JP2500724Y2 - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator

Info

Publication number
JP2500724Y2
JP2500724Y2 JP40020390U JP40020390U JP2500724Y2 JP 2500724 Y2 JP2500724 Y2 JP 2500724Y2 JP 40020390 U JP40020390 U JP 40020390U JP 40020390 U JP40020390 U JP 40020390U JP 2500724 Y2 JP2500724 Y2 JP 2500724Y2
Authority
JP
Japan
Prior art keywords
refrigerator
stage cold
pulse tube
reciprocating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP40020390U
Other languages
Japanese (ja)
Other versions
JPH0490861U (en
Inventor
勝秀 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP40020390U priority Critical patent/JP2500724Y2/en
Publication of JPH0490861U publication Critical patent/JPH0490861U/ja
Application granted granted Critical
Publication of JP2500724Y2 publication Critical patent/JP2500724Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、極低温(例えば温度1
00K以下)機器の冷却等に使用される冷凍機に関す
る。
BACKGROUND OF THE INVENTION The present invention is applicable to extremely low temperatures (for example, temperature 1
00K or less) The present invention relates to a refrigerator used for cooling equipment.

【0002】[0002]

【従来の技術】図2は、本出願人が実用新案登録出願し
た実願昭62−156088号(実開平2−60158
号)に係るスターリングサイクル,ギフォード・マクマ
ホンサイクル,ソルベイサイクル等のピストンまたはデ
イスプレーサを用いた往復動式冷凍機とパルス管冷凍機
から構成される極低温冷凍機の系統図である。
2. Description of the Related Art FIG. 2 shows a utility model registration application filed by the applicant of the present application, which is Japanese Utility Model Application No. 62-156088 (Actual Utility Model No.
Is a system diagram of a cryogenic refrigerator including a reciprocating refrigerator and a pulse tube refrigerator using a piston or a displacer such as a Stirling cycle, a Gifford-McMahon cycle, a Solvay cycle, etc.

【0003】図2において、1は往復動式冷凍機,2は
パルス管冷凍機,3は往復動式冷凍機1に高圧ヘリウム
ガスを供給するガス圧縮機,4は往復動式冷凍機1とガ
ス圧縮機3に接続された高圧ガス配管,5は往復動式冷
凍機1で断熱膨張したヘリウムガスがガス圧縮機3に戻
る低圧ガス配管,6は往復動式冷凍機1に接続され同往
復動式冷凍機1が寒冷を発生する第一段寒冷発生部,7
は第一段寒冷発生部6に熱的に接続された第二段寒冷発
生部である。第一段寒冷発生部6は最低到達温度として
約40K程度、第二段寒冷発生部7は最低到達温度とし
て約10K程度である。
In FIG. 2, 1 is a reciprocating refrigerator, 2 is a pulse tube refrigerator, 3 is a gas compressor for supplying high-pressure helium gas to the reciprocating refrigerator 1, and 4 is a reciprocating refrigerator 1. The high-pressure gas pipe connected to the gas compressor 3, 5 is a low-pressure gas pipe in which the helium gas adiabatically expanded in the reciprocating refrigerator 1 returns to the gas compressor 3, 6 is connected to the reciprocating refrigerator 1, and reciprocates the same. The first-stage cold generation part where the dynamic refrigerator 1 generates cold, 7
Is a second-stage cold generation unit thermally connected to the first-stage cold generation unit 6. The first stage cold generation part 6 has a minimum ultimate temperature of about 40K, and the second stage cold generation part 7 has a minimum ultimate temperature of about 10K.

【0004】31はパルス管冷凍機2に高圧ヘリウムガ
スを供給するガス圧縮機,32,33はそれぞれパルス
管冷凍機2とガス圧縮機31を接続する高圧ガス配管と
低圧ガス配管,34は高圧ガスを冷凍部に供給したり低
圧ガスを冷凍部から排気してガス圧縮機31に戻すため
の切り替えを行なうロータリバルブであり、前記高圧ガ
ス配管32と低圧ガス配管に接続されている。35は前
記ロータリバルブ34に接続され、高圧ヘリウムガスを
冷凍部に送ったり、低圧ヘリウムガスを冷凍部から戻す
ためのガス配管である。
Reference numeral 31 is a gas compressor for supplying high pressure helium gas to the pulse tube refrigerator 2, 32 and 33 are high pressure gas pipes and low pressure gas pipes for connecting the pulse tube refrigerator 2 and the gas compressor 31, respectively, and 34 is high pressure. It is a rotary valve that performs switching for supplying gas to the refrigeration unit or exhausting low pressure gas from the refrigeration unit and returning it to the gas compressor 31, and is connected to the high pressure gas pipe 32 and the low pressure gas pipe. Reference numeral 35 is a gas pipe connected to the rotary valve 34 for sending high-pressure helium gas to the freezing section and returning low-pressure helium gas from the freezing section.

【0005】このパルス管冷凍機2において、高圧ガス
と低圧ガスの往復は、ロータリバルブ34で周期的に1
00回/分程度で行なわれる。36はその一端が前記ガ
ス配管35に接続された蓄冷器で蓄冷材として銅の金網
(100メッシュ〜400メッシュ程度)または直径1
mm以下の鉛球等が充填されている。37は蓄冷器36の
他端に接続されたガス配管である。38は前記ガス配管
37に接続された寒冷発生部で被冷却物を取り付けて冷
却する。39は寒冷発生部38に取付けられたセラミッ
クス等多孔質の焼結金属部であって、ヘリウムガスの整
流作用と排出される低温・低圧のヘリウムガスの寒冷を
充分回収するための熱交換作用を行なう。40はステン
レス鋼等熱伝導の良くない材料で作られたパルス管で、
焼結金属部39に連設されており、この管の内部で高圧
ヘリウムガスが上部へ移動し、次に低圧となった時ヘリ
ウムガスは下部へ移動する。このように、ヘリウムガス
は、パルス管40内で間欠的な上下の往復運動を繰り返
す。41はパルス管4の焼結金属部29と反対側の端部
に取付けられた放熱部で、銅等熱伝導の良い材料で作ら
れており、第二段寒冷発生部7と熱的に接続されてお
り、放熱部41を冷却する構造となっている。
In this pulse tube refrigerator 2, the rotary valve 34 periodically reciprocates the high pressure gas and the low pressure gas back and forth.
It is performed about 00 times / minute. 36 is a regenerator whose one end is connected to the gas pipe 35, and as a regenerator material is a copper wire mesh (about 100 mesh to 400 mesh) or a diameter of 1
It is filled with lead balls of mm or less. Reference numeral 37 is a gas pipe connected to the other end of the regenerator 36. Numeral 38 is a cold generation part connected to the gas pipe 37 to attach and cool an object to be cooled. Reference numeral 39 denotes a porous sintered metal part such as ceramics attached to the cold generation part 38, which has a rectifying function of the helium gas and a heat exchanging function for sufficiently recovering the cold of the discharged low temperature and low pressure helium gas. To do. 40 is a pulse tube made of a material with poor heat conduction such as stainless steel,
It is connected to the sintered metal portion 39, and the high-pressure helium gas moves to the upper part inside this tube, and when the pressure becomes next low, the helium gas moves to the lower part. In this way, the helium gas repeats intermittent up-and-down reciprocating motion within the pulse tube 40. Reference numeral 41 denotes a heat radiating portion attached to the end of the pulse tube 4 opposite to the sintered metal portion 29, which is made of a material having good thermal conductivity such as copper and is thermally connected to the second stage cold generating portion 7. The heat dissipation part 41 is cooled.

【0006】20は常温部から低温部への輻射熱の侵入
を防止するための熱シールド板で、同熱シールド板20
は箱状に形成され、その内部に第一段と第二段の寒冷発
生部6,7,ガス配管37,寒冷発生部38,焼結金属
部39,パルス管40,及び放熱部41が収容されてお
り、第一段寒冷発生部6と熱的に接続されて冷却され、
侵入する輻射熱の熱負荷を第一段寒冷発生部6で吸収す
る。また、高温部が常温(300K程度)、低温部が極
低温(10K以下)になる蓄冷器36は熱シールド板2
0内に挿入されており、常温部からの熱伝導による侵入
熱の大部分を熱シールド板20を介して、第一段寒冷発
生部6で吸収する構造となっている。21は真空断熱の
ための熱シールド板20等を取囲む真空容器、22は断
熱のため真空容器21及び熱シールド板20内に形成さ
れた真空部である。
Reference numeral 20 is a heat shield plate for preventing radiant heat from entering from a room temperature part to a low temperature part.
Is formed in a box shape, and the cold generating parts 6 and 7 of the first and second stages, the gas pipe 37, the cold generating part 38, the sintered metal part 39, the pulse tube 40, and the heat radiating part 41 are housed therein. And is thermally connected to the first-stage cold generation unit 6 to be cooled,
The heat load of the radiant heat that enters is absorbed by the first-stage cold generation unit 6. In addition, the regenerator 36 in which the high temperature part has room temperature (about 300K) and the low temperature part has extremely low temperature (10K or less) is the heat shield plate 2
It has a structure in which most of the invasion heat due to heat conduction from the room temperature part is absorbed by the first stage cold generation part 6 via the heat shield plate 20. Reference numeral 21 is a vacuum container surrounding the heat shield plate 20 for vacuum heat insulation, and 22 is a vacuum portion formed in the vacuum container 21 and the heat shield plate 20 for heat insulation.

【0007】以上のパルス管冷凍機2において、ガス圧
縮機31で高圧となったヘリウムガスは高圧ガス配管3
2,ロータリバルブ34,ガス配管35および蓄冷器3
6を通って温度10K前後に冷却された後、ガス配管3
7,焼結金属部39を通ってパルス管40に入る。パル
ス管内部のガス圧縮機は放熱部41を介して第二段寒冷
発生部7で吸収される。次にロータリバルブ34が低圧
側に切り替わると、パルス管40内部のガスは断熱膨張
して寒冷発生部38の温度は10K以下に低下して寒冷
を発生する。低圧となったヘリウムガスはガス配管37
を通り、蓄冷器36で寒冷を回収されて常温となる。常
温となった低圧ヘリウムガスはガス配管35,ロータリ
バルブ34,低圧ガス配管33を通ってガス圧縮機31
へ戻る。
In the pulse tube refrigerator 2 described above, the high pressure helium gas in the gas compressor 31 causes the high pressure gas pipe 3
2, rotary valve 34, gas pipe 35 and regenerator 3
After being cooled to around 10K through 6
7. Enter the pulse tube 40 through the sintered metal portion 39. The gas compressor inside the pulse tube is absorbed in the second stage cold generation part 7 via the heat dissipation part 41. Next, when the rotary valve 34 is switched to the low pressure side, the gas inside the pulse tube 40 is adiabatically expanded and the temperature of the cold generation part 38 is lowered to 10 K or less to generate cold. The low pressure helium gas is gas pipe 37
The cold is recovered by the regenerator 36 to reach normal temperature. The low-pressure helium gas at room temperature passes through the gas pipe 35, the rotary valve 34, and the low-pressure gas pipe 33, and then the gas compressor 31.
Return to.

【0008】以上の冷凍サイクルを1分間に約100回
程度行なうことにより、間欠的に温度10K以下の寒冷
を発生することができる。
By performing the above refrigeration cycle about 100 times per minute, it is possible to intermittently generate a cold temperature of 10 K or less.

【0009】[0009]

【考案が解決しようとする課題】図2に示す前記の冷凍
機において、往復運動式冷凍機1は第一段寒冷発生部
6,第二段寒冷発生部7に寒冷を発生するためピストン
またはデイスプレーサが1分間に120回程度往復動し
ており、従って機械的振動が第一段寒冷発生部6,第二
段寒冷発生部7に発生している。
In the refrigerating machine shown in FIG. 2, the reciprocating type refrigerating machine 1 generates a cold in the first stage cold generating part 6 and the second stage cold generating part 7 so as to generate a piston or a day. The sprayer reciprocates about 120 times per minute, and thus mechanical vibration is generated in the first stage cold generation part 6 and the second stage cold generation part 7.

【0010】その結果、第一段寒冷発生部6の振動が熱
シールド板20を介して蓄冷器36へ、第二段寒冷発生
部7の振動は放熱部41へ伝わるため、パルス管冷凍機
2に振動が発生し、また、寒冷発生部38に取り付けら
れた被冷却物に振動が発生する等の問題点があった。
As a result, the vibration of the first stage cold generating part 6 is transmitted to the regenerator 36 via the heat shield plate 20 and the vibration of the second stage cold generating part 7 is transmitted to the heat radiating part 41, so that the pulse tube refrigerator 2 However, there is a problem in that the object to be cooled attached to the cold generating portion 38 also vibrates.

【0011】本考案は、以上の問題点を解決することが
できる極低温冷凍機を提供しようとするものである。
The present invention is intended to provide a cryogenic refrigerator capable of solving the above problems.

【0012】[0012]

【課題を解決するための手段】本考案は、スターリング
サイクル,ギフォード・マクマホンサイクル,ソルベイ
サイクル等のピストン又はデイスプレーサを用いた往復
動式冷凍機とパルス管冷凍機を備え、前記往復動式冷凍
機の第一段寒冷発生部が熱シールド板に熱的に接続され
ると共に同第一段寒冷発生部が熱シールド板内方に設け
られた第二段寒冷発生部に熱的に接続され、前記パルス
管冷凍機の放熱部が前記第二段寒冷発生部に熱的に接続
された極低温冷凍機において、前記往復動式冷凍機の第
一段寒冷発生部と前記熱シールド板を伸縮継手を介して
接続し、前記往復動式冷凍機の第二段寒冷発生部と前記
パルス管冷凍機の放熱部を低沸点の熱伝導率の大きいガ
スを封入した伸縮継手を介して接続した。
The present invention is provided with a reciprocating refrigerator and a pulse tube refrigerator using a piston or a displacer such as a Stirling cycle, a Gifford-McMahon cycle, a Solvay cycle, and the reciprocating type. The first-stage cold generator of the refrigerator is thermally connected to the heat shield plate, and the first-stage cold generator is thermally connected to the second-stage cold generator provided inside the heat shield plate. In a cryogenic refrigerator in which the heat radiation part of the pulse tube refrigerator is thermally connected to the second stage cold generation part, the first stage cold generation part of the reciprocating refrigerator and the heat shield plate are expanded and contracted. The reciprocating refrigerator was connected to the second stage cold generator and the heat dissipation portion of the pulse tube refrigerator via an expansion joint enclosing a gas having a low boiling point and a high thermal conductivity.

【0013】[0013]

【作用】本考案の極低温冷凍機は、往復動式冷凍機の第
一段寒冷発生部と第二段寒冷発生部、及び前記第二段寒
冷発生部とパルス管冷凍機の放熱部とが、それぞれ伸縮
継手で接続されているために、往復動式冷凍機にて発生
する機械的振動がパルス管冷凍機側に伝達されるのが低
減される。また、第二段寒冷発生部とパルス管冷凍機の
放熱部を接続する伸縮継手内に沸点が低く、かつ、熱伝
導率の大きいガスを封入しているので、熱的接続も損わ
れることがない。
In the cryogenic refrigerator of the present invention, the reciprocating refrigerator has a first-stage cold generating part and a second-stage cold generating part, and a second-stage cold generating part and a heat dissipation part of the pulse tube refrigerator. Since the expansion joints are connected to each other, the mechanical vibration generated in the reciprocating refrigerator is reduced from being transmitted to the pulse tube refrigerator. Also, since the expansion joint that connects the second-stage cold generator and the heat radiator of the pulse tube refrigerator contains a gas with a low boiling point and high thermal conductivity, the thermal connection may be impaired. Absent.

【0014】[0014]

【実施例】本考案の一実施例を、図1によって説明す
る。本実施例は、図2に示す極低温冷凍機を以下説明す
るように改良したものであって、図1において、図2に
示される従来の極低温冷凍機におけると同一の部分は同
一の符号を付し、その説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. This embodiment is an improvement of the cryogenic refrigerator shown in FIG. 2 as described below. In FIG. 1, the same parts as those in the conventional cryogenic refrigerator shown in FIG. Is attached and the description thereof is omitted.

【0015】ピストン又はデイスプレーサを用いた往復
動式冷凍機1の第一段寒冷発生部6は、ベローズ8を介
して熱シールド板20と熱的に接続されて、熱シールド
板20を冷却する構造となっている。また、前記往復動
式冷凍機1の第二段寒冷発生部7はベローズ9を介して
パルス管冷凍機2の放熱部41と熱的に接続されて、放
熱部41を冷却する構造となっており、同ベローズ9に
は沸点が低く、かつ、熱伝導率が大きいヘリウムガス1
0が封入されている。
The first stage cold generator 6 of the reciprocating refrigerator 1 using a piston or a displacer is thermally connected to the heat shield plate 20 via the bellows 8 to cool the heat shield plate 20. It has a structure that Further, the second stage cold generation part 7 of the reciprocating refrigerator 1 is thermally connected to the heat radiation part 41 of the pulse tube refrigerator 2 via the bellows 9 to cool the heat radiation part 41. And the bellows 9 has a low boiling point and a large thermal conductivity.
0 is enclosed.

【0016】以上のように構成された本実施例では、往
復動式冷凍機1の第一段寒冷発生部6と熱シールド板2
0とがベローズ8を介して接続され、また、往復動式冷
凍機1の第二段寒冷発生部7とパルス管冷凍機2の放熱
部41はベローズ9を介して接続されているために、往
復動式冷凍機1の振動がパルス管冷凍機側の蓄冷器3
6,放熱部41等へ伝達されることが低減される。これ
によって、パルス管冷凍機2及びその寒冷発生部38に
取付けられた被冷却物へ往復動式冷凍機1の振動が発生
することを防ぐことができる。
In the present embodiment configured as described above, the first stage cold generator 6 and the heat shield plate 2 of the reciprocating refrigerator 1.
0 is connected via the bellows 8, and the second stage cold generation part 7 of the reciprocating refrigerator 1 and the heat dissipation part 41 of the pulse tube refrigerator 2 are connected via the bellows 9, The vibration of the reciprocating refrigerator 1 is due to the regenerator 3 on the pulse tube refrigerator side.
6, transmission to the heat dissipation part 41 etc. is reduced. As a result, it is possible to prevent vibration of the reciprocating refrigerator 1 from occurring in the object to be cooled attached to the pulse tube refrigerator 2 and the cold generator 38 thereof.

【0017】また、前記の第二段寒冷発生部7と放熱部
41を接続するベローズ9には、沸点が低く極低温でも
ガス状を保持し、かつ熱伝導率が大きいヘリウムガス1
0が封入されているために、第二段寒冷発生部7と放熱
部41との間の熱的接続が良好となり、パルス管冷凍機
2の冷凍能力が損われることがない。
Further, the bellows 9 connecting the second stage cold generation part 7 and the heat dissipation part 41 has a helium gas 1 which has a low boiling point, maintains a gaseous state even at an extremely low temperature, and has a large thermal conductivity.
Since 0 is enclosed, the thermal connection between the second-stage cold generation part 7 and the heat dissipation part 41 becomes good, and the refrigerating capacity of the pulse tube refrigerator 2 is not impaired.

【0018】[0018]

【考案の効果】以上説明したように、本考案では、往復
動式冷凍機とパルス管冷凍機及び往復動式冷凍機と熱シ
ールド板の間に熱的接続が行なわれる部分に伸縮継手を
配置しているために、往復動式冷凍機にて発生している
機械的振動がパルス管冷凍機側へ伝達されるのを低減す
ることができる。従って、パルス管冷凍機の寒冷発生部
に取り付けられる被冷却物の振動を低減することができ
る。
As described above, according to the present invention, the expansion joint is arranged in the portion where the thermal connection is made between the reciprocating refrigerator and the pulse tube refrigerator, and the reciprocating refrigerator and the heat shield plate. Therefore, it is possible to reduce the transmission of mechanical vibration generated in the reciprocating refrigerator to the pulse tube refrigerator side. Therefore, it is possible to reduce the vibration of the object to be cooled attached to the cold generation part of the pulse tube refrigerator.

【0019】また、往復動式冷凍機の第二段寒冷発生部
とパルス管冷凍機の放熱部の間に配置された伸縮継手に
沸点が低く熱伝導率の大きなガスを封入しているので、
パルス管冷凍機の冷凍能力も損われることを防止するこ
とができる。
Further, since a gas having a low boiling point and a high thermal conductivity is sealed in the expansion joint arranged between the second stage cold generator of the reciprocating refrigerator and the heat radiating portion of the pulse tube refrigerator,
It is possible to prevent the refrigerating capacity of the pulse tube refrigerator from being impaired.

【0020】即ち、本考案によって、被冷却物の振動が
少なく、かつ、従来の冷凍機と同等の冷凍能力を保有す
る極低温冷凍機を提供することができる。
That is, according to the present invention, it is possible to provide a cryogenic refrigerator having less vibration of the object to be cooled and having the same refrigerating capacity as the conventional refrigerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】従来の極低温冷凍機の系統図である。FIG. 2 is a system diagram of a conventional cryogenic refrigerator.

【符号の説明】[Explanation of symbols]

1 往復動式冷凍機 2 パルス管冷凍機 6 第一段寒冷発生部 7 第二段寒冷発生部 8,9 ベローズ 10 ヘリウムガス 20 熱シールド板 36 蓄冷器 38 寒冷発生部 40 パルス管 41 放熱部 1 Reciprocating refrigerator 2 Pulse tube refrigerator 6 First stage cold generating part 7 Second stage cold generating part 8,9 Bellows 10 Helium gas 20 Heat shield plate 36 Regenerator 38 Cold generating part 40 Pulse tube 41 Radiating part

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】 ピストン又はデイスプレーサを用いた往
復動式冷凍機とパルス管冷凍機を備え、前記往復動式冷
凍機の第一段寒冷発生部が熱シールド板に熱的に接続さ
れると共に同第一段寒冷発生部が熱シールド板内の第二
段寒冷発生部に熱的に接続され、前記パルス管冷凍機の
放熱部が前記第二段寒冷発生部に熱的に接続された極低
温冷凍機において、前記往復動式冷凍機の第一段寒冷発
生部と前記熱シールド板を伸縮継手を介して接続し、前
記往復動式冷凍機の第二段寒冷発生部と前記パルス管冷
凍機の放熱部を低沸点の熱伝導率の大きいガスを封入し
た伸縮継手を介して接続したことを特徴とする極低温冷
凍機。
1. A reciprocating refrigerator using a piston or a displacer and a pulse tube refrigerator are provided, and a first stage cold generator of the reciprocating refrigerator is thermally connected to a heat shield plate. Along with the first-stage cold generating part is thermally connected to the second-stage cold generating part in the heat shield plate, the heat dissipation part of the pulse tube refrigerator is thermally connected to the second-stage cold generating part. In a cryogenic refrigerator, the first stage cold generator of the reciprocating refrigerator and the heat shield plate are connected via an expansion joint, and the second stage cold generator of the reciprocating refrigerator and the pulse tube. A cryogenic refrigerator characterized in that the heat radiating portion of the refrigerator is connected via an expansion joint enclosing a gas having a low boiling point and a large thermal conductivity.
JP40020390U 1990-12-07 1990-12-07 Cryogenic refrigerator Expired - Lifetime JP2500724Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40020390U JP2500724Y2 (en) 1990-12-07 1990-12-07 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40020390U JP2500724Y2 (en) 1990-12-07 1990-12-07 Cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH0490861U JPH0490861U (en) 1992-08-07
JP2500724Y2 true JP2500724Y2 (en) 1996-06-12

Family

ID=31878483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40020390U Expired - Lifetime JP2500724Y2 (en) 1990-12-07 1990-12-07 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JP2500724Y2 (en)

Also Published As

Publication number Publication date
JPH0490861U (en) 1992-08-07

Similar Documents

Publication Publication Date Title
US6644038B1 (en) Multistage pulse tube refrigeration system for high temperature super conductivity
JP3728833B2 (en) Pulse tube refrigerator
KR20030009451A (en) Stirling cycle cryocooler with optimized cold end design
JP2004293891A (en) Pulse pipe refrigerating machine
JPS61256158A (en) Refrigeration system
JP2500724Y2 (en) Cryogenic refrigerator
KR100557229B1 (en) Pulse tube cryocooler
JP2836175B2 (en) refrigerator
JP2609327B2 (en) refrigerator
JPS63302259A (en) Cryogenic generator
JP3618886B2 (en) Pulse tube refrigerator
JPH0636452Y2 (en) Cryogenic refrigerator
JPH0634214A (en) Pulse tube refrigerator
US5101635A (en) Refrigeration system
JPH0316592B2 (en)
JP2004069268A (en) Pulse tube freezer
JP2834897B2 (en) Refrigeration equipment
JP2869207B2 (en) Stirling refrigerator
JP2941109B2 (en) Pulse tube refrigerator
JP2942045B2 (en) Pulse tube refrigerator
KR100867783B1 (en) A means fixing plate spring for fixing displacer of cooler and cooler including the same
JPH0660769B2 (en) How to efficiently absorb heat energy at low temperatures
JP2893210B2 (en) Cryostat for high temperature superconducting magnetic shield
KR100597127B1 (en) Pulse tube cryocooler
JPH03286970A (en) Cooling system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130