JP2504811B2 - Method for measuring alcohol concentration - Google Patents

Method for measuring alcohol concentration

Info

Publication number
JP2504811B2
JP2504811B2 JP63217641A JP21764188A JP2504811B2 JP 2504811 B2 JP2504811 B2 JP 2504811B2 JP 63217641 A JP63217641 A JP 63217641A JP 21764188 A JP21764188 A JP 21764188A JP 2504811 B2 JP2504811 B2 JP 2504811B2
Authority
JP
Japan
Prior art keywords
electrode
enzyme
measurement
temperature
polyacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63217641A
Other languages
Japanese (ja)
Other versions
JPH0264447A (en
Inventor
昭夫 刈米
隆造 林
義雄 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINOJI SEISHI KK
Original Assignee
SHINOJI SEISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINOJI SEISHI KK filed Critical SHINOJI SEISHI KK
Priority to JP63217641A priority Critical patent/JP2504811B2/en
Priority to DE68922550T priority patent/DE68922550D1/en
Priority to EP89115996A priority patent/EP0357027B1/en
Priority to US07/401,132 priority patent/US5081015A/en
Publication of JPH0264447A publication Critical patent/JPH0264447A/en
Application granted granted Critical
Publication of JP2504811B2 publication Critical patent/JP2504811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酵素電極を用いる高感度なアルコール濃度
測定方法に関するものである。
TECHNICAL FIELD The present invention relates to a highly sensitive method for measuring alcohol concentration using an enzyme electrode.

(従来の技術) 固定化酵素作用電極を用いた計測装置は、簡便性・迅
速性・基質特異性の高さ等の特徴を有し、臨床分析・食
品分析・環境計測等の広範な分野において、その応用範
囲を広げつつある。中でも、アンペロメトリックな計測
を行う装置、すなわち酵素反応により起きる電極活性物
質の増減を、定電圧を印加した作用電極からの電流出力
値の変化として捉える形式の装置は、高感度化が容易で
安定性も優れるため各種の電極、装置、方法が開発され
ている。
(Prior art) A measuring device using an immobilized enzyme working electrode has features such as simplicity, rapidity and high substrate specificity, and is widely used in a wide range of fields such as clinical analysis, food analysis and environmental measurement. , Its application range is expanding. Among them, a device for performing amperometric measurement, that is, a device of a type in which increase / decrease of an electrode active substance caused by an enzymatic reaction is grasped as a change in current output value from a working electrode to which a constant voltage is applied, can easily achieve high sensitivity. Due to its excellent stability, various electrodes, devices and methods have been developed.

アルコール、特にエタノールの計測は、食品・発酵・
臨床分野等において開発の要望が多く、各種の提案がな
されている。しかし、アルコール測定用酵素電極に用い
られるエタノールの酸化を(下記式により)触媒する酵
素であるアルコールオキシダーゼは、活性が比較的低い
ものしか得られず、またその安定性も実用上不満足なも
のしか得られていない。
Measurement of alcohol, especially ethanol
There are many requests for development in the clinical field and various proposals have been made. However, alcohol oxidase, which is an enzyme that catalyzes the oxidation of ethanol used in the enzyme electrode for alcohol measurement (according to the following formula), has only relatively low activity, and its stability is practically unsatisfactory. Not obtained.

RCH2OH+O2=RCHO+H2O2 酵素の安定性の指標としてよく用いられるものに熱安
定性があるが、酵素電極に利用する酵素はできる限り熱
安定性の高いものが望ましい。もちろん酵素が熱的に不
安定ならば低温で酵素電極を作動させることは可能であ
るが、酵素活性も低下してしまい感度が不足する可能性
も高い。また、室温付近で装置の温度を制御することは
室温変動の影響を受けやすく、比較的困難であり、室温
より10℃以上高い温度で酵素電極が安定に作動すること
が望ましい。ところがアルコールオキシダーゼは一般に
熱安定性に劣り、そのような温度で安定に酵素電極を作
動させることが困難であった。
RCH 2 OH + O 2 = RCHO + H 2 O 2 A commonly used index of enzyme stability is thermostability, but it is desirable that the enzyme used for the enzyme electrode be as highly thermostable as possible. Of course, if the enzyme is thermally unstable, it is possible to operate the enzyme electrode at a low temperature, but there is a high possibility that the enzyme activity will decrease and the sensitivity will be insufficient. Further, it is relatively difficult to control the temperature of the apparatus near room temperature because it is easily affected by room temperature fluctuations, and it is desirable that the enzyme electrode operates stably at a temperature higher than room temperature by 10 ° C or more. However, alcohol oxidase is generally inferior in thermal stability, and it has been difficult to operate the enzyme electrode stably at such a temperature.

(発明が解決しようとする課題) 本発明は、アルコールオキシダーゼを固定化した酵素
電極の耐熱安定性を改善し、アルコール測定用酵素電極
を用いる場合に、高感度かつ安定な測定方法を提供する
ことを目的とする。
(Problems to be Solved by the Invention) The present invention provides a highly sensitive and stable measuring method for improving the heat resistance stability of an enzyme electrode having alcohol oxidase immobilized thereon and using the enzyme electrode for alcohol measurement. With the goal.

(課題を解決するための手段) 本発明は、アルコールオキシダーゼを固定化した酵素
電極を用いたアルコール濃度測定方法において、測定に
用いる緩衝液中にポリアクリル酸を添加することを特徴
とするアルコール濃度測定方法である。
(Means for Solving the Problems) The present invention relates to an alcohol concentration measuring method using an enzyme electrode on which alcohol oxidase is immobilized, characterized in that polyacrylic acid is added to a buffer solution used for the measurement. It is a measuring method.

(作用) アルコールオキシダーゼは担子菌、酵母等が生産する
酵素であるが、特にメタノール資化酵母のペルオキシソ
ーム中に大量に含まれることが知られている。
(Function) Alcohol oxidase is an enzyme produced by basidiomycetes, yeasts, etc., and it is known that alcohol oxidase is contained in a large amount in peroxisomes of methanol-assimilating yeast.

本発明による、ポリアクリル酸添加の効果は固定化酵
素系にのみ認められる新規な現象である。緩衝液中に添
加するポリアクリル酸は、平均分子量1万から100万程
度のもので、その濃度は0.001重量%から0.5重量%の範
囲である。濃度が0.001重量%未満であると充分な効果
が認められず、また高濃度すぎると感度低下が認められ
る。高濃度での感度低下は溶液粘度の上昇による基質の
拡散阻害か、酵素自体の活性が低下するためと思われ
る。
The effect of adding polyacrylic acid according to the present invention is a novel phenomenon observed only in the immobilized enzyme system. The polyacrylic acid added to the buffer solution has an average molecular weight of about 10,000 to 1,000,000, and its concentration is in the range of 0.001% by weight to 0.5% by weight. If the concentration is less than 0.001% by weight, no sufficient effect is observed, and if the concentration is too high, the sensitivity is reduced. The decrease in sensitivity at high concentration may be due to inhibition of substrate diffusion due to increase in solution viscosity or decrease in activity of the enzyme itself.

固定化アルコールオキシダーゼ系に対するポリアクリ
ル酸の安定化効果の原因は必ずしも明らかではないが、
固定化によりアルコールオキシダーゼのコンフォメーシ
ョンになんらかの変化が起こり、ポリアクリル酸と相互
作用し易くなり、酵素−ポリアクリル酸複合体の形で熱
的に安定化するものと推測される。
Although the cause of the stabilizing effect of polyacrylic acid on the immobilized alcohol oxidase system is not always clear,
It is speculated that the immobilization causes some change in the conformation of alcohol oxidase, facilitates the interaction with polyacrylic acid, and is thermally stabilized in the form of an enzyme-polyacrylic acid complex.

以下にメタノール資化酵母であるCandida boidiniiの
アルコールオキシダーゼ(以下AODと略す)を例として
説明を行う。本酵素の持つ耐熱性を確かめるために、ま
ず溶液系の反応を試みた。酵素を100mMリン酸ナトリウ
ム緩衝液(pH7.5)に溶解し、一定量のエタノールおよ
び、西洋ワサビ・パーオキシダーゼ(以下PODと略す)
とフェノールおよび4−アミノアンチピリンを含む溶液
を加え、30℃で一定時間反応させる。この系においては
エタノールはAODの作用でアセトアルデヒドに酸化さ
れ、同時に過酸化水素が生成する。生成した過酸化水素
はPODによってすぐに分解され、この時フェノールと4
−アミノアンチピリンから赤色の色素が作られる。この
赤色色素の量は生成した過酸化水素量、つまり酸化され
たエタノール量に比例しており、反応液の500nm付近の
吸光度を測定することによりAODの活性を計ることがで
きる。このようにして、最初の酵素活性を計っておき、
次に酵素溶液のみを、35℃、37℃、39℃、41℃、43℃、
45℃の各温度に30分間保持し、再度活性を30℃で計る。
そうすると、37℃までは活性の大きな変化はないが、39
℃では最初の活性の70%、41℃では30%と低下し、45℃
ではほとんど活性を失った。
The alcohol oxidase (hereinafter abbreviated as AOD) of Candida boidinii, which is a methanol-assimilating yeast, will be described below as an example. In order to confirm the thermostability of this enzyme, we first tried a solution reaction. The enzyme is dissolved in 100 mM sodium phosphate buffer (pH 7.5) and a fixed amount of ethanol and horseradish peroxidase (hereinafter abbreviated as POD)
And a solution containing phenol and 4-aminoantipyrine are added, and the mixture is reacted at 30 ° C. for a certain time. In this system, ethanol is oxidized to acetaldehyde by the action of AOD, and hydrogen peroxide is produced at the same time. The produced hydrogen peroxide was immediately decomposed by POD, and at this time, it was
A red pigment is produced from aminoantipyrine. The amount of this red dye is proportional to the amount of hydrogen peroxide produced, that is, the amount of oxidized ethanol, and the AOD activity can be measured by measuring the absorbance near 500 nm of the reaction solution. In this way, measure the initial enzyme activity,
Then, only the enzyme solution, 35 ℃, 37 ℃, 39 ℃, 41 ℃, 43 ℃,
Hold at each temperature of 45 ° C for 30 minutes and again measure activity at 30 ° C.
Then, there is no significant change in activity up to 37 ° C, but 39
70% of the initial activity at ℃, decreased to 30% at 41 ℃, 45 ℃
Almost lost activity.

またポリアクリル酸を0.1%添加した緩衝液を用いて
同様の実験をしたところ耐熱性の改善は認められなかっ
た。固定化していないAODでは測定系に対するポリアク
リル酸添加の効果はなかった。
Further, when the same experiment was performed using a buffer solution containing 0.1% of polyacrylic acid, no improvement in heat resistance was observed. In non-immobilized AOD, the addition of polyacrylic acid had no effect on the measurement system.

次にAODと牛血清アルブミンを重量比で1:1にまぜ緩衝
液に溶解し、グルタルアルデヒドを重量%で0.5%にな
るよう緩衝液に加え、研磨した白金電極上に塗布し乾燥
固定化した。この電極を作用電極とし、1cm角の白金板
を対極、飽和カロメル電極(以下SCEと略す)を参照電
極とし、30℃に温度を制御した。100mMリン酸ナトリウ
ム緩衝液中に浸漬し、ポテンシオスタットを用いて作用
電極に対SCE0.6Vの電圧を印加した。この系内に一定量
のエタノールを添加し、過酸化水素の酸化電流を記録し
た。
Next, AOD and bovine serum albumin were mixed at a weight ratio of 1: 1 and dissolved in a buffer solution, and glutaraldehyde was added to the buffer solution so that the weight ratio was 0.5%, and the solution was applied onto a polished platinum electrode and dried and immobilized. . This electrode was used as a working electrode, a 1 cm square platinum plate was used as a counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) was used as a reference electrode, and the temperature was controlled at 30 ° C. It was immersed in 100 mM sodium phosphate buffer, and a voltage of SCE of 0.6 V was applied to the working electrode using a potentiostat. A certain amount of ethanol was added to this system, and the oxidation current of hydrogen peroxide was recorded.

緩衝液を交換し系の温度を溶液系と同じステップで上
昇させ各温度に系が到達してから30分放置した後、同様
の記録を行った。この場合、温度上昇と共に酵素活性ば
かりではなく、過酸化水素に対する電極の感度も変化す
るため、上記の溶液酵素の例よりも高い温度まで感度が
上昇するが、やはり41℃では初期温度の50%まで活性が
低下した。
The same recording was performed after changing the buffer solution and raising the temperature of the system in the same step as that of the solution system and allowing the system to reach each temperature for 30 minutes. In this case, not only the enzyme activity changes as the temperature rises, but also the sensitivity of the electrode to hydrogen peroxide changes, so the sensitivity rises to a higher temperature than the above solution enzyme example, but again at 41 ° C, 50% of the initial temperature is reached. Activity decreased to.

次に緩衝液に0.1重量%になるようにポリアクリル酸
を加え、新たに調製した酵素電極について同様の測定を
繰り返したところ、43℃まで初期感度を維持でき、45℃
では初期感度の90%の感度を示した。このように固定化
したAODにおいては測定に用いる緩衝液にポリアクリル
酸を加えることにより、酵素の安定性を高めることが出
来る。
Next, polyacrylic acid was added to the buffer solution to 0.1% by weight, and the same measurement was repeated for the newly prepared enzyme electrode.
Showed 90% of the initial sensitivity. In the thus immobilized AOD, the stability of the enzyme can be increased by adding polyacrylic acid to the buffer solution used for the measurement.

(実施例) 以下に実施例を示し本発明をより具体的に説明する
が、もちろん本発明はこれのみに限定されるものではな
い。なお、%は重量%を表す。
(Example) Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition,% represents weight%.

実施例1 (1)電極の作成方法 直径2mmの白金線の側面を熱収縮テフロンで被覆し、
その線の一端をやすりおよび1500番のエメリー紙で平滑
に仕上げる。この白金線を作用極、1cm角型白金板を対
極、飽和カロメル電極(以下SCEと略す)を参照電極と
して、0.1M硫酸中、+1.4Vで10分間の電解処理を行っ
た。その後白金線をよく水洗した後、40℃で10分間乾燥
し、10%γ−アミノプロピルトリエトキシシランの無水
トルエン溶液に1時間浸漬後、洗浄した。このアミノシ
ラン化した白金線上に酵素を以下のように固定化した。
Example 1 (1) Method for producing electrode A side surface of a platinum wire having a diameter of 2 mm was coated with heat-shrinkable Teflon,
Make one end of the wire smooth with sandpaper and No. 1500 emery paper. Using this platinum wire as a working electrode, a 1 cm square platinum plate as a counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) as a reference electrode, electrolytic treatment was performed at +1.4 V for 10 minutes in 0.1 M sulfuric acid. After that, the platinum wire was thoroughly washed with water, dried at 40 ° C. for 10 minutes, immersed in a solution of 10% γ-aminopropyltriethoxysilane in anhydrous toluene for 1 hour, and then washed. An enzyme was immobilized on the aminosilanized platinum wire as follows.

アルコールオキシダーゼ(シグマ社製、Candida boid
inii由来)5mg、および牛血清アルブミン(シグマ社
製、FractionV)5mgを100mMリン酸ナトリウム緩衝液(p
H7.5)1mlに溶解し、グルタルアルデヒドを0.5%になる
ように加える。この混合液を手早く先に用意した白金線
上に5μのせ、40℃で30分間乾燥硬化する。その後、
100mMリン酸ナトリウム緩衝液(pH7.5)中に保存する。
Alcohol oxidase (Sigma, Candida boid
inii) and bovine serum albumin (Fraction V, Sigma) (5 mg) in 100 mM sodium phosphate buffer (p
H7.5) Dissolve in 1 ml and add glutaraldehyde to 0.5%. 5 μ of this mixed solution is quickly put on a platinum wire prepared in advance and dried and cured at 40 ° C. for 30 minutes. afterwards,
Store in 100 mM sodium phosphate buffer (pH 7.5).

(2)測定方法 作成した酵素電極を作用電極とし、第1図に示すフロ
ー型計測装置に組み込んだ。参照電極としてAg・AgCl参
照電極(1)を用いフローセル(2)出口に接続したス
テンレス配管を対極(3)として用いた。これらの3電
極をポテンシオスタット(4)に接続した。作用電極
(5)に対Ag・AgCl参照電極(1)、+0.6Vの電圧を印
加して測定系を構成した。フロー型計測装置の注入口
(6)以降は恒温槽(7)中に入れられている。測定に
用いた緩衝液は50mMの塩化カリウムおよび0.01%のポリ
アクリル酸を含む100mMリン酸ナトリウム緩衝液(pH7.
5)である。
(2) Measuring method The prepared enzyme electrode was used as a working electrode and incorporated into the flow-type measuring device shown in FIG. A Ag / AgCl reference electrode (1) was used as a reference electrode, and a stainless steel pipe connected to the outlet of the flow cell (2) was used as a counter electrode (3). These three electrodes were connected to a potentiostat (4). A measurement system was constructed by applying a voltage of +0.6 V to the Ag / AgCl reference electrode (1) against the working electrode (5). After the inlet (6) of the flow type measuring device, it is placed in a constant temperature bath (7). The buffer used for the measurement was 100 mM sodium phosphate buffer containing 50 mM potassium chloride and 0.01% polyacrylic acid (pH 7.
5).

最初、測定温度は30℃(±0.2℃)とした。注入口
(6)より50mMのエタノール水溶液を5μ注入し電流
出力値をレコーダー(7)に記録しピーク電流値を読み
取った。
Initially, the measurement temperature was 30 ° C (± 0.2 ° C). 5 μm of 50 mM ethanol aqueous solution was injected through the inlet (6), the current output value was recorded in the recorder (7), and the peak current value was read.

そして、恒温槽の温度を上昇させ、一定温度に達する
毎にエタノール水溶液を注入し、各ピーク電流値の30℃
での値を100%として表示したものが第2図(○印)で
ある。ポリアクリル酸存在下においては45℃まで感度上
昇が見られた。
Then, raise the temperature of the constant temperature bath and inject the aqueous ethanol solution every time it reaches a certain temperature,
Fig. 2 (marked with ○) shows the value at 100%. In the presence of polyacrylic acid, the sensitivity increased up to 45 ℃.

比較例1 (1)電極の作成方法 実施例1と同様に電極を作成した。Comparative Example 1 (1) Method of preparing electrode An electrode was prepared in the same manner as in Example 1.

(2)測定方法 測定に用いた緩衝液からポリアクリル酸を除いた以外
は実施例1と同様に測定を行った。
(2) Measurement method The measurement was performed in the same manner as in Example 1 except that polyacrylic acid was removed from the buffer solution used for the measurement.

そして、その結果を第2図(●印)に示した。明らか
に耐熱性の点で実施例1に比べて劣ることがわかる。
The results are shown in Fig. 2 (marked with ●). It is apparent that the heat resistance is inferior to that of Example 1.

実施例2 (1)電極の作成方法 実施例1と同様に電極を作成した。Example 2 (1) Method for producing electrode An electrode was produced in the same manner as in Example 1.

(2)測定方法 実施例1と同じ測定装置を用いて測定を行った。恒温
槽温度を40℃として一定時間毎に50mMエタノール水溶液
を5μ注入しそのピーク電流値を示したものが第3図
(○印)である。5時間後でも感度に変化がないことが
わかる。
(2) Measurement method Measurement was performed using the same measurement device as in Example 1. Fig. 3 (marked with "○") shows the peak current value obtained by injecting 5 µm of 50 mM ethanol aqueous solution at a constant temperature with a constant temperature bath temperature of 40 ° C. It can be seen that there is no change in sensitivity even after 5 hours.

比較例2 (1)電極の作成方法 実施例1と同様に電極を作成した。Comparative Example 2 (1) Method of preparing electrode An electrode was prepared in the same manner as in Example 1.

(2)測定方法 測定に用いた緩衝液からポリアクリル酸を除いた以外
は実施例2と同じ測定装置を用いて測定を行った。
(2) Measurement method Measurement was carried out using the same measurement device as in Example 2 except that polyacrylic acid was removed from the buffer solution used for measurement.

恒温槽温度を40℃として一定時間毎に50mMエタノール
水溶液を5μ注入しそのピーク電流値を示したものが
第3図(●印)である。感度の安定性が得られず徐々に
感度低下が見られており実施例2と比較して、ポリアク
リル酸添加の効果が明瞭に認められる。
Fig. 3 (marked with ●) shows the peak current value when 5 µm of 50 mM ethanol aqueous solution was injected at regular intervals with the constant temperature bath temperature set at 40 ° C. The stability of the sensitivity was not obtained and the sensitivity was gradually decreased. Compared with Example 2, the effect of adding polyacrylic acid is clearly recognized.

(効果) 本発明により、アルコールオキシダーゼを固定化した
酵素電極の耐熱安定性が増し精度よく、安定な計測が可
能となる。
(Effect) According to the present invention, the heat resistance stability of the enzyme electrode on which alcohol oxidase is immobilized is increased, and accurate and stable measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1で用いたフロー型計測装置を示すもの
である。 第2図は、実施例1(○印)及び比較例1(●印)にお
ける測定結果を示す。 第3図は、実施例2(○印)及び比較例2(●印)にお
ける測定結果を示す。 (1)……Ag・AgCl参照電極 (2)……フローセル (3)……対極 (4)……ポテンシオスタット (5)……作用電極 (6)……注入口 (7)……恒温槽
FIG. 1 shows the flow-type measuring device used in the first embodiment. FIG. 2 shows the measurement results in Example 1 (◯ mark) and Comparative Example 1 (● mark). FIG. 3 shows the measurement results in Example 2 (marked with ◯) and Comparative Example 2 (marked with ●). (1) …… Ag / AgCl reference electrode (2) …… Flow cell (3) …… Counter electrode (4) …… Potentiostat (5) …… Working electrode (6) …… Injection port (7) …… Constant temperature Tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルコールオキシダーゼを固定化した酵素
電極を用いたアルコール濃度測定方法において、測定に
用いる緩衝液中にポリアクリル酸を添加することを特徴
とするアルコール濃度測定方法。
1. A method for measuring alcohol concentration using an enzyme electrode having alcohol oxidase immobilized, wherein polyacrylic acid is added to a buffer solution used for measurement.
JP63217641A 1988-08-30 1988-08-30 Method for measuring alcohol concentration Expired - Lifetime JP2504811B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63217641A JP2504811B2 (en) 1988-08-30 1988-08-30 Method for measuring alcohol concentration
DE68922550T DE68922550D1 (en) 1988-08-30 1989-08-30 Alcohol oxidase enzyme electrode and method for determining alcohol content.
EP89115996A EP0357027B1 (en) 1988-08-30 1989-08-30 Alcohol oxidase enzyme electrode and its use for quantitative alcohol determination.
US07/401,132 US5081015A (en) 1988-08-30 1989-08-30 Enzyme electrode and method for determination of alcohol content using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217641A JP2504811B2 (en) 1988-08-30 1988-08-30 Method for measuring alcohol concentration

Publications (2)

Publication Number Publication Date
JPH0264447A JPH0264447A (en) 1990-03-05
JP2504811B2 true JP2504811B2 (en) 1996-06-05

Family

ID=16707444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217641A Expired - Lifetime JP2504811B2 (en) 1988-08-30 1988-08-30 Method for measuring alcohol concentration

Country Status (1)

Country Link
JP (1) JP2504811B2 (en)

Also Published As

Publication number Publication date
JPH0264447A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
Razumas et al. Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
Canh et al. Construction and study of electrodes using crosslinked enzymes
Thevenot et al. Enzyme collagen membrane for electrochemical determination of glucose
US5082786A (en) Glucose sensor with gel-immobilized glucose oxidase and gluconolactonase
Turner [7] Amperometric biosensors based on mediator-modified electrodes
Yon Hin et al. Catalytic oxidation of reduced nicotinamide adenine dinucleotide at hexacyanoferrate-modified nickel electrodes
Nanjo et al. Enzyme electrode sensing oxygen for uric acid in serum and urine
Gülce et al. A new amperometric enzyme electrode for alcohol determination
JPH07506675A (en) Electrode and method for detecting hydrogen peroxide
JPH0235933B2 (en)
EP0289344B1 (en) Amperometric method for the quantitative determination of 1,4-dihydronicotinamide adenine in solution
Kulys et al. Sensitive yeast bioelectrode to L‐lactate
Navaratne et al. Eggplant-based bioamperometric sensor for the detection of catechol
Amine et al. Long-term operational stability of a mixed glucose oxidase-redox mediator-carbon paste electrode
Matsumoto et al. Amperometric determination of choline with use of immobilized choline oxidase
US5081015A (en) Enzyme electrode and method for determination of alcohol content using the same
Winartasaputra et al. Amperometric enzymic determination of triglycerides in serum
JP2504811B2 (en) Method for measuring alcohol concentration
JP2862940B2 (en) Immobilized enzyme and measuring device using the same
Kano et al. Enzyme microelectrodes for choline and acetylcholine and their applications
Ikeda et al. Amperometric D-gluconate sensor using D-gluconate dehydrogenase from bacterial membranes
Kinoshita et al. An amperometric-enzymatic method for assays of inorganic phosphate and adenosine deaminase in serum based on the measurement of uric acid with a dialysis membrane-covered carbon electrode
Özden et al. Electrochemical synthesis and optimization of poly (4‐methoxyphenol) film as a sensor material
Wang et al. Amperometric biosensing of alcohols at electrochemically pretreated glassy‐carbon enzyme electrodes