JP2501427Y2 - Drying oven for painting - Google Patents

Drying oven for painting

Info

Publication number
JP2501427Y2
JP2501427Y2 JP1989145628U JP14562889U JP2501427Y2 JP 2501427 Y2 JP2501427 Y2 JP 2501427Y2 JP 1989145628 U JP1989145628 U JP 1989145628U JP 14562889 U JP14562889 U JP 14562889U JP 2501427 Y2 JP2501427 Y2 JP 2501427Y2
Authority
JP
Japan
Prior art keywords
heat transfer
furnace body
heat
transfer oil
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989145628U
Other languages
Japanese (ja)
Other versions
JPH0383674U (en
Inventor
信彦 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP1989145628U priority Critical patent/JP2501427Y2/en
Publication of JPH0383674U publication Critical patent/JPH0383674U/ja
Application granted granted Critical
Publication of JP2501427Y2 publication Critical patent/JP2501427Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Coating Apparatus (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、熱媒油配管を炉体に取付けた塗装用乾燥炉
に関する。
[Detailed Description of the Invention] [Industrial application] The present invention relates to a coating drying furnace in which a heat transfer oil pipe is attached to a furnace body.

[従来の技術] 塗装された自動車車体等のワークを所定温度で所定時
間だけ加熱乾燥処理する塗装用乾燥炉には、第9図に示
す直接加熱方式と第10図に示す間接加熱方式とがある。
[Prior Art] A coating drying furnace for heating and drying a coated work such as an automobile body at a predetermined temperature for a predetermined time includes a direct heating method shown in FIG. 9 and an indirect heating method shown in FIG. is there.

直接加熱方式は、熱風発生装置2を炉体1に一体的に
取付けし、燃焼ガスを炉体1内に直接供給するものであ
る。熱効率が高く設備簡素で小型化できるが、燃焼ガス
がワークの塗膜に直接触れることから高品質塗膜を得る
ことは難しい。なお、9,9は循環ファンである。
In the direct heating method, the hot air generator 2 is integrally attached to the furnace body 1 and the combustion gas is directly supplied into the furnace body 1. Although it has high thermal efficiency and simple equipment and can be downsized, it is difficult to obtain a high quality coating because the combustion gas directly contacts the coating on the work. In addition, 9 and 9 are circulation fans.

一方、間接加熱方式は、熱交換器4を含むいわゆるド
ライボイラ3を設置し、熱風発生装置2を熱交換器4に
ダクト5で接続し、熱交換室6をファン8,ダクト7を介
して炉体1に接続するものである。したがって、ファン
8を起動すればドライボイラ3で間接加熱されたクリー
ンな熱風を炉体1に連続供給できるから、高品質塗膜を
得ることができる。しかし、ドライボイラ3は、気体
(燃焼ガス)−固体(熱交換器)−気体(熱風)による
熱交換方式であり単位面積当りの熱交換率が低いことか
ら大型となり、これにつれてダクト5、熱風発生装置2
はもとよりファン8,ダクト7も大型としなければならな
い。したがって、設備コストが高いばかりかダクト5等
のレイアウトも複雑となり設備スペースも過大となると
いう欠点がある。
On the other hand, in the indirect heating method, a so-called dry boiler 3 including a heat exchanger 4 is installed, the hot air generator 2 is connected to the heat exchanger 4 by a duct 5, and the heat exchange chamber 6 is connected via a fan 8 and a duct 7. It is connected to the furnace body 1. Therefore, when the fan 8 is started, clean hot air indirectly heated by the dry boiler 3 can be continuously supplied to the furnace body 1, and a high quality coating film can be obtained. However, the dry boiler 3 is a heat exchange system of gas (combustion gas) -solid (heat exchanger) -gas (hot air) and has a low heat exchange rate per unit area, and thus becomes large in size. Generator 2
Not only the fan 8 and the duct 7 must be large. Therefore, there is a disadvantage that not only the equipment cost is high, but also the layout of the duct 5 is complicated and the equipment space becomes excessive.

これがため、熱媒体を空気に代えて油を利用するいわ
ゆる熱媒油型加熱方式が普及しつつある。この方式は第
11図に示す如く、熱風発生装置2に代えて熱媒油発生手
段10を用いかつダクト5に代えて熱媒油配管20とするも
のである。また、熱交換ユニット30は小型の熱交換器31
と熱交換室32とから形成される。
For this reason, a so-called heat medium oil type heating system in which oil is used instead of air as a heat medium is becoming widespread. This method is
As shown in FIG. 11, a heating medium oil generating means 10 is used in place of the hot air generating device 2 and a heating medium oil pipe 20 is used in place of the duct 5. In addition, the heat exchange unit 30 is a small heat exchanger 31.
And the heat exchange chamber 32.

したがって、熱交換ユニット30は、液体−固体−気体
にる熱交換方式でありかつ熱媒油の蓄熱容量が大きいこ
とから、設備小型で熱効率も高くなる、とともに基本的
には間接加熱方式であるから高品質塗装を達成できる。
Therefore, the heat exchange unit 30 is a liquid-solid-gas heat exchange system and has a large heat storage capacity of the heat transfer oil, so that the equipment is small in size and the thermal efficiency is high, and is basically an indirect heating system. Can achieve high quality painting.

[考案が解決しようとする課題] しかしながら、従来熱媒油加熱方式は、間接加熱方式
であることに変りがないことから、直接加熱方式に比較
して熱効率は著しく劣るといって過言でない、熱交換ユ
ニット30を介することからも明らかである。
[Problems to be solved by the invention] However, since the conventional heating medium oil heating method is still an indirect heating method, it is no exaggeration to say that the thermal efficiency is significantly inferior to the direct heating method. It is also clear from the exchange unit 30.

さらに、上記いずれの加熱方式にあっても炉体1内で
熱風を循環させる方式である。したがって、循環熱風の
流動を均一化しあるいは特定部位の流動量を強めたりす
ることは困難であり、一方、冷却作用が伴うので炉体1
内の部位に拘らず熱風の単位体積当りの熱量を一定とす
ることは不可能である。
Further, in any of the above heating methods, hot air is circulated in the furnace body 1. Therefore, it is difficult to homogenize the flow of the circulating hot air or to increase the flow amount of a specific part, while the cooling effect accompanies the furnace body 1
It is impossible to make constant the amount of heat per unit volume of hot air regardless of the internal parts.

したがって、一層の多様化と高品質が求められる現今
にあっては、例えば天井部,側部と床部との熱容量が異
なる自動車車体の如きワークの場合には、全面的に均一
塗膜を形成しあるいは床部のみを他に比べて厚く塗膜を
形成する等の要望を満足できない。また、塗膜品質保障
上から間接加熱方式を採るときは熱効率を犠牲にしなけ
ればならないという欠点がある。
Therefore, under the present circumstances where further diversification and high quality are required, for example, in the case of a work such as an automobile body where the heat capacities of the ceiling part, the side part and the floor part are different, a uniform coating film is formed over the entire surface. However, it is not possible to satisfy the demand for forming a thicker coating only on the floor than others. In addition, there is a drawback in that the thermal efficiency must be sacrificed when the indirect heating method is adopted in order to guarantee the coating quality.

本考案の目的は、炉体内を搬送されるワークの各部位
の温度分布を均一および局部的には高温・低温とできる
とともに熱量の無駄消費を抑えて熱効率が高く小型な塗
装用乾燥炉を提供することにある。
The object of the present invention is to provide a small-sized coating drying oven that can make the temperature distribution of each part of the work conveyed in the furnace uniform and can locally make the temperature high and low, suppress wasteful consumption of heat and have high thermal efficiency. To do.

[課題を解決するための手段] 本考案は、直接加熱方式と間接加熱方式との双方優位
性を発揮できるようにいわば炉体壁面自体を熱交換器と
して利用可能に構成し、前記目的を達成するものであ
る。
[Means for Solving the Problems] The present invention achieves the above-mentioned object by constructing the furnace wall surface itself as a heat exchanger so that both the direct heating method and the indirect heating method can exhibit superiority. To do.

すなわち、請求項1項記載の考案は、炉体と、ワーク
を炉体内をその入口部から出口部へ向けて搬送可能な搬
送手段と、熱媒油発生手段と、この熱媒油発生手段から
の熱媒油を炉体に導く熱媒油配管とを含み形成され、前
記炉体を鋼板から形成するとともに、前記熱媒油配管を
前記炉体壁面にワーク搬送方向に螺旋状に巻回し、当該
熱媒油配管内をワーク搬送方向上流側から下流側に向け
て流通する熱媒油の持つ熱量で炉体壁面を通して炉体内
を直接的に加熱する構成としたことを特徴とする。
That is, the invention as set forth in claim 1 comprises a furnace body, a conveying means capable of conveying a work in the furnace body from an inlet portion to an outlet portion thereof, a heat transfer oil generating means, and a heat transfer oil generating means. And a heat transfer oil pipe for guiding the heat transfer oil to the furnace body, and forming the furnace body from a steel plate, the heat transfer oil pipe is spirally wound around the furnace body wall surface in the work transfer direction, It is characterized in that the inside of the heating medium oil pipe is directly heated through the wall surface of the heating medium body with the heat quantity of the heating medium oil flowing from the upstream side to the downstream side in the work transfer direction.

また、請求項2項記載の考案は、炉体と、ワークを炉
体内をその入口部から出口部へ向けて搬送可能な搬送手
段と、熱媒油発生手段と、この熱媒油発生手段からの熱
媒油を炉体に導く熱媒油配管とを含み形成され、前記炉
体を鋼板から形成するとともに、前記熱媒油配管を前記
炉体壁面に空間を介してワーク搬送方向に螺旋状に巻回
し、当該熱媒油配管内をワーク搬送方向上流側から下流
側に向けて流通する熱媒油の持つ熱量で炉体壁面を通し
て炉体内を加熱する構成としたことを特徴とする。
The invention according to claim 2 includes a furnace body, a conveying means capable of conveying a work in the furnace body from an inlet portion to an outlet portion, a heat transfer oil generating means, and the heat transfer oil generating means. And a heat transfer oil pipe for guiding the heat transfer oil to the furnace body, the furnace body is formed from a steel plate, and the heat transfer oil pipe is spirally formed in a work transfer direction through a space on the furnace body wall surface. It is characterized in that the inside of the heat medium oil pipe is heated by the heat quantity of the heat medium oil flowing from the upstream side to the downstream side in the work transfer direction in the heat medium oil pipe through the furnace body wall surface.

[作用] 請求項1項記載の考案では、熱媒油発生手段で発生さ
れた高温の熱媒油は、熱媒油配管を通して炉体に導かれ
る。ここにおいて、熱媒油配管は、必要によって部分的
に本数を増し、かつ炉体壁面にワーク搬送方向に螺旋状
に巻回されており、当該配管内をワーク搬送方向上流側
から下流側に向けて流通する熱媒油の熱量は液体−固体
の順で伝達され、その熱エネルギーは炉体壁面を通して
炉体内を搬送されるワークを輻射加熱するとともに炉体
内空気を加熱する。そのため、熱媒油配管内を流通する
熱媒油はワーク搬送方向下流側に向かうに従って熱エネ
ルギーを奪われ保有熱量は次第に減少することになる。
一方、ワークは、炉体の入口部に入った時点が一番温度
が低く,炉体内を搬送されるに従って輻射加熱されて、
温度上昇し必要熱量が漸次減少する。したがって、炉体
の入口部でワークに加える熱量を最大とし、出口部に向
かうに従って熱量を次第に減少させれば、熱量の無駄消
費が抑えられ加熱効率を高めることができることになる
が、かかる加熱態様は上記熱媒油配管で実現できる。よ
って、熱量の無駄消費を抑えて熱効率が高くかつ間接加
熱方式となるから高品質塗膜を保障できるとともに設備
小型化が図られる。
[Operation] In the invention according to claim 1, the high temperature heat transfer oil generated by the heat transfer oil generating means is guided to the furnace body through the heat transfer oil pipe. Here, the number of heat transfer oil pipes is partially increased if necessary, and is spirally wound around the furnace body wall surface in the work transfer direction, and the inside of the pipe is directed from the upstream side to the downstream side in the work transfer direction. The amount of heat of the heat transfer oil is transmitted in the order of liquid and solid, and the heat energy radiatively heats the work conveyed in the furnace body through the wall surface of the furnace body and heats the air in the furnace body. Therefore, the heat transfer oil flowing in the heat transfer oil pipe is deprived of heat energy toward the downstream side in the work transfer direction, and the retained heat amount gradually decreases.
On the other hand, the work has the lowest temperature when it enters the entrance of the furnace body, and is radiatively heated as it is transported in the furnace body,
The temperature rises and the required amount of heat gradually decreases. Therefore, by maximizing the amount of heat applied to the work at the inlet of the furnace body and gradually reducing the amount of heat toward the outlet, wasteful consumption of the amount of heat can be suppressed and heating efficiency can be improved. Can be realized by the above heat transfer oil pipe. Therefore, the wasteful consumption of heat is suppressed, the thermal efficiency is high, and the indirect heating method is used, so that a high quality coating film can be guaranteed and the equipment can be downsized.

また、請求項2項記載の考案は、熱媒油発生手段で発
生された高温の熱媒油は、熱媒油配管を通して炉体に導
かれる。ここにおいて、熱媒油配管は、必要によって部
分的に本数を増し、かつ炉体壁面に空間を介してワーク
搬送方向に螺旋状に巻回されており、当該配管内をワー
ク搬送方向上流側から下流側に向けて流通する熱媒油の
熱量は請求項第1項記載の考案の場合とほぼ同じ順序で
伝達され、その熱エネルギーは炉体壁面を通してワーク
を輻射加熱するとともに炉体内空気を加熱する。よっ
て、熱量の無駄消費を抑えて熱効率が高くかつ間接加熱
方式となるから高品質塗膜を保障できるとともに設備小
型化が図られる。また、熱媒油配管は、少々の空間を介
して配設されているので炉体壁面を通してワークを一段
と均一に輻射加熱することができかつ組立も容易であ
る。
According to the second aspect of the present invention, the high temperature heat transfer oil generated by the heat transfer oil generating means is introduced into the furnace body through the heat transfer oil pipe. Here, the number of the heat transfer oil pipes is partially increased if necessary, and is spirally wound in the work transfer direction through the space on the furnace body wall surface, and the inside of the pipe is transferred from the upstream side in the work transfer direction. The heat quantity of the heat transfer oil flowing toward the downstream side is transmitted in substantially the same order as in the case of the invention according to claim 1, and the heat energy radiatively heats the work through the wall surface of the furnace body and heats the air inside the furnace body. To do. Therefore, the wasteful consumption of heat is suppressed, the thermal efficiency is high, and the indirect heating method is used, so that a high quality coating film can be guaranteed and the equipment can be downsized. Further, since the heat transfer oil pipe is arranged through a small space, the work can be more uniformly radiantly heated through the wall surface of the furnace body and the assembly is easy.

[実施例] 以下、本考案の実施例を図面に基づいて説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1実施例) 第1図は模式的に現した外観斜視図、第2図は縦断面
図である。
(First Embodiment) FIG. 1 is a schematic perspective view showing the appearance, and FIG. 2 is a vertical sectional view.

図において、本塗装用乾燥炉は、炉体1,熱媒油発生手
段10,熱媒油配管20,温度制御手段とから構成され、熱媒
油配管20を炉体1に直接螺旋状に巻回して、熱媒油の持
つ熱エネルギーを炉体壁面を通して炉体1内に直接的に
伝達するように形成されている。
In the drawing, the main drying oven is composed of a furnace body 1, a heat transfer oil generating means 10, a heat transfer oil piping 20, and a temperature control means. The heat transfer oil piping 20 is wound directly around the furnace body 1 in a spiral shape. It is formed so that the heat energy of the heat transfer oil is directly transferred into the furnace body 1 through the wall surface of the furnace body.

炉体1は、従来構造と同様に熱風を密閉状に収容する
とともにワークWを連続的又は間歇的に移動可能に収容
するための手段であり、特に、本考案においては、炉体
1内のワークWを輻射加熱するとともに空気を加熱する
ための加熱面を形成するものとされている。したがっ
て、加熱効率向上のために、炉体1は第2図に示す如く
ワークWの形状に合せた相似形に成形されている。ま
た、材質は、熱伝導率および熱伝達率を高めるものとし
て、この実施例では鋼板製円筒構造とされている。もと
より、外側は断熱材5で被覆されている。
The furnace body 1 is a means for accommodating the hot air in a hermetically sealed manner as in the conventional structure and for movably accommodating the work W continuously or intermittently. In particular, in the present invention, the furnace body 1 It is supposed to form a heating surface for radiantly heating the work W and for heating air. Therefore, in order to improve the heating efficiency, the furnace body 1 is formed in a similar shape to match the shape of the work W as shown in FIG. Further, the material is a steel plate cylindrical structure in this embodiment, as it enhances the thermal conductivity and the heat transfer coefficient. Of course, the outside is covered with the heat insulating material 5.

なお、ワークWは、サブ台車55を介して、搬送手段50
(台車51,車輪53,レール54,駆動手段52)によって移動
するものとされている。また、炉体1の前後部には図示
しない扉等の適時に開閉される気密機構が設けられてい
る。
The work W is transferred to the transfer means 50 via the sub-carriage 55.
It is supposed to be moved by (the dolly 51, wheels 53, rails 54, drive means 52). Further, an airtight mechanism such as a door (not shown) that is opened and closed at appropriate times is provided at the front and rear of the furnace body 1.

次に、熱媒油配管20(供給部20A,伝熱部20B,戻り部20
C)は、熱媒油発生手段10で発生された熱媒油を炉体1
に導くとともに両者1,10間を循環させる手段である。蓄
熱容量の大きな熱媒油を流通させるものであるから従来
の空気流通ダクトに対して非常に小型でありレイアウト
も適宜に選択可能である。
Next, the heat transfer oil pipe 20 (supply unit 20A, heat transfer unit 20B, return unit 20
C) is the heating medium oil generated by the heating medium oil generation means 10 in the furnace body 1
It is a means to circulate between the both 1 and 10 while leading to. Since the heat transfer oil having a large heat storage capacity is circulated, it is very small in size compared to the conventional air circulation duct, and the layout can be appropriately selected.

ここに、熱媒油配管20(20B)は、第1図、第2図に
示すように炉体1の壁面にワーク搬送方向に螺旋状に直
接巻回取付けされている。詳しくは、そのワーク搬送方
向上流側の供給部20Aは第3図に示す如く中空円管であ
るが、炉体1に巻回する位置では、炉体壁面がその一部
を兼ねるように第4図に示す如く半円形とされている。
さらに、この実施例におけるワークWが、他部に比較し
て床部の熱容量が大きい自動車車体とされていることか
ら、その床部をも他部と同様な温度に急速立上げること
ができるように、炉体1の下部に配設される熱媒油配管
20Bは、第5図に示す如く、並列配管20B−1,20B−2と
され、上部、側部に巻回する配管20Bの2倍の伝達面を
形成するように密に配設されている。
Here, the heat transfer oil pipe 20 (20B) is directly spirally wound and attached to the wall surface of the furnace body 1 in the work transfer direction as shown in FIGS. 1 and 2. More specifically, the supply portion 20A on the upstream side in the workpiece conveying direction is a hollow circular tube as shown in FIG. 3, but at the position where it is wound around the furnace body 1, the furnace wall surface also serves as a fourth part. As shown in the figure, it has a semicircular shape.
Further, since the work W in this embodiment is an automobile body whose floor has a larger heat capacity than other parts, the floor can be quickly raised to the same temperature as the other parts. And the heat transfer oil pipe installed in the lower part of the furnace body 1.
As shown in FIG. 5, 20B is parallel pipes 20B-1 and 20B-2, which are densely arranged so as to form a transmission surface twice as large as that of the pipe 20B wound around the upper and side portions. .

また、炉体1内の空気温度は、熱媒油配管20(供給部
20A)に介装されたコントロールバルブ22とバイパス管2
1に介装されたコントロールバルブ23と炉体1の内壁面
に取付けられた温度センサ42と設定器41付の温度コント
ローラ40とからなる温度制御手段によってコントロール
されるものと形成されている。
In addition, the temperature of the air in the furnace body 1 is determined by the heat transfer oil pipe 20 (supply unit).
20A) control valve 22 and bypass pipe 2
It is formed to be controlled by a temperature control means including a control valve 23 interposed in 1, a temperature sensor 42 attached to the inner wall surface of the furnace body 1, and a temperature controller 40 with a setter 41.

かかる第1実施例では、熱媒油発生手段10を起動すれ
ば、発生された熱媒油は熱媒油配管20(20A,20B,20C)
を通して炉体1に送られる。ここにおいて、熱媒油配管
20の伝熱部20B内をワーク搬送方向上流から下流側へ向
けて流通する熱媒油の熱エネルギーは炉体1の壁面を伝
熱面として炉体1内を搬送されるワークWを輻射加熱す
るとともに炉体1内空気を加熱する。そのため、熱媒油
配管20(20B)内を流通する熱媒油はワーク搬送方向下
流側に向かうに従って熱エネルギーを奪われ保有熱量は
次第に減少することになる。一方、ワークWは、炉体1
の入口部に入った時点が一番温度が低く,炉体1内を搬
送されるに従って輻射加熱されて温度上昇し必要熱量が
漸次減少する。したがって、炉体1の入口部でワークW
に加える熱量を最大とし、出口部に向かうに従って熱量
を次第に減少させれば、熱量の無駄消費が抑えられ加熱
効率を高めることができることになるが、かかる加熱態
様は上記熱媒油配管20(20B)で実現できる。炉体1内
の熱風温度は、コントローラ40によって設定器41での設
定値に保たれる。
In the first embodiment, when the heat transfer oil generating means 10 is started, the heat transfer oil generated is transferred to the heat transfer oil pipe 20 (20A, 20B, 20C).
Through the furnace body 1. Where the heat transfer oil pipe
The heat energy of the heat transfer oil circulating in the heat transfer section 20B of the heat transfer unit 20B from the upstream side to the downstream side in the work transfer direction radiatively heats the work W transferred in the furnace body 1 with the wall surface of the furnace body 1 as the heat transfer surface. At the same time, the air in the furnace body 1 is heated. Therefore, the heat transfer oil flowing in the heat transfer oil pipe 20 (20B) is deprived of heat energy toward the downstream side in the work transfer direction, and the amount of heat retained gradually decreases. On the other hand, the work W is the furnace body 1.
The temperature is the lowest at the time of entering the inlet of the furnace, and as it is conveyed through the furnace body 1, it is radiatively heated and the temperature rises, and the required amount of heat gradually decreases. Therefore, at the inlet of the furnace body 1, the work W
If the amount of heat added to the maximum is maximized and the amount of heat is gradually reduced toward the outlet, wasteful consumption of the amount of heat can be suppressed and heating efficiency can be increased, but this heating mode is the heating medium oil pipe 20 (20B ) Can be realized. The hot air temperature in the furnace body 1 is kept at the set value by the setter 41 by the controller 40.

また、炉体1の内底部温度は、配管20B−1,20B−2に
よって他の部分より高温に加熱することができる。
Further, the temperature of the inner bottom portion of the furnace body 1 can be heated to a higher temperature than other portions by the pipes 20B-1 and 20B-2.

しかして、この実施例によれば、熱源が熱媒油とされ
ているので、その配管20(20A,20B,20C)が小径小型で
よくレイアウトが適宜に処理できる。
According to this embodiment, however, since the heat source is the heat transfer oil, the pipes 20 (20A, 20B, 20C) can be small in diameter and small in size, and the layout can be appropriately processed.

また、熱媒油配管20(20B)は、炉体1の壁面に直接
的に螺旋状に巻回させる構成であるから、従来の熱交換
ユニット30が必要なく大幅にコスト低減ができ、炉体1
の壁面を伝達面として当該炉体1内を搬送されるワーク
Wの温度上昇に対応して熱量を減少させて加熱できるの
で熱量の無駄消費を抑えて熱効率を飛躍的に向上でき
る。
Further, since the heat transfer oil pipe 20 (20B) is directly wound around the wall surface of the furnace body 1 in a spiral shape, the conventional heat exchange unit 30 is not required and the cost can be significantly reduced. 1
Since the wall surface of the heat transfer surface is used as a transmission surface and the work W conveyed in the furnace body 1 can be heated by reducing the amount of heat, it is possible to suppress wasteful consumption of the amount of heat and dramatically improve thermal efficiency.

また、熱媒油配管20は、本数増大や管径等について各
種態様を選択することができるから、炉体1内の底部を
他の部分に比較して高温に保つこと等を自由に選択でき
る。一方において、炉体1自体をワークWの形態に即応
したものとされているので、ワークWの均一温度加熱が
行え高塗膜品質を得ることができる、とともに熱効率を
一段と高められる。
In addition, since various modes can be selected for the heat transfer oil pipe 20 with respect to the increase in the number of pipes and the pipe diameter, it is possible to freely select to keep the bottom portion of the furnace body 1 at a higher temperature than other portions. . On the other hand, since the furnace body 1 itself is adapted to the shape of the work W, the work W can be heated at a uniform temperature, a high coating quality can be obtained, and the thermal efficiency can be further improved.

特に、熱媒油の持つ熱エネルギーによって炉体内空気
を間接加熱する方式であるから、炉体内空間をクリーン
に保てこの点からも塗膜の高品質を保障できる。
In particular, since it is a method of indirectly heating the air inside the furnace by the heat energy of the heat transfer oil, it is possible to keep the inside space of the furnace clean and ensure the high quality of the coating film from this point as well.

なお、この実施例では、熱媒油配管20(20B)を半円
形とし炉体1の壁面の一部を利用した構成としたが、そ
の形状等は上記開示範囲に限定されない。例えば第6図
の如く半角形としてもよい。さらに、第7図に示す如
く、楕円形のパイプとしてもよい。要は炉体1に直接に
取付ければよいわけである。
In this embodiment, the heating oil pipe 20 (20B) is semicircular and a part of the wall surface of the furnace body 1 is used, but the shape and the like are not limited to the above disclosed range. For example, as shown in FIG. 6, it may be a half-angle. Further, as shown in FIG. 7, an elliptical pipe may be used. The point is that it should be attached directly to the furnace body 1.

(第2実施例) この第2実施例は、第8図に示される。(Second Embodiment) This second embodiment is shown in FIG.

この実施例は上記第1実施例が熱媒油配管20Bの炉体
1の壁面に直接取付ける構成とされていたのに対して、
熱媒油配管20B(202B−1,20B−2)を小さな空間6を介
して炉体壁面にワーク搬送方向に螺旋状に巻回してい
る。5は断熱層である。
In contrast to the first embodiment in which this embodiment is directly attached to the wall surface of the furnace body 1 of the heat transfer oil pipe 20B,
The heat transfer oil pipe 20B (202B-1, 20B-2) is spirally wound around the furnace wall surface through the small space 6 in the work transfer direction. 5 is a heat insulation layer.

しかして、この第2実施例によれば、第1実施例と同
様の作用効果を奏する他、さらに小さな空間6を介して
配設されているから、組立が容易でありかつ運転中は炉
体1と熱媒油配管20Bとの熱伸縮率の吸収が容易である
とともに炉体壁面を通してワークWを一段と均一に輻射
加熱できる。なお、熱媒油配管20Bは、例えば第4図,
第6図,第7図に示す如く形状としてもよく、円管に限
定されない。
Thus, according to the second embodiment, in addition to the same operational effect as the first embodiment, since it is arranged via the smaller space 6, it is easy to assemble and the furnace body is in operation. 1 and the heat transfer oil pipe 20B can easily absorb the thermal expansion / contraction rate, and the work W can be more uniformly radiantly heated through the wall of the furnace body. The heat transfer oil pipe 20B is, for example, as shown in FIG.
The shape may be as shown in FIGS. 6 and 7, and the shape is not limited to a circular tube.

なお、上記第1および第2実施例では、1本の熱媒油
配管20を入口部および出口部間の炉体壁面外側に螺旋状
に巻回した場合について説明したが、複数本の熱媒油配
管(図示省略)をワーク搬送方向に並置されるように、
当該炉体壁面外側の各対応部分に螺旋状に巻回し、各熱
媒油配管に熱媒油をワーク搬送方向上流側から下流側に
向けて流通させることにより炉体1内を加熱する構成と
してもよい。
In addition, in the said 1st and 2nd Example, although the case where one heat carrier oil piping 20 was spirally wound outside the furnace body wall surface between an inlet part and an outlet part was demonstrated, several heat carrier oil pipes were used. Make sure that the oil pipes (not shown) are juxtaposed in the workpiece transfer direction.
A configuration in which the inside of the furnace body 1 is heated by spirally winding the corresponding parts on the outside of the wall surface of the furnace body and circulating the heat carrier oil in each heat carrier oil pipe from the upstream side to the downstream side in the work transfer direction. Good.

[考案の効果] 請求項1項記載の考案は、ワークを収容する炉体と熱
媒油発生手段とこの熱媒油発生手段からの熱媒油を炉体
に導く熱媒油配管とを含み形成され、炉体を鋼板から形
成するとともに熱媒油配管を炉体壁面にワーク搬送方向
に螺旋状に巻回し、当該配管内をワーク搬送方向上流側
から下流側へ向けて流通する熱媒油の持つ熱量で炉体壁
面を通して炉体内を直接的に加熱する構成であるから、
熱媒油の熱量の無駄消費を抑えて熱効率が高くかつ間接
加熱方式と同様に高品質塗膜を達成できる、とともに炉
体壁面の部位ごとに熱媒油配管を粗密に選択取付けでき
るからワークの特定部分の温度を他部に比較して高・低
温度とでき、しかも炉体自体をワークの形態に合せた相
似形とすることもできるから、均一的加熱乾燥処理もで
き適応性の広いものとなる。
[Advantages of the Invention] The invention according to claim 1 includes a furnace for accommodating a work, a heat transfer oil generating means, and a heat transfer oil piping for guiding the heat transfer oil from the heat transfer oil generating means to the furnace. The heat transfer oil is formed and the heat transfer oil pipe is spirally wound around the furnace wall surface in the work transfer direction while forming the furnace body from a steel plate, and the heat transfer oil flows through the pipe from the upstream side to the downstream side in the work transfer direction. Because it is a structure that directly heats the furnace body through the wall surface of the furnace body with the amount of heat of
The waste of the heat of the heat transfer oil is suppressed, the heat efficiency is high, and a high quality coating can be achieved as with the indirect heating method, and the heat transfer oil pipes can be selected and installed densely and densely for each part of the furnace body wall surface. The temperature of a specific part can be higher or lower than that of other parts, and the furnace itself can be made into a similar shape according to the shape of the work, so uniform heating and drying can be performed and it has a wide range of adaptability. Becomes

請求項第2項記載の考案では、請求項第1項記載の考
案と同様な作用効果を奏する他、さらに熱媒油配管を炉
体壁面に空間を介してワーク搬送方向に螺旋状に巻回し
ているので、組立が一層容易で低コストになる。また、
炉体壁面を通してワークを一段と均一に輻射加熱できか
つ熱媒油配管との熱伸縮を吸収し円滑運用できる。
According to the second aspect of the invention, in addition to the same effect as the first aspect of the invention, the heat transfer oil pipe is further wound around the wall surface of the furnace body in a spiral direction in the work transfer direction through the space. Therefore, the assembly is easier and the cost is lower. Also,
The work can be more uniformly radiantly heated through the wall of the furnace body, and the heat expansion and contraction with the heat transfer oil pipe can be absorbed for smooth operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の第1実施例を模式的に現した外観斜視
図、第2図は同じく縦断面図、第3図は同じく熱媒油配
管の形状を説明するための図、第4図は同じく熱媒油配
管の横断面図、第5図は同じく熱媒油配管の配設密度を
変えた場合を説明するための図および第6図、第7図は
熱媒油配管の変形例を示す図であって、第6図は半角
型、第7図は楕円形型を示すものである。第8図は第2
実施例を示す縦断面図、第9図〜第11図はそれぞれ従来
の加熱方式を示す図であり、第9図は直接加熱方式、第
10図は間接加熱方式および第11図は熱媒油加熱方式を示
すものである。 1……炉体、6……空間、10……熱媒油発生手段、20
(20A,20B,20C)……熱媒油配管、40……コントロー
ラ、50……搬送手段。
FIG. 1 is an external perspective view schematically showing a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of the same, and FIG. 3 is a view for explaining the shape of a heat transfer oil pipe, and FIG. The figure is also a transverse cross-sectional view of the heat transfer oil pipe, FIG. 5 is a view for explaining the case where the disposition density of the heat transfer oil pipe is changed, and FIGS. 6 and 7 are deformations of the heat transfer oil pipe. It is a figure which shows an example, FIG. 6 shows a half-angle type, and FIG. 7 shows an elliptical type. Figure 8 is second
FIG. 9 is a longitudinal sectional view showing an embodiment, and FIGS. 9 to 11 are views showing a conventional heating system, respectively. FIG.
Figure 10 shows the indirect heating method and Figure 11 shows the heating oil heating method. 1 ... Furnace body, 6 ... Space, 10 ... Heat carrier oil generating means, 20
(20A, 20B, 20C) ... Heat medium oil piping, 40 ... Controller, 50 ... Transport means.

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】炉体(1)と、ワーク(W)を炉体(1)
内をその入口部から出口部へ向けて搬送可能な搬送手段
(50)と、熱媒油発生手段(10)と、この熱媒油発生手
段(10)からの熱媒油を炉体(1)に導く熱媒油配管
(20)とを含み形成され、 前記炉体(1)を鋼板から形成するとともに、前記熱媒
油配管(20)を前記炉体壁面にワーク搬送方向に螺旋状
に巻回し、当該熱媒油配管(20)内をワーク搬送方向上
流側から下流側に向けて流通する熱媒油の持つ熱量で炉
体壁面を通して炉体(1)内を直接的に加熱する構成と
したことを特徴とする塗装用乾燥炉。
1. A furnace body (1) and a work (W)
A conveying means (50) capable of conveying the inside from the inlet to the outlet, a heat transfer oil generating means (10), and the heat transfer oil from the heat transfer oil generating means (10) to the furnace body (1 And a heat transfer oil pipe (20) for guiding the heat transfer oil to the furnace body (1) is formed from a steel plate, and the heat transfer oil pipe (20) is spirally formed on the wall surface of the furnace body in the work transfer direction. A configuration in which the inside of the furnace body (1) is directly heated through the furnace wall surface with the amount of heat of the heat carrier oil that is wound and flows through the heat carrier oil pipe (20) from the upstream side to the downstream side in the work transfer direction. The drying oven for painting is characterized by
【請求項2】炉体(1)と、ワーク(W)を炉体(1)
内をその入口部から出口部へ向けて搬送可能な搬送手段
(50)と、熱媒油発生手段(10)と、この熱媒油発生手
段(10)からの熱媒油を炉体(1)に導く熱媒油配管
(20)とを含み形成され、 前記炉体(1)を鋼板から形成するとともに、前記熱媒
油配管(20)を前記炉体壁面に空間(6)を介してワー
ク搬送方向に螺旋状に巻回し、当該熱媒油配管(20)内
をワーク搬送方向上流側から下流側に向けて流通する熱
媒油の持つ熱量で炉体壁面を通して炉体(1)内を加熱
する構成としたことを特徴とする塗装用乾燥炉。
2. A furnace body (1) and a workpiece (W) are connected to the furnace body (1).
A conveying means (50) capable of conveying the inside from the inlet to the outlet, a heat transfer oil generating means (10), and the heat transfer oil from the heat transfer oil generating means (10) to the furnace body (1 And a heat transfer oil pipe (20) leading to the furnace body (1) formed of a steel plate, and the heat transfer oil pipe (20) is formed on the furnace wall surface through a space (6). Inside the furnace body (1) through the furnace wall surface with the amount of heat of the heat transfer oil that is spirally wound in the work transfer direction and circulates in the heat transfer oil pipe (20) from the upstream side to the downstream side in the work transfer direction. A drying oven for painting, characterized in that it is configured to heat.
JP1989145628U 1989-12-18 1989-12-18 Drying oven for painting Expired - Lifetime JP2501427Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989145628U JP2501427Y2 (en) 1989-12-18 1989-12-18 Drying oven for painting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989145628U JP2501427Y2 (en) 1989-12-18 1989-12-18 Drying oven for painting

Publications (2)

Publication Number Publication Date
JPH0383674U JPH0383674U (en) 1991-08-26
JP2501427Y2 true JP2501427Y2 (en) 1996-06-19

Family

ID=31692255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989145628U Expired - Lifetime JP2501427Y2 (en) 1989-12-18 1989-12-18 Drying oven for painting

Country Status (1)

Country Link
JP (1) JP2501427Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131368A (en) * 2007-11-29 2009-06-18 Tsann Kuen (China) Enterprise Co Ltd Roaster and its griddle plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170175U (en) * 1986-04-21 1987-10-28

Also Published As

Publication number Publication date
JPH0383674U (en) 1991-08-26

Similar Documents

Publication Publication Date Title
CN201589410U (en) Convection quick heating type electric heater
US3880230A (en) Heat transfer system
JP2501427Y2 (en) Drying oven for painting
CN1071853A (en) The receiver of decontaminating liquid and heat conduction assembly and heat-conducting method
JPH07180913A (en) Hot-water boiler for heating
KR101670334B1 (en) Flat stone type residential heating system with air circulation
EP0909928A1 (en) Heat recovery unit
CN110671953B (en) Heat dissipation cooling system and heat dissipation cooling method for high-temperature heat source equipment
TW357248B (en) Air-cooling absorptive air-conditioner
CN210000051U (en) novel cold and hot air conditioner for vehicle and assembly thereof
CN208154700U (en) Electric heat storage cooling system
GB2060859A (en) Apparatus for collecting the heat discharged through an exhaust pipe of an engine
FI72779C (en) ANORDNING VID INNERPANEL FOER ELIMINERING AV EN KALLSTRAOLANDE VAEGG-, TAK- ELLER GOLVYTA.
RU2040739C1 (en) Combination water and air heater
JPH0616031A (en) Heat pump type air conditioning system
JPH07103576A (en) Water heating device
KR0119581Y1 (en) Heater for a room
JPH0979661A (en) Solid heat storage device and solid heat storage type hot water generating equipment
US1176957A (en) Varnish-drying oven.
JPH07243707A (en) Hot blast supplying apparatus
KR200273636Y1 (en) A boiler apparature using the thermoelement
JP3734950B2 (en) Heat utilization system using hydrogen storage alloy
CA1129404A (en) Heating converter
JPS629735B2 (en)
JPH0119005Y2 (en)