JP2506579B2 - Method for purifying exhaust gas containing nitrogen oxides - Google Patents

Method for purifying exhaust gas containing nitrogen oxides

Info

Publication number
JP2506579B2
JP2506579B2 JP3041362A JP4136291A JP2506579B2 JP 2506579 B2 JP2506579 B2 JP 2506579B2 JP 3041362 A JP3041362 A JP 3041362A JP 4136291 A JP4136291 A JP 4136291A JP 2506579 B2 JP2506579 B2 JP 2506579B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
oxygen
nox
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3041362A
Other languages
Japanese (ja)
Other versions
JPH0523544A (en
Inventor
藤夫 菅沼
章博 北爪
光紀 田畑
忠夫 仲辻
宏益 清水
嘉昭 金田一
基 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3041362A priority Critical patent/JP2506579B2/en
Publication of JPH0523544A publication Critical patent/JPH0523544A/en
Application granted granted Critical
Publication of JP2506579B2 publication Critical patent/JP2506579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、過剰の酸素が存在する
全体として酸化条件下において、排ガスを、少量添加し
た炭化水素類若しくは含酸素化合物、あるいは排ガス中
に存在する炭化水素類若しくは含酸素化合物の存在下
で、特定の触媒と接触させて、該排ガス中の窒素酸化物
を除去する窒素酸化物含有排ガスの浄化処理方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a hydrocarbon or oxygen-containing compound to which a small amount of exhaust gas is added, or a hydrocarbon or oxygen-containing compound present in exhaust gas under oxidizing conditions as a whole in the presence of excess oxygen. The present invention relates to a method for purifying a nitrogen oxide-containing exhaust gas, which comprises contacting with a specific catalyst in the presence of a compound to remove nitrogen oxide in the exhaust gas.

【0002】[0002]

【従来の技術】各種の排ガス中の窒素酸化物(以下、
“NOx”)は、健康に有害であり、かつ光化学スモッ
グや酸性雨の発生原因ともなり得るため、その効果的な
除去手段の開発が望まれている。
2. Description of the Related Art Nitrogen oxides in various exhaust gases (hereinafter referred to as
Since "NOx") is harmful to health and can cause photochemical smog and acid rain, it is desired to develop an effective removal method therefor.

【0003】従来、このNOxの除去方法として、触媒
を用いて排ガス中のNOxを低減する方法が既にいくつ
か実用化されている。例えば、(イ)ガソリン自動車に
おける三元触媒法や、(ロ)ボイラー等の大型設備排出
源からの排ガスについてアンモニアを用いる選択的接触
還元法が挙げられる。また、その他の提案されている方
法としては、(ハ)炭化水素を用いる排ガス中のNOx
除去方法として、銅等の金属を担持させたアルミナ等の
金属酸化物を触媒として炭化水素の存在下でNOxを含
むガスと接触させる方法(特開昭63−100919号
公報等)がある。
Conventionally, as a method for removing NOx, several methods for reducing NOx in exhaust gas using a catalyst have already been put to practical use. For example, (a) a three-way catalytic method in a gasoline vehicle, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility discharge source such as a boiler. As another proposed method, (c) NOx in exhaust gas using hydrocarbon
As a removal method, there is a method in which a metal oxide such as alumina supporting a metal such as copper is brought into contact with a gas containing NOx in the presence of a hydrocarbon as a catalyst (JP-A-63-100919).

【0004】[0004]

【発明が解決しようとする課題】上記(イ)の方法は、
自動車の燃焼排ガス中に含まれる炭化水素成分と一酸化
炭素を触媒によって水と二酸化炭素とし、同時にNOx
を還元して窒素とするものであるが、NOxに含まれる
酸素量と、炭化水素成分及び一酸化炭素が酸化されるの
に必要とする酸素量とが化学量論的に等しくなるように
燃焼を調整する必要があり、ディーゼル機関のように過
剰の酸素が存在する系では、原理的に適用は不可能であ
る等の重大な問題がある。
SUMMARY OF THE INVENTION The method (a) is
Hydrocarbon components and carbon monoxide contained in automobile flue gas are made into water and carbon dioxide by a catalyst, and at the same time NOx
Is reduced to nitrogen, but combustion is performed so that the amount of oxygen contained in NOx and the amount of oxygen required to oxidize hydrocarbon components and carbon monoxide are stoichiometrically equal. In a system where excess oxygen exists, such as a diesel engine, there is a serious problem that it cannot be applied in principle.

【0005】また、(ロ)の方法では、非常に有毒であ
り、かつ多くの場合高圧ガスとして取扱わねばならない
アンモニアを用いるため、取扱が容易でなく、しかも設
備が巨大化し、小型の排ガス発生源、特に移動性発生源
に適用することは技術的に極めて困難である上、経済性
もよくない。
In the method (b), ammonia is used which is very toxic and which must be handled as a high-pressure gas in many cases. In particular, it is extremely difficult to apply to mobile sources, and it is not economical.

【0006】一方、(ハ)の方法は、ガソリン自動車を
主な対象としており、ディーゼル機関の排ガス条件下で
は適用が困難であると共に、触媒の活性も不充分であ
る。すなわち、アルミナ等に銅等の金属を担持した触媒
では、ディーゼル機関から排出される硫黄酸化物により
被毒されるばかりでなく、添加した金属の凝集等による
触媒の活性低下も起こるため、ディーゼル機関からの排
ガス中のNOxを除去するには適さず、実用化には至っ
ていない。
On the other hand, the method (c) is mainly applied to a gasoline-powered vehicle, and is difficult to apply under exhaust gas conditions of a diesel engine, and the activity of the catalyst is insufficient. That is, in a catalyst in which a metal such as copper is supported on alumina or the like, not only is it poisoned by the sulfur oxides discharged from the diesel engine, but also the activity of the catalyst is reduced due to aggregation of the added metal. It is not suitable for the removal of NOx in exhaust gas from automobiles and has not been put to practical use.

【0007】本発明は、以上の(イ)〜(ハ)に存在す
る各種の問題について検討した結果なされたものであっ
て、酸化雰囲気において、ディーゼル機関の排ガスをは
じめ、種々の設備から発生する排ガス中のNOxを効率
良く除去することができる窒素酸化物含有排ガスの浄化
処理方法を提案することを目的とする。
The present invention has been made as a result of examining various problems existing in the above (a) to (c), and is generated from various equipment including exhaust gas of a diesel engine in an oxidizing atmosphere. It is an object of the present invention to propose a method for purifying a nitrogen oxide-containing exhaust gas capable of efficiently removing NOx in the exhaust gas.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者等は、
上記目的を達成するために研究を重ねた結果、特定の触
媒を用いることにより、硫黄酸化物が含まれている排ガ
スにおいても、活性の低下を引き起こすことなく、効率
的にNOxを除去することができることを見出し、本発
明を完成するに至った。
Means and Actions for Solving the Problems The present inventors have
As a result of repeated research to achieve the above object, it is possible to efficiently remove NOx by using a specific catalyst even in exhaust gas containing sulfur oxides without causing a decrease in activity. They have found that they can do so and have completed the present invention.

【0009】すなわち、本発明の窒素酸化物含有排ガス
の浄化処理方法は、過剰の酸素が存在する酸化雰囲気
中、炭化水素類若しくは含酸素化合物の存在下におい
て、遷移金属イオン交換処理したフィロケイ酸塩鉱物
含んでなる触媒と窒素酸化物を含む排ガスとを接触させ
ることを特徴とし、また上記と同一条件で上記の触媒と
接触させ、次いで該排ガスを酸化触媒に接触させること
をも特徴とする。
That is, the method for purifying a nitrogen oxide-containing exhaust gas of the present invention is a phyllosilicate which has been subjected to a transition metal ion exchange treatment in the presence of hydrocarbons or an oxygen-containing compound in an oxidizing atmosphere in which excess oxygen is present. It is characterized in that a catalyst containing a mineral is brought into contact with an exhaust gas containing nitrogen oxides, and the catalyst is also brought into contact with the above catalyst under the same conditions as described above, and then the exhaust gas is brought into contact with an oxidation catalyst. .

【0010】以下、本発明方法の詳細を作用と共に説明
する。本発明方法において、触媒の構成成分として粘土
類中のフィロケイ酸塩鉱物を使用する。粘土とは、一般
に、(1)粘着性を有し、(2)微細な粒子の集合体で
あり、(3)主として珪素,アルミニウム,鉄,マグネ
シウム,アルカリ金属,水分よりなる化学成分を有する
天然物又は合成物と定義されている(例えば、須藤俊男
著、粘土鉱物、1958年、岩波書店、4頁以下)。
Hereinafter, the details of the method of the present invention will be described together with the operation. In the method of the present invention, a phyllosilicate mineral in clay is used as a constituent of the catalyst. In general, clay is (1) adhesive, (2) an aggregate of fine particles, and (3) natural having a chemical component mainly composed of silicon, aluminum, iron, magnesium, alkali metal, and water. It is defined as a product or a compound (for example, Toshio Sudo, Clay Minerals, 1958, Iwanami Shoten, 4 pages or less).

【0011】また、粘土を構成する粘土鉱物について
は、本発明では、アルミニウム,鉄,マグネシウム,ア
ルカリ金属のフィロ珪酸塩鉱物と定義され、具体的に
は、モンモリロナイト〔一般式、X1/3(Al5/3
Mg1/3)Si10(OH)・sHO(ここ
で、X:K,Na,Ca、s:自然数、以下同じ)〕,
サポナイト〔一般式、X1/3(Mg)(Al1/3
Si11/3)O10(OH)・sHO〕,ヘクト
ライト〔一般式X1/3(Mg8/3Al1/3)Si
10(OH・F)・sH2O〕,バーミュキュラ
イト〔Mg(Al,Si)10(OH)Mg
0.35・4.5H2O〕等のモンモリロナイト群、白
雲母〔KAl(SiAl)(OH・F)〕,黒雲
母〔KMg(SiAl)(OH・F)〕等の雲母粘
土鉱物群、カオリナイト,デッカイト〔いずれも、Al
(SiO10)(OH)〕等のカオリナイト鉱物群
が挙げられる(日本粘土学会編、粘土ハンドブック、1
967年、技報堂、2頁以下、78頁以下)。本発明方
法における触媒の構成成分としての粘土鉱物(すなわ
ち、フィロケイ酸塩鉱物)は、前述したようにイオン交
換能を有するものが有効で、著しいイオン交換能を有す
るものとしてはモンモリロナイト群、その他雲母粘土鉱
物群やカオリナイト鉱物群も挙げられる。これらフィロ
ケイ酸塩鉱物は、天然物の外に、サポナイトやヘクトナ
イトのように合成できるものもあり、合成は通常水熱法
や溶融法で行われる。また、これらのフィロケイ酸塩鉱
は、特に天然物においては、必ずしも単一のフィロケ
イ酸塩鉱物からなるとは限らず、複数のフィロケイ酸塩
鉱物フィロケイ酸塩鉱物以外の夾雑物を含む場合もあ
るが、そのようなものも本発明方法における触媒の構成
成分として使用できる。
Further, the clay minerals constituting the clay are defined in the present invention as phyllosilicate minerals of aluminum, iron, magnesium and alkali metals. Specifically, montmorillonite [general formula, X 1/3 ( Al 5/3
Mg 1/3 ) Si 4 O 10 (OH) 2 · sH 2 O (where X: K, Na, Ca, s: natural number, the same applies hereinafter)],
Saponite [general formula, X 1/3 (Mg 3 ) (Al 1/3
Si 11/3 ) O 10 (OH) 2 · sH 2 O], hectorite [general formula X 1/3 (Mg 8/3 Al 1/3 ) Si
4 O 10 (OH · F) 2 · sH 2 O], vermiculite [Mg 3 (Al, Si) 4 O 10 (OH) 2 Mg
0.35 · 4.5H 2 O] etc. montmorillonite group, muscovite [KAl 2 (Si 3 Al) (OH · F) 2 ], biotite [KMg 3 (Si 3 Al) (OH · F)] etc. Mica clay mineral group, Kaolinite, Decite [All are Al
4 (SiO 10 ) (OH) 8 ], etc. are listed (Clay Handbook, edited by The Japan Clay Society, 1).
967, Gihodo, 2 pages or less, 78 pages or less). Clay minerals (such as the clay minerals) as constituents of the catalyst in the method of the present invention
As described above , as the phyllosilicate minerals , those having an ion exchange ability are effective, and examples of those having a remarkable ion exchange ability include montmorillonite group, other mica clay mineral group and kaolinite mineral group. These Philos
In addition to natural products, there are some silicate minerals that can be synthesized such as saponite and hectorite, and the synthesis is usually performed by a hydrothermal method or a melting method. Also these phyllosilicate ores
Things, especially in natural products, not necessarily a single Firoke
Multiple phyllosilicates not necessarily composed of silicate minerals
Minerals and contaminants other than phyllosilicate minerals may be contained in some cases, and such substances can also be used as a constituent component of the catalyst in the method of the present invention.

【0012】上記のフィロケイ酸塩鉱物は、天然物ある
いは合成物そのままでは交換可能なイオンは、多くの場
合アルカリ金属又はアルカリ土類金属イオンであり、そ
の状態においてはNOxの還元分解の触媒活性は低い。
但し、これらのイオンの一部又は全部を遷移金属イオン
で交換したものの触媒活性は高く、本発明方法における
触媒として使用される。
In the above-mentioned phyllosilicate minerals , the ion exchangeable as it is as a natural product or a synthetic product is in most cases an alkali metal or alkaline earth metal ion, and in that state, the catalytic activity for the reductive decomposition of NOx is low. Low.
However, a catalyst obtained by exchanging a part or all of these ions with a transition metal ion has a high catalytic activity and is used as a catalyst in the method of the present invention.

【0013】上記の遷移金属の例としては、第I族b亜
族,第II族,第III族,第IV族,第V族,第VI
族,第VII族,第VIII族に属する金属、具体的に
は、銅,亜鉛,カドミウム,ランタン,ジルコニウム,
チタン,バナジウム,クロム,マンガン,鉄,コバル
ト,ニッケル,パラジウム,白金等の各金属、すなわち
広義の遷移金属(例えば、化学大辞典、第5巻、昭和3
6年、共立出版株式会社、437頁以下)が挙げられ
る。
Examples of the above-mentioned transition metals include group Ib subgroup, group II, group III, group IV, group V and group VI.
Group VII, Group VII, Group VIII metals, specifically copper, zinc, cadmium, lanthanum, zirconium,
Metals such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, palladium, and platinum, that is, transition metals in a broad sense (for example, Chemical Dictionary, Volume 5, Showa 3
6 years, Kyoritsu Publishing Co., Ltd., 437 pages or less).

【0014】なお、上記のフィロケイ酸塩鉱物におい
て、交換可能なイオンがプロトンの場合、いわゆる水素
粘土の活性は概して低いが、このプロトンの一部を上記
の遷移金属イオンで交換したものも一般に高い触媒活性
を示し、本発明方法における触媒として使用できる。
In the above phyllosilicate mineral , when the exchangeable ion is a proton, the activity of so-called hydrogen clay is generally low, but a part of this proton is exchanged with the above transition metal ion. Those obtained generally show high catalytic activity and can be used as catalysts in the method of the present invention.

【0015】上記の遷移金属イオン交換の方法について
は、特に制限はなく、通常の公知の方法で行うことがで
きる。すなわち、フィロケイ酸塩鉱物を適当な遷移金属
塩の水溶液に約数時間ないし一昼夜程度浸漬し、要すれ
ば約50〜100℃程度に加熱、攪拌してイオン交換さ
せた後、水洗、乾燥し、更に要すれば焼成して所望のイ
オン交換したフィロケイ酸塩鉱物を得る。交換イオン種
は、1種類でもよいが、2種類以上でもよく、使用する
フィロケイ酸塩鉱物も2種類以上でもよい。
The transition metal ion exchange method described above is not particularly limited and can be carried out by a commonly known method. That is, a phyllosilicate mineral is immersed in an aqueous solution of a suitable transition metal salt for about several hours to about one day and night, and if necessary, heated to about 50 to 100 ° C., stirred to cause ion exchange, washed with water, dried, Further, if necessary, it is calcined to obtain the desired ion-exchanged phyllosilicate mineral . One kind of exchanged ion species may be used, or two or more kinds may be used and used.
Two or more types of phyllosilicate minerals may be used.

【0016】なお、上記の処理によりフィロケイ酸塩鉱
に導入した遷移金属の状態については、その全部が交
換イオンの状態でなくてもよい。すなわち、上記の遷移
金属イオン交換フィロケイ酸塩鉱物に、上記の金属種を
含浸,沈着等の方法で担持させ、要すれば焼成したもの
も本発明方法における触媒として有効である。焼成処理
については、触媒調製のどの段階においても行うことが
でき、その温度は触媒の組成等にもよるが、概して約2
00〜700℃、好ましくは約300〜600℃であ
る。
By the above treatment, the phyllosilicate ore
Regarding the state of the transition metal introduced into the substance , all of them may not be in the state of exchange ions. That is, the above-mentioned transition metal ion-exchanged phyllosilicate mineral is supported by the above-mentioned metal species by a method such as impregnation and deposition and, if necessary, calcined is also effective as a catalyst in the method of the present invention. The calcination treatment can be performed at any stage of catalyst preparation, and the temperature is generally about 2 though it depends on the composition of the catalyst and the like.
The temperature is from 00 to 700 ° C, preferably about 300 to 600 ° C.

【0017】また、上記の遷移金属イオン交換フィロケ
イ酸塩鉱物は、担体等の添加物を含有させてもよい。担
体としては、通常よく使用される無機担体が適用でき、
特に制限はないが、一般に、表面積の大きいものが好ま
しい。具体的には、無機酸化物、すなわちAl,La,
Ce,Si,Ti,Zr,Th,V,Nb,Ta,Cr
等の酸化物や、これらを2種以上複合させたもの、例え
ばシリカアルミナ,シリカマグネシア,シリカチタニ
ア,アルミナチタニア等が例示され、また軽石や珪藻土
等の天然物も使用できる。好適なものとしては、アルミ
ナ,シリカ,クロミア,シリカアルミナ等が挙げられ
る。これら担体物質は、1種でも、2種以上を複合させ
て使用してもよい。これらの担体等の添加物は、イオン
交換フィロケイ酸塩鉱物の触媒作用を阻害せずに遷移金
属イオン交換粘土類をよく分散させたり、共働して触媒
活性や選択性を向上させたり、反応熱の除去を助けた
り、成型性を改善する等の効果がある。
Further, the above transition metal ion exchange philoke
The formate mineral may contain additives such as a carrier. As the carrier, a commonly used inorganic carrier can be applied,
Although not particularly limited, those having a large surface area are generally preferable. Specifically, inorganic oxides, that is, Al, La,
Ce, Si, Ti, Zr, Th, V, Nb, Ta, Cr
Examples thereof include oxides such as and the like, and composites of two or more of these, such as silica alumina, silica magnesia, silica titania, and alumina titania, and natural products such as pumice and diatomaceous earth can also be used. Preferred examples include alumina, silica, chromia, silica-alumina and the like. These carrier substances may be used alone or in combination of two or more. Additives such as these carriers disperse the transition metal ion-exchange clays well without inhibiting the catalytic action of the ion-exchange phyllosilicate minerals , cooperate with each other to improve the catalytic activity and selectivity, and react. It is effective in helping to remove heat and improving moldability.

【0018】担体に遷移金属イオン交換フィロケイ酸塩
鉱物を担持させる方法については、特に制限はなく、遷
移金属イオン交換フィロケイ酸塩鉱物を水に分散させて
担体物質と混合し、過剰な水分を濾過、蒸発等で除いて
担体上に沈着させたり、該フィロケイ酸塩鉱物をヒドロ
ゲル状の担体物質と混練する等のような従来公知の方法
で行うことができる。担体等の添加物を配合する場合の
配合量は、担体等の添加物を配合した触媒組成物の約9
5wt%以下、好ましくは約10〜80wt%である。
Transition metal ion-exchanged phyllosilicate as a carrier
The method for supporting the mineral is not particularly limited, and the transition metal ion-exchanged phyllosilicate mineral is dispersed in water and mixed with the carrier substance, and excess water is removed by filtration, evaporation or the like and deposited on the carrier. It can be carried out by a conventionally known method such as kneading the phyllosilicate mineral with a hydrogel carrier material. When the additive such as the carrier is mixed, the compounding amount is about 9% of the catalyst composition including the additive such as the carrier.
It is 5 wt% or less, preferably about 10 to 80 wt%.

【0019】触媒は、粉末,顆粒状,ペレット状,ハニ
カム状、その他任意の形で使用することができ、その形
状、構造は特に問わない。また、触媒を成型して使用す
る場合には、成型時に通常使用される粘結剤すなわちシ
リカゾル,ポリビニルアルコール等、あるいは滑剤すな
わち黒鉛,ワックス,脂肪酸塩,カーボンワックス等を
使用することができる。
The catalyst may be used in the form of powder, granules, pellets, honeycombs, or any other shape, and its shape and structure are not particularly limited. When the catalyst is molded and used, a binder that is usually used at the time of molding, that is, silica sol, polyvinyl alcohol, or the like, or a lubricant, that is, graphite, wax, fatty acid salt, carbon wax, or the like can be used.

【0020】本発明方法の処理対象となるNOx含有ガ
スとしては、ディーゼル自動車や定置式ディーゼル機関
等のディーゼル機関排ガス、ガソリン自動車等のガソリ
ン機関排ガスをはじめ、硝酸製造設備、各種の燃焼設備
等の排ガスを挙げることができる。
The NOx-containing gas to be treated by the method of the present invention includes diesel engine exhaust gas such as diesel automobiles and stationary diesel engines, gasoline engine exhaust gas such as gasoline automobiles, nitric acid production facilities and various combustion facilities. Exhaust gas can be mentioned.

【0021】これら排ガス中のNOxの除去は、上記触
媒を用いて、該触媒に、酸化雰囲気中、上記の炭化水素
類若しくは含酸素化合物の存在下で、排ガスを接触させ
ることにより行う。
The removal of NOx from the exhaust gas is carried out by contacting the exhaust gas with the catalyst in the presence of the above-mentioned hydrocarbons or oxygen-containing compounds in the oxidizing atmosphere.

【0022】ここで、酸化雰囲気とは、排ガス中に含ま
れる一酸化炭素,水素及び炭化水素と、本発明方法おい
て必要に応じて添加される炭化水素類若しくは含酸素化
合物の還元性物質とを、完全に酸化して水と二酸化炭素
に変換するのに必要な酸素量よりも過剰な酸素が含まれ
ている雰囲気をいい、例えば、自動車等の内燃機関から
排出される排ガスの場合には空燃比が大きい状態(リー
ン領域)の雰囲気であり、通常、過剰酸素率は約20〜
200%程度である。
Here, the oxidizing atmosphere means carbon monoxide, hydrogen and hydrocarbons contained in the exhaust gas, and reducing substances of hydrocarbons or oxygen-containing compounds added as necessary in the method of the present invention. Is an atmosphere containing an excess of oxygen in excess of the amount of oxygen required to completely oxidize and convert it into water and carbon dioxide, for example, in the case of exhaust gas emitted from an internal combustion engine of an automobile, etc. The atmosphere has a large air-fuel ratio (lean region), and the excess oxygen ratio is usually about 20 to
It is about 200%.

【0023】この酸化雰囲気中において、上記の触媒
は、炭化水素類若しくは含酸素化合物と酸素との反応よ
りも、炭化水素類若しくは含酸素化合物とNOxとの反
応を優先的に促進させて、NOxを還元分解除去する。
In this oxidizing atmosphere, the above catalyst preferentially promotes the reaction between the hydrocarbons or the oxygen-containing compound and NOx over the reaction between the hydrocarbons or the oxygen-containing compound and oxygen, and NOx Is removed by reductive decomposition.

【0024】なお、本発明方法における触媒は、酸化雰
囲気でよく作用するが、還元性雰囲気ではNOxに対す
る還元分解活性が低下するので、酸化雰囲気中にて反応
を行わせるのが好ましい。
The catalyst in the method of the present invention works well in an oxidizing atmosphere, but the reducing decomposition activity against NOx decreases in a reducing atmosphere, so it is preferable to carry out the reaction in an oxidizing atmosphere.

【0025】存在させる炭化水素類若しくは含酸素化合
物すなわちNOxを還元分解除去する還元性物質として
は、排ガス中に残存する炭化水素や燃料等の不完全燃焼
生成物であるパティキュレート等でもよいが、上記反応
を促進させるのに必要な量よりも不足している場合に
は、外部より炭化水素類若しくは含酸素化合物を添加す
る必要がある。
The reducing substances for reducing and decomposing hydrocarbons or oxygen-containing compounds, that is, NOx, to be present may be hydrocarbons remaining in the exhaust gas or particulates which are incomplete combustion products such as fuels. When the amount is insufficient to accelerate the above reaction, it is necessary to add hydrocarbons or oxygen-containing compounds from the outside.

【0026】存在させる炭化水素類若しくは含酸素化合
物の量は、特に制限されず、例えば要求されるNOx除
去率が低い場合には、NOxの還元分解に必要な理論量
より少なくてよい場合もある。但し、必要な理論量より
過剰な方が還元反応がより進むので、一般的には過剰に
添加するのが好ましい。通常は、炭化水素類若しくは含
酸素化合物の量は、NOxの還元分解に必要な理論量の
約20〜2,000%過剰、好ましくは約30〜1,5
00%過剰に存在させる。
The amount of hydrocarbons or oxygen-containing compounds to be present is not particularly limited, and when the required NOx removal rate is low, for example, it may be smaller than the theoretical amount required for reductive decomposition of NOx. . However, since the reduction reaction proceeds more than the required theoretical amount, it is generally preferable to add in excess. Usually, the amount of hydrocarbons or oxygenates is about 20 to 2,000% excess, preferably about 30 to 1.5, of the theoretical amount required for the reductive decomposition of NOx.
It is present in a 00% excess.

【0027】ここで、必要な炭化水素類や含酸素化合物
の理論量とは、反応系内に酸素が存在するので、本発明
方法においては、二酸化窒素(NO2)を還元分解する
のに必要な炭化水素類若しくは含酸素化合物と定義する
ものであり、例えば、炭化水素類としてプロパンを用い
て1,000ppmの一酸化窒素(NO)を酸素存在下
で還元分解する際のプロパンの理論量は200ppmと
なる。一般には、排ガス中のNOx量にもよるが、存在
させる炭化水素類若しくは含酸素化合物の量は、メタン
換算で約50〜10,000ppm程度である。
Here, the necessary theoretical amount of hydrocarbons and oxygen-containing compounds means that oxygen is present in the reaction system. Therefore, in the method of the present invention, it is necessary to reductively decompose nitrogen dioxide (NO 2 ). Is defined as a hydrocarbon or an oxygen-containing compound. For example, when propane is used as a hydrocarbon, 1,000 ppm of nitric oxide (NO) is reduced and decomposed in the presence of oxygen. It becomes 200 ppm. Generally, depending on the amount of NOx in the exhaust gas, the amount of hydrocarbons or oxygen-containing compounds to be present is about 50 to 10,000 ppm in terms of methane.

【0028】本発明方法における上記の触媒によってN
Oxを還元させる還元性物質としては、可燃性の有機化
合物等の含炭素物質であればいかなる物質も有効である
が、実用性からいえば、窒素,硫黄,ハロゲン等の化合
物は価格,二次的な有害物質の発生,あるいは触媒の損
傷等の問題が多く、またカーボンブラック,石炭等の固
体物質は触媒層への供給,触媒との接触等の点から一般
に好ましくなく、炭化水素類若しくは含酸素化合物が好
ましい。
By the above catalyst in the method of the present invention, N
As a reducing substance for reducing Ox, any substance is effective as long as it is a carbon-containing substance such as a flammable organic compound. However, from the viewpoint of practicality, compounds such as nitrogen, sulfur, and halogen are expensive, secondary, and so on. There are many problems such as the generation of dangerous harmful substances and damage to the catalyst, and solid substances such as carbon black and coal are generally not preferable in terms of supply to the catalyst layer, contact with the catalyst, etc. Oxygen compounds are preferred.

【0029】そして、触媒層への供給の点からは気体状
又は液体状のものが、また反応の点からは反応温度で気
化するものが特に好ましい。本発明方法における炭化水
素類の具体例としては、気体状のものとして、メタン,
エタン,エチレン,プロパン,プロピレン,ブタン,ブ
チレン等の炭化水素ガスが、液体状のものとして、ペン
タン,ヘキサン,オクタン,ヘプタン,オクテン,ベン
ゼン,トルエン,キシレン等の単一炭化水素や、ガソリ
ン,灯油,軽油,重油等の鉱油系炭化水素油が、例示さ
れる。また、本発明方法における含酸素化合物は、含酸
素有機化合物を意味し、メチルアルコール,エチルアル
コール,プロピルアルコール,オクチルアルコール等の
アルコール類、ジメチルエーテル,エチルエーテル,プ
ロピルエーテル等のエーテル類、酢酸メチル,酢酸エチ
ル,油脂類等のエステル類、アセトン,メチルエチルケ
トン等のケトン類等の含酸素有機化合物が例示されるこ
れらの炭化水素類若しくは含酸素化合物は、1種のみを
使用してもよいが、2種以上を使用してもよい。
From the viewpoint of supply to the catalyst layer, a gas or liquid is preferable, and from the viewpoint of reaction, a substance that vaporizes at the reaction temperature is particularly preferable. Specific examples of the hydrocarbons in the method of the present invention include methane,
When hydrocarbon gases such as ethane, ethylene, propane, propylene, butane, and butylene are in liquid form, liquid hydrocarbons include single hydrocarbons such as pentane, hexane, octane, heptane, octene, benzene, toluene, xylene, gasoline, and kerosene. And mineral oil-based hydrocarbon oils such as light oil and heavy oil. Further, the oxygen-containing compound in the method of the present invention means an oxygen-containing organic compound, and alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol and octyl alcohol, ethers such as dimethyl ether, ethyl ether and propyl ether, methyl acetate, Oxygen-containing organic compounds such as esters such as ethyl acetate and oils and fats, ketones such as acetone and methylethylketone are exemplified, and these hydrocarbons or oxygen-containing compounds may be used alone. More than one species may be used.

【0030】なお、排ガス中に存在する燃料等の未燃焼
ないしは不完全燃焼生成物、すなわち炭化水素類やパテ
キュレート類等も還元剤として有効であり、これらも本
発明方法における炭化水素類に含まれる。このことは、
本発明方法における触媒は、排ガス中の炭化水素類やパ
テキュレート等の減少・除去触媒としての機能をも有し
ているということができる。
Unburned or incompletely burned products such as fuel existing in the exhaust gas, that is, hydrocarbons and particulates are also effective as the reducing agent, and these are also included in the hydrocarbons in the method of the present invention. Be done. This is
It can be said that the catalyst in the method of the present invention also has a function as a catalyst for reducing and removing hydrocarbons and particulates in exhaust gas.

【0031】反応は、上記の触媒を配置した反応器を用
意して、酸化雰囲気中で、炭化水素類若しくは含酸素化
合物を存在させて、NOx含有排ガスを通過させること
により行う。このときの反応温度は、触媒及び炭化水素
類若しくは含酸素化合物の種類により最適温度が異なる
が、排ガスの温度に近い温度が排ガスの加熱設備等を必
要としないので好ましく、一般には約100〜800
℃、特に約200〜600℃の範囲が好ましい。反応圧
力は、特に制限されず、加圧下でも減圧下でも反応は進
むが、通常の排気圧で排ガスを触媒層へ導入して反応を
進行させるのが便利である。空間速度は、触媒の種類,
他の反応条件,必要なNOx除去率等で決まり、従って
特に制限はないが、概して約500〜100,000H
-1、好ましくは約1,000〜70,000Hr-1
範囲である。なお、本発明方法において、内燃機関から
の排ガスを処理する場合は、上記触媒は、排気マニホー
ルドの下流に配置するのが好ましい。
The reaction is carried out by preparing a reactor in which the above catalyst is arranged, allowing a hydrocarbon or an oxygen-containing compound to exist in an oxidizing atmosphere, and passing an NOx-containing exhaust gas. The optimum reaction temperature at this time varies depending on the type of the catalyst and the hydrocarbons or oxygen-containing compounds. However, a temperature close to the temperature of the exhaust gas is preferable because heating equipment for the exhaust gas is not required.
C., especially in the range of about 200-600.degree. The reaction pressure is not particularly limited, and the reaction proceeds under pressure or reduced pressure, but it is convenient to introduce the exhaust gas into the catalyst layer at a normal exhaust pressure to proceed the reaction. Space velocity depends on the type of catalyst,
It is determined by other reaction conditions, the required NOx removal rate, etc., and thus is not particularly limited.
r -1 , preferably in the range of about 1,000 to 70,000 Hr -1 . In the method of the present invention, when treating exhaust gas from an internal combustion engine, it is preferable that the catalyst be disposed downstream of the exhaust manifold.

【0032】また、本発明方法で排ガスを処理した場
合、処理条件によっては、未燃焼の炭化水素類や一酸化
炭素のような公害の原因となる不完全燃焼生成物が処理
ガス中に排出される場合がある。このような場合の対策
として、上記の触媒(以下、“還元触媒”と称する)で
処理したガスを酸化触媒に接触させる方法を採用するこ
とができる。
When the exhaust gas is treated by the method of the present invention, depending on the treatment conditions, incomplete combustion products such as unburned hydrocarbons and carbon monoxide that cause pollution are discharged into the treated gas. There is a case. As a countermeasure in such a case, a method in which the gas treated with the above-mentioned catalyst (hereinafter, referred to as “reduction catalyst”) is brought into contact with the oxidation catalyst can be adopted.

【0033】本発明方法で使用することができる酸化触
媒としては、一般に上記の不完全燃焼生成物を完全燃焼
させる物であれば、どのような物でもよいが、活性アル
ミナ,シリカ,ジルコニア等の多孔質担体に、白金,パ
ラジウム,ルテニウム等の貴金属、ランタン,セリウ
ム,銅,鉄,モリブデン等の卑金属酸化物、三酸化コバ
ルトランタン、三酸化鉄ランタン,三酸化コバルトスト
ロンチウム等のペロブスカイト型結晶構造物等の触媒成
分を単独又は2種以上を組み合わせて担持させたものが
挙げられる。これらの触媒成分の担持量は、貴金属では
担体に対して約0.01〜2wt%程度であり、卑金属
酸化物等では約5〜70wt%程度である。勿論、特に
卑金属酸化物等では、担体に担持しないで使用すること
もできる。
The oxidation catalyst which can be used in the method of the present invention may be any one as long as it can completely combust the above incomplete combustion products, but it may be activated alumina, silica, zirconia or the like. Noble metals such as platinum, palladium and ruthenium, base metal oxides such as lanthanum, cerium, copper, iron and molybdenum, perovskite type crystal structures such as lanthanum trioxide trioxide, lanthanum trioxide trioxide and strontium cobalt trioxide The catalyst components such as these are supported alone or in combination of two or more. The supported amount of these catalyst components is about 0.01 to 2 wt% with respect to the carrier for the noble metal, and about 5 to 70 wt% for the base metal oxide or the like. Of course, in particular, base metal oxides and the like can be used without being supported on a carrier.

【0034】酸化触媒の形状,成型等の目的で添加する
添加物については、還元触媒の場合のそれと同様であ
り、種々のものを使用することができる。
The additives added for the purpose of the shape of the oxidation catalyst, molding, etc. are the same as those in the case of the reduction catalyst, and various kinds can be used.

【0035】上記の還元触媒と酸化触媒の使用比率や、
酸化触媒に担持させる触媒成分量等は、要求性能に応じ
て適宜選択可能であり、特に酸化除去する物質が一酸化
炭素のような炭化水素の中間酸化物である場合には、還
元触媒と酸化触媒とを混合して使用することも可能であ
るが、一般には、還元触媒を排気上流側に、酸化触媒を
排気下流側に配置する。
The use ratio of the above reduction catalyst and oxidation catalyst,
The amount of the catalyst component supported on the oxidation catalyst can be appropriately selected depending on the required performance. Particularly, when the substance to be oxidized and removed is a hydrocarbon intermediate oxide such as carbon monoxide, the reduction catalyst and the oxidation catalyst Although it is possible to use a mixture with a catalyst, it is possible to arrange the reduction catalyst on the exhaust gas upstream side and the oxidation catalyst on the exhaust gas downstream side in general.

【0036】本発明方法において、これらの触媒を用い
て排ガスを浄化する具体例としては、還元触媒を配置し
た反応器を排ガス導入部(前段)に、酸化触媒を配置し
た反応器を排ガス排出部(後段)に配置する方法や、1
つの反応器に夫々の触媒を要求性能に応じた比率で配置
する方法等がある。
In the method of the present invention, as a specific example of purifying exhaust gas using these catalysts, a reactor in which a reduction catalyst is arranged is an exhaust gas introduction section (first stage), and a reactor in which an oxidation catalyst is arranged is an exhaust gas discharge section. The method of arranging in (the latter stage)
There is a method of disposing each catalyst in one reactor at a ratio according to the required performance.

【0037】還元触媒(A)と酸化触媒(B)の比率
は、一般には(A)/(B)で表して約0.5〜9.5
/9.5〜0.5の範囲で用いられる。
The ratio of the reduction catalyst (A) to the oxidation catalyst (B) is generally expressed by (A) / (B) and is about 0.5 to 9.5.
/9.5 to 0.5.

【0038】酸化触媒の使用温度については、還元触媒
の使用温度と同じでなくてもよいが、一般には前述の還
元触媒の使用温度の範囲内で使用できるものを選択する
のが加熱冷却設備を特に必要とせず好ましい。
The use temperature of the oxidation catalyst may not be the same as the use temperature of the reduction catalyst, but generally, the heating / cooling equipment should be selected within the range of the use temperature of the above-mentioned reduction catalyst. It is preferable because it is not necessary.

【0039】[0039]

【実施例】次に、本発明方法の実施例を挙げるが,本発
明方法は、これらの実施例によって制限されるものでは
ない。 実施例1 (ヘクトライトの調製) A液の調製:水ガラス(JIS3号)129gを水45
0mlに溶解した。該溶液を激しく攪拌しながら、濃塩
酸45mlを一度に滴下して均一で透明なシリカゾル
(A液)を調製した。 B液の調製:塩化マグネシウム(6水塩)82.5gを
水150mlに溶解した(B液)。A液を攪拌しなが
ら、B液をゆっくり滴下した。これを更によく攪拌して
スラリー状とし、濃アンモニア水300mlをゆっくり
滴下した。生成したゲルは、よく水洗して余分な塩類を
除去した。これに、水酸化リチウム(1水塩)4.2g
を水45mlに溶解したものを加え、よく攪拌してスラ
リー状とし、オートクレーブに仕込み、200℃で6時
間攪拌反応させた。生成したヘクトライト水溶液は、ロ
ータリーエバポレータを使用し減圧下で水分を蒸発させ
た後、乾燥して粉末状のヘクトライトとした。
EXAMPLES Next, examples of the method of the present invention will be described, but the method of the present invention is not limited to these examples. Example 1 (Preparation of hectorite) Preparation of solution A: 129 g of water glass (JIS No. 3) was added to water 45
It was dissolved in 0 ml. While vigorously stirring the solution, 45 ml of concentrated hydrochloric acid was added dropwise at once to prepare a uniform and transparent silica sol (solution A). Preparation of solution B: 82.5 g of magnesium chloride (hexahydrate) was dissolved in 150 ml of water (solution B). Solution A was slowly added dropwise while stirring solution A. This was further stirred to form a slurry, and 300 ml of concentrated aqueous ammonia was slowly added dropwise. The generated gel was thoroughly washed with water to remove excess salts. To this, 4.2 g of lithium hydroxide (monohydrate)
Was dissolved in 45 ml of water, stirred well to form a slurry, charged into an autoclave, and reacted with stirring at 200 ° C. for 6 hours. The produced hectorite aqueous solution was evaporated into water under reduced pressure using a rotary evaporator and then dried to obtain powdered hectorite.

【0040】(Cu交換ヘクトライトの調製)上記のヘ
クトライト粉末30gを1リットルの水に加え、60℃
の湯浴上で加熱攪拌して溶解し、ゾル液とした。これ
に、攪拌しながら0.5N銅アンモニア錯塩(塩酸塩)
200mlをゆっくり滴下した。スラリー状の生成物を
一昼夜放置し、生成したCu交換体を凝集・沈降させた
後、濾液に銅イオンが検出されなくなるまで充分に水洗
し、乾燥して、Cu交換ヘクトライトとした。
(Preparation of Cu-exchanged hectorite) 30 g of the above hectorite powder was added to 1 liter of water, and the mixture was heated to 60 ° C.
On a hot water bath, the mixture was heated and stirred to be dissolved to obtain a sol liquid. While stirring, 0.5N copper ammonia complex salt (hydrochloride)
200 ml was dropped slowly. The product in the form of a slurry was allowed to stand for a whole day and night, the produced Cu exchanger was aggregated and settled, then washed sufficiently with water until copper ions were not detected in the filtrate, and dried to obtain Cu-exchanged hectorite.

【0041】(NOxの除去反応)上記のようにして調
製したCu交換ヘクトライト1gを常圧流通式反応装置
に充填して、1000ppmの一酸化窒素(以下、“N
O”と記す)と10%の酸素、及び300ppmのプロ
ピレンを含むヘリウムガスを、毎分60mlの流速で流
して反応を行った。反応ガスの分析はガスクロマトグラ
フを用いて行い、NOの還元分解率は生成した窒素の収
率から求め、これらの結果を表1に示した。
(NOx removal reaction) 1 g of the Cu-exchanged hectorite prepared as described above was charged into a normal pressure flow reactor, and 1000 ppm of nitric oxide (hereinafter referred to as "N
O "), 10% oxygen, and helium gas containing 300 ppm propylene were flowed at a flow rate of 60 ml / min to carry out the reaction. The analysis of the reaction gas was carried out using a gas chromatograph, and the reduction decomposition of NO was carried out. The rate was determined from the yield of nitrogen produced, and these results are shown in Table 1.

【0042】実施例2 (Cu交換モンモリロナイトの調製)市販のモンモリロ
ナイト(クニミネ工業株式会社製、商品名クニピアF)
25gを、0.25N硝酸銅水溶液800ml中に混合
分散させ、時々振盪しながら一夜放置後、濾過し、濾液
に銅イオンが検出されなくなるまで充分に水洗した。こ
の操作を2回行った後、乾燥してCu交換モンモリロナ
イトとした。
Example 2 (Preparation of Cu-exchanged montmorillonite) Commercially available montmorillonite (Kunipia F, manufactured by Kunimine Industries Co., Ltd.)
25 g was mixed and dispersed in 800 ml of a 0.25N copper nitrate aqueous solution, left overnight with occasional shaking, filtered, and washed sufficiently with water until copper ions were not detected in the filtrate. After performing this operation twice, it was dried to obtain Cu-exchanged montmorillonite.

【0043】(NOxの除去反応)上記のCu交換モン
モリロナイトを触媒として、実施例1と同様にしてNO
の還元分解率を調べた。この結果を表1に併せて示し
た。
(NOx removal reaction) Using the above-mentioned Cu-exchanged montmorillonite as a catalyst, NO was removed in the same manner as in Example 1.
Was examined for reductive decomposition rate. The results are also shown in Table 1.

【0044】実施例3 (Cu交換サポナイトの調製)実施例2のCu交換モン
モリロナイトの調製において、モンモリロナイトに代え
て市販のサポナイト20gを使用する以外は、実施例2
と同様にしてCu交換サポナイトを調製した。
Example 3 (Preparation of Cu-exchanged saponite) In the preparation of Cu-exchanged montmorillonite of Example 2, Example 2 was repeated except that 20 g of commercially available saponite was used instead of montmorillonite.
A Cu-exchanged saponite was prepared in the same manner as in.

【0045】(NOxの除去反応)上記のCu交換サポ
ナイトを触媒として、実施例1と同様にしてNOの還元
分解率を調べた。この結果を表1に併せて示した。
(NOx removal reaction) The reduction decomposition rate of NO was examined in the same manner as in Example 1 using the Cu-exchanged saponite as a catalyst. The results are also shown in Table 1.

【0046】実施例4 (Ni交換サポナイトの調製)実施例3のCu交換サポ
ナイトの調製において、銅アンモニア錯塩水溶液に代え
て0.5N硝酸ニッケル水溶液を使用する以外は、実施
例3と同様にしてNi交換サポナイトを調製した。
Example 4 (Preparation of Ni-exchanged saponite) In the same manner as in Example 3 except that a 0.5N nickel nitrate aqueous solution was used in place of the copper ammonia complex salt aqueous solution in the preparation of the Cu-exchanged saponite of Example 3. A Ni-exchanged saponite was prepared.

【0047】(NOxの除去反応)上記のNi交換サポ
ナイトを触媒として、実施例1のNO除去反応におい
て、NOを1000ppm、プロピレンを1000pp
m、酸素を10%含むヘリウムガスを使用した以外は、
実施例1と同様にしてNOの還元分解率を調べた。この
結果を表1に併せて示した。
(NOx removal reaction) In the NO removal reaction of Example 1, using the above Ni-exchanged saponite as a catalyst, 1000 ppm of NO and 1000 pp of propylene were used.
m, except that helium gas containing 10% oxygen was used,
The reduction decomposition rate of NO was examined in the same manner as in Example 1. The results are also shown in Table 1.

【0048】実施例5 (Fe交換サポナイトの調製)実施例3のCu交換サポ
ナイトの調製において、銅アンモニア錯塩水溶液に代え
て0.5N硝酸鉄(III)水溶液を使用する以外は、
実施例3と同様にしてFe交換サポナイトを調製した。
Example 5 (Preparation of Fe-exchanged saponite) In the preparation of Cu-exchanged saponite of Example 3, a 0.5N iron (III) nitrate aqueous solution was used in place of the copper ammonia complex salt aqueous solution.
An Fe-exchanged saponite was prepared in the same manner as in Example 3.

【0049】(NOxの除去反応)上記のFe交換サポ
ナイトを触媒として、実施例4と同様にしてNOの還元
分解率を調べた。この結果を表1に併せて示した。
(NOx removal reaction) The reduction decomposition rate of NO was examined in the same manner as in Example 4 using the Fe-exchanged saponite as a catalyst. The results are also shown in Table 1.

【0050】実施例6 (Mn交換サポナイトの調製)実施例3のCu交換サポ
ナイトの調製において、銅アンモニア錯塩水溶液に代え
て0.5N硝酸マンガン(II)水溶液を使用する以外
は、実施例3と同様にしてMn交換サポナイトを調製し
た。
Example 6 (Preparation of Mn-exchanged saponite) As in Example 3 except that a 0.5N manganese (II) nitrate aqueous solution was used in place of the copper ammonia complex salt aqueous solution in the preparation of the Cu-exchanged saponite of Example 3. Similarly, Mn-exchanged saponite was prepared.

【0051】(NOxの除去反応)上記のMn交換サポ
ナイトを触媒として、実施例4と同様にしてNOの還元
分解率を調べた。この結果を表1に併せて示した。
(NOx removal reaction) The reduction decomposition rate of NO was examined in the same manner as in Example 4 using the Mn-exchanged saponite as a catalyst. The results are also shown in Table 1.

【0052】実施例7 実施例1のNOx除去反応において、Cu交換ヘクトラ
イト触媒の充填量を0.1gとし、NOを1000pp
m、メチルアルコールを重量換算でプロピレン800p
pm相当量、酸素を10%含むヘリウムガスを使用する
以外は、実施例1と同様にしてNOの還元分解率を調べ
た。この結果を表1に併せて示した。
Example 7 In the NOx removal reaction of Example 1, the charged amount of Cu-exchanged hectorite catalyst was 0.1 g, and NO was 1000 pp.
m, methyl alcohol weight conversion of propylene 800p
The reduction decomposition rate of NO was examined in the same manner as in Example 1 except that a helium gas containing pm and 10% oxygen was used. The results are also shown in Table 1.

【0053】比較例1 (H型モンモリロナイトの調製)実施例2のモンモリロ
ナイト10gを水500mlに溶解してゾル状液とし
た。これにH型強酸性陽イオン交換樹脂30ml(湿潤
状態)を加え、時々攪拌して約3時間保ち、モンモリロ
ナイト中のイオン交換可能な金属イオン(主としてナト
リウム)をプロトンと交換させ、濾過してゾル状液と樹
脂とを分離した。以上の操作を3回繰り返した後、ゾル
状液をロータリーエバポレータで減圧下で蒸発させ、更
に乾燥して粉末状のH型モンモリロナイト(いわゆる水
素粘土あるいは粘土酸)とした。
Comparative Example 1 (Preparation of H-type montmorillonite) 10 g of montmorillonite of Example 2 was dissolved in 500 ml of water to obtain a sol-like liquid. To this, 30 ml of H-type strongly acidic cation exchange resin (wet state) was added, and occasionally stirred and kept for about 3 hours to exchange ion-exchangeable metal ions (mainly sodium) in montmorillonite with protons, and filter to obtain a sol. The liquid and the resin were separated. After repeating the above operation three times, the sol-like liquid was evaporated under reduced pressure by a rotary evaporator and further dried to obtain powdery H-type montmorillonite (so-called hydrogen clay or clay acid).

【0054】(NOxの除去反応)上記のH型モンモリ
ロナイトを触媒として、実施例1と同様にしてNOの還
元分解率を調べた。この結果を表1に併せて示した。
(NOx removal reaction) Using the above H-type montmorillonite as a catalyst, the reduction decomposition rate of NO was examined in the same manner as in Example 1. The results are also shown in Table 1.

【0055】比較例2 実施例2のCu交換モンモリロナイトの調製で使用した
市販のモンモリロナイト(クニピアF)をそのまま触媒
として使用し、実施例1と同様にしてNOの還元分解率
を調べた。この結果を表1に併せて示した。
Comparative Example 2 Using the commercially available montmorillonite (Kunipia F) used in the preparation of the Cu-exchanged montmorillonite of Example 2 as it was as a catalyst, the reduction decomposition rate of NO was examined in the same manner as in Example 1. The results are also shown in Table 1.

【0056】比較例3 実施例3のCu交換サポナイトの調製の際に使用した市
販のサポナイトをそのまま触媒として使用し、実施例1
と同様にしてNOの還元分解率を調べた。この結果を表
1に併せて示した。
Comparative Example 3 The commercially available saponite used in the preparation of the Cu-exchanged saponite of Example 3 was used as it was as a catalyst, and Example 1 was used.
The reduction decomposition rate of NO was examined in the same manner as in. The results are also shown in Table 1.

【0057】実施例8〜9,参考例 NOx還元触媒として実施例1のCu交換ヘクトライト
1gを反応容器内の上流に、未反応炭化水素類の酸化触
媒として市販の0.5%パラジウム担持アルミナ触媒1
gを下流に、夫々充填し、実施例1と同様にしてNOの
還元分解率を調べた(実施例8)。 これらの結果を表2に示した。
Examples 8 to 9, Reference Example 1 g of the Cu-exchanged hectorite of Example 1 as a NOx reduction catalyst was placed upstream in the reaction vessel, and a commercially available 0.5% palladium-supported alumina was used as an oxidation catalyst for unreacted hydrocarbons. Catalyst 1
Then, g was charged downstream, and the reduction decomposition rate of NO was examined in the same manner as in Example 1 (Example 8). Table 2 shows the results.

【0058】また、酸化触媒として30%の酸化第二鉄
をアルミナに担持した触媒1gを用いて、上記と同様に
してNOの還元分解率を調べた(実施例9)。 この結果を表2に併せて示した。なお、実施例9の酸化
第二鉄をアルミナに担持した酸化触媒は、38gの硝酸
第二鉄(Fe(NO33・9H2O)を300mlの蒸
留水に溶解し、これに市販のγ−アルミナ35gを攪拌
しながら加え、14%アンモニア水をpH8になるまで
滴下して水酸化鉄をアルミナ上に沈着させ、次いで濾
過、水洗、乾燥後、空気中で500℃で3時間焼成する
ことにより得た。
Further, the reductive decomposition rate of NO was examined in the same manner as above using 1 g of a catalyst in which 30% ferric oxide was supported on alumina as an oxidation catalyst (Example 9). The results are also shown in Table 2. The oxidation catalyst of Example 9 in which ferric oxide was supported on alumina was prepared by dissolving 38 g of ferric nitrate (Fe (NO 3 ) 3 .9H 2 O) in 300 ml of distilled water and adding it to a commercially available solution. 35 g of γ-alumina was added with stirring, and 14% ammonia water was added dropwise until pH 8 to deposit iron hydroxide on the alumina, followed by filtration, washing with water, drying, and then calcination in air at 500 ° C. for 3 hours. Obtained.

【0059】更に、参考のために、上記の実施例8及び
9の酸化触媒を充填しない場合について、これら実施例
8及び9と同様にしてNOの還元分解率を調べた(参考
例)。 この結果を表2に併せて示した。
Further, as a reference, the reduction decomposition rate of NO was examined in the same manner as in Examples 8 and 9 when the oxidation catalysts of Examples 8 and 9 were not filled (Reference Example). The results are also shown in Table 2.

【0060】表2から明らかなように、酸化触媒を充填
していない参考例では、未反応のプロピレン及び不完全
酸化物である一酸化炭素が流出しているが、酸化触媒を
充填した実施例8,9では、完全酸化物である炭酸ガス
のみが流出していることが判る。
As is clear from Table 2, in the reference example in which the oxidation catalyst is not filled, unreacted propylene and carbon monoxide which is an incomplete oxide flow out. In Nos. 8 and 9, it can be seen that only carbon dioxide, which is a complete oxide, is flowing out.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】以上の各表から明らかなように、本発明方
法では、過剰の酸素の存在下においても、NOxの還元
分解が効率的に起こり、硫黄酸化物を含む実際の排ガス
に対して有効であることが判る。
As is clear from the above tables, in the method of the present invention, reductive decomposition of NOx occurs efficiently even in the presence of excess oxygen, and it is effective for actual exhaust gas containing sulfur oxides. I know there is.

【0064】[0064]

【発明の効果】以上詳述したように、本発明方法によれ
ば、酸素が過剰に存在する酸化雰囲気において、効率的
に排ガス中のNOxを除去することができる。これは、
本発明方法における遷移金属イオン交換処理したフィロ
ケイ酸塩鉱物が、炭化水素類若しくは含酸素化合物の存
在下で、NOxと炭化水素類若しくは含酸素化合物との
反応を優先的に促進させるからである。
As described above in detail, according to the method of the present invention, NOx in exhaust gas can be efficiently removed in an oxidizing atmosphere in which oxygen is excessively present. this is,
Phyllo treated by transition metal ion exchange in the method of the present invention
This is because the silicate mineral preferentially promotes the reaction between NOx and the hydrocarbons or oxygen-containing compounds in the presence of the hydrocarbons or oxygen-containing compounds.

【0065】更に、酸化触媒を使用することにより、反
応条件によっては排出されることがある未反応あるいは
生成する炭化水素,一酸化炭素,あるいはその他の酸化
中間生成物等の公害問題を引き起こす可能性がある物質
を完全に酸化して、二酸化炭素及び水蒸気にすることが
できる。
Furthermore, the use of an oxidation catalyst may cause pollution problems such as unreacted or produced hydrocarbons, carbon monoxide, and other oxidation intermediate products which may be discharged depending on the reaction conditions. Certain substances can be completely oxidized to carbon dioxide and water vapor.

【0066】このように、本発明方法は、ディーゼル機
関排ガスをはじめ種々の設備からの排ガス中から効率よ
くNOxを除去することができ、工業的価値が極めて高
いものである。
As described above, the method of the present invention is capable of efficiently removing NOx from exhaust gas from various facilities including diesel engine exhaust gas, and has an extremely high industrial value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102C (74)上記2名の代理人 弁理士 久保田 千賀志 (外 1名) (72)発明者 菅沼 藤夫 埼玉県北葛飾郡庄和町新宿新田228−16 (72)発明者 北爪 章博 埼玉県北葛飾郡杉戸町杉戸2−15−36 (72)発明者 田畑 光紀 埼玉県幸手市権現堂1134−2 (72)発明者 仲辻 忠夫 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社内 (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社内 (72)発明者 金田一 嘉昭 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 佐々木 基 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 審査官 石井 良夫 (56)参考文献 特開 平4−77310(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location B01D 53/36 102C (74) Above two agents Attorney Chiga Kubota (1 person outside) (72) ) Inventor Fujio Suganuma 228-16 Shinjuku, Shinjuku, Showa-cho, Kita-Katsushika-gun Saitama (72) Inventor Akihiro Kitazume 2-15-36 Sugito, Sugito-cho, Kita-Katsushika-gun Saitama (72) Inventor Mitsunori Tabata 1134 Gongendo, Satte-shi, Saitama -72 (72) Inventor Tadao Nakatsuji, 5-1, Ebishima-cho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd. (72) Inventor, Hiromasu Shimizu 5--1, Ebisu-cho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd. In-house (72) Inventor, Yoshiaki Kaneda, 1-1, Higashi, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology (72) Inventor, Motoki Sasaki, 1-1, Higashi, Tsukuba, Ibaraki Industrial Technology Institute Institute of Technology in the examiner Yoshio Ishii (56) Reference Patent flat 4-77310 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 過剰の酸素が存在する酸化雰囲気中、炭
化水素類若しくは含酸素化合物の存在下において、遷移
金属イオン交換処理したフィロケイ酸塩鉱物を含んでな
る触媒と窒素酸化物を含む排ガスとを接触させることを
特徴とする窒素酸化物含有排ガスの浄化処理方法。
1. A catalyst comprising a phyllosilicate mineral that has undergone a transition metal ion exchange treatment in the presence of hydrocarbons or an oxygen-containing compound in an oxidizing atmosphere in which excess oxygen is present, and an exhaust gas containing nitrogen oxides. A method for purifying a nitrogen oxide-containing exhaust gas, comprising:
【請求項2】 過剰の酸素が存在する酸化雰囲気中、炭
化水素類若しくは含酸素化合物の存在下において、遷移
金属イオン交換処理したフィロケイ酸塩鉱物からなる触
媒と窒素酸化物を含む排ガスとを接触させ、次いで該排
ガスを酸化触媒に接触させることを特徴とする窒素酸化
物含有排ガスの浄化処理方法。
2. A catalyst composed of a transition metal ion-exchanged phyllosilicate mineral and an exhaust gas containing nitrogen oxides are contacted with each other in the presence of hydrocarbons or an oxygen-containing compound in an oxidizing atmosphere containing excess oxygen. And then contacting the exhaust gas with an oxidation catalyst.
JP3041362A 1991-01-08 1991-01-08 Method for purifying exhaust gas containing nitrogen oxides Expired - Lifetime JP2506579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041362A JP2506579B2 (en) 1991-01-08 1991-01-08 Method for purifying exhaust gas containing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041362A JP2506579B2 (en) 1991-01-08 1991-01-08 Method for purifying exhaust gas containing nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH0523544A JPH0523544A (en) 1993-02-02
JP2506579B2 true JP2506579B2 (en) 1996-06-12

Family

ID=12606363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041362A Expired - Lifetime JP2506579B2 (en) 1991-01-08 1991-01-08 Method for purifying exhaust gas containing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2506579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442012C1 (en) * 1994-11-28 1996-08-29 Siemens Ag Process and catalyst for the decomposition of nitrogen oxides
JP6078421B2 (en) * 2013-05-30 2017-02-08 新光電気工業株式会社 SOx gas sensor, SOx gas concentration detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477310A (en) * 1990-07-17 1992-03-11 Chiyoda Corp Modified matter of sepiolite, using the same catalyst and method for denitrification of flue gas

Also Published As

Publication number Publication date
JPH0523544A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
EP0494388B1 (en) Process for removing nitrogen oxides from exhaust gases
JP2645614B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2691643B2 (en) Exhaust gas purification method
JP2506579B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP2547124B2 (en) Method for reducing and removing nitrogen oxides
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JP2506598B2 (en) Nitrogen oxide removal method
JP2691644B2 (en) Method for removing nitrogen oxides in exhaust gas
JP2506578B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JP2553433B2 (en) Method for removing nitrogen oxides in exhaust gas
JP3808961B2 (en) Catalyst for catalytic reduction and removal of nitrogen oxides
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
JP3985301B2 (en) Exhaust gas purification catalyst and purification method using the same
JP3316564B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2506589B2 (en) Method for removing nitrogen oxides in exhaust gas
JP2848581B2 (en) How to remove nitrogen oxides
JP2506588B2 (en) Nitrogen oxide removal method
JPH0780317A (en) Waste gas purification catalyst and method for removing nox
JPH1024238A (en) Nitrogen oxide catalytically reducing and removing catalyst and nitrogen oxide catalytically reducing and removing method
JP2595370B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH08173768A (en) Method for catalytic reduction of nitrogen oxide
JPH09173779A (en) Method for reducing and removing nox
JPH06198133A (en) Purifying method of nitrogen oxide
JPH0780316A (en) Waste gas purification catalyst and method for removing nox

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350