JP2507519B2 - 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法 - Google Patents

3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法

Info

Publication number
JP2507519B2
JP2507519B2 JP63053684A JP5368488A JP2507519B2 JP 2507519 B2 JP2507519 B2 JP 2507519B2 JP 63053684 A JP63053684 A JP 63053684A JP 5368488 A JP5368488 A JP 5368488A JP 2507519 B2 JP2507519 B2 JP 2507519B2
Authority
JP
Japan
Prior art keywords
substituted
formula
cyclopentenol
derivative
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63053684A
Other languages
English (en)
Other versions
JPH01228930A (ja
Inventor
滋 鳥居
寛 奥本
利男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63053684A priority Critical patent/JP2507519B2/ja
Publication of JPH01228930A publication Critical patent/JPH01228930A/ja
Application granted granted Critical
Publication of JP2507519B2 publication Critical patent/JP2507519B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は3−置換−1−シクロペンテノール誘導体の
ジアステレオ選択的な製造法に関する。さらに詳細には
2−シクロペンテノール誘導体とヨウ化3−置換−シス
−1アルケン誘導体とを、有機媒体中、パラジウム触媒
および塩基性化合物の存在下に反応せしめることを特徴
とする3−置換−1−シクロペンテノール誘導体および
その鏡像体、ならびにそれらの任意の割合の混合物のジ
アステレオ選択的な新規製造法に関するものである。
<従来技術> 天然プロスタグランジン類(以下、PGと略記すること
がある)は子宮収縮,胃酸分泌抑制,血圧降下などの多
岐にわたる生理活性を示す局所ホルモン(オータコイ
ド)として、生体の恒常性の維持に不可欠であることが
解明されてきた。それ故、PG類のもつこれらの生理的な
特徴を巧妙に利用して新しいタイプの医薬品を開発する
研究は、天然PG類に関してのみならず各種誘導体につい
ても実施されている。かかるPG誘導体の製造は、PG骨格
に特徴的に存在する数種類の不斉炭素(例えば、PG命名
法でいう8位,11位,12位,15位などの炭素)の立体化学
をいかに制御するかが課題となっている。従来、このよ
うなPG製造課題を克服するために数多くの製造方法が創
案され、報告されている。それらの中でも4−ヒドロキ
シ−2−シクロペンテノン誘導体を出発原料として、有
機銅化合物による共役付加反応を鍵工程として5員環上
に逐一側鎖を導入しながらPG骨格を構築していくPG製造
法は、その簡便性,汎用性,および効率性から今日では
有用なPG骨格製造法となっている。すなわち、あらかじ
め出発原料の段階で11位と15位に相当する不斉炭素の立
体配置を確保しておき、反応によって特異的に12位と8
位の立体を制御していくPG骨格構築法である(J.W.Patt
ersonら,ジャーナル オブ オーガニック ケミスト
リィー(J.Org.Chem.),39,2509(1974);野依ら,ジ
ャーナルオブ アメリカン ケミカル ソサエティ(J.
Am.Chem.Soc.),107,3348(1985)および本文献に記載
の文献)。
<発明の目的> 本発明者らは、一つの不斉源を手掛かりとし、その不
斉源に発する不斉誘起反応を活用することにより、残り
すべてのPGの立体配置を制御しながら、しかも大量合成
可能なPG骨格合成法の開発に焦点をあてて鋭意研究した
結果、触媒量のパラジウム触媒を用いて2−シクロペン
テノール誘導体とヨウ化3−置換−シス−1−アルケン
誘導体を反応させることにより、3−置換−シス−1−
アルケン誘導体が分子内にもつ不斉炭素に起因したジア
ステレオ選択的な不斉誘起をおこしながら目的とする3
−置換−1−シクロペンテノール誘導体が得られる事実
を見出し、本発明に到達したものである。
<発明の構成および作用効果> 本発明では下記式[I] で表わされる2−シクロペンテノール誘導体と下記式
[II] で表わされるヨウ化3−置換−シス−1−アルケン誘導
体とを、有機媒体中、パラジウム触媒および塩基性化合
物の存在下に反応せしめることを特徴とする下記式[II
I] で表わされる3−置換−1−シクロペンテノール誘導体
およびその鏡像体,ならびにそれらの任意の割合の混合
物のジアステレオ選択的な製造法が提供される。
本発明において原料として用いられる上記式[I]で
表わされる2−シクロペンテノール誘導体においてR1
水素原子、または、トリ(C1〜C7)炭化水素シシル基を
表わす。トリ(C1〜C7)炭化水素シリル基としては、例
えば、トリメチシリル,トリエチルシリル,トリイソプ
ロピルシリル,t−ブチルジメチルシリル基のようなトリ
(C1〜C4)アルキルシリル基、t−ブチルジフェニルシ
リル基のようなジフェニル(C1〜C4)アルキルシリル
基,ジメチルフェニルシリル基ようなジ(C1〜C4)アル
キルフェニルシリル基、またはトリベンジルシリル基な
どを好ましいものとして挙げることができる。トリ(C1
〜C4)アルキルシリル,フェニルジ(C1〜C4)アルキル
シリル基が好ましく、中でもt−ブチルジメチルシリル
基が特に好ましい。
また、上記式[I]においてZは水素原子またはOR1
基を表わす。OR1基においてR1は前記に定義したものと
同じものが挙げられる。かかる上記式[I]で表わされ
る2−シクロペンテノール誘導体の製造法は既知であ
り、Zが水素原子の誘導体については、例えば、2−シ
クロペンテノンの還元により容易に得られ、R1がトリ
(C1〜C7)炭化水素シリル基であるものについては、上
記還元で得られた生成物である2−シクロペンテノール
を通常のシリル化反応に付すことにより容易に得られ
る。ZがOR1基であるもののうち、R1が水素原子である
ものはシクロペンタジエンを出発原料とする既知の方法
(G.O.Schenckら,アンゲバントヘミー(Angew.Che
m.),68,248(1956)およびW.R.Adamsら,テトラヘドロ
ンレターズ(Tetrahedron Letters),1971,263)など)
により容易に得られ、さらに公知の方法によりシリル化
することにより、各々のR1がトリ(C1〜C7)炭化水素シ
リル化された誘導体に導くことができる。ここで重要な
ことは、本発明に用いる出発原料としては両方のOR1
がシスの立体配置をしているメソ体の2−シクロペンテ
ノール誘導体であることが必要なことである。
上記式[I]で表わされる化合物の具体例は、上記R1
およびZの定義、およびその具体例に基づき、自ずから
明らかであろう。
本発明の製造法における今一方の出発原料は上記式
[II]で表わされるヨウ化3−置換−シス−1−アルケ
ン誘導体である。かかるヨウ化3−置換−シス−1−ア
ルケン誘導体は公知の方法により容易に製造することが
できる(F.S.Alvarezら,ジャーナル オブ アメリカ
ン ケミカルソサエティー(J.Am.Chem.Soc.),94,7823
(1972);A.F.Klugeら,同誌,94,7827および9256(197
2);J.G.Millerら,同誌,96,6774(1974)など)。
上記式[II]においてR2はトリ(C1〜C7)炭化水素シ
リル基、または1−アルコキシ置換(C1〜C4)アルキル
基を表わし、R3は直鎖もしくは分岐鎖(C1〜C10)アル
キル基、または、置換もしくは非置換(C3〜C8)シクロ
アルキル基を表わす。
R2のトリ(C1〜C7)炭化水素シリル基としては、上記
式[I]のR1として例示した基がそのまま好適に用いら
れ、R1とR2は同一であっても異なっていてもよい。R2
1−アルコキシ置換(C1〜C5)アルキル基としては、例
えば、メトキシメチル,1−エトキシエチル,1−メトキシ
−1−メチルエチル,1−エトキシ−1−メチルエチル,1
−(2−メトキシエトキシ)メチル,ベンジルオキシメ
チル,2−テトラヒドロピラニル,2−テトラドロフラニル
基などを挙げることができる。なかでも、1−エトキシ
エチル,1−メトキシ−1−メチルエチル,2−テトラヒド
ロピラニル基が好ましい。
R3の直鎖もしくは分岐鎖(C1〜C10)アルキル基とし
てメチル,エチル,プロピル,イソプロピル,ブチル,
イソブチル,sec−ブチル,t−ブチル,ペンチル,ヘキシ
ル,ヘプチル,オクチル,ノニル,デシル,1−メチルペ
ンチル,1−メチキシル,1,1−ジメチルペンチル,2−メチ
ルペンチル,2−メチルヘキシル,5−メチルヘキシル,2,5
−ジメチルヘキシル基等が挙げられる。なかでも好まし
くは、ブチル,ペンチル,ヘキシル,1−メチルペンチ
ル,2−メチルヘキシル基が挙げられるがペンチル基が特
に好ましい。
R3の置換もしくは非置換(C3〜C8)シクロアルキル基
の非置換(C3〜C8)シクロアルキル基としては、シクロ
プロピル,シクロブチル,シクロペンチル,シクロヘキ
シル,シクロヘプチル,シクロオクチル基などが挙げら
れるが、好ましくはシクロペンチル,シクロヘキシル基
が挙げられる。かかる(C3〜C8)シクロアルキル基に置
換していてもよい基としては、フッ素,塩素,臭素原子
などのハロゲン原子,メチル,エチル,プロピル,イソ
プロピル,ブチル,t−ブチル基などの(C1〜C4)アルキ
ル基,トリフルオロメチル基などのハロゲン化アルキル
基などが挙げられ、こらの置換基は(C3〜C8)シクロア
ルキル基の任意の位置に1個またはそれ以上置換してい
てもよい。
上記式[II]で表わされる化合物の具体例も、上記R2
およびR3の定義、およびその具体例に基づき、自ずから
明らかであろう。
本発明の製造法では、上記式[I]で表わされる2−
シクロペンテノール誘導体と上記式[II]で表わされる
ヨウ化3−置換−シス−1−アルケン誘導体とを、有機
媒体中、パラジウム触媒および塩基性化合物の存在下に
反応せしめることによって達成される。
該2−シクロペンテノール誘導体はヨウ化3−置換−
シス−1−アルケン誘導体と化学量論的には等モル反応
を行うが、通常、ヨウ化3−置換−シス−1−アルケン
誘導体に対して0.8〜10モル倍、好ましくは1〜5モル
倍、特に好ましくは1.2〜3モル倍用いて実施される。
用いる有機媒体としては、テトラヒドロフラン,1,2−
ジメトキシエタン,ジオキサンのようなエーテル系媒
体、ベンゼン,トルンエンのような芳香族炭化水素類、
メタノール,エタノール,ブタノールのようなアルコー
ル系媒体、アセトニトリル,プロピオニトリル,イソブ
チロニトリルのようなニトリル類、あるいはN,N−ジメ
チルホルムアルデヒドなどが用いられるが、テトラヒド
ロフランやアセトニトリルが特に好ましいものとして挙
げられる。かかる有機媒体の使用量は反応を円滑に進行
させるのに十分な量があればよく、通常、反応剤の容量
に対して1〜100倍容量、好ましくは2〜30倍容量が用
いられる。反応は通常、窒素またはアルゴンなどの不活
性ガスの雰囲気下に行なうのが好ましい。
本発明の製造法で用いるパラジウム触媒は2価のもの
でも、0価のものでもよく、通常、塩または錯体の形で
使用されるが、特にホフフィン錯体の形で使用されるの
が好ましい。かかるホスフィン錯体を調製する方法とし
ては、あらかじめパラジウムのホスィン錯体を形成させ
たものを使用する方法と、反応系内でパラジウム塩とホ
スフィン配位子を混合せしめて、反応系内でパラジウム
錯体を形成させる方法があるが、いずれも好ましく用い
られる。なお、本発明の製造法における真の活性種は、
パラジウム化学では十分既知な、0価のパラジウム触媒
が反応を進行せしめていると推定されている。
かかるパラジウムのホスフィン錯体およびホスフィン
を含まないパラジウム錯体を具体的に例示すると、テト
ラキス(トリフェニルホスフィン)パラジウム,酢酸ビ
ス(トリフェニルホスフィン)パラジウム,ビス(アセ
チルアセトナト)パラジウム,トリス(ジベンジリデン
アセトン)ジパラジウムクロロホルム錯体,トリス(ト
リベンジリデンアセチルアセトン)トリパラジウムなど
のパラジウム類が好ましく挙げられる。
また反応系内でかかる錯体を調製する場合は酢酸パラ
ジウム,プロピオン酸パラジウム,酪酸パラジウム,安
息香酸パラジウムなどの有機酸パラジウム塩や塩化パラ
ジウ,硫酸パラジウム,硝酸パラジウムなどの無機酸パ
ラジウム塩をホスフィン配位子と接触せしめることによ
り達成される。このような配位子としては、例えば、ト
リエチルホスフィン,トリブチルホスフィン,トリシク
ロヘキシルホスフィン,4−メチル−1−ホスファ−3,5,
8−トリオキサビシクロ[2.2.2]オクタンなどのような
トリアルキルホスフィン類、トリフェニルホスフィン,
トリ(o−トリル)ホスフィンなどのようなトリ芳香族
炭化水素ホスフィン類、トリエチルホスファイト、トリ
イソプロピルホスファイト,トリフェニルホスファイ
ト,4−エチル−1−ホスファ−2,6,7−トリオキサビシ
クロ[2.2.2]オクタンなどのようなホスファイト類、
1,2−ジフェニルホスフィノエタン,1,3−ジフェニルホ
スフィノプロパン,1,4−ジフェニルホスフィノブタンな
どのようなホスフィン二座配位子などの配位子を挙げる
ことができるが、トリフェニルホスフィン,トリ(o−
トリル)ホスフィンが特に好ましく挙げられる。
なお、本発明の方法では、前述のように、かかるホス
フィン配位子が非存在下のときでも、反応は十分進行す
る。
パラジウム触媒の使用量は上記式[II]で表わされる
ヨウ化3−置換−シス−1−アルケン誘導体に対して0.
001〜30モル%、好ましくは0.01〜25モル%、さらに好
ましくは0.01〜20モル%、通常5〜10モル%の量を用い
て実施されるが、反応スケールが工業的な大スケールに
なった場合は1モル%以下で十分である。また配位子を
用いる場合の使用量はパラジウムに対して0.1〜50モル
倍、好ましくは1〜10モル倍、特に好ましくは2〜5モ
ル倍添加して実施される。
本発明の製造法は塩基性化合物の存在下に実施され
る。塩基性化合物は、本発明の製造時に系内で発生する
ヨウ化水素を捕捉するために用いられるので、かかる性
質を有する塩基性化合物であれば使用することができ、
その使用量も発生するヨウ化水素を捕捉するのに十分な
量があればよい。かかる塩基性化合物としては炭酸ナト
リウム,炭酸カリウム,炭酸水素ナトリウム,酢酸カリ
ウムなどの塩類やトリブチルアミンなどの有機塩基類が
使用されるが、必要以上に強い塩基性を有する塩基性化
合物の存在は、生成物の分解を促進するために好ましく
ない。塩基性化合物の使用量は、通常、ヨウ化3−置換
−シス−1−アルケン誘導体に対して1.0〜2.0モル倍の
範囲で用いる。
反応温度は用いるパラジウム触媒の種類や使用量,有
機媒体の種類によって異なるが、室温〜用いる有機媒体
の沸点、好ましくは50℃〜100℃の温度範囲が採用され
る。反応時間も、用いるパラジウム触媒の種類や使用
量,有機媒体の種類,反応温度により異なり、薄層クロ
マトグラフィーなどで追跡することによって反応の終点
を決定するが、通常、80〜90℃付近の反応温度で1〜2
日以内に反応は終結する。
反応終了後、上記式[III]で表わされる3−置換−
1−シクロペンテノール誘導体は、通常の後処理方法に
より、例えば、塩化ナトリウムや塩化アンモニウムのよ
うな電解質を含んでいてもよい水の添加、ヘキサン,エ
ーテル,酢酸エチルなどの溶媒による抽出,洗浄,乾
燥,別,濃縮後蒸留,クロマトグラフィー等の分離手
段を用いて分離精製することにより本発明製造法の目的
物である上記[III]で表わされる3−置換−1−シク
ロペンテノール誘導体を単離することができる。なお、
ここで特に留意すべきは、本発明方法において出発原料
として用いた前記式[I]で表わされる2−シクロペン
テノール誘導体のR1が水素原子である場合には、上記式
[III]で表わされる3−置換−1−シクロペンテノー
ル誘導体は、有機化学でいうケト−エノールの異性化を
容易に起こし、下記式[III′] で表わされる3−置換シクロペンタノン誘導体として得
られる。これは本発明法に用いた反応の機構から考えて
次のように合理的に説明される。すなわち、スキームで
示したように、まず式[II]のヨウ化3−置換−シス−
1−アルケン誘導体がパラジウム触媒と反応し、ビニル
パラジウム中間体[IV]を生成する。この活性種[IV]
に式[I]の2−シクロペンテノール誘導体の二重結合
がHeck反応的に挿入して中間体[V]となり、この中間
体[V]からパラジウムが脱離をおこす時にパラジウム
のβ位の、OR1基の結合している炭素に結合した水素原
子を取って式[III]で表わされる3−置換−1−シク
ロペンテノール誘導体が生成する。さらに、R1が水素原
子であるときは式[III]は式[III′]に異性化し、最
も安定な形である3−置換シクロペンタノン誘導体とな
るとして説明される。
本発明において、式[I]で表わされる2−シクロペ
ンテノール誘導体と式[II]で表わされるヨウ化3−置
換−シス−1−アルケン誘導体との反応はジアステレオ
選択的に進行する。その選択様式は式[I]のZの差に
よってやや異なる。Zが水素原子の時は式[I]で表わ
される2−シクロペンテノール誘導体の1位の位置が不
斉炭素となる。一方、式[II]で表わされるヨウ化3−
置換−シス−1−アルケン誘導体は3位が不斉炭素であ
るので、二つの不斉分子どうしが式[I]の2−シクロ
ペンテノール誘導体の3位の炭素上で反応する時にジア
ステレオ選択性が発現される。かかる例と類似の例とし
ては式[II]でらわされるヨウ化3−置換−シス−1−
アルケン誘導体から誘導された有機銅反応剤と4−置換
−2−シクロペンテノン誘導体との共役付加反応におい
て認められているが(A.F.Klugeら,ジャーナルオブア
メリカン ケミカル ソサエティー(J.Am.Chem.So
c.),94,9256(1972);J.G.Millerら,同誌,96,6774(1
974);G.Storkら,同誌,99,1275(1977))、本発明の
パラジウム触媒下の反応では、パラジウム金属の特性を
最大限に活用し、触媒的な反応で二重結合に付加し、脱
水素酸化的にパラジウムを脱離させる工夫により本発明
が完成している。また、ZがOR1基の時は式[I]で表
わされる2−シクロペンテノール誘導体は、同一側(シ
ス)に両方のOR1基が配置しているメソ体の4−シクロ
ペンテノン−1,3−ジオール誘導体であり、このような
化合物では二重結合炭素である4位と5位は見掛け上等
価となっている。この等価な2つの反応点を式[II]で
表わされる3位が不斉なヨウ化3−置換−シス−1−ア
ルケン誘導体が選択し、ジアステレオ選択性を発現し、
さらにZが水素原子のときと同様に、付加したパラジウ
ムが脱水素的に離脱し、式[III]または式[III′]で
表わされる生成物を与えている。なお、式[III]また
は式[III′]で表わされる生成物においせ最初から4
位に存在したOR1基と、新たに3位に導入された置換基
は互いにトランスの立体関係を保って反応することも判
明した。従って、本発明方法において生成物の式[II
I]または式[III′]で表わされる化合物は原料として
の式[II]で表わされるヨウ化3−置換−シス−1−ア
ルケン誘導体の3位の不斉炭素の光学的純度にほぼ依存
して式[III]または式[III′]で表わされる絶対構造
を有する誘導体、およびその鏡像体,ラセミ体,ならび
にそれらの任意の割合の混合物が得られることになる。
かくして得られた式[III]または式[III′]で表わ
される誘導体において3位に新たに導入された置換基は
既知の[2,3]シグマトロピー転位反応(J.GMillerら,
ジャーナル オブ アメリカンケミカル ソサエティー
(J.Am,Chem.Soc.),96,6774(1974)などを参照)によ
り天然のプロスタグランジン類が有している官能基に容
易に変換することができる。かつ、2位はカルボニル基
のα位であるために反応性を有しており、この官能性に
より本発明の製造による式[III]または式[III′]で
表わされる生成物はプラスタグランジン合成の中間体と
して有用である。
以上、本発明の製造法を詳細に説明したように式
[I]の2−シクロペンテノール誘導体と式[II]のヨ
ウ化3−置換−シス−1−アルケン誘導体をパラジウム
触媒存在下に反応せしめて式[III]で表わされる3−
置換−1−シクロペンテノール誘導体を製造する方法は
次のような特長を有している。すなわち、 (1)入手容易な化合物を出発原料とし、一つの不斉源
でプロスタグランジン骨格のすての立体を制御できる不
斉識別反応である点。
(2)パラジウムの性質を最大限駆使し、しかも触媒的
に反応が進行する点。
(3)反応条件は比較的温和で、かつ簡便であり、収率
も高いために大量合成が容易である点。
(4)高いジアステレオ選択性を有し、不斉合成も容易
である点。
(5)得られた生成物がプロスタグランジン合成の中間
体として有用な化合物である点。
などである。
以下に実施例を挙げて本発明をさらに詳細に説明す
る。
実施例1 2−シクロペンテノール(60mg,0.71mmol)と3−
(1−エトキシエトキシ)−1−ヨード−シス−1−オ
クテン(158mg,0.48mmol)のアセトニトリル(4ml)溶
液に、酢酸パラジウム(11mg,0.05mmol),トリ−o−
トリルホスフィン(30mg,0.10mmol),および炭酸カリ
ウム(104mg,0.75mmol)を加え、アルゴン雰囲気下に85
〜90℃で7時間半加熱還流させた。反応混合物を氷水に
注ぎ込み、酢酸エチルで抽出した。分液された有機層を
無水硫酸ナトリウム上で乾燥後、溶媒を減圧留去し、粗
生成物を得た。反応生成物のジアステレオ選択性を確認
するために、得られた粗生成物を水(2ml)とアセトン
(2ml)の混合溶媒に溶かし、ピリジニウム p−トル
エンスルホン酸(25mg,0.1mmol)を加えて室温で1日間
撹拌した。反応混合物を飽和炭酸水素ナトリウム水溶液
に注ぎ込み、酢酸エチルで抽出した。抽出液を食塩水で
洗浄後、無水硫酸ナトリウム上で乾燥し、溶媒を減圧留
去して、粗生成物を得た。この粗生成物をシリカゲルカ
ラムクロマトグラフィーに付して3−(3−ヒドロキシ
−シス−1−オクテニル)シクロペンタノン(57mg,0.2
9mmol,61%)をジアステレオ混合物(1aと1bの混合物)
として得た。
IR(液膜): 3400(OH),2953,2920,2842, 1740(C=O),1648(C=C),908cm-11 H−NMR(60MHZ,CDCl3):δ 0.65〜2.72(m,18H,CH3,CH2,OH), 2.72〜3.70(m,1H,CH−C=), 4.16〜4.64(m,1H,CH−O), 5.18〜5.68(m,2H,CH=CH)。
Rf:0.19(ヘキサン:酢酸エチル=2:1)。
反応生成物のジアステレオマーの比率の決定は、生成
物をアセチル化した後、得られたアセチル体の1H−NMR
(500MHz)を測定し、1a:1b=75:25と決定した。
主生成物1a; IR(液膜): 3400(OH),2953,2920,2842, 1720(C=O),1648(C=C),908cm-1 1 H−NMR(500MHZ,CDCl3):δ 0.88(t,J=6.9Hz,3,CH3), 1.22−1.73(m,10,CH2,OH), 1.93(d,d,J=10.8,18.3Hz,1,CH−C=O), 2.14−2.23(m,2,CH−CH−C=O), 2.31−2.39(m,2,CH−C=O), 3.11−3.19(m,1,CH−C−C=O), 4.39−4.45(m,1,CH−O), 5.39−5.46(m,2,CH=CH),13 C NMR(125MHz,CDCl3):δ 14.020(q),22.294(t),25.081(t), 30.504(tf),31.721(t),35.604(d), 37.690(t),38.274(t),45.447(t), 68.129(d),133.457(d),134.166(d), 218.485(s). 副生成物1b; IR(液膜): 3400(OH),2953,2920,2842, 1720(C=O),1648(C=C),908cm-1 1 H NMR(500MHZ,CDCl3):δ 0.89(t,J=6.9Hz,3,CH3), 1.24−1.73(m,10,CH2,OH), 1.97(d,d,J=10.6,18.3H1,1,CH−C=O), 2.08−2.25(m,2,CH−CH−C=O), 2.36(d,d,J=7.8,17.6Hz,1,CH−C=O), 2.447(d,d,J=7.8,18.3Hz,1,CH−C=O), 3.12−3.22(m,1,CH−C−C=O), 4.42−4.49(m,1,CH−O), 5.40−5.49(m,2,CH=CH),13 C NMR(125MHz,CDCl3):δ 14.007(q),22.597(t),25.087(t), 30.458(t),31.740(t),35.565(d), 37.700(t),38.256(t),45.487(t), 68.060(d),133.440(d),134.132(d), 218.382(s). 1aのアセテート; IR(液膜): 2908,2839,1747(C=O), 1713(C=O),1223,1016cm-1 1 H NMR(500MHz,CDCl3):δ 0.87(t,J=6.9Hz,3,CH3), 1.22−1.33(m,6,CH2), 1.43−1.51(m,1,CH2−C−O), 1.58−1.70 (m,2,CH−C−O,CH−C=O), 1.92(d,d,J=18.2,10.8Hz,1CH−C=O), 2.032(s,3,CH3−C=O), 2.16−2.27(m,2,CH−CH−C=O), 2.31(d,d,J=17.6,8.4Hz,1,CH−C=O), 2.34(d,d,J=18.2,7.6Hz,1,CH−C=O), 3.22−3.31(m,1,CH−C−C=O), 5.319(d,d,J=11.0,9.0Hz,1, C=CH−C−O), 5.455(d,d,J=11.0,9.9Hz,1, CH=C−C−O), 5.496(d,t,J=9.0,7.3Hz,1,CH−O),13 C NMR(125MHz,CDCl3):δ 13.955(q),21.319(q),22.594(t), 24.764(q),30.207(t),31.512(t), 34.589(t),35,687(d),38.246(t), 45.263(t),70.436(d),128.944(d), 135.814(d),170.392(s),218.521(S). 1bのアセテート; IR(液膜): 2908,2839,1727(C=O), 1713(C=O),1237,1016cm-1 1 H NMR(500MHz,CDCl3):δ 0.88(t,J=6.9Hz,3,CH3), 1.24−1.34(m,6,CH2), 1.47−1.53(m,1,CH−C−O), 1.59−1.70(m,2,CH−C−O, CH−C−C=O), 1.909(d,d,J=18.4,10.4Hz,1, CH−C=O), 2.018(s,3,CH3−C=O), 2.03−2.13(m,1,CH−C−C=O), 2.16−2.55(m,1,CH−C=O), 2.33(d,d,J=18.7,8.3Hz,1,CH−C=O), 2.47(d,d,J=18.4,7.4Hz,1,CH−C=O), 3.24−3.34(m,1,CH−C−C=O), 5.326(d,d,J=9.3,10.3Hz,1, C=CH−C−O), 5.459(t,J=10.3Hz,1,CH=C−C−O), 5.508(d,t,J=9.3,6.8Hz,1,CH−O).13 C NMR(125MHz,CDCl3):δ 13.964(q),21.284(q),22.508(t), 24.804(t),30.323(t),31.546(t), 34.654(t),35.670(d),38.309(t), 45.254(t),70.264(d),128.887(d), 136.082(d),170.308(S),218.322(s). 実施例2〜4 ヨウ化3−置換−シス−1−アルケン誘導体の保護基
のジアステレオ選択性に及ぼす影響を検討するために、
ヨウ化3−置換−シス−1−アルケン誘導体のR2に次の
保護基を用いて実施例1と同様の実験を行なった。収率
およびジアステレオ選択率を次に示す。
中間で得られる保護された生成物の物性データは次に
示すとおり。
物性値 実施例3の化合物; 1H NMR(60MHz,CDCl3):δ 0.05(s,6,CH3−Si) 0.88(s,9,(CH3−C), 0.65−1.75(m,11,CH2,CH3), 1.85−2.55(m,6,CH2), 2.90−3.40(m,1,CH−C=C), 4.00−4.60(m,1,CH−O), 5.15−5.45(m,2,CH=CH). 実施例4の化合物; 1H NMR(60MHz,CDCl3):δ 0.60−2.45(m,23,CH2,CH3), 2.75−3.45(m,1,CH−C=C), 3.47(q,J=7Hz,2,CH2−O), 4.05−4.60(m,1,CH−O), 4.64(q,J=5Hz,1,CH−O), 4.96−5.62(m,2,CH=CH), IR(液膜): 2950,2920,2850,1742(C=O), 1651(C=C),1460,1392,1128,1090, 920,736cm-1. 実施例5 2a;X=OH,Y=H 2b;X=H,Y=OH 2−シクロペンテノールのt−ブチルジメチルシリル
エーテル(139mg,0.70mmol)と3−t−ブチルジメチル
シリルオキシ−1−ヨード−シス−1−オクテン(185m
g,0.50mmol)のアセトニトリル(2ml)溶液に、酢酸パ
ラジウム(12mg,0.05mmol)と炭酸カリウム(109mg,0.7
9mmol)を加え、アルゴン雰囲気下に90℃で16時間加熱
還流させた。
反応混合物を氷水に注ぎ込み、酢酸エチルで抽出し
た。分液された有機層を無水硫酸ナトリウム上で乾燥
後、溶媒を減圧下留去して、短いシリカゲルカラムで
過するとエタノールシリルエーテル体(2aと2bの混合
物)を含む粗生成物(242mg)が得られた。1 H NMR(500MHz,CDCl3):δ 0.029,0.049(s,6,CH3−Si), 0.146(s,6,CH3Si), 0.882(s,9,(CH33C−Si), 0.922(s,9,(CH33C−Si), 0.82−0.94(m,3,CH3), 1.21−1.57(m,8,CH2), 1.78−2.39(m,4,CH2), 3.47−3.53(m,1,CH−C=C), 4.40−4.47(m,1,CH−O), 5.15−5.25(m,2,CH=CH), 6.16−6.20(m,1,CH=C). 実施例6 実施例5と同様にして、3t−ブチルジメチルシリルオ
キシ−1ヨード−シス−1−オクテンの代わりに3−
(1−メトキシ−1−メチルエトキシ)−1−ヨード−
シス−1−アクテンを用いて実施し、アルケニル化物
(2aと2b)をジアステレオ混合物(2a:2b=92:8)とし
て得た。
実施例7 メソ体の4−シクロペンテン−1,3−ジオール(205m
g,2.0mmol)と3−t−ブチルジメチルシリルオキシ−
1−ヨード−シス−1−オクテン(369mg,1.0mmol)の
アセトニトリル(3ml)溶液に、酢酸パラジウム(22.8m
g,0.10mmol)と炭酸ナトリウム(155mg,1.5mmol)を加
え、アルゴン雰囲気下に90℃で25時間加熱還流させた。
反応混合物を室温に冷却し、水を加えて反応を停止させ
た後、酢酸エチルで抽出した。分液された有機層を食塩
水で洗浄し、無水硫酸ナトリウム上で乾燥した。溶媒を
減圧留去して粗生成物を得、シリカゲルカラムクロマト
グラフィーに供して精製し、目的とする3−(3−t−
ブチルジメチルシリルオキシ−シス−1−オクテニル)
−4−ヒドロキシシクロペンタノンをジアステレオ混合
物(284mg,0.87mmol,87%)として得た。
IR(液膜): 3400(OH),2918,2840,1734(C=O), 1643(C=C),1458,1244,1070,831, 770,725cm-11 H−NMR(60MHz,CDCl3):δ 0.08(s,6H,CH3−Si), 0.65〜3.23 (m,26H,CH3,CH2,CH,OH), 3.87〜4.60(m,2H,CH−O), 4.94〜5.70(m,2H,CH=CH)。
ジアステレオ異性体の比は、上記生成物を加水分解
後、各ジアステレオ異性体をシリゲルカラムクロマトグ
ラフィーにより単離し、3a:3b=98:2と決定した。収率9
5%。
主生成物; IR(膜液): 3310(OH),2917,2840,1734(C=O), 1640(C=C),1450,1396,1138,1050, 1008cm-1 1 H NMR(500MHz,CDCl3):δ 0.88(t,=7Hz,3,CH3), 1.23−1.39(m,6,CH2), 1.47−1.55(m,1,CH−C−O), 1.59−1.67(m,1,CH−C−O), 1.78(brs,1,OH), 2.074(ddd,J=18.6,11.7,1.2Hz,1, CH−C=O), 2.305(ddd,J=18.6,9.0,2.0Hz,1, CH−C=O), 2.599(ddd,J=18.6,1.6Hz,1, (CH−C=O), 2.722(dd,J=18.6,6.7Hz,1,CH−C=O), 3.094(dddd,J=11.7,9.6,8.2,8.0Hz,1, CH−C=C), 4.051(ddd,J=9.0,8.0,7.4Hz,1,CH−O), 4.15(brs,1,OH), 4.375(dt,J=8.3,7.5Hz,1,CH−O), 5.464(dd,J=11.8,9.6Hz,1,CH=C), 5.674(dd,J=11.8,8.3Hz,1, C=CH−C−O),13 C NMR(126MHz,CDCl3):δ 13.995(q),22.577(t),25.092(t), 31.687(t),37.058(t),44.029(d), 44.977(t),46.837(t),67.028(d), 73.088(d),133.491(d),136.001(d), 213.096(s). 副生成物: IR(液膜): 3340(OH),2918,2842,1731(C=O), 1640(C=C),1452,1395,1140,1044, 1008cm-1 1 H NMR(500MH1,CDCl3):δ 0.88(t,J=7Hz,3,CH3), 1.23−1.64(m,9,CH2,OH), 1.040(dd,J=18.6<10.0Hz,1,CH−C=O), 2.314(ddd,J=18.1,8.3,1.8Hz,1, CH−C=O), 2.626(ddd,J=18.6,8.0,1.9Hz,1, CH−C=O), 2.665(dd,J=18.1,6.8Hz,1,CH−C=O), 3.244(dddd,J=11.0,10.0,8.0,7.5Hz,1, CH−C=C), 4.126(ddd,J=8.3,7.5,6.8Hz,1,CH−O), 4.460(dt,J=8.0,8.2Hz,1,CH−O), 5.343(dd,J=11.0,10.9Hz,1,CH=C), 5.268(dd,J=10.9,8.0Hz,1, C=CH−C−O). 13C NMR(126MHz,CDCl3):δ 14.012(q),22.586(t),25.102(t), 31.738(t),37.788(t),43.862(d), 44.620(t),46.615(t),68.708(d), 74.253(d),130.949(d),135.821(d), 213.738(s). 実施例8,9 実施例2〜4と同様に保護基のジアステレオ選択性に
及ぼす影響を検討するために、実施例7と同様の実験操
作により実施した。収率(加水分解前の収率)およびジ
アステレオ選択性(加水分解後の選択性)を次に示す。
中間で得られる保護された生成物の物性データーは次
に示すとおりである。
実施例8の中間生成物; IR(液膜): 3400(OH),2950,2920,2852, 1748(C=O),1641(C=C),1395, 1132,1102,1062,1038,741cm-1 1 H−NMR(60MHz,CDCl3):δ 0.65〜1.78(m,18H,CH3,CH2,OH), 1.90〜2.70(m,4H,CH2−C=O), 2.70〜3.85(m,3H,CH−C=,CH2−O), 3.85〜5.10(m,3H,CH−O), 5.10〜5.65(m,2H,CH=CH)。
実施例9の中間生成物; IR(液膜): 3340(OH),2980,2960,2840, 1740(C=O),1643(C=C),1375, 1203,1142,1055,1012,903,728cm-11 H−NMR(60MHz,CDCl3):δ 0.60〜1.73(m,18H,CH3,CH2,OH), 1.80〜3.10(m,5H,CH2−O=O,CH−C=), 3.17(s,3H,CH3O), 3.70〜4.75(m,2H,CH−O), 5.10〜5.60(m,1H,CH=C), 5.80〜5.95(m,1H,CH=C)。
実施例10〜15 実施例8で用いたヨウ化3−置換−シス−1−アルケ
ン誘導体を用い、各種の実験条件の検証を行なった。用
いた実験条件と3−アルケニル化生成物の収率を次に示
す。原料および反応剤の使用量は、ジオール(1.0mmo
l),ヨウ化アルケニル(0.5mmol),塩基(0.75mmol)
であり、pd(OAc)とP(o−tol)はmol比で表示
した。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 53/00 7419−4H C07B 53/00 C 61/00 300 61/00 300

Claims (6)

    (57)【特許請求の範囲】
  1. 【請求項1】下記式[I] で表わされる2−シクロペンテノール誘導体と下記式
    [II] で表わされるヨウ化3−置換−シス−1−アルケン誘導
    体とを、有機媒体中、パラジウム触媒および塩基性化合
    物の存在下に反応せしめることを特徴とする下記式[II
    I] で表わされる3−置換−1−シクロペンテノール誘導体
    およびその鏡像体,ならびにそれらの任意の割合の混合
    物のジアステレオ選択的な製造法。
  2. 【請求項2】R1が水素原子である請求項1記載の3−置
    換1−シクロペンテノール誘導体の製造法。
  3. 【請求項3】ZがOR1である請求項1記載の3−置換−
    1−シクロペンテノール誘導体の製造法。
  4. 【請求項4】R3が直鎖(C1〜C10)アルキル基である請
    求項1記載の3−置換−1−シクロペンテノール誘導体
    の製造法。
  5. 【請求項5】パラジウム触媒が酢酸パラジウムである請
    求項1記載の3−置換−1−シクロペンテノール誘導体
    の製造法。
  6. 【請求項6】塩基性化合物が炭酸ナトリウムまたは炭酸
    カリウムである請求項1記載の3−置換−1−シクロペ
    ンテノール誘導体の製造法。
JP63053684A 1988-03-09 1988-03-09 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法 Expired - Fee Related JP2507519B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053684A JP2507519B2 (ja) 1988-03-09 1988-03-09 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053684A JP2507519B2 (ja) 1988-03-09 1988-03-09 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法

Publications (2)

Publication Number Publication Date
JPH01228930A JPH01228930A (ja) 1989-09-12
JP2507519B2 true JP2507519B2 (ja) 1996-06-12

Family

ID=12949645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053684A Expired - Fee Related JP2507519B2 (ja) 1988-03-09 1988-03-09 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法

Country Status (1)

Country Link
JP (1) JP2507519B2 (ja)

Also Published As

Publication number Publication date
JPH01228930A (ja) 1989-09-12

Similar Documents

Publication Publication Date Title
EP2534140B1 (en) Efficient methods for z- or cis-selective cross-metathesis
US6770789B2 (en) Process for trifluoromethylation of sulfates
Miyamoto et al. Selective Reduction of Carboxylic Acids to Aldehydes by a Ruthenium-catalyzed Reaction with 1, 2-Bis (dimethylsilyl) benzene
US5430171A (en) T-butyl (R)-(-)-4-cyano-3-hydroxybutyrate and process for preparing the same
Harada et al. A convenient synthesis of 2-deoxy-D-ribose
TWI628185B (zh) 一種製備曲前列尼爾的中間體、其製備方法以及藉由其製備曲前列尼爾的方法
JP2507519B2 (ja) 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法
JP2022021915A (ja) 3,3-ジメチル-1-ブテン-1,4-ジカルボキシレート化合物及び1,3,3-トリメチル-1-ブテン-1,4-ジカルボキシレート化合物、並びに、これらを用いた5,5-ジメチル-2-オキソ-3-シクロペンテン-1-カルボキシレート化合物及び3,5,5-トリメチル-2-オキソ-3-シクロペンテン-1-カルボキシレート化合物の製造方法
JP2917552B2 (ja) α−メチレンシクロペンタノン誘導体の製造法
JP2749693B2 (ja) 2,3―二置換ビシクロ[2.2.1]ヘプタン類の製造法
Menningen et al. Silyl Effect on the Regioselective Synthesis of Silylated Alkylidenecyclopropanes
WO1998021179A1 (fr) Procede de preparation de prostaglandines
JPH0651676B2 (ja) (5e)−プロスタグランジンe▲下2▼類の製造法
JP2896584B2 (ja) γ位にシリル基を有する光学活性ケトアルコール及びその製造方法
JP3313174B2 (ja) E型プロスタグランジン類またはそのエステルの製造方法
JP4591778B2 (ja) α,β,γ−置換シクロペンタノン誘導体の製造法
JPH0210149B2 (ja)
JP4041928B2 (ja) ジエン化合物およびその製造方法
Kirsch et al. Regioselective isomerisation of highly substituted 1-methylenecyclohexenepoxides to the corresponding allylic alcohols. Influence of the base and of the protecting groups
JPH07233175A (ja) 金属置換シクロプロピルメタノール誘導体の不斉製造法
JPS5944336A (ja) 2−アリルシクロペンタノン類の新規製造法
Baikstis Rhodium-catalysed [(3+ 2)+ 2] carbocyclisation of heteroatom-substituted alkenes and synthetic studies towards (+)-repin
JPH085836B2 (ja) α−アリル化シクロペンタノン誘導体の製造法
JPH0351695B2 (ja)
JP2002201150A (ja) 光学活性シクロヘキセン化合物の製造法及びこの製造に用いる光学活性シクロヘキセン誘導体

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees