JP2503139Y2 - Laser ultrasonic bevel flaw detector - Google Patents

Laser ultrasonic bevel flaw detector

Info

Publication number
JP2503139Y2
JP2503139Y2 JP3838990U JP3838990U JP2503139Y2 JP 2503139 Y2 JP2503139 Y2 JP 2503139Y2 JP 3838990 U JP3838990 U JP 3838990U JP 3838990 U JP3838990 U JP 3838990U JP 2503139 Y2 JP2503139 Y2 JP 2503139Y2
Authority
JP
Japan
Prior art keywords
reception
laser
head
angle
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3838990U
Other languages
Japanese (ja)
Other versions
JPH03128851U (en
Inventor
翼 白井
崇史 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3838990U priority Critical patent/JP2503139Y2/en
Publication of JPH03128851U publication Critical patent/JPH03128851U/ja
Application granted granted Critical
Publication of JP2503139Y2 publication Critical patent/JP2503139Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、鉄鋼構造物等の非破壊検査に適用されるレ
ーザー超音波斜角探傷装置に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a laser ultrasonic bevel flaw detection apparatus applied to nondestructive inspection of steel structures and the like.

〔従来の技術〕[Conventional technology]

従来、鉄鋼構造物の有力な非破壊検査方法として超音
波探傷が行われており、近年超音波の送,受信に圧電素
子を用いた超音探触子による接触探傷に代わる方法とし
て、非接触探傷が可能なレーザー超音波探傷が提案され
ている。
Conventionally, ultrasonic flaw detection has been performed as a powerful non-destructive inspection method for steel structures, and in recent years, non-contact flaw detection has been used as an alternative method to contact flaw detection using an ultrasonic probe that uses piezoelectric elements for transmitting and receiving ultrasonic waves. Laser ultrasonic flaw detection capable of flaw detection has been proposed.

このレーザー超音波探傷においては、超音波の発生
は、レーザー照射したときの被検面の表層での熱の呼
吸,温度上昇,体積膨張の過程を経て、これにより生ず
る応力が超音波の発生源となる。超音波の受信は、レー
ザー光の干渉を利用する方法が用いられており、干渉法
には、単一波長のレーザー光を用いるホモダイン方式
と、一定の光周波数差を待たせた2つのレーザー光を用
いるヘテロダイン方式がある。
In this laser ultrasonic flaw detection, ultrasonic waves are generated by passing through the processes of heat respiration, temperature rise, and volume expansion in the surface layer of the surface to be inspected when the laser is irradiated, and the stress generated thereby causes ultrasonic waves to be generated. Becomes The method of utilizing the interference of laser light is used for the reception of ultrasonic waves. The interferometry method is a homodyne method using a laser light of a single wavelength, and two laser lights that wait for a certain optical frequency difference. There is a heterodyne method that uses.

またこのレーザー超音波探傷を溶接部,パイプ等の内
部欠陥検査に使うときに頻用される斜角探傷において
は、発生する超音波の伝ぱ方向が所望の角度となるよう
に制御する必要があるが、この制御方法として光ファイ
バーを遅延線として用いたフェイズドアレイ方式のレー
ザー超音波探傷法が特開昭57−88361に示されている。
第9図模式図はこの方法を示したもので、レーザー光は
パルスレーザー発振器51から複数の光ファイバー52を介
してセンサーヘッド53まで導波され、各光ファイバー52
の長さを変えることにより、被検体54までの遅延時間を
適切に設定するとともに、第10図説明図に示すように、
センサーヘッド内の光ファイバー間隔dを適切に設定す
ることにより、被検体54において、所望の角度αの斜角
超音波55を発生することができる。
Further, in oblique-angle flaw detection, which is often used when this laser ultrasonic flaw detection is used for inspecting internal defects in welds, pipes, etc., it is necessary to control the propagation direction of generated ultrasonic waves to a desired angle. JP-A-57-88361 discloses a phase-array laser ultrasonic flaw detection method using an optical fiber as a delay line as a control method.
FIG. 9 is a schematic diagram showing this method. Laser light is guided from a pulse laser oscillator 51 to a sensor head 53 via a plurality of optical fibers 52, and each optical fiber 52 is guided.
By changing the length of the, while appropriately setting the delay time to the subject 54, as shown in FIG. 10 explanatory diagram,
By appropriately setting the optical fiber distance d in the sensor head, the oblique ultrasonic wave 55 having a desired angle α can be generated in the subject 54.

しかしながら、斜角探傷においては、超音波発生のみ
ならず受信についても超音波の到達方向に対し、選択的
な検出性を持つことが望ましい。また更には、レーザー
を用い送,受信を一体化した斜角センサーヘッドが強く
望まれている。
However, in bevel flaw detection, it is desirable to have selective detectability with respect to the arrival direction of ultrasonic waves in terms of reception as well as generation of ultrasonic waves. Furthermore, there is a strong demand for a bevel sensor head that integrates transmission and reception using a laser.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

本考案は、このような事情に鑑みて提案されたもの
で、送,受信とも選択的な屈折角をもち、かつ送,受信
を一体化した斜角センサーヘッドを備えたレーザー超音
波斜角探傷装置を提供することを目的とする。
The present invention has been proposed in view of the above circumstances, and laser ultrasonic oblique angle flaw detection is provided with an oblique angle sensor head that has a selective refraction angle for both transmission and reception and that integrates transmission and reception. The purpose is to provide a device.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本考案は、パルスレーザー発振器,パルス
レーザー分岐部及び送信遅延部からなる送信装置と、連
続波レーザー2周波直交光源,連続波レーザー分岐部,
複数干渉計包含の干渉計部,PLL位相検波器,受信遅延
部,受信信号加算器及び表示器からなるヘテロダイン方
式受信装置と、上記送信装置の斜角送信ヘッドと上記受
信装置の斜角受信ヘッドを適宜挾角を存して固定したセ
ンサーヘッドと、上記センサーヘッドと送信装置,受信
装置の間をそれぞれ連結する複数の光ファイバーとを具
えたことを特徴とする。
To this end, the present invention provides a transmitter comprising a pulse laser oscillator, a pulse laser branching unit and a transmission delay unit, a continuous wave laser dual frequency orthogonal light source, a continuous wave laser branching unit,
Heterodyne type receiver including an interferometer unit including a plurality of interferometers, a PLL phase detector, a reception delay unit, a reception signal adder, and a display, an oblique transmission head of the transmission device, and an oblique reception head of the reception device And a plurality of optical fibers that connect the sensor head to the transmitter and the receiver, respectively.

〔作用〕[Action]

本考案レーザー超音波斜角探傷装置は、上述のように
構成されているので、センサーヘッドにおいては、斜角
送信ヘッドにより送信斜角超音波ビームの屈折角の制御
が可能であり、また斜角受信ヘッドにより受信斜角超音
波ビームの屈折角の制御も可能となり、更に両者を一体
とし固定していることから、従来の圧電素子による斜角
探傷と同じような機能をもつことができる。
Since the laser ultrasonic bevel flaw detector of the present invention is configured as described above, in the sensor head, it is possible to control the refraction angle of the transmitted bevel ultrasonic beam by the bevel transmitting head, and the bevel angle is also controlled. The reception head can also control the refraction angle of the reception oblique-angle ultrasonic beam, and since both are integrally fixed, the same function as that of the conventional oblique-angle flaw detection by the piezoelectric element can be achieved.

〔実施例〕〔Example〕

本考案レーザー超音波斜角探傷装置の一実施例を図面
について説明すると、第1図は装置全体の系統図、第2
図はセンサーヘッド使用状態の説明図、第3図は斜角送
信ヘッドの説明図、第4図は第3図のIV−IVに沿って断
面図、第5図は干渉計部の説明図、第6図は斜角超音波
の受信原理の説明図、第7図,第8図はそれぞれ斜角受
信ヘッドの説明図である。
An embodiment of the laser ultrasonic bevel flaw detection device of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of the entire device, and FIG.
FIG. 4 is an explanatory view of a sensor head usage state, FIG. 3 is an explanatory view of a beveled angle transmission head, FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, and FIG. 5 is an explanatory view of an interferometer unit. FIG. 6 is an explanatory view of the principle of reception of oblique-angle ultrasonic waves, and FIGS. 7 and 8 are explanatory views of the oblique-angle reception head.

まず第1図において、装置全体の構成概要を説明する
と、10は送信装置で、パルスレーザー発振器11,パルス
レーザー分岐部12,送信遅延部13から構成されており、2
0は受信装置で、連続波レーザー2周波直交光源21,連続
波レーザー分岐部22,干渉計部23,PLL位相検波器24,受信
遅延部25,受信信号加算器26及びオシロスコープ27から
構成されている。また30はセンサーヘッドで、斜角送信
ヘッド31と斜角受信ヘッド32とが挾角を存して固定さ
れていおり、更にこの斜角送信ヘッド31と上記送信遅延
部13との間が複数の光ファイバーからなる送信用ファイ
バー41で連結され、斜角受信ヘッド32と上記干渉計部23
との間が複数の光ファイバーからなる受信用光ファイバ
ー42で連結されている。
First, referring to FIG. 1, an outline of the configuration of the entire apparatus will be described. Reference numeral 10 is a transmitter, which is composed of a pulse laser oscillator 11, a pulse laser branching unit 12, and a transmission delay unit 13.
Reference numeral 0 is a receiver, which is composed of a continuous wave laser dual frequency orthogonal light source 21, a continuous wave laser branching section 22, an interferometer section 23, a PLL phase detector 24, a reception delay section 25, a reception signal adder 26 and an oscilloscope 27. There is. Further, 30 is a sensor head, and the bevel angle transmitting head 31 and the bevel angle receiving head 32 are fixed with a flank angle, and further, there are a plurality of space between the bevel angle transmitting head 31 and the transmission delay unit 13. The angled reception head 32 and the interferometer unit 23 are connected by a transmission fiber 41 composed of an optical fiber.
And a receiving optical fiber 42 composed of a plurality of optical fibers.

次に第1図〜第8図について、各装置の詳細構成を作
用とともに説明する。
Next, the detailed configuration of each device will be described with reference to FIGS.

送信装置10においては、YAGレーザー等のパルスレー
ザー発振器11で発生したパルスレーザーは、パルスレー
ザー分岐部12により4本以上の複数ビームに分岐され
る。送信遅延部13ではファイバー長を変化させる等によ
りパルスレーザーに適切な遅延を付与した後、送信用光
ファイバー41を経由して斜角送信ヘッド31まで導波され
る。
In the transmitter 10, a pulse laser generated by a pulse laser oscillator 11 such as a YAG laser is branched by a pulse laser branching unit 12 into four or more beams. The transmission delay unit 13 imparts an appropriate delay to the pulse laser, for example, by changing the fiber length, and then is guided to the oblique-angle transmission head 31 via the transmission optical fiber 41.

パルスレーザーが導波される斜角送信ヘッドも待つセ
ンサーヘッド30は、第2図に示すように被検体54の表面
に当てがわれ、斜角送信ヘッド31においては、第3図に
示すように、送信用光ファイバー41から出射したパルス
レーザー43はレンズ31aで平行ビームとなり、レンズ
(円柱面レンズ)31bにより矩形となり、更にレンズ31c
により各パルスレーザーの間隔dを所望の値とした後、
第4図に示す照射パターン44で被検体54照射される。こ
の照射パターン44において、aはほぼ0.5mm,bはほぼ5mm
以上が望ましいが、間隔dは所望の屈折角と遅延時間の
関係で決まってくる。
The sensor head 30, which also waits for the oblique transmission head through which the pulse laser is guided, is applied to the surface of the subject 54, as shown in FIG. 2, and the oblique transmission head 31, as shown in FIG. , The pulse laser 43 emitted from the transmission optical fiber 41 becomes a parallel beam by the lens 31a, becomes a rectangle by the lens (cylindrical surface lens) 31b, and further the lens 31c.
After setting the interval d of each pulse laser to a desired value by
The subject 54 is irradiated with the irradiation pattern 44 shown in FIG. In this irradiation pattern 44, a is approximately 0.5 mm and b is approximately 5 mm.
Although the above is desirable, the interval d is determined by the relationship between the desired refraction angle and the delay time.

受信装置20においては、連続波レーザー2周波直交光
源21は2つの異なる周波数を有し、直交した偏光成分を
有する受信用レーザー光を出射する。この受信用レーザ
ー光は、連続波レーザー分岐部22で複数本、望ましくは
8本以上に分岐され、連続波レーザー分岐部22から干渉
計部23まで偏波面保存ファイバー28を経由して伝送され
る。
In the receiving device 20, the continuous wave laser dual frequency orthogonal light source 21 emits receiving laser light having two different frequencies and orthogonal polarization components. This receiving laser light is branched into a plurality of, preferably eight or more, laser beams in the continuous wave laser branching section 22, and is transmitted from the continuous wave laser branching section 22 to the interferometer section 23 via a polarization-maintaining fiber 28. .

干渉計部23は、第5図に示すように、一体形干渉計23
aとAPDなどの受光器23bの組合わせを一対とし、これら
をレーザー分岐数に応じた複数個設けている。一体形干
渉計23aは偏光ビームスプリッターPBSに1/4波長板,
鏡,検光子及び必要に応じパルスレーザー光を遮断する
ためのフィルターを接着により固着してあり、マイケル
ソンの干渉計を構成する。
The interferometer unit 23, as shown in FIG.
A combination of a and a photodetector 23b such as an APD is a pair, and a plurality of these are provided according to the number of laser branches. The integrated interferometer 23a consists of a polarizing beam splitter PBS, a 1/4 wavelength plate,
A mirror, an analyzer and, if necessary, a filter for blocking pulsed laser light are adhered to each other by adhesion to form a Michelson interferometer.

受信用レーザー光は干渉計23aにおいて2つに分離
し、一方は参照光として鏡の方へ、他方は検出光として
受信用ファイバー42を経由して斜角受信ヘッド32の方へ
伝送される。斜角受信ヘッド32で超音波を検出した信号
光は同じ経路を通って干渉計23aに戻り、上記参照光と
干渉し、受光器23bにより電気信号に変換される。
The receiving laser light is split into two in the interferometer 23a, one of which is transmitted as a reference light toward the mirror and the other of which is detected light through the receiving fiber 42 toward the oblique reception head 32. The signal light whose ultrasonic wave has been detected by the oblique-angle reception head 32 returns to the interferometer 23a through the same path, interferes with the reference light, and is converted into an electric signal by the light receiver 23b.

この電気信号は高速切換スイッチ29aを介してPLL位相
検波器24に入力され、順次超音波信号が検出される。検
出された超音波信号は高速切換スイッチ29bを介して受
信遅延部25に入力され、必要な遅延時間を付与された
後、加算器26に入力され斜角超音波信号となり、オシロ
スコープ27で表示される。なお高速切換スイッチ29a,29
bはPLL位相検波器24を複数個設置する場合には勿論不要
である。
This electric signal is input to the PLL phase detector 24 via the high-speed changeover switch 29a, and ultrasonic signals are sequentially detected. The detected ultrasonic signal is input to the reception delay unit 25 via the high-speed changeover switch 29b, and after being given a necessary delay time, it is input to the adder 26 and becomes an oblique angle ultrasonic signal, which is displayed on the oscilloscope 27. It The high-speed changeover switches 29a, 29
Of course, b is unnecessary when a plurality of PLL phase detectors 24 are installed.

ここで受信原理を第6図について説明すると、被検体
表面54′に斜め方向から伝ぱ角度θで、超音波波面55′
をもって到達する斜角超音波55は、音源から十分離れた
位置では平面波で近似できるため、次に(1)式で示さ
れた時間dtだけ遅れて表面に到達する。
The reception principle will be described here with reference to FIG. 6. An ultrasonic wavefront 55 ′ is transmitted to the surface 54 ′ of the subject from an oblique direction at a propagation angle θ.
The oblique-angle ultrasonic wave 55 that arrives at a position can be approximated by a plane wave at a position sufficiently distant from the sound source, and then arrives at the surface with a delay of the time dt shown in the equation (1).

dt=l/SV sinθ ……(1) ここで、l :被検体表面での距離 SV:被検体中の音速 そこである一定の角度方向から伝ぱしてきた超音波のみ
を検出するためには、このような遅延時間を補正した上
で、各検出点で観測される波形を合成すれば良い。受信
遅延部25と加算器26により、このような遅延時間の補正
と波形合成が行われる。
dt = l / SV sin θ (1) Where, l: Distance on the surface of the object SV: Sound velocity in the object In order to detect only the ultrasonic waves transmitted from a certain angle direction, After correcting such delay time, the waveforms observed at the respective detection points may be combined. The reception delay unit 25 and the adder 26 perform such delay time correction and waveform synthesis.

更に斜角受信ヘッド32を第7図,第8図について説明
すると、斜角受信ヘッド32では、受信用光ファイバー42
から出射されるレーザー光が等間隔dとなるようにその
まま配置するか、又は第8図に示すように、被検体54と
の間に分布屈折率レンズアレイ32aを挿入する。この分
布屈折率レンズアレイ32aの挿入により被検体54表面に
焦点を結ばせることができるので、受信用光ファイバー
42の結合損失や乱反射による光強度の低減を防止するこ
とが可能となる。
Further, the bevel receiving head 32 will be described with reference to FIGS. 7 and 8.
The laser beams emitted from the lasers are arranged as they are so that they are at equal intervals d, or, as shown in FIG. 8, a distributed index lens array 32a is inserted between the laser beam and the subject 54. By inserting the distributed index lens array 32a, it is possible to focus on the surface of the subject 54, and therefore the receiving optical fiber.
It is possible to prevent the reduction of the light intensity due to the coupling loss of 42 and irregular reflection.

かくして、この装置においては、選択的な屈折角をも
つ斜角送信ヘッド31と斜角受信ヘッド32を、両者の挾角
がとなるようにセンサーヘッド30に固定し、この送,
受信ヘッド31,32を一体化したセンサーヘッド30を、第
2図に示すように、被検体54の表面に当ててレーザー光
の送,受信を行うことにより、その欠陥56を斜角超音波
55により探傷することができる。
Thus, in this device, the bevel angle transmitting head 31 and the bevel angle receiving head 32 having selective refraction angles are fixed to the sensor head 30 so that the included angle between them is,
As shown in FIG. 2, the sensor head 30 in which the receiving heads 31 and 32 are integrated is applied to the surface of the subject 54 to send and receive a laser beam to detect the defect 56 by oblique-angle ultrasonic wave.
55 allows flaw detection.

〔考案の効果〕[Effect of device]

要するに本考案によれば、パルスレーザー発振器,パ
ルスレーザー分岐部及び送信遅延部からなる送信装置
と、連続波レーザー2周波直交光源,連続波レーザー分
岐部,複数干渉計包含の干渉計部,PLL位相検波器,受信
遅延部,受信信号加算器及び表示器からなるヘテロダイ
ン方式受信装置と、上記送信装置の斜角送信ヘッドと上
記受信装置の斜角受信ヘッドを適宜挾角を存して固定し
たセンサーヘッドと、上記センサーヘッドと送信装置,
受信装置の間をそれぞれ連結する複数の光ファイバーと
を具えたことにより、送,受信とも選択的な屈折角をも
ち、かつ送,受信を一体化した斜角センサーヘッドを備
えたレーザー超音波斜角探傷装置を得るから、本考案は
産業上極めて有益なものである。
In short, according to the present invention, a transmitter comprising a pulse laser oscillator, a pulse laser branching section and a transmission delay section, a continuous wave laser dual frequency orthogonal light source, a continuous wave laser branching section, an interferometer section including a plurality of interferometers, a PLL phase A heterodyne type reception device including a detector, a reception delay unit, a reception signal adder, and a display, a bevel angle transmission head of the above transmission device, and a sensor in which the beveled angle reception head of the above reception device is fixed at an appropriate angle. A head, the sensor head and a transmitter,
By having a plurality of optical fibers for connecting between the receiving devices, a laser ultrasonic oblique angle having an oblique angle sensor head that has a selective refraction angle for both sending and receiving and has integrated sending and receiving The present invention is extremely useful industrially because it has a flaw detector.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案レーザー超音波斜角探傷装置の一実施例
における装置全体の系統図、第2図はセンサーヘッド使
用状態の説明図、第3図は斜角送信ヘッドの説明図、第
4図は第3図のIV−IVに沿った断面図、第5図は干渉計
部の説明図、第6図は斜角超音波の受信原理の説明図、
第7図,第8図はそれぞれ斜角受信ヘッドの説明図であ
る。 第9図は従来の斜角探傷装置の模式図、第10図はその斜
角超音波発生原理の説明図である。 10……送信装置、11……パルスレーザー発振器、12……
パルスレーザー分岐部、13……送信遅延部、20……受信
装置、21……連続波レーザー2周波直交光源、22……連
続波レーザー分岐部、23……干渉計部、23a……干渉
計、23b……受光器、24……PLL位相検波器、25……受信
遅延部、26……受信信号加算器、27……オシロスコー
プ、28……偏波面保存ファイバー、29a,29b……高速切
換スイッチ、30……センサーヘッド、31……斜角送信ヘ
ッド、31a,31b,31c……レンズ、32……斜角受信ヘッ
ド、32a……分布屈折率レンズアレイ、41……送信用光
ファイバー、42……受信用光ファイバー、43……パルス
レーザー、44……照射パターン、54……被検体、54′…
…被検体表面、55……斜角超音波、55′……超音波波
面、56……欠陥。
FIG. 1 is a systematic diagram of the entire apparatus in one embodiment of the laser ultrasonic bevel flaw detection device of the present invention, FIG. 2 is an explanatory diagram of a sensor head usage state, FIG. 3 is an explanatory diagram of a bevel angle transmission head, and FIG. FIG. 5 is a cross-sectional view taken along the line IV-IV in FIG. 3, FIG. 5 is an explanatory view of an interferometer section, and FIG. 6 is an explanatory view of the reception principle of oblique-angle ultrasonic waves.
7 and 8 are explanatory views of the bevel receiver head. FIG. 9 is a schematic diagram of a conventional bevel flaw detector, and FIG. 10 is an explanatory diagram of the bevel ultrasonic wave generation principle. 10 …… Transmitter, 11 …… Pulse laser oscillator, 12 ……
Pulse laser branch unit, 13 ... Transmission delay unit, 20 ... Receiving device, 21 ... Continuous wave laser dual frequency orthogonal light source, 22 ... Continuous wave laser branch unit, 23 ... Interferometer unit, 23a ... Interferometer , 23b ... Photoreceiver, 24 ... PLL phase detector, 25 ... Reception delay section, 26 ... Received signal adder, 27 ... Oscilloscope, 28 ... Polarization preserving fiber, 29a, 29b ... High-speed switching Switch, 30 ... Sensor head, 31 ... Oblique angle transmission head, 31a, 31b, 31c ... Lens, 32 ... Oblique angle reception head, 32a ... Distributed refractive index lens array, 41 ... Transmission optical fiber, 42 ...... Receiving optical fiber, 43 ...... Pulse laser, 44 …… Irradiation pattern, 54 …… Subject, 54 ′…
… Subject surface, 55… oblique angle ultrasonic wave, 55 ′… ultrasonic wave front, 56 …… defect.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】パルスレーザー発振器,パルスレーザー分
岐部及び送信遅延部からなる送信装置と、連続波レーザ
ー2周波直交光源,連続波レーザー分岐部,複数干渉計
包含の干渉計部, PLL位相検波器,受信遅延部,受信信号加算器及び表示
器からなるヘテロダイン方式受信装置と、上記送信装置
の斜角送信ヘッドと上記受信装置の斜角受信ヘッドを適
宜挾角を存して固定したセンサーヘッドと、上記センサ
ーヘッドと送信装置,受信装置の間をそれぞれ連結する
複数の光ファイバーとを具えたことを特徴とするレーザ
ー超音波斜角探傷装置。
1. A transmitter comprising a pulse laser oscillator, a pulse laser branching section and a transmission delay section, a continuous wave laser dual frequency orthogonal light source, a continuous wave laser branching section, an interferometer section including a plurality of interferometers, and a PLL phase detector. A heterodyne type reception device including a reception delay unit, a reception signal adder and a display, and a bevel angle transmission head of the transmission device and a sensor head in which the bevel angle reception head of the reception device is fixed at an appropriate angle. A laser ultrasonic bevel flaw detector, comprising: a plurality of optical fibers that connect the sensor head, the transmitter, and the receiver.
JP3838990U 1990-04-10 1990-04-10 Laser ultrasonic bevel flaw detector Expired - Lifetime JP2503139Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3838990U JP2503139Y2 (en) 1990-04-10 1990-04-10 Laser ultrasonic bevel flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3838990U JP2503139Y2 (en) 1990-04-10 1990-04-10 Laser ultrasonic bevel flaw detector

Publications (2)

Publication Number Publication Date
JPH03128851U JPH03128851U (en) 1991-12-25
JP2503139Y2 true JP2503139Y2 (en) 1996-06-26

Family

ID=31546350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3838990U Expired - Lifetime JP2503139Y2 (en) 1990-04-10 1990-04-10 Laser ultrasonic bevel flaw detector

Country Status (1)

Country Link
JP (1) JP2503139Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007460A1 (en) * 2006-07-11 2008-01-17 Central Research Institute Of Electric Power Industry Ultrasonic scanning device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007460A1 (en) * 2006-07-11 2008-01-17 Central Research Institute Of Electric Power Industry Ultrasonic scanning device and method
JPWO2008007460A1 (en) * 2006-07-11 2009-12-10 財団法人電力中央研究所 Ultrasonic flaw detection apparatus and method
US7900516B2 (en) 2006-07-11 2011-03-08 Central Research Institute Of Electric Power Industry Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR101134431B1 (en) * 2006-07-11 2012-04-09 자이단호징 덴료쿠추오켄큐쇼 Ultrasonic scanning device and method

Also Published As

Publication number Publication date
JPH03128851U (en) 1991-12-25

Similar Documents

Publication Publication Date Title
KR910004225B1 (en) Method and device for nondestructive evaluation
US5585921A (en) Laser-ultrasonic non-destructive, non-contacting inspection system
US5106192A (en) Polarization insensitive absolute interferometeric method and apparatus for measuring position angular bearing and optical paths
US4619529A (en) Interferometric contact-free measuring method for sensing motional surface deformation of workpiece subjected to ultrasonic wave vibration
US5080491A (en) Laser optical ultarasound detection using two interferometer systems
US5814730A (en) Material characteristic testing method and apparatus using interferometry to detect ultrasonic signals in a web
JP4386709B2 (en) Material nondestructive inspection method and apparatus by laser ultrasonic wave
EP3326152B1 (en) Laser multibeam differential interferometric sensor and methods for vibration imaging
EP1382139A2 (en) Optical coherent receiver using a time delay interferometer and adaptive beam combiner
JP2000180418A (en) Surface inspecting apparatus
JPS5977319A (en) Method and device for measuring ultrasonic surface wave
JP2559248B2 (en) Detector for localized polarization coupling in birefringent optics
Spytek et al. Non-contact detection of ultrasound with light–Review of recent progress
US11525916B2 (en) Techniques for mixing local oscillator signal with target return signal to generate target information
JP2503139Y2 (en) Laser ultrasonic bevel flaw detector
US4346999A (en) Digital heterodyne wavefront analyzer
WO2000000783A1 (en) Method and apparatus for ultrasonic laser testing
Ng et al. Design of a remote and integrated Sagnac interferometer that can generate narrowband guided wave through the use of laser and effective optics to detect defects occurred in plates
JP2019095419A (en) Laser excitation ultrasonic generator, laser ultrasonic inspection device, and method for laser ultrasonic inspection
JP3294148B2 (en) Laser ultrasonic flaw detector
JP2696117B2 (en) Laser Doppler vibrometer using beam splitting optical system
JPS6344136A (en) Heterodyne michelson interferometer related to polarimetry
JPH0734371Y2 (en) Laser ultrasonic flaw detector
CA2188705A1 (en) Method and apparatus for exciting bulk acoustic wave
JPH02276961A (en) Laser ultrasonic flaw detector