物の近傍にLC共振回路で構成された
標識体(以下、マーカーという)。を予め埋設してお
き、後日、地上から上記LC共振回路の共振周波数成分を
有する探知用信号を送出してこのLC共振回路の応動(探
知用信号の吸収又は共振信号の放出等)を検知し、上記
地中埋設物の埋設位置を探知するシステムが公知であ
る。
(Prior Art) A marker body (hereinafter referred to as a marker) composed of an LC resonant circuit near a buried object such as a pipe body. Is embedded in advance, and at a later date, a detection signal having the resonance frequency component of the LC resonance circuit is sent from the ground to detect the response of the LC resonance circuit (absorption of the detection signal or release of the resonance signal). A system for detecting the buried position of the underground buried object is known.

かかるシステムで使用されるマーカーを地中埋設物の
近傍に敷設する際、従来は埋設物の近傍にマーカーを置
き、その後掘り出した土を埋め戻す方法がとられてい
る。
When laying a marker used in such a system near an underground buried object, conventionally, a method of placing the marker near the buried object and then backfilling the excavated soil has been adopted.

(発明が解決しようとする問題点) 上記従来のマーカーの敷設方法によると、土の埋め戻
しの際に投入される土砂によってマーカーの位置が変わ
ったり、又はマーカーの敷設姿勢が変わったり(例えば
斜めになる)して、意図した地点に正しく敷設できない
ことがしばしば生じており、後日、このマーカーを基に
埋設物の位置を探知する場合の誤探知の原因となってい
る。また、敷設後に土質変動が生じてマーカーの位置が
移動することがあり、この場合にも誤探知の原因とな
る。
(Problems to be Solved by the Invention) According to the above-described conventional marker laying method, the position of the marker is changed depending on the earth and sand put in when backfilling the soil, or the laying posture of the marker is changed (for example, diagonally). However, it often happens that it cannot be laid correctly at the intended location, which is a cause of erroneous detection when locating the buried object based on this marker at a later date. In addition, there is a case where the soil position is changed after the construction and the position of the marker is moved, which also causes a false detection.

本発明は以上のような従来の問題点を解決すべく提案
するものである。
The present invention proposes to solve the above conventional problems.

(問題点を解決するための手段) 本発明の埋設管路は、ループ状に成形されたコイルを
有する共振回路によって構成されて地上から送出される
探知信号に応動する探知信号応動手段が設けられた標識
体を具備し、前記コイルを管体に外嵌させることによっ
て標識体が管体に保持されていることを特徴とする。
(Means for Solving the Problems) The buried pipeline of the present invention is provided with a detection signal responsive means which is configured by a resonance circuit having a coil formed in a loop shape and which responds to a detection signal sent from the ground. It is characterized in that the marker is held by the tube by externally fitting the coil to the tube.

(作用) ループ状に成形された共振回路のコイルが管体に外嵌
されることによって、マーカーが管体に保持された状態
になっているために、埋め戻しの際の土砂の投入や、埋
設後における土の変動等によってマーカーが移動するこ
とがない。しかも、コイルは、地面に対してほぼ垂直に
なっているために、地上からの探知信号に良好に応動
し、管体における所定位置を確実に特定される。
(Function) Since the marker of the resonance circuit formed in a loop shape is externally fitted to the pipe body so that the marker is held in the pipe body, when the earth and sand are thrown in during backfilling, The marker will not move due to soil fluctuation after burial. Moreover, since the coil is substantially perpendicular to the ground, it responds well to the detection signal from the ground, and the predetermined position on the pipe can be reliably specified.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明において用いられるマーカーの一例を
示し、このマーカー1は、環状(いわゆるドーナツ形)
に形成されたケース101内に、探知信号応動手段2が密
封されたもので、その通孔102の内径は、該マーカー1
が外嵌される管体3の外径と略等しいかやや大きくなさ
れている。なお、マーカー1の形状は、内部に管体3を
挿通するための通孔が形成されているのであれば、図示
例のようなドーナツ形に限らず、短筒状のものであって
もよい。
FIG. 1 shows an example of a marker used in the present invention. The marker 1 is a ring (so-called donut shape).
The detection signal response means 2 is hermetically sealed in the case 101 formed in the above, and the inside diameter of the through hole 102 is the marker 1
Is approximately equal to or slightly larger than the outer diameter of the tubular body 3 to be fitted. Note that the shape of the marker 1 is not limited to the donut shape as shown in the drawings, and may be a short tubular shape as long as a through hole for inserting the tubular body 3 is formed therein. .

上記探知信号応動手段2は、一般的にはLC共振回路で
構成されるが、本発明の実施例では、コイル201、コン
デンサ202及び水晶振動子203を並列に接続した水晶共振
回路(等価的に第4図に示す共振回路で表される。)で
構成されている。但し、この水晶共振回路もLC共振回路
の一種である。水晶共進回路は、これに蓄積されるエネ
ルギー量が多いため、探知信号に対する応動信号が大き
くとれ、コイル201のターン数がせいぜい数回でよいも
のとなる。
Although the detection signal response means 2 is generally composed of an LC resonance circuit, in the embodiment of the present invention, a crystal resonance circuit (equivalently, a coil 201, a capacitor 202 and a crystal oscillator 203 are connected in parallel). It is represented by the resonance circuit shown in FIG. 4.). However, this crystal resonance circuit is also a kind of LC resonance circuit. Since the crystal co-advance circuit has a large amount of energy accumulated therein, a large response signal to the detection signal can be obtained, and the number of turns of the coil 201 can be at most several.

ケース101内に収容される検知信号応動手段20のコイ
ル201は、管体3に外嵌され得るループ状に形成されて
いる。
The coil 201 of the detection signal responsive means 20 housed in the case 101 is formed in a loop shape that can be fitted onto the tubular body 3.

上記のようになる探知信号応動手段2に備えた環状の
マーカー1は、第2図に示すように、管体3に外嵌され
る。マーカー1の数は、管体3の長ささや、構築する埋
設管路の規模に応じて適宜決定されるが、1〜数メート
ルおきに設けられる。
The annular marker 1 provided on the detection signal response means 2 as described above is fitted onto the pipe body 3 as shown in FIG. The number of the markers 1 is appropriately determined according to the length of the tubular body 3 and the scale of the buried pipeline to be constructed, but the markers 1 are provided every 1 to several meters.

このように所要数のマーカー1…が外嵌された管体3
を、地面(道路)に掘った溝内に順次敷設し、隣接する
管体3同士を、第3図に示すように継手4で接続し、こ
れら管体3…の上から土を埋め戻して道路等の現状に復
することにより埋設管路が構築される。
In this way, the tubular body 3 with the required number of markers 1 ...
Are sequentially laid in a trench dug in the ground (road), adjacent pipes 3 are connected by a joint 4 as shown in FIG. 3, and the soil is backfilled from above the pipes 3. A buried pipeline will be constructed by restoring the roads to the current state.

次に、以上のようにして構築された埋設管路の探知方
法について説明するが、その前に、まず探知に使用する
探知器について簡単に説明しておく。
Next, a method of detecting the buried pipeline constructed as described above will be described. Before that, a detector used for detection will be briefly described first.

探知器は、マーカー1の共振回路(コイル201、コン
デンサ202及び水晶振動子203で構成された水晶共振回
路)の共振周波数に等しい周波数の励振信号を出力する
送信手段と、マーカー1から放出される検知信号を検出
してマーカー1の存在を検知する受信手段と、これら送
信手段および受信手段に接続され、上記励振信号の放出
および検知信号の受信を行うループアンテナとを備えた
ものである。
The detector is emitted from the marker 1 and a transmitting unit that outputs an excitation signal having a frequency equal to the resonance frequency of the resonance circuit of the marker 1 (the crystal resonance circuit including the coil 201, the capacitor 202, and the crystal resonator 203). It is provided with a receiving means for detecting the detection signal to detect the presence of the marker 1, and a loop antenna connected to the transmitting means and the receiving means for emitting the excitation signal and receiving the detection signal.

この探知器により埋設管路の探知を行うには、探知器
のループアンテナのループ面が地面に平行となるように
して該ループアンテナを地面上で走査する。一方、マー
カー1は管体3に外嵌されているので、そのコイル201
(ループ状に形成されている)のループ面と地面とは略
垂直な関係になっており、上記走査で探知器のループア
ンテナはマーカー1のコイル201と、それぞれのループ
面が互いに直角であるような関係で移動することにな
る。従って、探知器のループアンテナがマーカー1のコ
イル201に近づくと、初めのうち両者の間は誘導結合状
態(マーカー1のコイル201に生じた磁界がループアン
テナを横切る状態)となって、ループアンテナにマーカ
ー1の水晶振動子203の残留振動(共振振動)と同じ周
波数の信号が誘起され、これが探知器の受信手段で受信
されて埋設管路の埋設区域が検知される。そして、さら
に走査を続け、探知器のループアンテナがマーカー1の
コイル201の中心上に達すると、両者の間の誘導結合が
なくなり、探知器では今まで受信されていたマーカー1
からの検知信号が受信されなくなる。これによってマー
カー1の位置が特定される。すなわち、探知器のループ
アンテナとマーカー1のコイル201とが互いに直角をな
す場合の受信レベルと受信距離の関係は、第5図に示す
通りであり、水晶振動子203からの共振振動が受信され
なくなる範囲SB(探知器の受信手段でのER以上の受信レ
ベルが探知レベルであるものとした場合における範囲)
は、マーカー1の埋設位置S0を中心として極めて狭い範
囲であるため、上記走査によりマーカー1の位置が精度
よく特定できることとなる。また、第5図に示す特性
は、マーカー1の埋設位置S0近傍での変化率が大きいた
め、探知したことの確認が極めてし易く(例えば、メー
ターを使用した場合には指針の振れが大きくなる。)、
マーカー1の位置確認が正確に行える。
In order to detect the buried pipeline with this detector, the loop antenna of the detector is scanned on the ground so that the loop surface of the loop antenna is parallel to the ground. On the other hand, since the marker 1 is fitted on the tubular body 3, the coil 201
The loop surface (formed in a loop shape) and the ground are in a substantially vertical relationship, and in the above scanning, the loop antenna of the detector is the coil 201 of the marker 1 and the respective loop surfaces are at right angles to each other. It will move in such a relationship. Therefore, when the loop antenna of the detector approaches the coil 201 of the marker 1, the two are initially in an inductively coupled state (the magnetic field generated in the coil 201 of the marker 1 crosses the loop antenna), and the loop antenna A signal having the same frequency as the residual vibration (resonance vibration) of the crystal oscillator 203 of the marker 1 is induced at the position, and this is received by the receiving means of the detector to detect the buried area of the buried pipeline. Then, when scanning is further continued and the loop antenna of the detector reaches the center of the coil 201 of the marker 1, the inductive coupling between the two is lost, and the marker 1 previously received by the detector is lost.
The detection signal from will not be received. Thereby, the position of the marker 1 is specified. That is, the relationship between the reception level and the reception distance when the loop antenna of the detector and the coil 201 of the marker 1 are perpendicular to each other is as shown in FIG. 5, and the resonance vibration from the crystal oscillator 203 is received. Extinguished range S B (range when the detection level is equal to or higher than the reception level E R at the detection means of the detector)
Is a very narrow range with the embedded position S 0 of the marker 1 as the center, the position of the marker 1 can be specified with high accuracy by the above scanning. Further, in the characteristic shown in FIG. 5, since the rate of change in the vicinity of the embedded position S 0 of the marker 1 is large, it is very easy to confirm that the marker has been detected (for example, when the meter is used, the deflection of the pointer is large. Become.),
The position of the marker 1 can be confirmed accurately.

以上述べたのと同様の走査を他のマーカーについても
行い、各マーカーの位置を繋いでいくことにより埋設管
路の配管状態が特定される。
The same scanning as described above is performed for other markers, and the positions of the markers are connected to specify the piping state of the buried pipeline.

なお、マーカー1の探知信号応動手段2に使用する水
晶振動子203として、温度変化に敏感な温度感応型のも
のや圧力変化に敏感な圧力感応型のものを使用するとマ
ーカーの埋設位置の検出とともに温度や圧力も同時に検
出することができる。従って、管路に漏れが発生して管
路周囲の温度や圧力に変化を生じる場合には、地上より
マーカーの埋設位置の温度や圧力を測定して管路の漏れ
を発見することができる。
If the crystal oscillator 203 used for the detection signal response means 2 of the marker 1 is a temperature sensitive type sensitive to temperature change or a pressure sensitive type sensitive to pressure change, the embedded position of the marker is detected. Temperature and pressure can also be detected at the same time. Therefore, when a leak occurs in the pipeline and changes in temperature and pressure around the pipeline, the leak in the pipeline can be found by measuring the temperature and pressure at the position where the marker is buried from the ground.

温度や圧力の変化があると水晶振動子203の共振周波
数が変化するので、この変化を探知器で探知すればよい
のである。管路の漏れは管路の接続部分で発生すること
が多いので、第3図に示すように、マーカー1を接続部
分4に近接して管体3に外嵌させておくのがよい。
Since the resonance frequency of the crystal unit 203 changes when there is a change in temperature or pressure, this change can be detected by a detector. Since leakage of the pipe often occurs at the connecting portion of the pipe, it is preferable that the marker 1 is fitted on the pipe body 3 close to the connecting portion 4 as shown in FIG.

(発明の効果) 以上説明したように、本発明埋設管路は、環状に形成
されたマーカーを外嵌した管体により構築されているの
で、埋め戻しの際の土砂の投入や埋設後における土の変
動等によってマーカーが移動することがなく、したがっ
て、精度よく管路の埋設個所を探知することができる。
またそれとともに、管体を埋設する際にマーカーも同時
に埋設されるので、施工が極めてて容易となる。
(Effect of the invention) As described above, since the buried conduit of the present invention is constructed by the pipe body in which the marker formed in the ring shape is externally fitted, the soil after the filling and the soil after the filling are buried at the time of the backfilling. The marker does not move due to fluctuations in, and therefore, it is possible to accurately detect the buried portion of the pipeline.
Further, at the same time, when the pipe body is embedded, the marker is also embedded at the same time, which makes the construction extremely easy.

マーカーのコイルは、管体に外嵌された状態で地面と
ほぼ垂直状態に保持されるために、地上からの探知信号
に良好に応動する。
The coil of the marker, which is fitted to the tube body and is held substantially perpendicular to the ground, responds well to the detection signal from the ground.

【図面の簡単な説明】[Brief description of drawings]

図面はいずれも本発明埋設管路の一実施例を示し、第1
図はマーカーの斜視図、第2図はマーカーを外嵌した状
態を示す管体の部分斜視図、第3図は管体の接続部分を
示す部分斜視図、第4図は共振回路、第5図はマーカー
の探知特性を説明する図である。 1……標識体(マーカー) 2……探知信号応動手段、3……管体
The drawings each show an embodiment of the buried pipeline according to the present invention.
The figure is a perspective view of the marker, FIG. 2 is a partial perspective view of the tube body showing a state in which the marker is externally fitted, FIG. 3 is a partial perspective view showing a connecting portion of the tube body, FIG. 4 is a resonance circuit, and FIG. The figure is a diagram for explaining the detection characteristic of the marker. 1 ... Marker 2 ... Detection signal responsive means 3 ... Tube

フロントページの続き (72)発明者 宮崎 温敏 東京都文京区小石川2丁目5番7号 明 星電気株式会社内 (56)参考文献 特開 昭60−230076(JP,A) 実開 昭56−68178(JP,U)Front Page Continuation (72) Inventor Atsutoshi Miyazaki 2-5-7 Koishikawa, Bunkyo-ku, Tokyo Within Meisei Electric Co., Ltd. (56) Reference JP-A-60-230076 (JP, A) 68178 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ループ状に成形されたコイルを有する共振
回路によって構成されて地上から送出される探知信号に
応動する探知信号応動手段が設けられた標識体を具備
し、前記コイルを管体に外嵌させることによって標識体
が管体に保持されていることを特徴とする埋設管路。
1. A marker comprising a resonance circuit having a coil formed in a loop shape and provided with detection signal responsive means for responsive to a detection signal transmitted from the ground, the coil being a tubular body. A buried pipeline, wherein the marker is held by the tube by being fitted externally.
JP62193298A 1987-07-31 1987-07-31 Buried pipeline Expired - Lifetime JP2511059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62193298A JP2511059B2 (en) 1987-07-31 1987-07-31 Buried pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62193298A JP2511059B2 (en) 1987-07-31 1987-07-31 Buried pipeline

Publications (2)

Publication Number Publication Date
JPS6438688A JPS6438688A (en) 1989-02-08
JP2511059B2 true JP2511059B2 (en) 1996-06-26

Family

ID=16305588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62193298A Expired - Lifetime JP2511059B2 (en) 1987-07-31 1987-07-31 Buried pipeline

Country Status (1)

Country Link
JP (1) JP2511059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259485A (en) * 1989-03-31 1990-10-22 Osaka Gas Co Ltd Searching apparatus of buried object

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668178U (en) * 1979-10-31 1981-06-06
JPS5822150U (en) * 1981-08-04 1983-02-10 日産自動車株式会社 Vehicle seat belt winding stop device
JPS60230076A (en) * 1984-04-27 1985-11-15 Tokyo Gas Co Ltd Method for probing and identifying buried body by using underground probe radar and marker body used for method

Also Published As

Publication number Publication date
JPS6438688A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
CA2369213C (en) Casing joint locator methods and apparatus
EP0683401B1 (en) Locating device
US6003376A (en) Acoustic system for measuring the location and depth of underground pipe
JP3466625B2 (en) Positioning of independent underground boring machines
US8515689B2 (en) Enhanced precise location
US4951758A (en) Method of drilling a branch line aperture after internal lining of a pipeline and a water plug used in the method
US20110156957A1 (en) Precise positioning using a distributed sensor network
US8515690B2 (en) Enhanced precise location
KR101306882B1 (en) Information Acquisition Method And Device For Underground Utilities
US6049279A (en) Detectable transponder conduit end cap
US4837582A (en) Method and apparatus for detecting electromagnetic waves generated by the earth's crust under strain
EP0682270B1 (en) Method and apparatus locating a buried element
US6543550B2 (en) Long range electronic guidance system for locating a discrete in-ground boring device
US8400156B2 (en) Installation of service tee marker fixture having disk marker and concentric attachment sleeve
JP2511059B2 (en) Buried pipeline
JP3119321B2 (en) Detection method of target points in buried pipes
JPS6013205A (en) Device for detecting position of corrosion of tubular body
JPH0743459A (en) Apparatus for detecting underground embedded material
JPH06174837A (en) Method for detecting position of joint of buried pipe
JP3084298B2 (en) Buried metal tube and metal lump detector
JPH10115683A (en) Detecting method for predetermined position of underground piping
KR200305032Y1 (en) detector for underground tube
JP3007663B2 (en) Buried pipe detection method
JP4327994B2 (en) Multifunction embedded marker and sound pressure data detection device
JPH0659048A (en) Inductive transmission type buried pipe detecter and its transmitter