JP2510399Y2 - Absorption condenser - Google Patents

Absorption condenser

Info

Publication number
JP2510399Y2
JP2510399Y2 JP1990117667U JP11766790U JP2510399Y2 JP 2510399 Y2 JP2510399 Y2 JP 2510399Y2 JP 1990117667 U JP1990117667 U JP 1990117667U JP 11766790 U JP11766790 U JP 11766790U JP 2510399 Y2 JP2510399 Y2 JP 2510399Y2
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
shell
transfer tube
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990117667U
Other languages
Japanese (ja)
Other versions
JPH0474265U (en
Inventor
康 森
篤二 松尾
剛 佐藤
一良 辻岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1990117667U priority Critical patent/JP2510399Y2/en
Publication of JPH0474265U publication Critical patent/JPH0474265U/ja
Application granted granted Critical
Publication of JP2510399Y2 publication Critical patent/JP2510399Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は,吸収凝縮器に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an absorption condenser.

(従来の技術) 従来の吸収凝縮器を第13図及び第14図に示した。(Prior Art) A conventional absorption condenser is shown in FIGS. 13 and 14.

先ず第13図に示す吸収凝縮器を説明すると,(1)が
シエル,(2)が同シエル(1)内上部に配設した散布
管,(3)が上記シエル(1)内を貫通した蛇行状の伝
熱管,(4)が上記シエル(1)内へ蒸気を供給する蒸
気供給管,(5)が上記散布管(2)に連通した希釈液
供給管,(6)が上記伝熱管(3)に連通した冷媒供給
管,(7)がシエル(1)の下部に設けた復液溜めであ
り、 熱媒である蒸気を蒸気供給管(4)からシエル(1)
内へ供給し,冷媒を冷媒供給管(6)から伝熱管
(2)内へ供給し,希釈液を希釈液供給管(5)→散
布管(2)からシエル(1)内へ散布して,希釈液の大
部分を最上部の伝熱管(3)に落下させ,伝熱管(3)
の外表面に沿い流下させて,液膜(または液滴)を形成
させる。
First, the absorption condenser shown in FIG. 13 will be described. (1) is shell, (2) is a spray pipe arranged in the upper part of the shell (1), and (3) is penetrated through the shell (1). A meandering heat transfer tube, (4) a steam supply tube for supplying steam into the shell (1), (5) a diluent supply tube communicating with the spray tube (2), and (6) a heat transfer tube. A refrigerant supply pipe communicating with (3), (7) is a condensate reservoir provided in the lower part of the shell (1), and steam as a heat medium is supplied from the steam supply pipe (4) to the shell (1).
The refrigerant is supplied into the heat transfer tube (2) from the refrigerant supply pipe (6), and the diluent is sprayed from the diluent supply pipe (5) to the spray pipe (2) into the shell (1). , Most of the diluted liquid is dropped on the uppermost heat transfer tube (3), and the heat transfer tube (3)
A liquid film (or droplets) is formed by flowing down along the outer surface of the.

また残りの一部をシエル(1)の側壁内面に衝突させ
て,流下させる。
Also, the remaining part is made to collide with the inner surface of the side wall of the shell (1) and flow down.

さらに残部を伝熱管(3)やシエル(1)の側壁内面
に衝突させずに復液溜め(7)に直接落下させる。
Further, the remaining portion is dropped directly into the condensate reservoir (7) without colliding with the inner surface of the side wall of the heat transfer tube (3) or shell (1).

上記のように最上部の伝熱管(3)の外表面に沿い流
下する希釈液を,伝熱管(3)内を流れる冷媒により冷
却して,蒸気を凝縮させる。
As described above, the diluent flowing down along the outer surface of the uppermost heat transfer tube (3) is cooled by the refrigerant flowing in the heat transfer tube (3) to condense steam.

そして液量を増しながら下方の伝熱管(3)へ次々に
衝突し,上記の吸収・凝縮作用を繰り返し行って,徐々
に飽和液に近づき,やがて飽和液になって,復液溜め
(7)に直接落下するか,落下途中にシエル(1)内壁
面に衝突し,それからシエル(1)内壁面を流下して,
復液溜め(7)に落下する。
While increasing the amount of liquid, they collide with the lower heat transfer pipes (3) one after another, repeating the above-mentioned absorption and condensation actions, gradually approaching saturated liquid, and eventually becoming saturated liquid, and then the condensate reservoir (7). To the shell (1) inner wall surface while falling, and then to flow down the shell (1) inner wall surface,
Drop into condensate reservoir (7).

このようにシエル(1)内壁面に衝突して,そこを流
下する希釈液は,伝熱管(3)に再度接触することがな
くて,僅かの蒸気しか吸収しない。復液溜め(7)に落
下して,そこに溜まった希釈液は,排出ライン(図示せ
ず)を経て吸収凝縮器外へ排出される。
In this way, the diluent that collides with the inner wall surface of the shell (1) and flows down there does not contact the heat transfer tube (3) again, and absorbs only a small amount of vapor. The diluting liquid that has fallen into the condensate reservoir (7) and is accumulated therein is discharged to the outside of the absorption condenser through a discharge line (not shown).

一方,伝熱管(3)内を流れる冷媒は,希釈液を冷却
しながら伝熱管外へ排出される。
On the other hand, the refrigerant flowing in the heat transfer tube (3) is discharged to the outside of the heat transfer tube while cooling the diluent.

次に第14図に示す吸収凝縮器を説明すると,(8)が
上記散布管(2)の下方に2段に配設した液散布用金
網,(15)が上記シエル(1)の下部に設けた希釈液排
出管で,それ以外の部分は,前記第13図に示す吸収凝縮
器と同様に構成されており, この吸収凝縮器でも,熱媒である蒸気を蒸気供給管
(4)からシエル(1)内へ供給し,冷媒を冷媒供給
管(6)から伝熱管(3)内へ供給し,希釈液を希釈
液供給管(5)→散布管(2)→液散布用金網(8)の
網目(13)からシエル(1)内へ散布して,希釈液の大
部分を最上部の伝熱管(3)に落下させ,伝熱管(3)
の外表面に沿い流下させて,液膜(または液滴)を形成
させる。
Next, the absorption condenser shown in FIG. 14 will be described. (8) is a wire-dispersing wire mesh arranged in two stages below the spray pipe (2), and (15) is below the shell (1). The other parts of the dilution liquid discharge pipe provided are the same as those of the absorption condenser shown in FIG. 13. Also in this absorption condenser, the steam as the heat medium is supplied from the steam supply pipe (4). The shell is supplied into the shell (1), the refrigerant is supplied from the refrigerant supply pipe (6) into the heat transfer pipe (3), and the diluting liquid is supplied to the diluting liquid supply pipe (5) → the spray pipe (2) → the liquid-spraying wire mesh ( The mesh (13) of 8) is sprayed into the shell (1), and most of the diluent is dropped onto the uppermost heat transfer tube (3), and the heat transfer tube (3)
A liquid film (or droplets) is formed by flowing down along the outer surface of the.

また残りの一部をシエル(1)の側壁内面に衝突させ
て,流下させる。
Also, the remaining part is made to collide with the inner surface of the side wall of the shell (1) and flow down.

さらに残部を伝熱管(3)やシエル(1)の側壁内面
に衝突させずに復液溜め(7)に直接落下させる。
Further, the remaining portion is dropped directly into the condensate reservoir (7) without colliding with the inner surface of the side wall of the heat transfer tube (3) or shell (1).

上記のように最上部の伝熱管(3)の外表面に沿い流
下する希釈液を,伝熱管(3)内を流れる冷媒により冷
却して,蒸気を凝縮させる。
As described above, the diluent flowing down along the outer surface of the uppermost heat transfer tube (3) is cooled by the refrigerant flowing in the heat transfer tube (3) to condense steam.

そして液量を増しながら下方の伝熱管(3)へ次々に
衝突し,上記の吸収・凝縮作用を繰り返し行って,徐々
に飽和液に近づき,やがて飽和液になって,復液溜め
(7)に直接落下するか,落下途中にシエル(1)内壁
面に衝突し,それからシエル(1)内壁面を流下して,
復液溜め(7)に落下する。
While increasing the amount of liquid, they collide with the lower heat transfer pipes (3) one after another, repeating the above-mentioned absorption and condensation actions, gradually approaching saturated liquid, and eventually becoming saturated liquid, and then the condensate reservoir (7). To the shell (1) inner wall surface while falling, and then to flow down the shell (1) inner wall surface,
Drop into condensate reservoir (7).

このようにシエル(1)内壁面に衝突して,そこを流
下する希釈液は,伝熱管(3)に再度接触することがな
くて,僅かの蒸気しか吸収しない。復液溜め(7)に落
下して,そこに溜まった希釈液は,排出ライン(図示せ
ず)を経て吸収凝縮器外へ排出される。一方,伝熱管
(3)内を流れる冷媒は,希釈液を冷却しながら伝熱管
外へ排出される。
In this way, the diluent that collides with the inner wall surface of the shell (1) and flows down there does not contact the heat transfer tube (3) again, and absorbs only a small amount of vapor. The diluting liquid that has fallen into the condensate reservoir (7) and is accumulated therein is discharged to the outside of the absorption condenser through a discharge line (not shown). On the other hand, the refrigerant flowing in the heat transfer tube (3) is discharged to the outside of the heat transfer tube while cooling the diluent.

(考案が解決しようとする課題) 前記第13,14図に示す従来の吸収凝縮器は,蒸気を伝
熱管(2)の表面に落下した希釈液により吸収,凝縮さ
せ,その際,蒸気の放出する熱量または希釈液の受熱し
た熱量を伝熱管(3)内を流れる冷媒より吸熱するもの
であり,伝熱管(3)の表面に濡れていない部分が存在
すれば,伝熱管(3)は伝熱作用を殆ど行わないことに
なる。
(Problems to be Solved by the Invention) In the conventional absorption condenser shown in FIGS. 13 and 14, the vapor is absorbed and condensed by the diluting liquid that has dropped onto the surface of the heat transfer tube (2), and the vapor is released at that time. The amount of heat to be generated or the amount of heat received by the diluting liquid is absorbed by the refrigerant flowing in the heat transfer tube (3), and if there is an unwetted portion on the surface of the heat transfer tube (3), the heat transfer tube (3) will transfer heat. Almost no heat is applied.

仮に濡れていたとしても,伝熱管(3)の表面に形成
された液膜(または液滴)が下方の伝熱管(3)に速や
かに流下しないで同じ伝熱管(3)の外表面に長く止ま
っていたとすれば,吸収,凝縮が進み,飽和液に近づく
とともに吸収,凝縮能力も低下する。
Even if it is wet, the liquid film (or liquid droplets) formed on the surface of the heat transfer tube (3) does not immediately flow down to the lower heat transfer tube (3), but is long on the outer surface of the same heat transfer tube (3). If it stopped, absorption and condensation proceed, and as it approaches a saturated liquid, the absorption and condensation capabilities also decrease.

即ち,上方から流下してきた希釈液は,伝熱管(3)
外表面に均一に広がり,吸収,凝縮した後,伝熱管
(3)下部から伝熱管(3)の管軸方向に沿って下流側
に均一に流下するのが理想的である。
That is, the diluted liquid flowing down from above is transferred to the heat transfer tube (3).
Ideally, it uniformly spreads on the outer surface, is absorbed and condensed, and then uniformly flows from the lower portion of the heat transfer tube (3) to the downstream side along the tube axis direction of the heat transfer tube (3).

但し実際には,上流から液柱(または液滴)で流下し
ててき,伝熱管(3)の外表面に或る程度広がると,伝
熱管(3)上に流下してきた液柱(または液滴)の位置
より伝熱管(3)外表面に沿って円周方向下方に延ばし
た部分,即ち,伝熱管(3)下部付近から液柱(または
液滴)のまま流下し,それ以外の部分から流下するのは
僅かである。また下流に行く程,液柱(または液滴)の
合体が生じて,伝熱管(3)下部の管軸方向に存在する
液柱(または液滴)の間隔も長くなる。
However, in reality, when the liquid column (or liquid droplet) flows down from the upstream side and spreads to some extent on the outer surface of the heat transfer tube (3), the liquid column (or liquid) flowing down on the heat transfer tube (3) is reached. A portion that extends circumferentially downward along the outer surface of the heat transfer tube (3) from the position of the droplet, that is, the liquid column (or droplet) flows down from the vicinity of the lower part of the heat transfer tube (3), and the other portion There is only a small amount of runoff. Further, as it goes downstream, coalescence of liquid columns (or droplets) occurs, and the interval between the liquid columns (or droplets) existing in the tube axis direction below the heat transfer tube (3) also becomes longer.

このことは実験例でも明らかである。これらのことに
より,伝熱管(3)上に流下してきて,伝熱管(3)下
部より流下してゆく液柱(または液滴)間を伝熱管
(3)の表面に沿って円周方向下方に延ばした部分,即
ち,伝熱管(3)下部付近に存在する液柱(または液
滴)は,伝熱管(3)の表面に長く止まっていなくて,
伝熱がスムーズに行われるが,他はこの部分よりも悪い
と言える。
This is also clear in the experimental example. Due to these, the liquid columns (or droplets) that flow down onto the heat transfer tube (3) and flow down from the lower part of the heat transfer tube (3) are circumferentially downward along the surface of the heat transfer tube (3). The liquid column (or liquid droplets) existing near the bottom of the heat transfer tube (3), that is, near the bottom of the heat transfer tube (3), does not remain on the surface of the heat transfer tube (3) for a long time.
Heat transfer is performed smoothly, but it can be said that other parts are worse than this part.

また液膜が厚過ぎると,熱抵抗となり,伝熱を阻害す
ることも明らかである。その他,伝熱管(3)に接触し
ない希釈液は,冷媒との熱交換しないため,ごく僅かな
蒸気を吸収しただけで飽和液になり,伝熱に殆ど寄与し
ないことも明らかである。
It is also clear that if the liquid film is too thick, it will cause thermal resistance and hinder heat transfer. In addition, it is also clear that the diluent that does not come into contact with the heat transfer tube (3) does not exchange heat with the refrigerant, and therefore becomes a saturated liquid by absorbing a very small amount of vapor and hardly contributes to heat transfer.

以上により,前記第13,14図に示す従来の吸収凝縮器
には,次の問題があった。即ち, (I)散布管(2)より散布され,シエル(1)の内壁
面に衝突して,そこを流下する希釈液及び復液溜め
(7)に直接落下する希釈液は,伝熱に寄与していな
い。
As described above, the conventional absorption condenser shown in FIGS. 13 and 14 has the following problems. That is, (I) the diluent that is sprayed from the spray pipe (2), collides with the inner wall surface of the shell (1) and flows down there, and the diluent that directly drops into the condensate reservoir (7) is used for heat transfer. Not contributing.

(II)散布管(2)より散布された希釈液は,伝熱管
(3)を流下するうちに液柱(または液滴)の合体が生
じて,下流に行く程,伝熱管(3)の管軸方向に存在す
る液柱(または液滴)の間隔が長くなる。即ち,下流に
行く程,一度伝熱管(3)に付着した希釈液の入れ換わ
りがスムーズに行われなくて,伝熱が円滑に行われな
い。
(II) The diluted liquid sprayed from the spray pipe (2) flows through the heat transfer pipe (3), coalescing of liquid columns (or droplets) occurs, and the more downstream the heat transfer pipe (3) The distance between the liquid columns (or droplets) existing in the tube axis direction becomes long. That is, as it goes downstream, the diluting liquid once attached to the heat transfer tube (3) is not smoothly replaced, and heat transfer is not smoothly performed.

(III)希釈液の流下方向の投影面の伝熱管(3)に散
布液を均一に濡れるように散布するには,投影面積が大
きい場合,散布管(2)の本数を増やす必要があって,
構造が複雑になる上に,コスト高になる。
(III) In order to uniformly spread the spray liquid on the heat transfer pipes (3) on the projection surface in the downflow direction of the diluting liquid, if the projected area is large, it is necessary to increase the number of spray pipes (2). ,
The structure is complicated and the cost is high.

という問題があった。There was a problem.

本考案は前記の問題点に鑑み提案するものであり,そ
の目的とする処は,伝熱性能を向上できる上に,コスト
を低減できる吸収凝縮器を提供しようとする点にある。
The present invention is proposed in view of the above problems, and an object of the present invention is to provide an absorption condenser that can improve heat transfer performance and reduce cost.

(課題を解決するための手段) 上記の目的を達成するために,本考案の吸収凝縮器
は,シエル内上部に希釈液散布管を配設し、同希釈液散
布管よりも下方のシエル内に多数の希釈液散布孔を有す
る液散布トレイを配設して、同液散布トレイの外周部と
シエル内壁面との間に蒸気流路を形成し、同液散布トレ
イの外周部の直上にシエル内壁面に衝突して同内壁面を
流下する希釈液を上記液散布トレイへ導く集液トレイを
配設し、上記液散布トレイよりも下方のシエル内に伝熱
管を配設している。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the absorption condenser of the present invention has a diluent spraying pipe arranged in the upper part of the shell, and in the shell below the diluent spraying pipe. A liquid spray tray having a large number of diluting liquid spray holes is provided in the liquid spray tray to form a vapor flow path between the outer peripheral portion of the liquid spray tray and the inner wall surface of the shell, and directly above the outer peripheral portion of the liquid spray tray. A liquid collecting tray for guiding the diluting liquid that collides with the inner wall surface of the shell and flows down the inner wall surface to the liquid distribution tray is arranged, and a heat transfer tube is arranged in the shell below the liquid distribution tray.

(作用) 本考案の吸収凝縮器は前記のように構成されており、
希釈液散布管から散布した希釈液を液散布トレイへ落下
させて、一旦、貯留する一方、シエル内壁面に衝突して
同内壁面を流下する希釈液を集液トレイを経て液散布ト
レイへ集め、この液散布トレイ内の希釈液を同液散布ト
レイに設けた多数の希釈液散布孔を経て下方の伝熱管
(管内を冷媒が流れる伝熱管)へ均一に散布して、伝熱
管の外表面を一様に拡散、流下させるとともに、熱媒の
蒸気を液散布トレイの外周部とシエル内壁面との間に形
成した蒸気通路を経て伝熱管の方向へ導き、伝熱管の外
周面を流下する希釈液を伝熱管内を流れる冷媒により冷
却して、蒸気を凝縮させる。
(Operation) The absorption condenser of the present invention is configured as described above,
While diluting the liquid sprayed from the diluting liquid spray pipe to the liquid spreading tray and temporarily storing it, the diluting liquid that collides with the inner wall surface of the shell and flows down the inner wall surface is collected in the liquid spreading tray via the liquid collecting tray. , The diluted liquid in this liquid spray tray is evenly sprayed to the lower heat transfer pipe (heat transfer pipe in which the refrigerant flows in the pipe) through a large number of diluted liquid spray holes provided in the liquid spray tray, and the outer surface of the heat transfer pipe Of the heat transfer medium is led to the heat transfer tube in the direction of the heat transfer tube through the steam passage formed between the outer peripheral part of the liquid distribution tray and the inner wall surface of the shell, and flows down the outer peripheral surface of the heat transfer tube. The diluent is cooled by the refrigerant flowing in the heat transfer tube to condense the steam.

(実施例) 次に本考案の吸収凝縮器を第1,2,3図に示す一実施例
により説明すると,(1)がシエル,(2)が同シエル
(1)内上部に配設した散布管,(3)が上記シエル
(1)内を貫通した蛇行状の伝熱管,(4)が上記シエ
ル(1)内へ蒸気を供給する蒸気供給管,(5)が上記
散布管(2)に連通した希釈液供給管,(6)が上記伝
熱管(3)に連通した冷媒供給管,(7)がシエル
(1)の下部に設けた復液溜めである。
(Embodiment) Next, the absorption condenser of the present invention will be described with reference to an embodiment shown in FIGS. 1, 2, and 3. (1) is arranged in the shell and (2) is arranged in the upper part of the shell (1). Dispersion pipe, (3) a meandering heat transfer pipe penetrating through the shell (1), (4) a steam supply pipe for supplying steam into the shell (1), and (5) a distribution pipe (2). ) Is a diluting liquid supply pipe, (6) is a refrigerant supply pipe communicating with the heat transfer pipe (3), and (7) is a condensate reservoir provided under the shell (1).

また(10)が上記散布管(2)の下方に2段に配設し
た液散布トレイ,(11)が同液散布トレイ(10)の外周
部直上に配設した環状の集液トレイ,(12)が上記液散
布トレイ(11)の外周部と上記シエル(1)の内壁面と
の間に形成した環状の蒸気流路,(13)が上記液散布ト
レイ(11)に設けた複数の希釈液散布孔である。
Further, (10) is a liquid distribution tray arranged in two stages below the distribution pipe (2), and (11) is an annular liquid collection tray arranged immediately above the outer periphery of the liquid distribution tray (10), ( 12) is an annular vapor flow path formed between the outer peripheral portion of the liquid distribution tray (11) and the inner wall surface of the shell (1), and (13) is a plurality of annular vapor passages provided in the liquid distribution tray (11). It is a diluting liquid spray hole.

次に前記第1,2,3図に示す吸収凝縮器の作用を具体的
に説明する。希釈液を伝熱管(3)へ均一に散布して、
伝熱管(3)の外表面を一様に拡散、流下させるために
は、希釈液の流路を細分割する一方、希釈液の流量を確
保する必要があり、このため、本実施例では、希釈液散
布管(2)の下方のシエル(1)内に多数の希釈液散布
孔(目詰まりしない程度の細径の希釈液散布孔)(13)
を有する液散布トレイ(10)を上下2段に配設して、同
各液散布トレイ(10)の外周部とシエル(1)内壁面と
の間に蒸気流路(12)を形成し、同各液散布トレイ(1
0)の外周部の直上にシエル(1)内壁面に衝突して同
内壁面を流下する希釈液を上記各液散布トレイ(10)へ
導く集液トレイ(11)を配設し、上記各液散布トレイ
(10)よりも下方のシエル(1)内に伝熱管(3)を配
設しており、希釈液散布管(2)から散布した希釈液を
先ず上段の液散布トレイ(10)へ落下させて、一旦、貯
留する一方、シエル(1)内壁面に衝突して同内壁面を
流下する希釈液を集液トレイ(11)を経て上段の液散布
トレイ(10)へ集め、同上段の液散布トレイ(10)内の
希釈液を同液散布トレイ(10)に設けた多数の希釈液散
布孔(13)を経て下方の伝熱管(管内を冷媒が流れる伝
熱管)(3)へ均一に散布して、伝熱管(3)の外表面
を一様に拡散、流下させるとともに、熱媒の蒸気を上段
の液散布トレイ(10)の外周部とシエル(1)内壁面と
の間に形成した蒸気通路(12)を経て伝熱管(3)の方
向へ導き、伝熱管(3)の外周面を流下する希釈液を伝
熱管(3)内を流れる冷媒により冷却して、蒸気を凝縮
させる。以上は,上段の液散布トレイ(10)についてで
あるが,下段の液散布トレイ(10)でも同様の作用が行
われる。
Next, the operation of the absorption condenser shown in FIGS. 1, 2, and 3 will be specifically described. Disperse the diluent evenly over the heat transfer tube (3),
In order to uniformly diffuse and flow down the outer surface of the heat transfer tube (3), it is necessary to subdivide the flow path of the diluting liquid and to secure the flow rate of the diluting liquid. Therefore, in this embodiment, A large number of dilution liquid distribution holes (thin diameter dilution liquid distribution holes that do not clog) in the shell (1) below the dilution liquid distribution pipe (2) (13)
The liquid distribution trays (10) having the above are arranged in upper and lower two stages to form a vapor flow path (12) between the outer peripheral portion of each liquid distribution tray (10) and the inner wall surface of the shell (1), Each liquid spray tray (1
A collecting tray (11) for guiding the diluting liquid that collides with the inner wall surface of the shell (1) and flows down on the inner wall surface of the shell (1) is provided directly above the outer peripheral portion of (0), and The heat transfer tube (3) is arranged in the shell (1) below the liquid spray tray (10), and the diluted liquid sprayed from the diluted liquid spray pipe (2) is first in the upper liquid spray tray (10). While being stored, the diluted liquid that collides with the inner wall surface of the shell (1) and flows down the inner wall surface of the shell (1) is collected in the upper liquid spray tray (10) via the liquid collection tray (11) and then stored. The diluting liquid in the upper liquid spray tray (10) passes through a large number of diluting liquid spray holes (13) provided in the liquid spray tray (10), and the lower heat transfer pipe (heat transfer pipe in which the refrigerant flows inside the pipe) (3) The heat transfer tubes (3) are evenly dispersed on the outer surface of the liquid transfer tray (10) while the outer surface of the heat transfer tube (3) is uniformly diffused and flowed down. Inside the heat transfer tube (3) through the steam passage (12) formed between the shell and the inner wall surface of the shell (1), leading to the direction of the heat transfer tube (3) and flowing down the outer peripheral surface of the heat transfer tube (3). It is cooled by the refrigerant flowing through it to condense the vapor. The above is the liquid spray tray (10) in the upper stage, but the same operation is performed in the liquid spray tray (10) in the lower stage.

第4,5,6図は,液散布トレイ(10)に平面視長方形の
蒸気流路(12)と平面視円形の希釈液散布孔(13)とを
分散状態に設け,同各希釈液散布孔(13)に管(14)を
垂下状態に設けた他の実施例で,この実施例でも,前記
実施例と同様の作用が行われる。
Figures 4, 5 and 6 show that the liquid distribution tray (10) is provided with the rectangular steam flow channel (12) in plan view and the dilution liquid distribution hole (13) in circular shape in plan view in a dispersed state. In another embodiment in which the pipe (14) is provided in the hole (13) in a suspended state, the same operation as in the above embodiment is performed in this embodiment.

第7,8,9,10図は,散布管(2)の下方に液散布用金網
(8)(10)を2段に配設し,その間にラツシヒリング
(細管を輪切りにしたリング=充填材)(9)を充填
し,液散布用金網(8)(10)間に上記流路(11)と希
釈液散布孔(13)とを分散状態に設けた他の実施例で,
この実施例では,希釈液を液散布用金網(8)へ落下さ
せ,ラツシヒリング(9)層を流下させる間に分散させ
て,液散布用金網(10)から下方の伝熱管(3)へ均一
に散布させる。
Figures 7,8,9,10 show that the liquid-dispersion wire nets (8) (10) are arranged in two stages below the spray pipe (2), and in between, the Raschig ring (ring with thin tubes cut into rings = packing material). (9) is filled, and the flow path (11) and the diluent spray hole (13) are provided in a dispersed state between the wire meshes (8) and (10) for spraying liquid,
In this embodiment, the diluted liquid is dropped onto the liquid-dispersing wire net (8) and dispersed while the Raschig ring (9) layer is flowing down so that the liquid-dispersing wire mesh (10) is uniformly distributed to the heat transfer pipe (3) below. Sprinkle on.

この場合,ラツシヒリング(9)を液散布用金網
(8)(10)間に充填するようにしており,希釈液の分
散層を簡単に形成できる。
In this case, the Raschig ring (9) is filled between the liquid-spraying wire nets (8) and (10), so that a dispersion layer of the diluent can be easily formed.

第11図は,比較的メツシユの小さい液散布用金網(1
0)を使用する一方,同液散布用金網(10)に多数の針
金(12)を垂下状態に取付けた他の実施例で,この実施
例でも,希釈液を下方の伝熱管(3)へ均一に散布させ
る。
Fig. 11 shows a wire mesh (1
0) is used while a large number of wires (12) are attached to the wire mesh (10) for spraying the same liquid in a suspended state. In this embodiment as well, the diluting liquid is transferred to the lower heat transfer tube (3). Distribute evenly.

第12図は,上記第7,8,9,10図の実施例と上記第11図の
実施例とを組み合わせたさらに他の実施例で,この実施
例でも,希釈液を下方の伝熱管(3)へ均一に散布させ
る。
FIG. 12 shows still another embodiment in which the embodiment shown in FIGS. 7, 8, 9 and 10 and the embodiment shown in FIG. 11 are combined. Also in this embodiment, the diluting liquid is transferred to the lower heat transfer tube ( Spray evenly onto 3).

(考案の効果) 本考案の吸収凝縮器は前記のように希釈液散布管から
散布した希釈液を液散布トレイへ落下させて、一旦、貯
留する一方、シエル内壁面に衝突して同内壁面を流下す
る希釈液を集液トレイを経て液散布トレイへ集め、この
液散布トレイ内の希釈液を同液散布トレイに設けた多数
の希釈液散布孔を経て下方の伝熱管(管内を冷媒が流れ
る伝熱管)へ均一に散布して、伝熱管の外表面を一様に
拡散、流下させるとともに、熱媒の蒸気を液散布トレイ
の外周部とシエル内壁面との間に形成した蒸気通路を経
て伝熱管の方向へ導き、伝熱管の外周面を流下する希釈
液を伝熱管内を流れる冷媒により冷却して、蒸気を凝縮
させるので、前記従来の吸収凝縮器で生じていた次の問
題、即ち、シエル内壁面に衝突して同内壁面を流下す
る希釈液を伝熱管の外表面へ流下させずに直接落下させ
たり、伝熱管の外表面に付着した希釈液の入れ換わり
をスムーズに行わなくしたり、希釈液散布管の本数を
増やして、希釈液の流下方向の投影面の伝熱管に散布液
を均一に濡れるように散布させたり、する必要がなく
て、伝熱性能を向上できる上に、コストを低減できる。
(Effect of the device) The absorption condenser of the present invention drops the diluted liquid sprayed from the diluted liquid spray pipe to the liquid spray tray as described above, and temporarily stores it, while colliding with the inner wall surface of the shell and colliding with the inner wall surface. The diluting liquid flowing down is collected in the liquid spraying tray through the liquid collecting tray, and the diluting liquid in the liquid spraying tray is passed through the many diluting liquid spraying holes provided in the liquid spraying tray, and the lower heat transfer pipe (the refrigerant in the pipe is The heat transfer pipes are evenly distributed over the outer surface of the heat transfer pipes, and the steam of the heat transfer medium is formed between the outer periphery of the liquid distribution tray and the inner wall surface of the shell. Guide to the direction of the heat transfer tube through, the diluent flowing down the outer peripheral surface of the heat transfer tube is cooled by the refrigerant flowing in the heat transfer tube, to condense the steam, the following problems that occurred in the conventional absorption condenser, That is, the dilution that collides with the inner wall surface of the shell and flows down the inner wall surface. The liquid can be dropped directly without flowing down to the outer surface of the heat transfer tube, the diluting liquid adhering to the outer surface of the heat transfer tube cannot be replaced smoothly, and the number of diluting liquid spray tubes can be increased to It is not necessary to sprinkle the spray liquid on the heat transfer tubes on the projection surface in the downflow direction so as to be evenly wetted, so that the heat transfer performance can be improved and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係わる吸収凝縮器の一実施例を示す縦
断側面図,第2図はその要部を示す拡大縦断側面図,第
3図はその拡大横断平面図,第4図は他の実施例を示す
拡大縦断側面図,第5図はその拡大横断平面図,第6図
はその拡大縦断側面図,第7図は他の実施例を示す縦断
側面図,第8図はその要部を示す拡大横断平面図,第9
図はその拡大縦断側面図,第10図はその拡大縦断側面
図,第11図は他の実施例を示す縦断側面図,第12図はさ
らに他の実施例を示す縦断側面図,第13図は従来の吸収
凝縮器を示す縦断側面図,第14図は他の従来例を示す縦
断側面図である。 (1)……吸収凝縮器のシエル,(2)(5)……希釈
液散布管,(4)……蒸気供給管,(6)……冷媒供給
管,(10)(11)……トレイ,(12)……蒸気流路,
(13)……希釈液散布孔。
FIG. 1 is a vertical sectional side view showing an embodiment of an absorption condenser according to the present invention, FIG. 2 is an enlarged vertical sectional side view showing an essential part thereof, FIG. 3 is an enlarged transverse plan view thereof, and FIG. FIG. 5 is an enlarged cross-sectional plan view of the same, FIG. 6 is an enlarged vertical side view of the same, FIG. 7 is a longitudinal side view of another embodiment, and FIG. 9 is an enlarged cross-sectional plan view showing the part
Figure is its enlarged vertical side view, Figure 10 is its enlarged vertical side view, Figure 11 is a vertical side view showing another embodiment, and Figure 12 is a vertical side view showing yet another embodiment. Is a vertical side view showing a conventional absorption condenser, and FIG. 14 is a vertical side view showing another conventional example. (1) …… Shell of absorption condenser, (2) (5) …… Diluent spraying pipe, (4) …… Steam supply pipe, (6) …… Refrigerant supply pipe, (10) (11) …… Tray, (12) …… Steam flow path,
(13) …… Diluting liquid spray hole.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 辻岳 一良 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎研究所内 (56)参考文献 実開 昭60−43967(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiyoshi Tsuji, 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Research Institute (56) References: 60-43967

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】シエル内上部に希釈液散布管を配設し、同
希釈液散布管よりも下方のシエル内に多数の希釈液散布
孔を有する液散布トレイを配設して、同液散布トレイの
外周部とシエル内壁面との間に蒸気流路を形成し、同液
散布トレイの外周部の直上にシエル内壁面に衝突して同
内壁面を流下する希釈液を上記液散布トレイへ導く集液
トレイを配設し、上記液散布トレイよりも下方のシエル
内に伝熱管を配設したことを特徴とする吸収凝縮器。
1. A diluting liquid spraying pipe is arranged in the upper part of the shell, and a diluting liquid spraying tray having a large number of diluting liquid spraying holes is arranged in the shell below the diluting liquid spraying pipe to spray the diluting liquid. A vapor flow path is formed between the outer peripheral portion of the tray and the inner wall surface of the shell, and the diluting liquid that collides with the inner wall surface of the shell immediately above the outer peripheral portion of the liquid spray tray and flows down the inner wall surface to the liquid spray tray. An absorption condenser in which a liquid collecting tray for guiding is arranged, and a heat transfer tube is arranged in a shell below the liquid distributing tray.
JP1990117667U 1990-11-13 1990-11-13 Absorption condenser Expired - Lifetime JP2510399Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990117667U JP2510399Y2 (en) 1990-11-13 1990-11-13 Absorption condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990117667U JP2510399Y2 (en) 1990-11-13 1990-11-13 Absorption condenser

Publications (2)

Publication Number Publication Date
JPH0474265U JPH0474265U (en) 1992-06-29
JP2510399Y2 true JP2510399Y2 (en) 1996-09-11

Family

ID=31865569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990117667U Expired - Lifetime JP2510399Y2 (en) 1990-11-13 1990-11-13 Absorption condenser

Country Status (1)

Country Link
JP (1) JP2510399Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912353B1 (en) * 2008-03-27 2009-08-14 엘에스엠트론 주식회사 Absorption chiller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043967U (en) * 1983-09-05 1985-03-28 三菱重工業株式会社 liquid spray equipment

Also Published As

Publication number Publication date
JPH0474265U (en) 1992-06-29

Similar Documents

Publication Publication Date Title
US3917764A (en) Sloped film fill assembly cooling tower
JP2683355B2 (en) Equipment for uniform distribution of liquid over material and heat exchange column exchange segment
CA1218010A (en) Liquid distributor for an exchange column
US9993743B2 (en) Distributor tray for gas/liquid contact column with secondary distribution system
US6830099B2 (en) Falling film evaporator having an improved two-phase distribution system
TWI665423B (en) Cooling tower water distribution system
JP2007523316A (en) Plate heat and mass exchanger with edge extension
CN209005236U (en) Vertical three groups of horizontal tubes group falling liquid film mechanical steam recompression evaporator
JP3330116B2 (en) Horizontal cylindrical multi-tube heat exchanger
CN107042048A (en) A kind of gravity heat-pipe type defogging method and demister
RU2403961C1 (en) Method and device to distribute fluid
US4568022A (en) Spray nozzle
JP2510399Y2 (en) Absorption condenser
EP2173464B1 (en) Fluid distribution system
JP3364818B2 (en) Falling film evaporator and turbo refrigerator provided with the falling film evaporator
JPS5813997A (en) Spreader for evaporated cooling water
CN114001498A (en) Liquid blocking structure, heat exchanger and air conditioner
JP2005003296A (en) Liquid spraying device, and liquid membrane type heat exchanger and absorption refrigerating machine using the same
JP2009068724A (en) Absorption refrigerator
CN206410375U (en) A kind of efficient industrial condensing unit
JP2877420B2 (en) Absorption refrigerator
JPS60111859A (en) Heat transfer pipe for absorption refrigerator
JPH0712428A (en) Turbo refrigerating machine equipped with flow-down liquid film type evaporator
JPH0225099Y2 (en)
JP2626714B2 (en) Method for preventing water droplets from scattering from exhaust stack in cross-flow cooling tower and cross-flow cooling tower having this function

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term