JP2503031B2 - Method for producing 3-methylpentane-1,5-diol - Google Patents

Method for producing 3-methylpentane-1,5-diol

Info

Publication number
JP2503031B2
JP2503031B2 JP62258829A JP25882987A JP2503031B2 JP 2503031 B2 JP2503031 B2 JP 2503031B2 JP 62258829 A JP62258829 A JP 62258829A JP 25882987 A JP25882987 A JP 25882987A JP 2503031 B2 JP2503031 B2 JP 2503031B2
Authority
JP
Japan
Prior art keywords
catalyst
molybdenum
reaction
mhp
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62258829A
Other languages
Japanese (ja)
Other versions
JPH01100139A (en
Inventor
憲一 日野
康雄 時任
典昭 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62258829A priority Critical patent/JP2503031B2/en
Publication of JPH01100139A publication Critical patent/JPH01100139A/en
Application granted granted Critical
Publication of JP2503031B2 publication Critical patent/JP2503031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2−ヒドロキシ−4−メチルテトラヒドロピ
ラン(以下MHPと略記する)の水素化による3−メチル
ペンタン−1,5−ジオール(以下MPDと略記する)の改良
された製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to 3-methylpentane-1,5-diol (hereinafter MPD) by hydrogenation of 2-hydroxy-4-methyltetrahydropyran (hereinafter abbreviated as MHP). Abbreviated).

本発明の方法により得られるMPDはポリエステルポリ
オールの原料として有用である。ポリエステルポリオー
ルは液状でありかつ耐加水分解性に優れた物性を有して
いるので、ポリウレタンや高分子可塑剤分野に使用する
ことによりその特性を生かすことができる。
The MPD obtained by the method of the present invention is useful as a raw material for polyester polyol. Since polyester polyol is liquid and has physical properties excellent in hydrolysis resistance, its properties can be utilized by using it in the field of polyurethane and polymer plasticizers.

〔従来の技術〕[Conventional technology]

従来、MPDの製造方法としてはMHPを水素化触媒の存在
下に高められた温度および高められた圧力において水素
化する方法(特公昭58-40533号公報)が知られている。
特公昭58-40533号公報において、MPDは具体的には200気
圧の圧力下、ラネーコバルト触媒の存在下にMHPを水素
化して製造されている。そして、同公報には、普通の水
素化触媒に活性化添加物、たとえば銅、クロム及びマン
ガンを含有していてもよいコバルト及びニツケルを含有
する触媒が好ましい旨記載されているが、具体的な例は
開示されていない。
Conventionally, as a method for producing MPD, a method of hydrogenating MHP at elevated temperature and elevated pressure in the presence of a hydrogenation catalyst (Japanese Patent Publication No. 58-40533) is known.
In Japanese Examined Patent Publication No. 58-40533, MPD is specifically produced by hydrogenating MHP in the presence of a Raney cobalt catalyst under a pressure of 200 atm. And, the same publication describes that a catalyst containing cobalt and nickel which may contain an activating additive such as copper, chromium and manganese in a common hydrogenation catalyst is preferable. No example is disclosed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

MHPを従来公知の方法に従つて水素化すると、かなり
の量のβ−メチル−δ−バレロラクトンや、MHPとMPDの
アセタール化反応生成物が副生される。これらの副生物
はMPDへの選択率を低下させるのみならず、水素化触媒
を劣化させる。なかでも、水素化触媒をくり返し使用し
た場合に、もはや2回目で急激に活性が低下してしまう
ことは工業的に重大な問題点である。水素化触媒は比較
的高価であり、水素化反応における使用量は多く、本発
明のような汎用の化学品を製造する場合、くり返して使
用できなければ経済的な製造法であるとはいい難い。
When MHP is hydrogenated according to a conventionally known method, a considerable amount of β-methyl-δ-valerolactone and an acetalization reaction product of MHP and MPD are produced as by-products. These by-products not only reduce the selectivity to MPD, but also degrade the hydrogenation catalyst. In particular, when the hydrogenation catalyst is repeatedly used, the activity is drastically reduced in the second time, which is a serious industrial problem. Hydrogenation catalysts are relatively expensive, and they are used in large amounts in hydrogenation reactions. When producing a general-purpose chemical product such as the present invention, it cannot be said to be an economical production method unless it can be used repeatedly. .

従つて本発明の目的は、MHPの水素化反応において高
いMPDへの選択率を得ることができ、かつ長期にくり返
し使用可能な水素化触媒を見い出すことにある。
Therefore, an object of the present invention is to find a hydrogenation catalyst that can obtain a high selectivity to MPD in the hydrogenation reaction of MHP and can be used repeatedly over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは鋭意検討を重ね、MHPの水素化反応にモ
リブデン変性ラネーニツケルを触媒として使用すること
により、上記目的が達成できることを見い出し、本発明
に至つた。すなわち本発明は、2−ヒドロキシ−4−メ
チルテトラヒドロピランを水素化触媒の存在下に水素化
して3−メチルペンタン−1,5−ジオールを製造するに
際し、触媒としてモリブデン変性ラネーニツケル触媒を
使用することを特徴とする3−メチルペンタン−1,5−
ジオールの製造方法である。
The present inventors have conducted extensive studies and found that the above object can be achieved by using molybdenum-modified Raney-Nickel as a catalyst in the hydrogenation reaction of MHP, and arrived at the present invention. That is, the present invention uses a molybdenum-modified Raney-Nitzkel catalyst as a catalyst when hydrogenating 2-hydroxy-4-methyltetrahydropyran in the presence of a hydrogenation catalyst to produce 3-methylpentane-1,5-diol. 3-Methylpentane-1,5-
It is a method for producing a diol.

モリブデン変性ラネーニツケルをMHPの水素化触媒と
して使用することにより、MHPから低圧においてもほぼ
定量的にMPDを製造することができ、くり返し使用にお
いてもほどんど活性が低下しないなど工業的に大きなメ
リツトがもたらされる。このような効果は、後述の比較
例から明らかなように、ラネーニツケル、安定化ニツケ
ル、ラネーコバルト、銅クロマイト触媒など汎用されて
いる水素化触媒ではもたらされない。
By using molybdenum-modified Raney-Nitzkel as a hydrogenation catalyst for MHP, it is possible to produce MPD from MHP almost quantitatively even at low pressure, and even if it is repeatedly used, the activity does not decrease so much and industrially great merit is brought about. Be done. As will be apparent from Comparative Examples described below, such an effect is not brought about by hydrogenation catalysts which are widely used such as Raney-Nickel, stabilized Nickel, Raney-Cobalt and copper chromite catalysts.

本発明においては、MHPの水素化触媒としてモリブデ
ンで変性されたラネーニツケル触媒を用いる必要があ
る。モリブデンによる変性の割合があまり小さいと上記
のような効果が小さく、又該変性の割合があまり大きい
ものは調製が煩雑になる傾向にあるので、実用的にはニ
ツケルに対して0.1〜10重量%のモリブデンで変性され
た触媒を使用するのが好ましい。このような変性触媒は
変性ラネーニツケルとして容易に入手できるので、この
点からも好ましい。本発明においては、モリブデン以外
に少量の金属たとえばAl、Cu、Co、W、Te、Zn等を実害
のない範囲で含んでいても何らさしつかえない。
In the present invention, it is necessary to use a molybdenum-modified Raney-Nickel catalyst as the MHP hydrogenation catalyst. If the rate of modification with molybdenum is too small, the above effect is small, and if the rate of modification is too large, the preparation tends to be complicated, so in practice 0.1 to 10% by weight relative to nickel. It is preferred to use the molybdenum-modified catalyst of Since such a modified catalyst is easily available as modified Raney-Nitzkel, it is also preferable in this respect. In the present invention, a small amount of metal such as Al, Cu, Co, W, Te, and Zn may be contained in addition to molybdenum within a range that does not cause actual damage.

モリブデン変性ラネーニツケル触媒は反応混合液に対
して金属重量換算で0.1〜10重量%、好ましくは0.5〜5
重量%の量で使用するのが望ましい。該モリブデン変性
ラネーニツケル触媒は単独で用いることも、アルミナ、
シリカ、ケイソウ土等の担体に担持して用いることもで
きる。
The molybdenum-modified Raney-Nickel catalyst is 0.1 to 10% by weight, preferably 0.5 to 5% by weight of the reaction mixture in terms of metal weight.
It is desirable to use it in an amount of% by weight. The molybdenum-modified Raney-Nickel catalyst can be used alone or in alumina,
It can also be used by supporting it on a carrier such as silica or diatomaceous earth.

MHPの水素化反応は水素加圧下に実施されるが、水素
化反応の圧力をあまり低くすると、同一の原料供給量で
は未反応の原料濃度が増加し、その結果触媒は劣化する
傾向にあり、又あまり高くてもそれ程効果はなくむしろ
装置上の問題が出てくるので、本発明においては1〜10
0気圧、好ましくは2〜20気圧、さらに好ましくは5〜1
5気圧で実施するのが望ましい。
Although the hydrogenation reaction of MHP is carried out under hydrogen pressure, if the pressure of the hydrogenation reaction is too low, the concentration of unreacted raw material increases with the same feed amount of the raw material, and as a result, the catalyst tends to deteriorate, Further, even if it is too high, it is not so effective and rather a problem on the device comes out.
0 atm, preferably 2 to 20 atm, more preferably 5 to 1 atm
It is desirable to carry out at 5 atm.

MHPの水素化反応の温度はあまり低いと反応速度が低
い傾向にあり、又あまり高くてもそれ程の効果は発現し
ないので、本発明においては50〜180℃、好ましくは80
〜140℃で実施される。
If the temperature of the hydrogenation reaction of MHP is too low, the reaction rate tends to be low, and even if it is too high, such effect is not exhibited, so in the present invention, it is 50 to 180 ° C., preferably 80.
It is carried out at ~ 140 ° C.

MHPの水素化反応には反応に不活性な溶媒が使用され
るが、このような溶媒の具体例としては、メタノール、
エタノール、ブタノール、2−エチルヘキサノールなど
のアルコール類、ジブチルエーテル、ジオキサン、テト
ラヒドロフランなどのエーテル類をあげることができ
る。溶媒は反応生成物から分離されて再使用されるの
で、分離の煩雑さを回避するために反応生成物を溶媒と
して使用するのが好ましい。
A solvent inert to the reaction is used in the hydrogenation reaction of MHP. Specific examples of such a solvent include methanol,
Examples thereof include alcohols such as ethanol, butanol and 2-ethylhexanol, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. Since the solvent is separated from the reaction product and reused, it is preferable to use the reaction product as the solvent in order to avoid complication of separation.

MHPの水素化反応は懸濁床、固定床等の反応方式によ
り、回分式または連続式で実施することができるが、原
料MHPを連続フイードし、反応が水素供給律速にならな
いようにして行うのが好ましい。反応終了後、反応混合
液からモリブデン変性ラネーニツケルを公知の方法で分
離し、反応生成物をとり出すことができる。
The hydrogenation reaction of MHP can be carried out in a batch system or a continuous system depending on the reaction system such as suspension bed, fixed bed, etc., but it is carried out by continuously feeding the raw material MHP so that the reaction does not become the rate of hydrogen supply. Is preferred. After completion of the reaction, the molybdenum-modified Raney-Nitzel can be separated from the reaction mixture by a known method to take out the reaction product.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明するが、本
発明はこれらにより何ら制限されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

実施例1 水素ガス供給口、原料供給口、温度計およびサンプリ
ング口を備えた内容500mlの電磁撹拌式オートクレーブ
中に、モリブデン変性ラネーニツケル触媒(R-230;日興
リカ社製、モリブデン/ニツケル=0.4〜0.6重量%)を
ウエツトで4g(金属換算約2g)およびMPDを150g仕込
み、水素ガス圧力5kg/cm2(ゲージ圧)で5回系内を置
換した。しかる後、水素ガスにて9kg/cm2(ゲージ圧)
まで昇圧し、800rpmの撹拌下120℃まで昇温した。120℃
一定となつたところでMHP150gを3時間かけて連続的に
供給した。反応中、水素圧力は圧力調整弁を通じて常に
9kg/cm2(ゲージ圧)になるように保たれ、オフガス流
量は15l/hrに調節された。原料の供給終了後、1時間反
応を続けた。次いで撹拌を停止し、放冷しながら1時間
静置した。サンプリング口より反応液149gを抜き取り微
量浮遊の触媒を過した後、ガスクロマトグラフイーに
より分析した。その結果MHPの転化率は99.6モル%であ
り、MPDへの選択率は反応したMHP基準で96モル%であつ
た。β−メチル−δ−バレロラクトン(MVL)およびア
セタール化物の副生は反応したMHP基準の選択率でそれ
ぞれ3モル%、および1モル%であつた。
Example 1 A molybdenum-modified Raney-Nickel catalyst (R-230; Nikko Rica Co., Ltd., molybdenum / Nickel = 0.4-) was placed in a 500 ml electromagnetic stirring autoclave equipped with a hydrogen gas supply port, a raw material supply port, a thermometer and a sampling port. 0.6% by weight) was charged with 4 g by weight (about 2 g in terms of metal) and 150 g of MPD, and the inside of the system was replaced 5 times with hydrogen gas pressure of 5 kg / cm 2 (gauge pressure). After that, 9kg / cm 2 (gauge pressure) with hydrogen gas
The pressure was raised to 120 ° C. with stirring at 800 rpm. 120 ° C
At a constant temperature, 150 g of MHP was continuously supplied over 3 hours. During the reaction, the hydrogen pressure is always
The pressure was maintained at 9 kg / cm 2 (gauge pressure), and the off gas flow rate was adjusted to 15 l / hr. After completion of the supply of the raw materials, the reaction was continued for 1 hour. Then, the stirring was stopped, and the mixture was allowed to cool and left to stand for 1 hour. 149 g of the reaction solution was taken out from the sampling port, and after passing a slight amount of suspended catalyst, it was analyzed by gas chromatography. As a result, the conversion rate of MHP was 99.6 mol% and the selectivity to MPD was 96 mol% based on the reacted MHP. The by-products of β-methyl-δ-valerolactone (MVL) and acetalized products were 3 mol% and 1 mol%, respectively, based on the selectivity of the reacted MHP.

次に、オートクレーブの圧力を9kg/cm2(ゲージ圧)
に昇圧し、800rpmの撹拌下120℃まで昇温し120℃一定と
なつたところで再びMHP150gを3時間かけて連続的に供
給し2回目の反応を行なつた。MHPの供給終了後、1時
間反応を続けた。次いで、撹拌を停止し放冷しながら1
時間静置した後サンプリング口より反応液150gを抜き取
つた。このような繰り返し反応を計4回実施した。MHP
の転化率、MPD、β−メチル−δ−バレロラクトンおよ
びアセタール化物への選択率を各々第1表に示す。
Next, set the autoclave pressure to 9 kg / cm 2 (gauge pressure).
The pressure was raised to 120 ° C. under stirring at 800 rpm, and when the temperature was kept constant at 120 ° C., 150 g of MHP was continuously fed again for 3 hours to carry out the second reaction. After the completion of MHP supply, the reaction was continued for 1 hour. Then, stop stirring and let stand to cool 1
After allowing to stand for a while, 150 g of the reaction solution was extracted from the sampling port. Such a repeated reaction was carried out four times in total. MHP
Table 1 shows the conversion ratios of MPD, MPD, β-methyl-δ-valerolactone and acetalized compounds.

実施例2 実施例1において、モリブデン変性ラネーニツケル触
媒(川研フアインケミカル社製、ラネーニツケル合金
(モリブデン3重量%)を展開したもの)をウエツトで
2g(金属換算約1g)用いて実施する以外は実施例1と同
様の操作を3回行なつた。繰り返し3回目のMHPの転化
率は98.3モル%であり、MPDへの選択率は反応したMHP基
準で94モル%であつた。MVLおよびアセタール化物への
選択率は反応したMHP基準でそれぞれ3モル%および3
モル%であつた。
Example 2 In Example 1, molybdenum-modified Raney-Nickel catalyst (Kawaken Huaine Chemical Co., Ltd., developed with Raney-Nickel alloy (3% by weight of molybdenum)) was used as a wet.
The same operation as in Example 1 was repeated 3 times except that 2 g (approximately 1 g of metal equivalent) was used. The conversion rate of MHP in the third cycle was 98.3 mol% and the selectivity to MPD was 94 mol% based on the reacted MHP. Selectivities for MVL and acetal are 3 mol% and 3 respectively based on the reacted MHP.
Mol%.

実施例3 実施例1において、モリブデン変性ラネーニツケル触
媒(R-230;日興リカ社製、モリブデン/ニツケル=0.4
〜0.6重量%)をウエツトで6g(金属換算約3g)用い、
反応圧力3kg/cm2(ゲージ圧)で実施する以外は実施例
1と同様の操作を3回行なつた。繰り返し3回目のMHP
の転化率は98.5モル%であり、MPDへの選択率は反応し
たMHP基準で92モル%であつた。MVLおよびアセタール化
物への選択率は反応したMHP基準でそれぞれ5モル%お
よび3モル%であつた。
Example 3 In Example 1, molybdenum-modified Raney-Nickel catalyst (R-230; manufactured by Nikko Rica Ltd., molybdenum / Nickel = 0.4)
~ 0.6% by weight) is used as a wet weight of 6 g (approximately 3 g in terms of metal),
The same operation as in Example 1 was repeated 3 times except that the reaction pressure was 3 kg / cm 2 (gauge pressure). Repeated third MHP
Was 98.5 mol% and the selectivity to MPD was 92 mol% based on the reacted MHP. The selectivities for MVL and acetal were 5 mol% and 3 mol%, respectively, based on the MHP reacted.

比較例1〜3 実施例1においてモリブデン変性ラネーニツケル触媒
のかわりに第2表に示す触媒および温度で実施する以外
は実施例1と同様の操作を3回行なつた。繰り返し3回
目のMHP転化率、MPD、MVLおよびアセタール化物への選
択率を第2表に示す。
Comparative Examples 1 to 3 The same operation as in Example 1 was repeated three times except that the catalyst and the temperature shown in Table 2 were used instead of the molybdenum-modified Raney-Neckel catalyst in Example 1. Table 2 shows the conversion rate of MHP, MPD, MVL and acetalized product at the third repetition.

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2−ヒドロキシ−4−メチルテトラヒドロ
ピランを水素化触媒の存在下に水素化して3−メチルペ
ンタン−1,5−ジオールを製造するに際し、触媒として
モリブデン変性ラネーニツケル触媒を使用することを特
徴とする3−メチルペンタン−1,5−ジオールの製造方
法。
1. When hydrogenating 2-hydroxy-4-methyltetrahydropyran in the presence of a hydrogenation catalyst to produce 3-methylpentane-1,5-diol, using a molybdenum-modified Raney-Nickel catalyst as a catalyst. A method for producing 3-methylpentane-1,5-diol, which comprises:
【請求項2】モリブデン変性ラネーニツケル触媒がニツ
ケルに対して0.1〜10重量%のモリブデンで変性された
触媒である特許請求の範囲第1項記載の製造方法。
2. The process according to claim 1, wherein the molybdenum-modified Raney-Nickel catalyst is a catalyst modified with 0.1 to 10% by weight of molybdenum with respect to nickel.
【請求項3】モリブデン変性ラネーニツケル触媒の使用
量が反応混合液に対して金属重量換算で0.1〜10重量%
である特許請求の範囲第1項または第2項記載の製造方
法。
3. The amount of the molybdenum-modified Raney-Nickel catalyst used is 0.1 to 10% by weight in terms of metal weight with respect to the reaction mixture.
The manufacturing method according to claim 1 or 2, wherein
【請求項4】モリブデン変性ラネーニツケル触媒の使用
量が反応混合液に対して金属重量換算で0.5〜5重量%
である特許請求の範囲第1項または第2項記載の製造方
法。
4. The amount of the molybdenum-modified Raney-Nitzkel catalyst used is 0.5 to 5% by weight in terms of metal weight based on the reaction mixture.
The manufacturing method according to claim 1 or 2, wherein
【請求項5】水素化反応の圧力が1〜100気圧である特
許請求の範囲第1項〜第4項のいずれか1項記載の製造
方法。
5. The production method according to any one of claims 1 to 4, wherein the hydrogenation pressure is 1 to 100 atm.
【請求項6】水素化反応の圧力が2〜20気圧である特許
請求の範囲第1項〜第4項のいずれか1項記載の製造方
法。
6. The production method according to any one of claims 1 to 4, wherein the pressure of the hydrogenation reaction is 2 to 20 atm.
【請求項7】水素化反応の圧力が5〜15気圧である特許
請求の範囲第1項〜第4項のいずれか1項記載の製造方
法。
7. The method according to any one of claims 1 to 4, wherein the hydrogenation pressure is 5 to 15 atm.
【請求項8】水素化反応の温度が50〜180℃である特許
請求の範囲第1項〜第7項のいずれか1項記載の製造方
法。
8. The method according to any one of claims 1 to 7, wherein the temperature of the hydrogenation reaction is 50 to 180 ° C.
【請求項9】水素化反応の温度が80〜140℃である特許
請求の範囲第1項〜第7項のいずれか1項記載の製造方
法。
9. The method according to any one of claims 1 to 7, wherein the temperature of the hydrogenation reaction is 80 to 140 ° C.
【請求項10】水素化反応の溶媒が反応生成物である特
許請求の範囲第1項〜第9項のいずれか1項記載の製造
方法。
10. The production method according to any one of claims 1 to 9, wherein the solvent for the hydrogenation reaction is a reaction product.
JP62258829A 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol Expired - Lifetime JP2503031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258829A JP2503031B2 (en) 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258829A JP2503031B2 (en) 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol

Publications (2)

Publication Number Publication Date
JPH01100139A JPH01100139A (en) 1989-04-18
JP2503031B2 true JP2503031B2 (en) 1996-06-05

Family

ID=17325605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258829A Expired - Lifetime JP2503031B2 (en) 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol

Country Status (1)

Country Link
JP (1) JP2503031B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101495B2 (en) * 2006-04-28 2012-12-19 株式会社クラレ Method for producing 3-methyl-1,5-pentanediol
JP6086594B2 (en) * 2013-06-04 2017-03-01 株式会社クラレ Method for producing polyhydric alcohol
US10029965B2 (en) 2013-06-04 2018-07-24 Kuraray Co., Ltd. Process for producing polyhydric alcohol
EP3747855B1 (en) * 2019-06-04 2024-01-10 OQ Chemicals GmbH Method for the continuous preparation of diols from aldehydes using raney-cobalt catalysis

Also Published As

Publication number Publication date
JPH01100139A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
EP0343475B1 (en) Process for producing neopentyl glycol
US5196602A (en) Two-stage maleic anhydride hydrogenation process for 1,4-butanediol synthesis
KR20150076177A (en) Method for the production of neopentyl glycol
JP2006504788A (en) Method for producing 1,3-propanediol
US3408397A (en) Methyl pentamethylene diamine process
KR100584707B1 (en) Process for the preparation of neopentyl glycol
KR19980087026A (en) Method for preparing diamine
JP2503031B2 (en) Method for producing 3-methylpentane-1,5-diol
KR100659913B1 (en) Alcohol production method
JP2001064219A (en) Production of pentanediol from alkoxydihydropyran
US4083882A (en) Production of 1,4-butanediol
JP3485609B2 (en) Catalyst for process for producing 4-hydroxy-2.2.6.6-tetramethylpiperidine
US5374728A (en) Process for the preparation of 2-aminomethylpiperidine
JPH01149828A (en) Production of polyalcohol
JP3016727B2 (en) Modified Raney nickel catalyst and method for producing diol compound using the catalyst
CA2444765C (en) Single-step method for producing toluene derivatives
EP0333296B1 (en) Process for the preparation of alkanediols
EP0869125A1 (en) Process for producing 3-methyltetrahydrofuran
EP0350686B1 (en) Process for the preparation of 6-hydroxycapronic-acid esters
JPH10158217A (en) Production of dialkyl succinate
JP4045604B2 (en) Method for producing 2-methylimidazole
JPH0149135B2 (en)
GB2023581A (en) A Process for Producing p- Hydroxy Methyl Benzoic Acid Esters
JP4140073B2 (en) Process for producing hexahydrophthalides
WO1988000189A1 (en) A process for the preparation of nitrogen-containing heterocyclic compounds

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12