JP2024520576A - Polylactide resin composition having excellent crystallization half-life and method for producing same - Google Patents

Polylactide resin composition having excellent crystallization half-life and method for producing same Download PDF

Info

Publication number
JP2024520576A
JP2024520576A JP2023573656A JP2023573656A JP2024520576A JP 2024520576 A JP2024520576 A JP 2024520576A JP 2023573656 A JP2023573656 A JP 2023573656A JP 2023573656 A JP2023573656 A JP 2023573656A JP 2024520576 A JP2024520576 A JP 2024520576A
Authority
JP
Japan
Prior art keywords
polylactide resin
resin composition
nucleating agent
life
polylactide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023573656A
Other languages
Japanese (ja)
Inventor
ジョン・フン・チョ
ジョンキュ・イ
ユジン・アン
ヨンジ・チェ
ソン・ジュン・オ
ワン・キュ・オ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2024520576A publication Critical patent/JP2024520576A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本発明は、特定の核剤を組み合わせて使用するポリラクチド樹脂組成物に関し、結晶化半減期および結晶化度に優れるため、加工性に優れると共に、本発明によるポリラクチド樹脂固有の特性を維持することができる。The present invention relates to a polylactide resin composition using a specific nucleating agent in combination, which has excellent crystallization half-life and crystallinity, and therefore has excellent processability while maintaining the properties inherent to the polylactide resin according to the present invention.

Description

関連出願(ら)との相互引用
本出願は、2022年3月22日付韓国特許出願第10-2022-0035553号に基づいた優先権の利益を主張し、当該韓国特許出願の文献に開示された全ての内容は本明細書の一部として含まれる。
Cross-Citation with Related Application(s) This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0035553 dated March 22, 2022, and all contents disclosed in the documents of said Korean patent application are incorporated herein by reference.

本発明は、結晶化半減期に優れたポリラクチド樹脂組成物およびその製造方法に関する。 The present invention relates to a polylactide resin composition having an excellent crystallization half-life and a method for producing the same.

ポリラクチド(または、ポリ乳酸;PLA)樹脂は、バイオ原料をベースとして製造されるものであり、製造過程で地球温暖化ガスである二酸化炭素の排出が少なく、また特定の温度と堆肥化設備により分解される特徴を有するエコ素材である。また、最近は、廃プラスチックの使用および炭素排出規制に対する対応案として既存の原油ベースの樹脂を代替できる素材の中の一つとして注目されている。 Polylactide (or polylactic acid; PLA) resin is manufactured from bio-based raw materials, and is an eco-friendly material that emits little carbon dioxide, a greenhouse gas, during the manufacturing process and decomposes at specific temperatures in composting equipment. Recently, it has also been attracting attention as one of the materials that can replace existing crude oil-based resins as a response to the use of waste plastics and carbon emission regulations.

また、ポリラクチド樹脂は、他の生分解性高分子に比べて安価であり、高い引張強度とモジュラス特性を有しているという長所がある。 Polylactide resin also has the advantage of being cheaper than other biodegradable polymers and having high tensile strength and modulus properties.

しかし、ポリラクチド樹脂は、リジッドな(rigid)高分子主鎖が短い単位で繰り返され、遅い連鎖(chain)移動性により結晶化速度が遅いため成形サイクルが長く、そのために生産性が落ちるという問題点がある。したがって、このような問題点を改善するために、核剤のような物質を導入して生産性と耐熱性を改善させるための研究が多く行われている。 However, polylactide resin has a problem in that the rigid polymer backbone is repeated in short units and the crystallization speed is slow due to slow chain mobility, resulting in a long molding cycle and low productivity. Therefore, in order to solve these problems, much research is being conducted to improve productivity and heat resistance by introducing substances such as nucleating agents.

一般的に、前記核剤として使用される物質は、主に無機系核剤であり、タルク(Talc)、マイカ(Mica)、ナノクレイ(nanoclay)のような物質が使用され、これをPLAの成形時に一部を添加して耐熱性と強度を改善することができることが報告されている。しかし、このような核剤を過量で添加すると樹脂比重の増加と透明性が落ちるという問題がある。一方、結晶性と透明性を向上させる物質としてLAK301(aromatic sulfonate drivate)、安息香酸ナトリウム(sodium benzoate)、 N-アミノフタルイミド(N-aminophthalimide)、フタルヒドラジド(phthalhydrazide)、フェニルマロン酸カドミウム(cadmium phenylmalonate)などのような有機系核剤が使用されている。しかし、このような物質は、バイオベースの物質でなく、PLA樹脂と分散の問題が存在する。 Generally, the materials used as the nucleating agent are mainly inorganic nucleating agents such as talc, mica, and nanoclay, and it has been reported that adding some of these nucleating agents during molding of PLA can improve heat resistance and strength. However, adding an excessive amount of such nucleating agents increases the resin specific gravity and reduces transparency. Meanwhile, organic nucleating agents such as LAK301 (aromatic sulfonate drivate), sodium benzoate, N-aminophthalimide, phthalhydrazide, and cadmium phenylmalonate are used as materials for improving crystallinity and transparency. However, such materials are not bio-based and have dispersion issues with PLA resins.

したがって、エコ製品として製造することができ、同時に透明性を阻害しないバイオベースの有機系核剤を導入する必要がある。また、ポリラクチド樹脂と分散の問題が少ない核剤を導入してポリラクチド樹脂の結晶化半減期および結晶化度を追加的に改善することが必要である。 Therefore, it is necessary to introduce a bio-based organic nucleating agent that can be manufactured as an eco-product and at the same time does not impair transparency. It is also necessary to introduce a nucleating agent that has fewer dispersion problems with polylactide resin to additionally improve the crystallization half-life and crystallinity of polylactide resin.

本発明は、特定の核剤を組み合わせて使用して結晶化半減期に優れたポリラクチド樹脂組成物を提供するものである。 The present invention provides a polylactide resin composition with excellent crystallization half-life by using a combination of specific nucleating agents.

また、本発明は、前記ポリラクチド樹脂組成物の製造方法に関するものである。 The present invention also relates to a method for producing the polylactide resin composition.

前記課題を解決するために、本発明は、下記のポリラクチド樹脂組成物を提供する。 In order to solve the above problems, the present invention provides the following polylactide resin composition.

ポリラクチド樹脂;第1核剤;および第2核剤を含む、ポリラクチド樹脂組成物において、
前記ポリラクチド樹脂組成物は、100~130℃の結晶化温度で結晶化半減期が2分以下である、
ポリラクチド樹脂組成物。
A polylactide resin composition comprising: a polylactide resin; a first nucleating agent; and a second nucleating agent,
The polylactide resin composition has a crystallization half-life of 2 minutes or less at a crystallization temperature of 100 to 130°C.
Polylactide resin composition.

本発明で使用する用語「ポリラクチド樹脂」とは、下記の繰り返し単位を含む単一重合体または共重合体を包括して称するものと定義される。
The term "polylactide resin" as used in the present invention is defined as a comprehensive term for homopolymers or copolymers containing the following repeating units:

前記ポリラクチド樹脂は、ラクチド単量体の開環重合により前記繰り返し単位を形成する段階を含んで製造され得、このような開環重合および前記繰り返し単位の形成工程が完了した後の重合体を前記「ポリラクチド樹脂」と称することができる。 The polylactide resin can be produced by a process that includes forming the repeating units by ring-opening polymerization of lactide monomers, and the polymer obtained after the ring-opening polymerization and the process of forming the repeating units are completed can be called the "polylactide resin."

この時、「ラクチド単量体」は、次のとおり定義され得る。通常、ラクチドは、L-乳酸からなるL-ラクチド、D-乳酸からなるD-ラクチド、L-形態とD-形態がそれぞれ一つずつからなるmesoラクチドに区分され得る。また、L-ラクチドとD-ラクチドが50:50で混合されているものをD、L-ラクチドまたはrac-ラクチドという。これらラクチドのうち、光学的純度が高いL-ラクチドまたはD-ラクチドのみを利用して重合を行う場合、立体規則性が非常に高いL-またはD-ポリラクチド(PLLAまたはPDLA)が得られると知られており、このようなポリラクチドは、光学的純度が低いポリラクチドに比べて結晶化速度が速く、結晶化度も高いと知られている。ただし、本明細書で「ラクチド単量体」とは、各形態によるラクチドの特性の違いおよびこれから形成されたポリラクチド樹脂の特性の違いに関係なく全ての形態のラクチドを含むものと定義される。 In this case, the term "lactide monomer" can be defined as follows. Lactide can be generally classified into L-lactide consisting of L-lactic acid, D-lactide consisting of D-lactic acid, and meso-lactide consisting of one L-form and one D-form. A 50:50 mixture of L-lactide and D-lactide is called D,L-lactide or rac-lactide. It is known that when polymerization is carried out using only L-lactide or D-lactide having high optical purity among these lactides, L- or D-polylactide (PLLA or PDLA) with very high stereoregularity can be obtained, and such polylactide is known to have a faster crystallization rate and a higher degree of crystallization than polylactide having low optical purity. However, in this specification, "lactide monomer" is defined to include all forms of lactide, regardless of the differences in the properties of lactide according to each form and the differences in the properties of polylactide resins formed therefrom.

一方、本発明によるポリラクチド樹脂は、一例として重量平均分子量が70,000~400,000である。 On the other hand, the polylactide resin according to the present invention has, for example, a weight average molecular weight of 70,000 to 400,000.

本発明は、このようなポリラクチド樹脂に前記第1核剤と第2核剤を共に使用することによって、ポリラクチド樹脂の結晶化半減期を改善することを特徴とする。 The present invention is characterized in that the crystallization half-life of such a polylactide resin is improved by using both the first nucleating agent and the second nucleating agent in the polylactide resin.

特に、前記ポリラクチド樹脂組成物は、100~130℃の結晶化温度で結晶化半減期が5分以下であることを特徴とする。好ましくは、前記結晶化半減期が1.9分以下、1.8分以下、1.7分以下、1.6分以下、1.5分以下、1.4分以下、1.3分以下、1.2分以下、1.1分以下、または、1.0分以下である。また、前記結晶化半減期は、0.1分以上、0.2分以上、0.3分以上、0.4分以上、または、0.5分以上である。 In particular, the polylactide resin composition is characterized in that it has a crystallization half-life of 5 minutes or less at a crystallization temperature of 100 to 130°C. Preferably, the crystallization half-life is 1.9 minutes or less, 1.8 minutes or less, 1.7 minutes or less, 1.6 minutes or less, 1.5 minutes or less, 1.4 minutes or less, 1.3 minutes or less, 1.2 minutes or less, 1.1 minutes or less, or 1.0 minutes or less. In addition, the crystallization half-life is 0.1 minutes or more, 0.2 minutes or more, 0.3 minutes or more, 0.4 minutes or more, or 0.5 minutes or more.

本発明で使用する用語「結晶化半減期(Crystallization half-time(t1/2))は、結晶化が50%行われるまでかかる時間(分)を意味し、相対的な結晶化速度を評価するに有用な指標である。結晶化半減期を求めるためには、まず相対結晶化度(Relative crystallinity)を求める。相対結晶化度は、等温結晶化過程での時間に応じた発熱ピークで全体面積(area)に対する時間tが過ぎた時の面積(area)の比率を意味し、時間に応じた相対結晶化度に変換後に相対結晶化度が0.5になる時の時間を結晶化半減期として求めることができる。このような過程を図1に図式的に示し、より詳細な測定方法は後述する実施例で具体化することができる。 The term "crystallization half-time (t 1/2 )" used in the present invention means the time (minutes) required for 50% crystallization to occur, and is a useful index for evaluating the relative crystallization rate. In order to determine the crystallization half-life, first, the relative crystallinity is determined. The relative crystallinity means the ratio of the area at the time t to the total area at the exothermic peak as a function of time during isothermal crystallization, and the time when the relative crystallinity becomes 0.5 after conversion to the relative crystallinity as a function of time can be determined as the crystallization half-life. This process is diagrammatically shown in FIG. 1, and a more detailed measurement method can be embodied in the examples described below.

本発明で使用する用語「結晶化温度」とは、前記結晶化半減期を測定するためにポリラクチド樹脂を所定の温度に溶融させた後に冷却する時の温度を意味する。例えば、ポリラクチド樹脂を200℃に溶融させた後、40℃/min~100℃/minの冷却速度で120℃まで冷却する時、前記120℃を「結晶化温度」という。本発明では前記結晶化温度は、100~130℃であり、一例として100℃、110℃、120℃、または、130℃である。前記結晶化温度による結晶化半減期の具体的な測定方法は以下の実施例に具体化することができる。 The term "crystallization temperature" used in the present invention means the temperature at which polylactide resin is cooled after melting it to a predetermined temperature in order to measure the crystallization half-life. For example, when polylactide resin is melted at 200°C and then cooled to 120°C at a cooling rate of 40°C/min to 100°C/min, the 120°C is called the "crystallization temperature". In the present invention, the crystallization temperature is 100 to 130°C, and examples include 100°C, 110°C, 120°C, or 130°C. A specific method for measuring the crystallization half-life according to the crystallization temperature can be embodied in the following examples.

好ましくは、本発明による前記ポリラクチド樹脂組成物は、100~130℃の結晶化温度で結晶化度が35%以上である。先に説明したとおり、本発明による前記ポリラクチド樹脂組成物は、結晶化半減期はもちろん、結晶化度も優れるという特徴がある。好ましくは、前記結晶化度が40%以上、45%以上、または、50%以上である。前記結晶化度の測定方法は以下の実施例に具体化することができる。 Preferably, the polylactide resin composition according to the present invention has a degree of crystallinity of 35% or more at a crystallization temperature of 100 to 130°C. As explained above, the polylactide resin composition according to the present invention is characterized by an excellent degree of crystallinity as well as a crystallization half-life. Preferably, the degree of crystallinity is 40% or more, 45% or more, or 50% or more. The method for measuring the degree of crystallinity can be embodied in the following examples.

一方、前記第1核剤は、ウラシル(uracil)である。前記第1核剤は、バイオベースの有機系物質であって、ポリラクチド樹脂に添加されて核生成部位(nucleation site)として作用して高い温度で結晶核生成を誘発して結晶化半減期および結晶化度を改善することができる。 Meanwhile, the first nucleating agent is uracil. The first nucleating agent is a bio-based organic material that is added to the polylactide resin and acts as a nucleation site to induce crystal nucleation at high temperatures, thereby improving the crystallization half-life and degree of crystallization.

好ましくは、前記第1核剤は、前記ポリラクチド樹脂組成物総重量に対して0.1~5重量%で含まれる。前記含有量が0.1重量%未満である場合には前記第1核剤の使用効果が微々であり、前記含有量が5重量%を超える場合にはポリラクチド樹脂固有の物性を阻害する恐れがある。より好ましくは、前記第1核剤は、前記ポリラクチド樹脂組成物総重量に対して0.2重量%以上、0.3重量%以上、0.4重量%以上、または、0.5重量%以上であり;4.5重量%以下、4.0重量%以下、または、3.5重量%以下含まれる。 Preferably, the first nucleating agent is contained in an amount of 0.1 to 5 wt % based on the total weight of the polylactide resin composition. If the content is less than 0.1 wt %, the effect of using the first nucleating agent is negligible, and if the content is more than 5 wt %, there is a risk of impairing the inherent physical properties of the polylactide resin. More preferably, the first nucleating agent is contained in an amount of 0.2 wt % or more, 0.3 wt % or more, 0.4 wt % or more, or 0.5 wt % or more based on the total weight of the polylactide resin composition; or 4.5 wt % or less, 4.0 wt % or less, or 3.5 wt % or less.

前記第2核剤は、ラクチド単量体のオリゴマー構造を含む核剤であって、このようなラクチド単量体のオリゴマー構造によりポリラクチド樹脂と相溶性が高いため、ポリラクチド樹脂に添加されて可塑剤と類似する役割を果たすようになる。そのためにポリラクチド樹脂内で自由体積(free volume)を形成してポリラクチド樹脂の連鎖(chain)移動性を向上させて結晶化半減期および結晶化度を改善することができる。 The second nucleating agent is a nucleating agent containing an oligomer structure of lactide monomer. Due to this oligomer structure of lactide monomer, it has high compatibility with polylactide resin and is added to polylactide resin to play a role similar to that of a plasticizer. Therefore, it can form free volume in the polylactide resin to improve the chain mobility of the polylactide resin and improve the crystallization half-life and degree of crystallization.

好ましくは、前記第2核剤は、下記の化学式1で表される化合物である。
[化学式1]
前記化学式1で、
Lは、下記であり、
前記で、
n1は、1~30の整数であり、
Rは、下記の化学式2で表される置換基であり、
[化学式2]
nは、繰り返し単位数を示し、
R’は、水素、またはアセチルである。
Preferably, the second nucleating agent is a compound represented by the following Formula 1:
[Chemical Formula 1]
In the above Chemical Formula 1,
L is as follows:
In the above,
n1 is an integer from 1 to 30,
R is a substituent represented by the following chemical formula 2:
[Chemical Formula 2]
n represents the number of repeating units;
R' is hydrogen or acetyl.

前記第2核剤の重量平均分子量は、各ラクチド繰り返し単位数により調節され得る。好ましくは、前記第2核剤の重量平均分子量は、1,000~50,000である。より好ましくは、前記第2核剤の重量平均分子量は、1,100以上、1,200以上、1,300以上、1,400以上、または、1,500以上であり;40,000以下、30,000以下、20,000以下、10,000以下、9,000以下、または、8,000以下である。 The weight average molecular weight of the second nucleating agent can be adjusted by the number of each lactide repeat unit. Preferably, the weight average molecular weight of the second nucleating agent is 1,000 to 50,000. More preferably, the weight average molecular weight of the second nucleating agent is 1,100 or more, 1,200 or more, 1,300 or more, 1,400 or more, or 1,500 or more; 40,000 or less, 30,000 or less, 20,000 or less, 10,000 or less, 9,000 or less, or 8,000 or less.

好ましくは、前記第2核剤は、前記ポリラクチド樹脂組成物総重量に対して3~25重量%で含まれる。前記含有量が3重量%未満である場合には前記第2核剤の使用効果が微々たるものであり、前記含有量が25重量%を超える場合にはポリラクチド樹脂固有の物性を阻害する恐れがある。より好ましくは、前記第2核剤は、前記ポリラクチド樹脂組成物総重量に対して3.5重量%以上、4.0重量%以上、または、4.5重量%以上であり;24重量%以下、23重量%以下、22重量%以下、または、21重量%以下含まれる。 Preferably, the second nucleating agent is contained in an amount of 3 to 25% by weight based on the total weight of the polylactide resin composition. If the content is less than 3% by weight, the effect of using the second nucleating agent is negligible, and if the content is more than 25% by weight, there is a risk of impairing the inherent physical properties of the polylactide resin. More preferably, the second nucleating agent is contained in an amount of 3.5% by weight or more, 4.0% by weight or more, or 4.5% by weight or more based on the total weight of the polylactide resin composition; or 24% by weight or less, 23% by weight or less, 22% by weight or less, or 21% by weight or less.

一方、上述の本発明によるポリラクチド樹脂組成物の製造方法は、上述のポリラクチド樹脂、第1核剤、および第2核剤を混合する方法であれば特に制限されない。一例として、前記各成分は、溶融混合(melt blending)方法で製造することができる。 Meanwhile, the method for producing the polylactide resin composition according to the present invention is not particularly limited as long as it is a method for mixing the polylactide resin, the first nucleating agent, and the second nucleating agent. As an example, each of the components can be produced by a melt blending method.

上述の本発明によるポリラクチド樹脂組成物は、結晶化半減期および結晶化度に優れている。したがって、本発明によるポリラクチド樹脂組成物は、加工性に優れると共に、本発明によるポリラクチド樹脂固有の特性を維持することができる。 The polylactide resin composition according to the present invention described above has excellent crystallization half-life and crystallinity. Therefore, the polylactide resin composition according to the present invention has excellent processability and can maintain the inherent properties of the polylactide resin according to the present invention.

本発明による結晶化半減期の意味を図式的に示したものである。1 is a schematic representation of what is meant by crystallization half-life according to the present invention.

以下、本発明の実施形態を下記の実施例でより詳細に説明する。ただし、下記の実施例は、本発明の実施形態を例示するものに過ぎず、本発明の内容が下記の実施例により限定されるのではない。 Hereinafter, the embodiments of the present invention will be described in more detail with reference to the following examples. However, the following examples are merely illustrative of the embodiments of the present invention, and the contents of the present invention are not limited to the following examples.

製造例:第2核剤(P10-A-002の製造)
PEG-1000(P10)を開始剤として使用してオリゴマー(oligomer)を製造した。具体的には、20mLバイアル(vial)にラクチド(Lactide):P10のモル比が8:1(モル比)で合計4.5gになるようにそれぞれ入れ、Sn(Oct)触媒を0.1~0.2wt%になるように投入した後、130℃で4時間反応させた。温度を120℃に調節した後、無水酢酸(acetic anhydride)(末端基OH基に対して4当量)を投入し、12時間反応を追加的に行った。反応終了後、真空乾燥で副産物である酢酸(acetic acid)および残留の無水酢酸(acetic anhydride)を除去して末端基がアセチル(acetyl)基で置換された構造を有する第2核剤を製造し、これをP10-A-002と命名し、重量平均分子量は以下表1に示した。
Production Example: Second nucleating agent (production of P10-A-002)
An oligomer was prepared using PEG-1000 (P10) as an initiator. Specifically, lactide:P10 was placed in a 20 mL vial in a total amount of 4.5 g with a molar ratio of 8:1, and Sn(Oct) 2 catalyst was added to the mixture in an amount of 0.1-0.2 wt%, and the mixture was reacted at 130°C for 4 hours. The temperature was then adjusted to 120°C, and acetic anhydride (4 equivalents relative to the terminal OH group) was added, and the reaction was continued for an additional 12 hours. After the reaction was completed, the by-product acetic acid and residual acetic anhydride were removed by vacuum drying to prepare a second nucleating agent having a structure in which the terminal group was substituted with an acetyl group. This was named P10-A-002, and its weight average molecular weight is shown in Table 1 below.

実施例および比較例
Haakeミキサ(Mixer)装備を活用して溶融混合(melt blending)を行った。具体的には、PLAペレット(pellet)(NatureWorks社の4032D;重量平均分子量約200,000)65gを入れ、下記表1に記載された第1核剤および第2核剤を各含有量により投入した。パウダー(Powder)形態の核剤はPLAペレット(pellet)と混合して投入し、工程運転温度(180℃)よりも低い融点を有する核剤は混合(blending)5分後(PLAが完全に溶解)、ホッパー(hopper)に投入する方法を取った。運転条件は180℃、60rpmで10分間行った。得られたPLA樹脂は、後述する等温DSC分析を行って各結晶化温度による結晶化挙動を確認した。
Examples and Comparative Examples Melt blending was performed using a Haake mixer. Specifically, 65 g of PLA pellets (NatureWorks 4032D; weight average molecular weight about 200,000) were added, and the first and second nucleating agents listed in Table 1 below were added according to their respective contents. The nucleating agent in powder form was mixed with the PLA pellets and added, and the nucleating agent having a melting point lower than the process operating temperature (180 ° C.) was added to the hopper after 5 minutes of blending (when PLA was completely dissolved). The operating conditions were 180 ° C., 60 rpm, and 10 minutes. The obtained PLA resin was subjected to isothermal DSC analysis described below to confirm the crystallization behavior at each crystallization temperature.

実験例
前記製造した第1核剤、第2核剤およびポリラクチド樹脂組成物に対して以下の方法で物性を測定した。
Experimental Examples The physical properties of the first nucleating agent, the second nucleating agent and the polylactide resin composition prepared above were measured by the following methods.

1)重量平均分子量
GPC(Gel Permeation Chromatography)装備を利用して数平均分子量(Mn)、重量平均分子量(Mw)を算出し、オリゴマー(oligomer)分子量分布(Mw/Mn)を測定し、具体的な測定条件は下記のとおりである。
-カラム:PLgel Mixed E x 2
-溶媒:THF
-流速:0.7mL/min
-試料濃度:3.0mg/mL
-注入量:100μl
-カラム温度:40℃
-検出器(Detector):Waters 2414 RID
-スタンダード(Standard):PS(ポリスチレン)
1) Weight average molecular weight Using a GPC (Gel Permeation Chromatography) device, the number average molecular weight (Mn) and weight average molecular weight (Mw) were calculated, and the oligomer molecular weight distribution (Mw/Mn) was measured. The specific measurement conditions are as follows.
- Column: PLgel Mixed Ex 2
Solvent: THF
Flow rate: 0.7 mL / min
- Sample concentration: 3.0 mg / mL
Injection volume: 100 μl
- Column temperature: 40°C
-Detector: Waters 2414 RID
-Standard: PS (polystyrene)

2)DSC(differential scanning calorimetry)
実施例と比較例で製造したPLA樹脂のそれぞれを、1次加熱(1st heating)を通じて200℃で20分間完全に溶融させて熱履歴を除去した。次に、各結晶化温度(100~130℃)まで100℃/分で最大限急速に冷却させた後、各結晶化温度で温度を維持してヒートフロー(Heat Flow)を観察して、結晶化半減期を測定した。また、次の式を利用して結晶化度Xcを計算した(100% crystalline PLA ΔHm=93J/g)。
2) DSC (differential scanning calorimetry)
Each of the PLA resins prepared in the examples and comparative examples was completely melted at 200°C for 20 minutes in the first heating to remove thermal history. Then, it was cooled as rapidly as possible to each crystallization temperature (100-130°C) at 100°C/min, and the heat flow was observed while maintaining the temperature at each crystallization temperature to measure the crystallization half-life. The degree of crystallinity Xc was calculated using the following formula (100% crystalline PLA ΔHm=93 J/g).

-結晶化度:(冷却過程での発熱ピーク(peak)面積、ΔHc)/(100% crystalline PLA ΔHm)
前記結果を下記表1に示した。
-Crystallinity: (exothermic peak area during cooling, ΔHc)/(100% crystalline PLA ΔHm)
The results are shown in Table 1 below.

前記表1に示されているように、本発明により第1核剤と第2核剤を同時に使用した実施例の場合、比較例に比べて結晶化度は同等または類似の水準であるが、結晶化半減期が顕著に小さいことを確認することができた。 As shown in Table 1, in the case of the examples in which the first and second nucleating agents were used simultaneously according to the present invention, the crystallinity was at the same or similar level compared to the comparative examples, but the crystallization half-life was significantly shorter.

Claims (10)

ポリラクチド樹脂;第1核剤;および第2核剤を含む、ポリラクチド樹脂組成物において、
前記ポリラクチド樹脂組成物は、100~130℃の結晶化温度で結晶化半減期が2分以下である、
ポリラクチド樹脂組成物。
A polylactide resin composition comprising: a polylactide resin; a first nucleating agent; and a second nucleating agent,
The polylactide resin composition has a crystallization half-life of 2 minutes or less at a crystallization temperature of 100 to 130°C.
Polylactide resin composition.
前記ポリラクチド樹脂組成物は、100~130℃の結晶化温度で結晶化半減期が1.3分以下である、
請求項1に記載のポリラクチド樹脂組成物。
The polylactide resin composition has a crystallization half-life of 1.3 minutes or less at a crystallization temperature of 100 to 130°C.
The polylactide resin composition according to claim 1.
前記ポリラクチド樹脂組成物は、100~130℃の結晶化温度で結晶化度が35%以上である、
請求項1に記載のポリラクチド樹脂組成物。
The polylactide resin composition has a crystallinity of 35% or more at a crystallization temperature of 100 to 130°C.
The polylactide resin composition according to claim 1.
前記第1核剤は、ウラシル(uracil)である、
請求項1に記載のポリラクチド樹脂組成物。
The first nucleating agent is uracil;
The polylactide resin composition according to claim 1.
前記第1核剤は、前記ポリラクチド樹脂組成物総重量に対して0.1~5重量%で含む、
請求項1に記載のポリラクチド樹脂組成物。
The first nucleating agent is contained in an amount of 0.1 to 5 wt % based on the total weight of the polylactide resin composition.
The polylactide resin composition according to claim 1.
前記第2核剤は、ラクチドオリゴマー構造を含む化合物である、
請求項1に記載のポリラクチド樹脂組成物。
The second nucleating agent is a compound containing a lactide oligomer structure.
The polylactide resin composition according to claim 1.
前記第2核剤は、下記の化学式1で表される化合物である、
請求項1に記載のポリラクチド樹脂組成物:
[化学式1]
前記化学式1で、
Lは、下記であり、
前記で、
n1は、1~30の整数であり、
Rは、下記の化学式2で表される置換基であり、
[化学式2]
nは、繰り返し単位数を示し、
R’は、水素、またはアセチルである。
The second nucleating agent is a compound represented by the following formula 1:
The polylactide resin composition of claim 1 :
[Chemical Formula 1]
In the above Chemical Formula 1,
L is as follows:
In the above,
n1 is an integer from 1 to 30,
R is a substituent represented by the following chemical formula 2:
[Chemical Formula 2]
n represents the number of repeating units;
R' is hydrogen or acetyl.
前記第2核剤は、前記ポリラクチド樹脂組成物総重量に対して3~25重量%で含む、請求項1に記載のポリラクチド樹脂組成物。 The polylactide resin composition according to claim 1, wherein the second nucleating agent is contained in an amount of 3 to 25% by weight based on the total weight of the polylactide resin composition. 前記第2核剤の重量平均分子量は、1,000~50,000である、
請求項1に記載のポリラクチド樹脂組成物。
The weight average molecular weight of the second nucleating agent is 1,000 to 50,000;
The polylactide resin composition according to claim 1.
前記ポリラクチド樹脂の重量平均分子量は、70,000~400,000である、
請求項1に記載のポリラクチド樹脂組成物。
The weight average molecular weight of the polylactide resin is 70,000 to 400,000.
The polylactide resin composition according to claim 1.
JP2023573656A 2022-03-22 2023-02-27 Polylactide resin composition having excellent crystallization half-life and method for producing same Pending JP2024520576A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2022-0035553 2022-03-22
KR1020220035553A KR20230137738A (en) 2022-03-22 2022-03-22 Polylactide resin composition having excellent crystallization half-time, and method for preparing thereof
PCT/KR2023/002704 WO2023182687A1 (en) 2022-03-22 2023-02-27 Polylactide resin composition having excellent crystallization half-time, and method for preparing same

Publications (1)

Publication Number Publication Date
JP2024520576A true JP2024520576A (en) 2024-05-24

Family

ID=88101349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023573656A Pending JP2024520576A (en) 2022-03-22 2023-02-27 Polylactide resin composition having excellent crystallization half-life and method for producing same

Country Status (7)

Country Link
EP (1) EP4332159A1 (en)
JP (1) JP2024520576A (en)
KR (1) KR20230137738A (en)
CN (1) CN117500871A (en)
AU (1) AU2023238191A1 (en)
CA (1) CA3220807A1 (en)
WO (1) WO2023182687A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038405A1 (en) * 2001-08-20 2003-02-27 Bopp Richard C. Method for producing semicrystalline polylactic acid articles
JP4130695B2 (en) * 2006-10-11 2008-08-06 花王株式会社 Biodegradable resin composition
JP5794498B2 (en) * 2009-09-10 2015-10-14 国立研究開発法人産業技術総合研究所 Polylactic acid resin composition
JP2016011388A (en) * 2014-06-30 2016-01-21 株式会社リコー Polylactic resin composition, and molded article

Also Published As

Publication number Publication date
CA3220807A1 (en) 2023-09-28
KR20230137738A (en) 2023-10-05
WO2023182687A1 (en) 2023-09-28
CN117500871A (en) 2024-02-02
AU2023238191A1 (en) 2023-12-14
EP4332159A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US20030125508A1 (en) Crystalline polyglycolic acid, polyglycolic acid composition and production process thereof
JP2013544911A (en) Polycarbonate as a nucleating agent for polylactide
JP3359764B2 (en) Heat-resistant lactic acid-based polymer molding
JP5175421B2 (en) Stereocomplex polylactic acid and method for producing the same
JP4476808B2 (en) High molecular weight aliphatic polyester and process for producing the same
JP2007100104A (en) Polylactic acid block copolymer, its preparation process, molded article and polylactic acid composition
KR20110067238A (en) D-polylactic acid block copolymer, polylactic resin including d-polylactic acid block copolymer and method for preparing d-polylactic acid block copolymer
JP7481879B2 (en) Crystallization promoter and its uses
JP2024520576A (en) Polylactide resin composition having excellent crystallization half-life and method for producing same
JP2024525102A (en) Polylactide resin composition having excellent crystallinity and method for producing same
JP2008248176A (en) Method for producing stereocomplex polylactic acid
JP2024521435A (en) Polylactide resin composition having excellent crystallinity and method for producing same
EP4372040A1 (en) Polylactide resin composition and preparation method therefor
JP2009235198A (en) Polylactic acid composition
CN115427478B (en) Polylactic acid stereocomplex and preparation method thereof
JP5177200B2 (en) Polylactic acid composition, molded article and method for producing polylactic acid composition
JP3732753B2 (en) Biodegradable copolyester and method for producing the same
TW202115184A (en) Resin composition, molded body, and method for producing said molded body
Lenti Chimica Industriale
JP2009249460A (en) Polylactic acid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129