JP2024090755A - Sliding constant velocity joint - Google Patents

Sliding constant velocity joint Download PDF

Info

Publication number
JP2024090755A
JP2024090755A JP2022206846A JP2022206846A JP2024090755A JP 2024090755 A JP2024090755 A JP 2024090755A JP 2022206846 A JP2022206846 A JP 2022206846A JP 2022206846 A JP2022206846 A JP 2022206846A JP 2024090755 A JP2024090755 A JP 2024090755A
Authority
JP
Japan
Prior art keywords
joint member
peripheral surface
cage
spherical
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022206846A
Other languages
Japanese (ja)
Inventor
大輝 鈴木
正純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2022206846A priority Critical patent/JP2024090755A/en
Priority to CN202311776167.2A priority patent/CN118242367A/en
Publication of JP2024090755A publication Critical patent/JP2024090755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】外側継手部材、内側継手部材の選択組合せを可能にし耐久性、強度、NVH特性を確保できるダブルオフセット型の摺動式等速自在継手を提供すること。【解決手段】トラック溝7を有する外側継手部材2と、トラック溝9を有する内側継手部材3と、複数のボール4と、ボール4を収容するケージ5とからなり、ケージの球状外周面と球状内周面が、継手中心Oに対して軸方向の反対側にオフセットした摺動式等速自在継手1において、外側継手部材の継手軸方向のスライド範囲中央部Cに対して奥側に10mmから開口側に10mmの範囲を中央範囲Wとし、当該中央範囲に、外側継手部材の円筒状内周面6の内径が最小となる部位6aを形成し、中央範囲における外側継手部材の円筒状内周面とケージ5の球状外周面との間のすきまGの最小値を0.010mm~0.160mmとすると共に、当該すきまの最大値を0.210mm以下としたことを特徴とする。【選択図】図5[Problem] To provide a double offset type sliding constant velocity universal joint that allows for a selective combination of an outer joint member and an inner joint member and ensures durability, strength, and NVH characteristics. [Solution] A sliding constant velocity universal joint 1 is comprised of an outer joint member 2 having track grooves 7, an inner joint member 3 having track grooves 9, a plurality of balls 4, and a cage 5 that houses the balls 4, and the spherical outer peripheral surface and spherical inner peripheral surface of the cage are offset in the axial opposite direction from the joint center O, the central range W is a range from 10 mm on the back side to 10 mm on the opening side of a central part C of the sliding range in the joint axial direction of the outer joint member, and a portion 6a where the inner diameter of the cylindrical inner peripheral surface 6 of the outer joint member is minimum is formed in the central range, and the minimum value of the gap G between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage 5 in the central range is 0.010 mm to 0.160 mm, and the maximum value of the gap is 0.210 mm or less. [Selected Figure] Figure 5

Description

本発明は、自動車や各種産業機械などの動力伝達系、例えば、自動車のドライブシャフトやプロペラシャフトに使用される摺動式等速自在継手に関する。 The present invention relates to a sliding constant velocity universal joint used in the power transmission systems of automobiles and various industrial machines, for example, in the drive shafts and propeller shafts of automobiles.

自動車のドライブシャフトに適用される等速自在継手には、大別すると、2軸間の角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位を許容する摺動式等速自在継手がある。自動車のドライブシャフトは、通常、駆動車輪側(アウトボード側ともいう)に固定式等速自在継手が用いられ、デファレンシャル側(インボード側ともいう)に摺動式等速自在継手が用いられ、これらの2つの等速自在継手を中間シャフトで連結して構成されている。等速自在継手は、それぞれ使用条件や用途などに応じて各種選択される。 Constant velocity universal joints applied to automobile drive shafts can be broadly divided into fixed constant velocity universal joints, which only allow angular displacement between two shafts, and sliding constant velocity universal joints, which allow angular and axial displacement. Automobile drive shafts usually use a fixed constant velocity universal joint on the drive wheel side (also called the outboard side) and a sliding constant velocity universal joint on the differential side (also called the inboard side), with these two constant velocity universal joints connected by an intermediate shaft. Various constant velocity universal joints are selected depending on the operating conditions and application.

摺動式等速自在継手としては、ダブルオフセット型等速自在継手(DOJ)やトリポード型等速自在継手(TJ)が代表的である。DOJタイプの摺動式等速自在継手は、製造コストが安価なことや、継手内部の回転方向ガタが少ないことで広く用いられている。また、DOJタイプの摺動式等速自在継手は、ボールの個数が6個のものや8個のものが知られており、特許文献1には、ボール個数を8個としたコンパクトな設計のDOJが記載され、特許文献2には、作動角の高角化と、より軽量・コンパクト化を図った、最大作動角が30°以上とれるDOJが記載されている。 Typical sliding type constant velocity universal joints are the double offset type constant velocity universal joint (DOJ) and the tripod type constant velocity universal joint (TJ). DOJ type sliding type constant velocity universal joints are widely used due to their low manufacturing costs and the small amount of rotational backlash inside the joint. DOJ type sliding type constant velocity universal joints with six or eight balls are known, and Patent Document 1 describes a DOJ with a compact design that has eight balls, while Patent Document 2 describes a DOJ with a maximum operating angle of 30° or more, which has a higher operating angle and is lighter and more compact.

DOJタイプの摺動式等速自在継手は、外側継手部材、内側継手部材、ケージ、ボールから構成され、各部のすきまが適切な値となるように組み合わせて使用されることが特許文献3に提案されている。各部のすきまとは、外側継手部材、内側継手部材のトラック溝とボールとの間のすきま(PCDすきま)、外側継手部材の円筒状内周面とケージの球状外周面との間のすきま、ケージの球状内周面と内側継手部材の球状外周面との間のすきま、ケージのポケットとボールとの間のすきま(ポケットすきま)である。 Patent Document 3 proposes that a DOJ type sliding constant velocity universal joint is composed of an outer joint member, an inner joint member, a cage, and balls, and is used in combination so that the clearances of each part are appropriate. The clearances of each part are the clearances between the balls and the track grooves of the outer joint member and inner joint member (PCD clearances), the clearance between the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the cage, the clearance between the spherical inner circumferential surface of the cage and the spherical outer circumferential surface of the inner joint member, and the clearance between the cage pockets and the balls (pocket clearances).

DOJタイプの摺動式等速自在継手は、円筒状内周面に直線状の複数のトラック溝が軸方向に沿って形成された外側継手部材と、球状外周面に外側継手部材の直線状の複数のトラック溝に対向する直線状の複数のトラック溝が軸方向に沿って形成された内側継手部材と、外側継手部材の直線状の複数のトラック溝と内側継手部材の直線状の複数のトラック溝間に組込まれた複数のボールと、ボールをポケットに収容し、外側継手部材の円筒状内周面と内側継手部材の球状外周面に接触案内される球状外周面と球状内周面を有するケージとからなり、ケージの球状外周面の曲率中心と球状内周面の曲率中心が、継手中心に対して軸方向の反対側にオフセットした構成となっている。 The DOJ type sliding constant velocity universal joint is composed of an outer joint member having a cylindrical inner peripheral surface on which multiple linear track grooves are formed along the axial direction, an inner joint member having a spherical outer peripheral surface on which multiple linear track grooves are formed along the axial direction that face the multiple linear track grooves of the outer joint member, multiple balls assembled between the multiple linear track grooves of the outer joint member and the multiple linear track grooves of the inner joint member, and a cage that houses the balls in pockets and has a spherical outer peripheral surface and a spherical inner peripheral surface that are guided in contact with the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the inner joint member, and the center of curvature of the spherical outer peripheral surface of the cage and the center of curvature of the spherical inner peripheral surface are offset in the axial direction on the opposite side to the joint center.

特開平10-73129号公報Japanese Patent Application Laid-Open No. 10-73129 特開2007-85488号公報JP 2007-85488 A 特開2010-19288号公報JP 2010-19288 A

DOJタイプの摺動式等速自在継手は、製造コストを安価にするために、外側継手部材のカップ部内を冷間鍛造で仕上げ、熱処理後、カップ部内を研削加工等による仕上げ加工を施さないことが一般的である。そのため、冷間鍛造の精度の影響に加えて、さらに、カップ内部の熱処理によって生じる熱処理変形により、外側継手部材の円筒状内周面の内径(直径)が円周方向と軸方向でばらつきが生じ、円筒状内周面の内径がばらつくことで、ケージの球状外周面との間のすきまに影響が出る。外側継手部材の球状内周面とケージの球状外周面との間のすきまが過大になった場合、ケージの位置が不安定となり、等速性、耐久性、NVH特性が悪化することが懸念される。また、工程上では適正なすきまを確保するために、外側継手部材のカップ部の円筒状内周面の内径寸法に応じてケージを選択組合せすることが一般的であるが、この選択組合せの効率的な実用を可能にすることが生産性、製造コストの面で重要である。 In order to reduce manufacturing costs, DOJ-type sliding constant velocity universal joints generally finish the inside of the cup of the outer joint member by cold forging, and do not perform finishing processing such as grinding after heat treatment. Therefore, in addition to the influence of the accuracy of cold forging, the inner diameter (diameter) of the cylindrical inner peripheral surface of the outer joint member varies in the circumferential and axial directions due to the heat treatment deformation caused by the heat treatment inside the cup, and the variation in the inner diameter of the cylindrical inner peripheral surface affects the gap between the spherical outer peripheral surface of the cage. If the gap between the spherical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage becomes excessively large, the position of the cage becomes unstable, and there is a concern that the constant velocity, durability, and NVH characteristics will deteriorate. In addition, in order to ensure an appropriate gap in the process, it is common to select and combine cages according to the inner diameter dimensions of the cylindrical inner peripheral surface of the cup of the outer joint member, but it is important in terms of productivity and manufacturing costs to enable efficient practical use of this selection and combination.

特許文献3では、必要最低限のマッチングで機能低下を抑える内部すきま仕様が提案されている。しかしながら、最近のEVや高常用角で使用されるSUVに対しては、規定されたすきまレベルでは、等速性、耐久性、NVH特性に懸念が残る。 Patent Document 3 proposes internal clearance specifications that suppress performance degradation through minimum necessary matching. However, for recent EVs and SUVs used at high normal angles, concerns remain about constant speed, durability, and NVH characteristics at the specified clearance level.

上記のような問題に鑑み、本発明は、鍛造、熱処理の実用精度レベルを基に、外側継手部材に対するケージの選択組合せを可能にし、かつ等速性、耐久性、NVH特性を高性能に確保できるダブルオフセット型の摺動式等速自在継手を提供することを目的とする。 In view of the above problems, the present invention aims to provide a double offset type sliding constant velocity universal joint that allows for the selective combination of cages for outer joint members based on the practical level of precision in forging and heat treatment, and ensures high performance in terms of constant velocity, durability, and NVH characteristics.

本発明者らは、上記の目的を達成するために、鍛造、熱処理の限界にある精度、選択組合せの効率的な実用の可能性、耐久性、強度、NVH特性(振動特性)の高性能な確保という多面的な項目を種々検討した。その結果、ダブルオフセット型の摺動式等速自在継手を装着した実車で最も使用頻度の高いスライド範囲であるトラック溝の継手軸方向の中央範囲における外側継手部材の円筒状内周面とケージの球状外周面との間のすきまに焦点を当ることが解決の鍵になることに到達し、当該中央範囲における前記すきまの最小値を設定するという新たな着想により、本発明に至った。 In order to achieve the above objective, the inventors have examined various aspects from various angles, such as the limit of precision in forging and heat treatment, the possibility of efficient practical application of selected combinations, and ensuring high performance in durability, strength, and NVH characteristics (vibration characteristics). As a result, they have concluded that the key to the solution is to focus on the gap between the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the cage in the central range in the joint axial direction of the track groove, which is the sliding range most frequently used in actual vehicles equipped with double offset type sliding type constant velocity universal joints, and have come up with the novel idea of setting a minimum value for said gap in this central range, leading to the present invention.

前述の目的を達成する技術的手段として、本発明は、円筒状内周面に直線状の複数のトラック溝が軸方向に沿って形成された外側継手部材と、球状外周面に前記外側継手部材の直線状の複数のトラック溝に対向する直線状の複数のトラック溝が軸方向に沿って形成された内側継手部材と、前記外側継手部材の直線状の複数のトラック溝と前記内側継手部材の直線状の複数のトラック溝間に組込まれ、トルクを伝達する複数のボールと、前記ボールをポケットに収容し、前記外側継手部材の円筒状内周面と前記内側継手部材の球状外周面にそれぞれ接触案内される球状外周面と球状内周面を有するケージとからなり、前記ケージの球状外周面の曲率中心と球状内周面の曲率中心が、継手中心に対して軸方向の反対側にオフセットした摺動式等速自在継手において、前記外側継手部材の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、前記外側継手部材の円筒状内周面の内径が最小となる部位を形成し、前記中央範囲における前記外側継手部材の円筒状内周面と前記ケージの球状外周面との間のすきまの最小値を0.010mm~0.160mmとすると共に、当該すきまの最大値を0.210mm以下としたことを特徴とする。上記の構成により、鍛造、熱処理の実用精度レベルを基に、外側継手部材に対するケージの選択組合せを可能にし、かつ等速性、耐久性、NVH特性を高性能に確保できるダブルオフセット型の摺動式等速自在継手を実現することができる。 As technical means for achieving the above-mentioned object, the present invention provides an outer joint member having a cylindrical inner peripheral surface on which a plurality of linear track grooves are formed along the axial direction, an inner joint member having a spherical outer peripheral surface on which a plurality of linear track grooves facing the plurality of linear track grooves of the outer joint member are formed along the axial direction, a plurality of balls that are inserted between the plurality of linear track grooves of the outer joint member and the plurality of linear track grooves of the inner joint member and transmit torque, and a case that houses the balls in pockets and has a spherical outer peripheral surface and a spherical inner peripheral surface that are brought into contact with and guided by the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the inner joint member, respectively. In a sliding constant velocity universal joint, the center of curvature of the spherical outer peripheral surface of the cage and the center of curvature of the spherical inner peripheral surface are offset in the axial direction opposite to the joint center, the central range is from 10 mm on the back side to 10 mm on the opening side of the center of the sliding range of the outer joint member in the axial direction, a portion where the inner diameter of the cylindrical inner peripheral surface of the outer joint member is smallest is formed in the central range, and the minimum value of the gap between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the central range is 0.010 mm to 0.160 mm, and the maximum value of the gap is 0.210 mm or less. With the above configuration, it is possible to realize a double offset sliding constant velocity universal joint that allows the selection and combination of the cage with the outer joint member based on the practical accuracy level of forging and heat treatment, and ensures high performance in constant velocity, durability, and NVH characteristics.

また、上記の中央範囲を除く領域における上記の外側継手部材の円筒状内周面と上記のケージの球状外周面との間のすきまの最小値を0.010mm~0.260mmとすると共に、当該すきまの最大値を0.310mm以下とすることが望ましい。これにより、継手を車両に組み付ける際や、走行中滑らかにスライドすることができる。 In addition, it is desirable to set the minimum value of the gap between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the region excluding the central range to 0.010 mm to 0.260 mm, and the maximum value of the gap to 0.310 mm or less. This allows the joint to slide smoothly when assembled to the vehicle and while it is running.

上記の外側継手部材の円筒状内周面が塑性加工で成形された表面であることにより、製造コストを安価にすることができる。 The cylindrical inner peripheral surface of the outer joint member is a surface formed by plastic processing, which allows for low manufacturing costs.

上記の複数のボールの個数を6~8個としたことにより、自動車や各種産業機械などの動力伝達系に好適なダブルオフセット型の摺動式等速自在継手を構成することができる。 By setting the number of balls to 6 to 8, it is possible to construct a double offset type sliding constant velocity universal joint that is suitable for power transmission systems in automobiles and various industrial machines.

本発明によれば、鍛造、熱処理の実用精度レベルを基に、外側継手部材に対するケージの選択組合せを可能にし、かつ等速性、耐久性、NVH特性を高性能で確保できるダブルオフセット型の摺動式等速自在継手を実現することができる。 The present invention makes it possible to realize a double offset type sliding constant velocity universal joint that allows for the selective combination of cages for outer joint members based on the practical level of precision in forging and heat treatment, while also ensuring high performance in terms of constant velocity, durability, and NVH characteristics.

本発明によれば、等速性、耐久性、NVH特性を高性能で確保できるので、最近のEVや高常用角で使用されるSUVに対しても、好適なダブルオフセット型の摺動式等速自在継手を実現することができる。 The present invention ensures high performance in terms of constant velocity, durability, and NVH characteristics, making it possible to realize a double offset type sliding constant velocity universal joint that is suitable for recent EVs and SUVs that are used at high normal angles.

本発明の第1の実施形態に係る摺動式等速自在継手の縦断面図で、図2のB-N-B線における縦断面図である。3 is a longitudinal sectional view of the slide type constant velocity universal joint according to the first embodiment of the present invention, taken along line BNB in FIG. 2. FIG. 本発明の第1の実施形態に係る摺動式等速自在継手の横断面図で、図1のA-A線における横断面図である。2 is a cross-sectional view of the slide type constant velocity universal joint according to the first embodiment of the present invention, taken along line AA in FIG. 1. 図1のA-A線およびD-O1線における1つのトラック溝、ボールおよびケージを拡大して示す横断面図である。2 is an enlarged cross-sectional view showing one track groove, ball, and cage taken along line AA and line DO1 in FIG. 1. 図5のC-C線における外側継手部材の横断面図である。FIG. 6 is a cross-sectional view of the outer joint member taken along line CC of FIG. 5 . 本実施形態の摺動式等速自在継手のスライド範囲中央部を示す縦断面図である。3 is a vertical cross-sectional view showing the center of the sliding range of the sliding type constant velocity universal joint of the present embodiment. FIG. スライド範囲中央部を解説する模式図である。FIG. 13 is a schematic diagram illustrating the center of the sliding range. 外側継手部材の円筒状内周面の内径を測定する測定機の概要図である。FIG. 4 is a schematic diagram of a measuring instrument for measuring the inner diameter of a cylindrical inner circumferential surface of an outer joint member. 外側継手部材の円筒状内周面の最小内径を測定する測定機の概要図である。FIG. 4 is a schematic diagram of a measuring device for measuring the minimum inner diameter of a cylindrical inner circumferential surface of an outer joint member. 外側継手部材の円筒状内周面の最小内径を測定する原理図である。FIG. 4 is a diagram illustrating the principle of measuring the minimum inner diameter of a cylindrical inner circumferential surface of an outer joint member. ケージの球状外周面の最大外径を測定する測定器の概要図である。FIG. 13 is a schematic diagram of a measuring device for measuring the maximum outer diameter of the spherical outer peripheral surface of the cage. 本発明の第2の実施形態に係る摺動式等速自在継手の縦断面図で、図12のB-N-B’線における縦断面図である。FIG. 13 is a longitudinal cross-sectional view of a sliding type constant velocity universal joint according to a second embodiment of the present invention, taken along line B-N-B' in FIG. 12. 本発明の第2の実施形態に係る摺動式等速自在継手の横断面図で、図11のA-A線における横断面図である。12 is a cross-sectional view of a sliding type constant velocity universal joint according to a second embodiment of the present invention, taken along line AA of FIG. 11. FIG. 本発明の第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第1の変形例の縦断面図である。FIG. 11 is a vertical sectional view of a first modified example of an inner combination body of a sliding type constant velocity universal joint according to a second embodiment of the present invention. 本発明の第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第2の変形例の縦断面図である。FIG. 11 is a vertical sectional view of a second modified example of the inner combination body of the sliding type constant velocity universal joint according to the second embodiment of the present invention. 図14のE部の拡大図である。FIG. 15 is an enlarged view of part E in FIG. 14 . 本発明の第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第3の変形例の縦断面図である。FIG. 11 is a vertical sectional view of a third modified example of the inner combination body of the sliding type constant velocity universal joint according to the second embodiment of the present invention.

本発明の第1の実施形態に係るダブルオフセット型の摺動式等速自在継手を図1~図10に基づいて説明する。図1は、本実施形態の摺動式等速自在継手の縦断面図で、図2のB-N-B線における縦断面図である。図2は、本実施形態の摺動式等速自在継手の横断面図で、図1のA-A線における横断面図である。図3は、図1のA-A線およびD-O1線における1つのトラック溝、ボールおよびケージを拡大して示す横断面図である。 A double offset type sliding constant velocity universal joint according to a first embodiment of the present invention will be described with reference to Figs. 1 to 10. Fig. 1 is a longitudinal cross-sectional view of the sliding constant velocity universal joint of this embodiment, taken along line B-N-B in Fig. 2. Fig. 2 is a transverse cross-sectional view of the sliding constant velocity universal joint of this embodiment, taken along line A-A in Fig. 1. Fig. 3 is an enlarged transverse cross-sectional view of one track groove, ball, and cage taken along line A-A and line D-O1 in Fig. 1.

図1、図2に示すように、摺動式等速自在継手1は、いわゆる、ダブルオフセット型の摺動式等速自在継手(DOJと略称することもある。)であり、外側継手部材2、内側継手部材3、トルクを伝達するボール4およびケージ5を主な構成とする。外側継手部材2の円筒状内周面6には、8本のトラック溝7が円周方向に等間隔で、かつ軸方向に沿って直線状に形成されている。内側継手部材3の球状外周面8には、外側継手部材2のトラック溝7と対向するトラック溝9が円周方向に等間隔で、かつ軸方向に沿って直線状に形成されている。外側継手部材2のトラック溝7と内側継手部材3のトラック溝9との間に8個のボール4が1個ずつ組み込まれている。ボール4はケージ5のポケット5aに収容されている。 As shown in Figures 1 and 2, the sliding constant velocity universal joint 1 is a so-called double offset type sliding constant velocity universal joint (sometimes abbreviated as DOJ), and is mainly composed of an outer joint member 2, an inner joint member 3, balls 4 for transmitting torque, and a cage 5. Eight track grooves 7 are formed on the cylindrical inner peripheral surface 6 of the outer joint member 2 at equal intervals in the circumferential direction and in a straight line along the axial direction. On the spherical outer peripheral surface 8 of the inner joint member 3, track grooves 9 facing the track grooves 7 of the outer joint member 2 are formed at equal intervals in the circumferential direction and in a straight line along the axial direction. Eight balls 4 are incorporated between the track grooves 7 of the outer joint member 2 and the track grooves 9 of the inner joint member 3, one by one. The balls 4 are accommodated in the pockets 5a of the cage 5.

ケージ5は、球状外周面11と球状内周面12を有し、球状外周面11は外側継手部材2の円筒状内周面6と嵌合して接触案内され、球状内周面12は内側継手部材3の球状外周面8と嵌合して接触案内される。ケージ5の球状外周面11は曲率中心をO1とする曲率半径Rc1で形成され、球状内周面12は曲率中心をO2とする曲率半径Rc2で形成されている。内側継手部材3の球状外周面8は曲率中心をO2とする曲率半径Riで形成されている。曲率中心O1、O2は、軸線N上に位置し、継手中心Oに対して軸方向の反対側に等距離Fでオフセットされている。これにより、継手が作動角を取った場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等分する平面上にボール4が常に案内され、二軸間が等速回転で伝達される。 The cage 5 has a spherical outer peripheral surface 11 and a spherical inner peripheral surface 12. The spherical outer peripheral surface 11 is fitted and guided in contact with the cylindrical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 12 is fitted and guided in contact with the spherical outer peripheral surface 8 of the inner joint member 3. The spherical outer peripheral surface 11 of the cage 5 is formed with a radius of curvature Rc1 with a center of curvature O1, and the spherical inner peripheral surface 12 is formed with a radius of curvature Rc2 with a center of curvature O2. The spherical outer peripheral surface 8 of the inner joint member 3 is formed with a radius of curvature Ri with a center of curvature O2. The centers of curvature O1 and O2 are located on the axis N and are offset by an equal distance F on the opposite side of the axial direction from the joint center O. As a result, when the joint has an operating angle, the balls 4 are always guided on a plane that bisects the angle formed by the axes of the outer joint member 2 and the inner joint member 3, and the two shafts are transmitted at a constant speed.

外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間にすきまGが設けられている。このすきまGは、継手の直径で表した値である。本明細書および特許請求の範囲における外側継手部材の円筒状内周面とケージの球状外周面との間のすきまは、前記すきまGを意味する。図1においては、すきまGを誇張して図示している。 A gap G is provided between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5. This gap G is expressed in terms of the diameter of the joint. In this specification and claims, the gap between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage refers to the above-mentioned gap G. In Figure 1, the gap G is illustrated in an exaggerated manner.

外側継手部材2の開口側端部に止め輪溝15が設けられ、この止め輪溝15に止め輪17が装着されて、図1に示す内側継手部材3、ボール4、ケージ5からなる内側組合せ体Iが、外側継手部材2の開口側端部から抜け出すのを防止する。外側継手部材2の開口側端部の外周にブーツ装着溝16が設けられている。外側継手部材2の反開口側にはステム部(軸部)2bが一体に形成され、デファレンシャル(図示省略)に連結される。 A retaining ring groove 15 is provided at the open end of the outer joint member 2, and a retaining ring 17 is fitted into this retaining ring groove 15 to prevent the inner assembly I consisting of the inner joint member 3, ball 4, and cage 5 shown in FIG. 1 from slipping out of the open end of the outer joint member 2. A boot mounting groove 16 is provided on the outer periphery of the open end of the outer joint member 2. A stem portion (shaft portion) 2b is formed integrally with the outer joint member 2 on the side opposite the open end, and is connected to a differential (not shown).

内側継手部材3の球状外周面8に直線状のトラック溝9が形成されているので、内側継手部材3の軸方向の中心から両端に行くにつれてトラック溝9の溝深さが浅くなる。内側継手部材3の連結孔13にスプライン(セレーションを含む、以下同じ)14が形成され、中間シャフト(図示省略)の軸端部がスプライン嵌合され、内側継手部材3に対して、中間シャフト肩部と止め輪(図示省略)によって軸方向に固定される。 A linear track groove 9 is formed on the spherical outer peripheral surface 8 of the inner joint member 3, so that the groove depth of the track groove 9 becomes shallower from the axial center of the inner joint member 3 to both ends. A spline (including serrations, the same applies below) 14 is formed in the connecting hole 13 of the inner joint member 3, and the axial end of the intermediate shaft (not shown) is spline-fitted, and the intermediate shaft is fixed in the axial direction to the inner joint member 3 by the intermediate shaft shoulder and a retaining ring (not shown).

図1のA-A線で示すケージ5の軸方向中心に8個のポケット5aが円周方向に等間隔で設けられ、隣接するポケット5a間は柱部5b(図2参照)となっている。ケージ5の大径側端部の内周に内側継手部材3を組み込むための切欠き5cが設けられている。ケージ5のストッパ面5dは、球状外周面11に接線として接続する円すい状に形成されている。本実施形態の摺動式等速自在継手1では、最大作動角は、例えば25°に設定されている。ケージ5は、継手が作動角を取った場合、外側継手部材2と内側継手部材3の両軸線がなす角度の半分だけ傾くので、ストッパ面5dの傾斜角度Sは12.5°に設定されている。これにより、摺動式等速自在継手1の最大許容角度を規制することができる。 Eight pockets 5a are provided at equal intervals in the circumferential direction at the axial center of the cage 5 shown by line A-A in Figure 1, and a column portion 5b (see Figure 2) is formed between adjacent pockets 5a. A notch 5c is provided on the inner circumference of the large diameter end of the cage 5 for assembling the inner joint member 3. The stopper surface 5d of the cage 5 is formed in a cone shape that connects to the spherical outer peripheral surface 11 as a tangent. In the sliding type constant velocity universal joint 1 of this embodiment, the maximum operating angle is set to, for example, 25°. When the joint takes an operating angle, the cage 5 is inclined by half the angle formed by the axes of the outer joint member 2 and the inner joint member 3, so the inclination angle S of the stopper surface 5d is set to 12.5°. This makes it possible to regulate the maximum allowable angle of the sliding type constant velocity universal joint 1.

図3に基づいて、外側継手部材2のトラック溝7、内側継手部材3のトラック溝9とボール4とのアンギュラ接触やトラック溝のピッチ円直径、主なすきまについて説明する。図3は、図1のA-A線およびD-O1線における1つのトラック溝7、9、ボール4およびケージ5を示す。図3の矢印Aの範囲は、図1のA-A線における横断面図であり、図3の矢印Dの範囲は、図1のD-O1線における横断面図である。 Based on Figure 3, the angular contact between the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3 and the ball 4, the pitch circle diameter of the track groove, and the main clearances will be explained. Figure 3 shows one track groove 7, 9, ball 4, and cage 5 along lines A-A and D-O1 in Figure 1. The range of arrow A in Figure 3 is a cross-sectional view along line A-A in Figure 1, and the range of arrow D in Figure 3 is a cross-sectional view along line D-O1 in Figure 1.

図3の矢印Aの範囲に示すように、外側継手部材2のトラック溝7と内側継手部材3のトラック溝9の横断面は、2つの円弧を組合せたゴシックアーチ形状に形成されている。このため、ボール4は、トラック溝7、9に対して各2つの点C1、C2、C3、C4でアンギュラコンタクトする。トラック溝7、9の横断面形状は、前述したゴシックアーチ形状に限られず、楕円形状であってもよい。 As shown in the range of arrow A in FIG. 3, the cross sections of the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3 are formed in a Gothic arch shape that combines two circular arcs. Therefore, the ball 4 makes angular contact with the track grooves 7 and 9 at two points C1, C2, C3, and C4. The cross-sectional shape of the track grooves 7 and 9 is not limited to the Gothic arch shape described above, and may be an elliptical shape.

ピッチ円直径、主なすきまについて説明する。外側継手部材2のトラック溝7のピッチ円直径と内側継手部材3のトラック溝9のピッチ円直径を区別して表記する場合は、外側継手部材2のトラック溝7のピッチ円直径をToPCDと表記し、内側継手部材3のトラック溝9のピッチ円直径をTiPCDと表記する。ToPCDは、TiPCDより、中央値で例えば、0.050mm程度大きく設定されている。その結果、ボール4の中心Obは、ToPCDとTiPCDとの間の径方向中間に位置し、無負荷状態において、ボール4と外側継手部材2のトラック溝7および内側継手部材3のトラック溝9との間にトラック接触角α方向にトラックすきまが形成される。トラック接触角α方向のトラックすきまに基づく半径方向のすきま成分がPCDすきまΔである。 The pitch circle diameter and main clearances will be explained. When the pitch circle diameter of the track groove 7 of the outer joint member 2 and the pitch circle diameter of the track groove 9 of the inner joint member 3 are to be distinguished from each other, the pitch circle diameter of the track groove 7 of the outer joint member 2 is denoted as ToPCD, and the pitch circle diameter of the track groove 9 of the inner joint member 3 is denoted as TiPCD. ToPCD is set to be larger than TiPCD by, for example, about 0.050 mm as a median value. As a result, the center Ob of the ball 4 is located in the radial middle between ToPCD and TiPCD, and in the unloaded state, a track clearance is formed in the direction of the track contact angle α between the ball 4 and the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3. The radial clearance component based on the track clearance in the direction of the track contact angle α is the PCD clearance Δ.

PCDすきまΔに基づいて、円周方向ガタが生じる。本実施形態の摺動式等速自在継手1では、トラック溝7、9の横断面形状がゴシックアーチ形状に形成されているので、継手内部の回転方向ガタ量を確実に抑制でき、EVにおけるトルク負荷応答性も良好である。図3では、TiPCDとToPCDとの寸法差やPCDすきまΔを誇張して図示している。 Circumferential backlash occurs based on the PCD clearance Δ. In the sliding type constant velocity universal joint 1 of this embodiment, the cross-sectional shape of the track grooves 7, 9 is formed in a Gothic arch shape, so the amount of rotational backlash inside the joint can be reliably suppressed, and the torque load response in EV is also good. In Figure 3, the dimensional difference between TiPCD and ToPCD and the PCD clearance Δ are exaggerated.

トラック接触角αは、図3の直線Laと直線Lbとの間の角度αである。直線Laはトラック溝7、9の横断面の中心線で、図2のB-N線に対応する。直線Lbは、トラック溝7、9の側面におけるボール4の接触点C1、C2、C3、C4とボール4の中心Obを結ぶ直線である。 The track contact angle α is the angle α between the lines La and Lb in FIG. 3. The line La is the center line of the cross section of the track grooves 7 and 9, and corresponds to the line B-N in FIG. 2. The line Lb is a line connecting the contact points C1, C2, C3, and C4 of the ball 4 on the side surfaces of the track grooves 7 and 9 with the center Ob of the ball 4.

本実施形態の摺動式等速自在継手1では、ボール4とトラック溝7、9とがアンギュラコンタクトとするものを例示したが、アンギュラコンタクトに限定されるものではなく、外側継手部材2および内側継手部材3のトラック溝7、9の横断面形状を円弧形状とし、ボール4とトラック溝7、9とがそれぞれ1点で接触するサーキュラコンタクトとしてもよい。 In the sliding type constant velocity universal joint 1 of this embodiment, the ball 4 and the track grooves 7, 9 are in angular contact, but this is not limited to angular contact. The cross-sectional shape of the track grooves 7, 9 of the outer joint member 2 and the inner joint member 3 may be an arc shape, and the ball 4 and the track grooves 7, 9 may each be in circular contact at one point.

図3の矢印Dの範囲に示すように、外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間にはすきまGが設けられている。すきまGは、前述したように、継手の直径で表した値である。前述したように、PCDの寸法差やPCDすきまΔ等が存在の中で、外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGに着目し、このすきまGの取り扱いが本実施形態の摺動式等速自在継手1の特徴的な構成に導いた。詳細は後述する。 As shown in the range of arrow D in Figure 3, a gap G is provided between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5. As mentioned above, the gap G is a value expressed in terms of the diameter of the joint. As mentioned above, in the presence of the PCD dimensional difference and the PCD gap Δ, etc., attention was focused on the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5, and the handling of this gap G led to the characteristic configuration of the sliding type constant velocity universal joint 1 of this embodiment. Details will be described later.

本実施形態のダブルオフセット型の摺動式等速自在継手1の全体的な構成は以上のとおりである。次に特徴的な構成を説明する。特徴的な構成は次の(1)~(3)である。
(1)外側継手部材の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、前記外側継手部材の円筒状内周面の内径が最小となる部位を形成したこと。
(2)中央範囲における外側継手部材の円筒状内周面とケージの球状外周面との間のすきまの最小値を0.010mm~0.160mmとしたこと。
(3)前記すきまの最大値を0.210mm以下としたこと。
The overall configuration of the double offset sliding type constant velocity universal joint 1 of this embodiment is as described above. Next, the characteristic configurations will be described. The characteristic configurations are as follows (1) to (3).
(1) A central range is defined as a range from 10 mm toward the back side to 10 mm toward the opening side with respect to the center of the sliding range in the axial direction of the outer joint member, and a portion where the inner diameter of the cylindrical inner circumferential surface of the outer joint member is smallest is formed in the central range.
(2) The minimum value of the gap between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the central region is set to 0.010 mm to 0.160 mm.
(3) The maximum value of the gap is 0.210 mm or less.

上記の特徴的な構成(1)~(3)は以下の検討経過を経て到達した。すなわち、本発明者らが、(a)鍛造、熱処理の限界にある精度、(b)選択組合せの効率的な実用の可能性、(c)耐久性、強度、NVH特性(振動特性)を高性能に確保するという多面的な項目を種々検討した結果、ダブルオフセット型の摺動式等速自在継手を装着した実車で最も使用頻度の高いスライド範囲であるトラック溝の継手軸方向の中央範囲における外側継手部材の円筒状内周面とケージの球状外周面との間のすきまに焦点を当ることが解決の鍵になることに辿り着き、当該中央範囲における外側継手部材の円筒状内周面とケージの球状外周面との間のすきまの最小値、最大値を設定するという新たな着想によって、上記の特徴的な構成(1)~(3)に到達した。 The above characteristic configurations (1) to (3) were arrived at through the following process of investigation. That is, the inventors of the present invention have investigated various aspects including (a) precision at the limit of forging and heat treatment, (b) possibility of efficient practical application of selected combinations, and (c) ensuring high performance in durability, strength, and NVH characteristics (vibration characteristics). As a result, they have come to the conclusion that the key to the solution is to focus on the gap between the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the cage in the central range in the joint axial direction of the track groove, which is the sliding range most frequently used in actual vehicles equipped with double offset type sliding type constant velocity universal joints. They then came up with the novel idea of setting the minimum and maximum values of the gap between the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the cage in the central range.

図面を参照して、特徴的な構成を順次説明する。特徴的な構成(1)は、ダブルオフセット型の摺動式等速自在継手を装着した実車で最も使用頻度の高いスライド範囲である外側継手部材の継手軸方向の中央範囲に外側継手部材の円筒状内周面とケージの球状外周面との間のすきまを精度よく形成するために、中央範囲に、外側継手部材の円筒状内周面の内径が最小となる部位を形成したものである。特徴的な構成(1)について、図4~図6に基づいて具体的に説明する。図4は、図5のC-C線における外側継手部材の横断面図で、図5は、本実施形態の摺動式等速自在継手のスライド範囲中央部を示す縦断面図である。図6は、スライド範囲中央部を解説する模式図である。 The characteristic configurations will be described in order with reference to the drawings. Characteristic configuration (1) is that in order to accurately form a gap between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the central range in the joint axial direction of the outer joint member, which is the sliding range most frequently used in actual vehicles equipped with a double offset type sliding type constant velocity universal joint, a portion where the inner diameter of the cylindrical inner peripheral surface of the outer joint member is smallest is formed in the central range. Characteristic configuration (1) will be specifically described with reference to Figures 4 to 6. Figure 4 is a cross-sectional view of the outer joint member taken along line C-C in Figure 5, and Figure 5 is a vertical cross-sectional view showing the central portion of the sliding range of the sliding type constant velocity universal joint of this embodiment. Figure 6 is a schematic diagram explaining the central portion of the sliding range.

ダブルオフセット型の摺動式等速自在継手1の外側継手部材2は、一般的には、鍛造工程、切削工程、焼入れ工程、研削工程により製作され、カップ部内は冷間鍛造で仕上げられる(焼入れ工程後の研削工程等での仕上げ加工は施さない)。また、ケージ5は、一般的には、熱間鍛造工程、旋削工程、窓抜き工程、ミーリング又はブローチ工程、焼入れ工程、研削又は焼入れ鋼切削による仕上げ工程により製作される。 The outer joint member 2 of the double offset type sliding constant velocity universal joint 1 is generally manufactured through a forging process, a cutting process, a hardening process, and a grinding process, and the inside of the cup portion is finished by cold forging (no finishing process such as grinding after the hardening process is performed). The cage 5 is generally manufactured through a hot forging process, a turning process, a window punching process, a milling or broaching process, a hardening process, and a finishing process by grinding or cutting hardened steel.

図5に示すように、外側継手部材2のトラック溝7の継手軸方向のスライド範囲中央部C(セット位置でもある)を基準にして、スライド範囲中央部Cに対して、奥側にw(=10mm)から開口側にw(=10mm)の範囲を中央範囲Wとする。そして、鍛造工程と熱処理工程にて、図示のように、中央範囲Wに外側継手部材2の円筒状内周面6の内径が最小となる部位6aを形成する。外側継手部材2のトラック溝7は、円筒状内周面6の中央範囲Wおよび中央範囲Wを除く領域の輪郭に沿って軸方向に形成される。 As shown in FIG. 5, the central area W is defined as the range from w (= 10 mm) on the inner side to w (= 10 mm) on the opening side of the central area C of the track groove 7 of the outer joint member 2 in the axial direction of the joint, based on the central area C (which is also the set position). Then, in the forging process and the heat treatment process, a portion 6a where the inner diameter of the cylindrical inner circumferential surface 6 of the outer joint member 2 is smallest is formed in the central area W as shown in the figure. The track groove 7 of the outer joint member 2 is formed in the axial direction along the contour of the central area W of the cylindrical inner circumferential surface 6 and the area excluding the central area W.

図4に示すように、外側継手部材2の円筒状内周面6は、トラック溝7の存在によって、8つに分離した円筒状内周面区分6’で形成される。直径方向に対向する円筒状内周面区分6’の内径は、対角4位相に形成される。ここで、本明細書および特許請求の範囲における中央範囲Wに、外側継手部材の円筒状内周面の内径が最小となる部位を形成したとは、中央範囲Wに、外側継手部材の全ての円筒状内周面区分のそれぞれについて内径が最小となる部位を形成したことを意味する。 As shown in FIG. 4, the cylindrical inner circumferential surface 6 of the outer joint member 2 is formed of eight separated cylindrical inner circumferential surface segments 6' due to the presence of the track grooves 7. The inner diameters of the diametrically opposed cylindrical inner circumferential surface segments 6' are formed in four diagonal phases. Here, in this specification and claims, forming a portion in the central range W where the inner diameter of the cylindrical inner circumferential surface of the outer joint member is the smallest means forming a portion in the central range W where the inner diameter is the smallest for each of all cylindrical inner circumferential surface segments of the outer joint member.

外側継手部材2の円筒状内周面6の内径は、カップ部2aの開口側からスライド範囲中央部C(中央範囲W)にかけて徐々に小さくなり、スライド範囲中央部C(中央範囲W)から奥側にかけて徐々に大きくなる形状としている。 The inner diameter of the cylindrical inner surface 6 of the outer joint member 2 is gradually reduced from the opening side of the cup portion 2a to the center C (center W) of the sliding range, and gradually increased from the center C (center W) of the sliding range to the rear side.

スライド範囲中央部Cについて説明する。スライド範囲中央部Cは、摺動式等速自在継手1の組立体が車両に取り付けられた後の摺動式等速自在継手1の継手中心Oの軸方向位置であり、セット位置でもある。図5に示すように、ダブルオフセット型の摺動式等速自在継手1は、外側継手部材2の開口側端部には、内側継手部材3、ボール4、ケージ5からなる内側組合せ体Iの脱落防止のために止め輪17が取り付けられることが多く、摺動式等速自在継手1は、スライド範囲中央部C(セット位置)を中心に図6に示すスライド範囲の領域で使用される。具体的には、カップ部2aの開口側は、ボール4と止め輪17(図5参照)とが図6に示す線X1の位置で干渉することにより、開口側の軸方向スライドが規制される。一方、カップ部2aの奥側は、ケージ5とカップ部2aの底部とが線X2の位置で干渉すること、又はシャフト(図示省略)とカップ部2aの開口部2c(図5参照)とが線X3の位置で干渉することにより、奥側の軸方向スライドが規制される。図示のように、作動角の増加につれて、線X1~X3に囲まれた軸方向スライド量は減少する。 The sliding range center C will be described. The sliding range center C is the axial position of the joint center O of the sliding constant velocity universal joint 1 after the assembly of the sliding constant velocity universal joint 1 is installed on the vehicle, and is also the set position. As shown in FIG. 5, in the double offset type sliding constant velocity universal joint 1, a retaining ring 17 is often attached to the opening end of the outer joint member 2 to prevent the inner assembly I consisting of the inner joint member 3, ball 4, and cage 5 from falling off, and the sliding constant velocity universal joint 1 is used in the sliding range area shown in FIG. 6, centered on the sliding range center C (set position). Specifically, the opening side of the cup portion 2a is restricted from sliding in the axial direction on the opening side by the ball 4 and the retaining ring 17 (see FIG. 5) interfering with each other at the position of the line X1 shown in FIG. 6. On the other hand, the axial sliding of the rear side of the cup portion 2a is restricted by interference between the cage 5 and the bottom of the cup portion 2a at the position of line X2, or between the shaft (not shown) and the opening 2c of the cup portion 2a (see FIG. 5) at the position of line X3. As shown in the figure, the amount of axial sliding enclosed by lines X1 to X3 decreases as the operating angle increases.

ここで、スライド範囲中央部Cを定義する。スライド範囲中央部Cは、車両の使用条件で任意に設定される。つまり、スライド範囲中央部Cは、カップ部2aの開口部からカップ部2aの底部までの線X1~X3で囲まれた軸方向の中心位置からずれる場合がある。したがって、一般的な車両走行時の摺動式等速自在継手1の継手中心Oの軸方向の変位の中心をスライド範囲中心部Cと定義する。スライド範囲中心部Cを基準に、一般的な車両走行時に常時使用される領域を包含できるのが、「スライド範囲中心部C±10mm」であり、この領域において、円筒状内周面6の内径寸法Dに着目した。本明細書および特許請求の範囲における外側継手部材のトラック溝の継手軸方向のスライド範囲中央部は、上記の意味を有する。 Here, the sliding range center C is defined. The sliding range center C is set arbitrarily depending on the conditions of use of the vehicle. In other words, the sliding range center C may deviate from the axial center position surrounded by lines X1 to X3 from the opening of the cup portion 2a to the bottom of the cup portion 2a. Therefore, the center of the axial displacement of the joint center O of the sliding type constant velocity universal joint 1 during normal vehicle driving is defined as the sliding range center C. Based on the sliding range center C, the area that can include the area that is always used during normal vehicle driving is "sliding range center C ± 10 mm", and in this area, attention is paid to the inner diameter dimension D of the cylindrical inner peripheral surface 6. In this specification and claims, the sliding range center in the joint axial direction of the track groove of the outer joint member has the above meaning.

図5の中央範囲Wにおける外側継手部材2の円筒状内周面6の内径寸法の状態を図4に基づいて説明する。図4に示すように、8個のボールを組込んだ本実施形態の摺動式等速自在継手1では、外側継手部材2の直径上に円筒状内周面区分6’が4つずつ形成される。直径方向に対向する円筒状内周面区分6’の内径寸法は、対角4位相の内径寸法となる。円筒状内周面区分6’の対角4位相の内径寸法にD1、D2、D3、D4の符号を付す。 The state of the inner diameter dimension of the cylindrical inner peripheral surface 6 of the outer joint member 2 in the central range W of FIG. 5 will be explained with reference to FIG. 4. As shown in FIG. 4, in the sliding type constant velocity universal joint 1 of this embodiment incorporating eight balls, four cylindrical inner peripheral surface segments 6' are formed on the diameter of the outer joint member 2. The inner diameter dimensions of the cylindrical inner peripheral surface segments 6' that face each other in the diametric direction are the inner diameter dimensions of the diagonal four phases. The inner diameter dimensions of the diagonal four phases of the cylindrical inner peripheral surface segments 6' are denoted by D1, D2, D3, and D4.

外側継手部材2の円筒状内周面6(円筒状内周面区分6’)の内径寸法D1、D2、D3、D4は、鍛造精度および熱処理変形により、ばらつきを生じる。中央範囲Wにおける外側継手部材2の円筒状内周面6の内径寸法D1、D2、D3、D4の測定方法を図7に基づいて説明する。図7に示すように、測定機20は、一対のアーム22に設けられた測定端子21とマイクロメータ23を主な構成とする。2つの測定端子21を外側継手部材2の円筒状内周面区分6’に当接させて4位相の内径寸法D1、D2、D3、D4を測定する。 The inner diameter dimensions D1, D2, D3, and D4 of the cylindrical inner peripheral surface 6 (cylindrical inner peripheral surface section 6') of the outer joint member 2 vary due to forging accuracy and heat treatment deformation. A method for measuring the inner diameter dimensions D1, D2, D3, and D4 of the cylindrical inner peripheral surface 6 of the outer joint member 2 in the central range W will be described with reference to FIG. 7. As shown in FIG. 7, the measuring machine 20 mainly comprises measuring terminals 21 and a micrometer 23 provided on a pair of arms 22. The two measuring terminals 21 are brought into contact with the cylindrical inner peripheral surface section 6' of the outer joint member 2 to measure the four-phase inner diameter dimensions D1, D2, D3, and D4.

ケージ5の球状外周面11と摺動篏合する外側継手部材2の円筒状内周面6の内径寸法D1、D2、D3、D4のばらつき(相互差V)は厳しい傾向にあるが、近年の生産技術開発により、外側継手部材2の円筒状内周面6の内径寸法D1、D2、D3、D4の相互差Vは上限Vmaxで0.050mmの水準に到達した。外側継手部材2の円筒状内周面6の内径寸法D1、D2、D3、D4の相互差Vの上限Vmax0.050mmは、後述する外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最大値に影響するので、外側継手部材2の円筒状内周面6の内径寸法D1、D2、D3、D4の相互差Vが0.050mmを超えるものは選択組合せの工程の前に不良品として排除する。ケージ5の球状外周面11は、熱処理後、仕上げ加工されるので、ケージ5の球状外周面11の外径寸法の相互差Vはほとんどなく、5μm以下である。その結果、選択組合せの取り扱い上、好適であることが判明した。これらの知見が解決手段の糸口になった。 The variation (mutual difference V) of the inner diameter dimensions D1, D2, D3, D4 of the cylindrical inner surface 6 of the outer joint member 2, which slides in engagement with the spherical outer peripheral surface 11 of the cage 5, tends to be severe, but due to recent developments in production technology, the mutual difference V of the inner diameter dimensions D1, D2, D3, D4 of the cylindrical inner surface 6 of the outer joint member 2 has reached an upper limit Vmax of 0.050 mm. The upper limit Vmax of 0.050 mm of the difference V between the inner diameters D1, D2, D3, and D4 of the cylindrical inner peripheral surface 6 of the outer joint member 2 affects the maximum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5, which will be described later. Therefore, products with a difference V between the inner diameters D1, D2, D3, and D4 of the cylindrical inner peripheral surface 6 of the outer joint member 2 exceeding 0.050 mm are rejected as defective products before the selective combination process. The spherical outer peripheral surface 11 of the cage 5 is finished after heat treatment, so the difference V between the outer diameters of the spherical outer peripheral surface 11 of the cage 5 is almost negligible, being 5 μm or less. As a result, it was found to be suitable for handling the selective combination. These findings provided the clue to the solution.

特徴的な構成(2)は、中央範囲における外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値を0.010mm~0.160mmとしたことである。 The characteristic configuration (2) is that the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range is set to 0.010 mm to 0.160 mm.

中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値の下限値を0.010mm以上としたことで、外側継手部材2のカップ部2a内は、鍛造仕上げで、かつ熱処理後、研削加工等の仕上げ加工を施さない状態による鍛造肌の面粗さやうねり、また、熱処理スケール残り等の凹凸が存在するが、これらの凹凸を吸収して、ケージ5が干渉なく滑らかにスライドできる。 By setting the lower limit of the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range W to 0.010 mm or more, the inside of the cup portion 2a of the outer joint member 2 is forged and finished without finishing such as grinding after heat treatment, and there are irregularities such as surface roughness and waviness of the forged surface and residual heat treatment scale, but these irregularities are absorbed and the cage 5 can slide smoothly without interference.

また、中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値の上限値を0.160mm以下とする。中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGが大きくなると、これによるケージ5の径方向への遊びが大きくなり、それによって特に高作動角時にケージ5による外側継手部材2の円筒状内周面6への打音(異音)が懸念されるが、中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値の上限値を0.160mm以下としたことで、ケージ5による外側継手部材2の円筒状内周面6への打音(異音)を抑制できる。 In addition, the upper limit of the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range W is set to 0.160 mm or less. If the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range W becomes large, the radial play of the cage 5 will increase, which may cause the cage 5 to make a striking sound (abnormal sound) against the cylindrical inner peripheral surface 6 of the outer joint member 2, especially at high operating angles. However, by setting the upper limit of the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range W to 0.160 mm or less, the striking sound (abnormal sound) against the cylindrical inner peripheral surface 6 of the outer joint member 2 by the cage 5 can be suppressed.

さらに、中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値を0.010mm以上とし、0.160mm以下とすることで、外側継手部材2の円筒状内周面6に対するケージ5の選択組合せの実用を可能にする。すなわち、外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値の下限値0.010mmと上限値0.160mmとの間には0.150mmの幅が設けられている。ケージ5の球状外周面11の外径寸法の相互差Vは5μm以下の僅かな値であるので、ケージ5の球状外周面11の外径寸法を狙い寸法に仕上げ可能であり、例えば、0.030mm程度のランク幅で区分した適宜ランク数のケージ5と外側継手部材2との選択組合せの実用を可能にする。 Furthermore, by setting the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range W to 0.010 mm or more and 0.160 mm or less, it is possible to practically select and combine the cage 5 with the cylindrical inner peripheral surface 6 of the outer joint member 2. That is, a width of 0.150 mm is provided between the lower limit value 0.010 mm and the upper limit value 0.160 mm of the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5. Since the mutual difference V of the outer diameter dimension of the spherical outer peripheral surface 11 of the cage 5 is a small value of 5 μm or less, it is possible to finish the outer diameter dimension of the spherical outer peripheral surface 11 of the cage 5 to the target dimension, and it is possible to practically select and combine the cage 5 and the outer joint member 2 in an appropriate number of ranks divided by a rank width of about 0.030 mm, for example.

具体的に、外側継手部材2の円筒状内周面6に対するケージ5の選択組合せ方法を説明する。選択組合せの作業の前に、外側継手部材2の円筒状内周面6の中央範囲Wにおける内径寸法の最小値およびケージ5の球状外周面11の外径寸法の最大値を測定する。ただし、ケージ5の球状外周面11の外径寸法の相互差Vは5μm以下のごく僅かな値であるので、ケージ2の球状外周面11の外径寸法の最大値と最小値とはほぼ同等の値である。選択組合せの作業の流れの一例として、測定済のランク幅で区分けされたケージ5を複数貯留しておき、中央範囲Wにおける円筒状内周面6の内径寸法の最小値を測定した外側継手部材2の測定データと照合し、中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値の範囲(0.010mm~0.160mm)を満たすケージ5を選択組合せする。 Specifically, the method of selecting and assembling the cage 5 with respect to the cylindrical inner peripheral surface 6 of the outer joint member 2 will be described. Before the selective assembling operation, the minimum value of the inner diameter dimension in the central range W of the cylindrical inner peripheral surface 6 of the outer joint member 2 and the maximum value of the outer diameter dimension of the spherical outer peripheral surface 11 of the cage 5 are measured. However, since the mutual difference V of the outer diameter dimension of the spherical outer peripheral surface 11 of the cage 5 is a very small value of 5 μm or less, the maximum and minimum values of the outer diameter dimension of the spherical outer peripheral surface 11 of the cage 2 are almost equal. As an example of the selective assembling operation flow, a plurality of cages 5 classified by the measured rank width are stored, and the minimum value of the inner diameter dimension of the cylindrical inner peripheral surface 6 in the central range W is compared with the measurement data of the outer joint member 2 measured, and the cage 5 that satisfies the range of the minimum value of the gap G between the cylindrical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 11 of the cage 5 in the central range W (0.010 mm to 0.160 mm) is selected and combined.

外側継手部材2の円筒状内周面6の内径寸法の最小値を測定する測定方法を図8、図9に基づいて説明する。また、ケージ5の球状外周面11の外径寸法の最大値を測定する測定方法を図10に基づいて説明する。図8は外側継手部材2の円筒状内周面6の最小内径を測定する測定機の概要図で、図9は外側継手部材2の円筒状内周面6の最小内径を測定する原理図である。図10はケージ5の球状外周面11の最大外径を測定する測定機の概要図である。 The measurement method for measuring the minimum value of the inner diameter dimension of the cylindrical inner peripheral surface 6 of the outer joint member 2 will be described with reference to Figures 8 and 9. Also, the measurement method for measuring the maximum value of the outer diameter dimension of the spherical outer peripheral surface 11 of the cage 5 will be described with reference to Figure 10. Figure 8 is a schematic diagram of a measuring device for measuring the minimum inner diameter of the cylindrical inner peripheral surface 6 of the outer joint member 2, and Figure 9 is a principle diagram for measuring the minimum inner diameter of the cylindrical inner peripheral surface 6 of the outer joint member 2. Figure 10 is a schematic diagram of a measuring device for measuring the maximum outer diameter of the spherical outer peripheral surface 11 of the cage 5.

図8に示すように、外側継手部材2の円筒状内周面6の内径寸法の最小値を測定する測定機30は、ベース31、テーブル32、測定用ボール33、ボール保持部34、テーパ軸部材35、操作レバー36およびマイクロメータ37を主な構成とする。ボール保持部34はテーブル32上に固設され、測定用ボール33をポケット34a内に半径方向、円周方向に移動可能に収容している。テーパ軸部材35は、円錐状外周面35aを有し、ボール保持部34に収容された測定用ボール33の内接円の半径方向内側に配置されている。テーパ軸部材35は、操作レバー36により、上下方向(外側継手部材2の軸方向)に移動可能に構成され、テーパ軸部材35の上下方向の移動により、測定用ボール33の外接円は半径方向に拡縮する。テーパ軸部材35の上下方向の移動量がマイクロメータ37と連携した構成となっている。 As shown in FIG. 8, the measuring device 30 for measuring the minimum value of the inner diameter dimension of the cylindrical inner peripheral surface 6 of the outer joint member 2 mainly comprises a base 31, a table 32, a measuring ball 33, a ball holding part 34, a tapered shaft member 35, an operating lever 36, and a micrometer 37. The ball holding part 34 is fixed on the table 32, and holds the measuring ball 33 in a pocket 34a so that it can move radially and circumferentially. The tapered shaft member 35 has a conical outer peripheral surface 35a and is disposed radially inside the inscribed circle of the measuring ball 33 held in the ball holding part 34. The tapered shaft member 35 is configured to be movable in the vertical direction (axial direction of the outer joint member 2) by the operating lever 36, and the circumscribed circle of the measuring ball 33 expands and contracts in the radial direction due to the vertical movement of the tapered shaft member 35. The vertical movement of the tapered shaft member 35 is configured to be linked to the micrometer 37.

外側継手部材2の円筒状内周面6の中央範囲Wにおける内径寸法の最小値の測定方法を説明する。測定機30の測定用ボール33の外接円が半径方向に縮径した状態で、外側継手部材2の円筒状内周面区分6’を測定用ボール33に位相を合わせて被せ、外側継手部材2をテーブル32上に載置する。図8に示すように、テーパ軸部材35を下方向に移動させ、円錐状外周面35aを測定用ボール33に当接させ、測定用ボール33を円筒状内周面区分6’に押し付ける。円筒状内周面6(円筒状内周面区分6’)の内径寸法はばらついているので、図9に測定原理を示すように、8個の測定用ボール33の内、散点表示した3個のボール33が、テーパ軸部材35の円錐状外周面35aと当接させることにより、外側継手部材2の円筒状内周面6の内径寸法の最小値Dminが測定される。 A method for measuring the minimum inner diameter dimension in the central range W of the cylindrical inner surface 6 of the outer joint member 2 will be described. With the circumscribing circle of the measuring ball 33 of the measuring device 30 contracting in the radial direction, the cylindrical inner surface section 6' of the outer joint member 2 is placed on the measuring ball 33 in phase with the measuring ball 33, and the outer joint member 2 is placed on the table 32. As shown in Figure 8, the tapered shaft member 35 is moved downward, the conical outer surface 35a is brought into contact with the measuring ball 33, and the measuring ball 33 is pressed against the cylindrical inner surface section 6'. Since the inner diameter dimension of the cylindrical inner surface 6 (cylindrical inner surface section 6') varies, as shown in FIG. 9, the measurement principle is shown. Of the eight measurement balls 33, three balls 33 shown as scattered dots are brought into contact with the conical outer surface 35a of the tapered shaft member 35 to measure the minimum value Dmin of the inner diameter dimension of the cylindrical inner surface 6 of the outer joint member 2.

図10に示すように、ケージ5の球状外周面11の外径寸法の最大値を測定する測定器40は、ベース41、テーブル42、測定端子43、マイクロメータ47を主な構成とする。ベース41上のテーブル42にケージ5の球状外周面11を載置し、矢印で示すように、ケージ5をその軸心回りに回転させて外径寸法の最大値dmaxを測定する。 As shown in Figure 10, the measuring device 40 for measuring the maximum outer diameter of the spherical outer peripheral surface 11 of the cage 5 mainly comprises a base 41, a table 42, a measuring terminal 43, and a micrometer 47. The spherical outer peripheral surface 11 of the cage 5 is placed on the table 42 on the base 41, and the cage 5 is rotated around its axis as shown by the arrow to measure the maximum outer diameter dmax.

外側継手部材2の円筒状内周面6の内径寸法の最小値Dminとケージ5の球状外周面11の外径寸法の最大値dmaxとの差が中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値Gminである。すきまGの最小値Gminは次式で表される。
すきまGの最小値Gmin=Dmin-dmax
以上の方法で測定したすきまGの最小値Gminが、中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値Gminの範囲(0.010mm~0.160mm)を満たすケージ5を選択組合せする。
The difference between the minimum value Dmin of the inner diameter dimension of the cylindrical inner circumferential surface 6 of the outer joint member 2 and the maximum value dmax of the outer diameter dimension of the spherical outer circumferential surface 11 of the cage 5 is the minimum value Gmin of the gap G between the cylindrical inner circumferential surface 6 of the outer joint member 2 and the spherical outer circumferential surface 11 of the cage 5 in the central range W. The minimum value Gmin of the gap G is expressed by the following equation.
Minimum value of gap G: Gmin = Dmin - dmax
The cage 5 is selected and combined such that the minimum value Gmin of the gap G measured by the above method falls within the range (0.010 mm to 0.160 mm) of the minimum value Gmin of the gap G between the cylindrical inner circumferential surface 6 of the outer joint member 2 and the spherical outer circumferential surface 11 of the cage 5 in the central range W.

中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値Gminが0.010mm~0.160mmを満たすケージ5を選択組合せすると、外側継手部材2の円筒状内周面6の内径寸法の相互差Vの上限Vmaxは、前述したように、0.050mmであるので、次の特徴的な構成(3)が導かれる。 When a cage 5 is selected and combined such that the minimum value Gmin of the gap G between the cylindrical inner circumferential surface 6 of the outer joint member 2 and the spherical outer circumferential surface 11 of the cage 5 in the central range W is 0.010 mm to 0.160 mm, the upper limit Vmax of the mutual difference V in the inner diameter dimension of the cylindrical inner circumferential surface 6 of the outer joint member 2 is 0.050 mm, as mentioned above, leading to the following characteristic configuration (3).

特徴的な構成(3)は、中央範囲におけるすきまGの最大値が0.210mm以下としたことである。 The characteristic feature (3) is that the maximum value of the gap G in the central range is 0.210 mm or less.

中央範囲Wにおける外側継手部材2の円筒状内周面6とケージ5の球状外周面11との間のすきまGの最小値Gmin(0.010mm~0.160mm)に外側継手部材2の円筒状内周面6の内径寸法の相互差Vの上限値Vmax0.050mmを加算すると、中央範囲におけるすきまGの最大値Gmaxが0.210mm以下となる。すきまGの最大値Gmaxは次式で表される。
すきまGの最大値Gmax=Gmin+Vmax
When the upper limit Vmax of 0.050 mm of the difference V in the inner diameter dimension of the cylindrical inner circumferential surface 6 of the outer joint member 2 is added to the minimum value Gmin (0.010 mm to 0.160 mm) of the gap G between the cylindrical inner circumferential surface 6 of the outer joint member 2 and the spherical outer circumferential surface 11 of the cage 5 in the central range W, the maximum value Gmax of the gap G in the central range is 0.210 mm or less. The maximum value Gmax of the gap G is expressed by the following equation.
Maximum value of clearance G: Gmax = Gmin + Vmax

中央範囲WにおけるすきまGの最大値Gmaxを0.210mm以下とする。外側継手部材2のカップ部2a内は、鍛造仕上げで、かつ熱処理後、研削加工等の仕上げ加工を施さない状態のため、円筒状内周面6は、熱処理変形により円筒断面が楕円形状に変形する。そのため、この楕円変形量が大きいと、外側継手部材2の円筒状内周面6とケージ5の球状外周面11の接触は、特定位置に集中し、それにより部分摩耗等を引き起こす恐れがあり、また、回転バランス性能が悪化するが、中央範囲WにおけるすきまGの最大値Gmaxを0.210mm以下としたことで、上記のような問題を防止することができる。 The maximum value Gmax of the gap G in the central range W is set to 0.210 mm or less. The inside of the cup portion 2a of the outer joint member 2 is forged and is not subjected to finishing processes such as grinding after heat treatment, so the cylindrical inner surface 6 is deformed into an elliptical cylindrical cross section due to heat treatment deformation. Therefore, if the amount of elliptical deformation is large, the contact between the cylindrical inner surface 6 of the outer joint member 2 and the spherical outer surface 11 of the cage 5 is concentrated at a specific position, which may cause partial wear and deteriorate the rotational balance performance. However, by setting the maximum value Gmax of the gap G in the central range W to 0.210 mm or less, the above problems can be prevented.

また、上記の中央範囲Wを除く領域における上記の外側継手部材の円筒状内周面と上記のケージの球状外周面との間のすきまGの最小値Gmin’を0.010mm~0.260mmとすると共に、当該すきまGの最大値Gmax’を0.310mm以下とすることが望ましい。これにより、継手を車両に組み付ける際や、走行中滑らかにスライドすることができる。 It is also desirable to set the minimum value Gmin' of the gap G between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the region excluding the central region W to 0.010 mm to 0.260 mm, and the maximum value Gmax' of the gap G to 0.310 mm or less. This allows the joint to slide smoothly when assembled to the vehicle and while it is traveling.

以上を要約すると、上記の特徴的な構成(1)~(3)が相俟って、鍛造、熱処理の実用精度レベルを基に、外側継手部材に対するケージの選択組合せを可能にし、かつ等速性、耐久性、NVH特性を高性能に確保できる。 In summary, the combination of the above characteristic configurations (1) to (3) makes it possible to select and combine the cage for the outer joint member based on the practical precision level of forging and heat treatment, while ensuring high performance in terms of constant velocity, durability, and NVH characteristics.

本発明の第2の実施形態に係る摺動式等速自在継手を図11、図12に基づいて説明する。本実施形態のダブルオフセット型の摺動式等速自在継手は、ボールの個数が6個であり、第1の実施形態の摺動式等速自在継手とはボールの個数が異なる。その他の構成については、第1の実施形態と同じであるので、同様の機能を有する部位には同一の符号を付し、要点のみを説明する。図11は本実施形態に係る摺動式等速自在継手の縦断面図で、図12のB-N-B’線における縦断面図である。図12は本実施形態に係る摺動式等速自在継手の横断面図で、図11のA-A線における横断面図である。 A sliding type constant velocity universal joint according to the second embodiment of the present invention will be described with reference to Figures 11 and 12. The double offset type sliding type constant velocity universal joint of this embodiment has six balls, which is different from the number of balls in the sliding type constant velocity universal joint of the first embodiment. The rest of the configuration is the same as in the first embodiment, so parts having similar functions are given the same reference numerals and only the main points will be described. Figure 11 is a vertical cross-sectional view of the sliding type constant velocity universal joint according to this embodiment, taken along line B-N-B' in Figure 12. Figure 12 is a cross-sectional view of the sliding type constant velocity universal joint according to this embodiment, taken along line A-A in Figure 11.

図11、図12に示すように、本実施形態に係るダブルオフセット型の摺動式等速自在継手1は、外側継手部材2の円筒状内周面6には、6本のトラック溝7が円周方向に等間隔で、かつ軸方向に沿って直線状に形成されている。内側継手部材3の球状外周面8には、外側継手部材2のトラック溝7と対向するトラック溝9が円周方向に等間隔で、かつ軸方向に沿って直線状に形成されている。外側継手部材2のトラック溝7と内側継手部材3のトラック溝9との間に6個のボール4が1個ずつ組み込まれている。 As shown in Figures 11 and 12, in the double offset type sliding constant velocity universal joint 1 according to this embodiment, six track grooves 7 are formed on the cylindrical inner peripheral surface 6 of the outer joint member 2 at equal intervals in the circumferential direction and in a straight line along the axial direction. On the spherical outer peripheral surface 8 of the inner joint member 3, track grooves 9 that face the track grooves 7 of the outer joint member 2 are formed at equal intervals in the circumferential direction and in a straight line along the axial direction. Six balls 4 are incorporated between the track grooves 7 of the outer joint member 2 and the track grooves 9 of the inner joint member 3, one each.

ケージ5は、球状外周面11と球状内周面12を有し、球状外周面11は外側継手部材2の円筒状内周面6と嵌合して接触案内され、球状内周面12は内側継手部材3の球状外周面8と嵌合して接触案内される。ケージ5の球状外周面11は曲率中心をOc1とする曲率半径Rc1で形成され、球状内周面12は曲率中心をOc2とする曲率半径Rc2で形成されている。内側継手部材3の球状外周面8は曲率中心をOi2とする曲率半径Riで形成され、曲率中心Oi2は曲率中心Oc2と一致している。曲率中心Oc1、Oc2は、軸線N上に位置し、継手中心Oに対して軸方向の反対側に等距離オフセットされている。これにより、継手が作動角を取った場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等分する平面上にボール4が常に案内され、二軸間が等速回転で伝達される。 The cage 5 has a spherical outer peripheral surface 11 and a spherical inner peripheral surface 12. The spherical outer peripheral surface 11 is fitted and guided in contact with the cylindrical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 12 is fitted and guided in contact with the spherical outer peripheral surface 8 of the inner joint member 3. The spherical outer peripheral surface 11 of the cage 5 is formed with a radius of curvature Rc1 with a center of curvature Oc1, and the spherical inner peripheral surface 12 is formed with a radius of curvature Rc2 with a center of curvature Oc2. The spherical outer peripheral surface 8 of the inner joint member 3 is formed with a radius of curvature Ri with a center of curvature Oi2, and the center of curvature Oi2 coincides with the center of curvature Oc2. The centers of curvature Oc1 and Oc2 are located on the axis N and are offset equidistantly in the axial opposite direction from the joint center O. As a result, when the joint has an operating angle, the ball 4 is always guided on a plane that bisects the angle between the axes of the outer joint member 2 and the inner joint member 3, and rotation is transmitted between the two shafts at a constant speed.

本実施形態に係るダブルオフセット型の摺動式等速自在継手1においても、前述した第1の実施形態に係るダブルオフセット型の摺動式等速自在継手1と同様に、次の特徴的な構成(1)~(3)を備えている。
(1)外側継手部材の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲Wとし、当該中央範囲Wに、前記外側継手部材の円筒状内周面の内径が最小となる部位を形成したこと。
(2)中央範囲Wにおける外側継手部材の円筒状内周面とケージの球状外周面との間のすきまGの最小値Gminを0.010mm~0.160mmとしたこと。
(3)前記すきまGの最大値Gmaxを0.210mm以下としたこと。
The double offset type sliding type constant velocity universal joint 1 according to this embodiment also has the following characteristic configurations (1) to (3), similar to the double offset type sliding type constant velocity universal joint 1 according to the first embodiment described above.
(1) A central range W is defined as a range extending from 10 mm toward the rear side to 10 mm toward the opening side with respect to the center of the sliding range in the axial direction of the outer joint member, and a portion where the inner diameter of the cylindrical inner circumferential surface of the outer joint member is smallest is formed in the central range W.
(2) The minimum value Gmin of the gap G between the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the cage in the central region W is set to 0.010 mm to 0.160 mm.
(3) The maximum value Gmax of the gap G is set to 0.210 mm or less.

上記の特徴的な構成(1)~(3)が相俟って、鍛造、熱処理の実用精度レベルを基に、外側継手部材に対するケージの選択組合せを可能にし、かつ等速性、耐久性、NVH特性を高性能に確保できる。上記の特徴的な構成(1)~(3)について第1の実施形態のダブルオフセット型の摺動式等速自在継手1で説明した内容は、本実施形態のダブルオフセット型の摺動式等速自在継手1でも同様であるので準用する。 The above characteristic configurations (1) to (3) work together to enable the selection and combination of cages for the outer joint member based on the practical level of precision in forging and heat treatment, while ensuring high performance in terms of constant velocity, durability, and NVH characteristics. The above characteristic configurations (1) to (3) explained for the double offset sliding constant velocity universal joint 1 of the first embodiment are also applicable to the double offset sliding constant velocity universal joint 1 of this embodiment, and so apply mutatis mutandis.

また、第1の実施形態のダブルオフセット型の摺動式等速自在継手1と同様に、上記の中央範囲Wを除く領域における上記の外側継手部材の円筒状内周面と上記のケージの球状外周面との間のすきまGの最小値Gmin’を0.010mm~0.260mmとすると共に、当該すきまGの最大値Gmax’を0.310mm以下とすることが望ましい。これにより、継手を車両に組み付ける際や、走行中滑らかにスライドすることができる。 Furthermore, similar to the double offset type sliding constant velocity universal joint 1 of the first embodiment, it is desirable to set the minimum value Gmin' of the gap G between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the region excluding the central range W to 0.010 mm to 0.260 mm, and to set the maximum value Gmax' of the gap G to 0.310 mm or less. This allows the joint to slide smoothly when assembled to the vehicle and while traveling.

本発明の第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第1の変形例を図13に基づいて説明する。本変形例の内側組合せ体は、ケージのポケットとボールとの間に正の軸方向すきまを設けた点が第2の実施形態と異なる。その他の構成については、第2の実施形態と同じであるので、同様の機能を有する部位には同一の符号を付し、要点のみを説明する。 A first modified example of the inner assembly of a sliding type constant velocity universal joint according to the second embodiment of the present invention will be described with reference to FIG. 13. The inner assembly of this modified example differs from the second embodiment in that a positive axial clearance is provided between the cage pocket and the ball. The rest of the configuration is the same as in the second embodiment, so parts having similar functions are given the same reference numerals and only the main points will be described.

図13は、第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第1の変形例の縦断面図である。図13に示すように、内側組合せ体Iは、内側継手部材3、ケージ5、
ボール4からなり、ケージ5のポケット5aの継手軸方向に対向する壁面5dとボール4との間に正の軸方向すきまδ2が形成されている。ボール4の直径をDBALL、ケージ5のポケット5aの継手軸方向に対向する壁面5d間の幅をLwとすると、軸方向すきまδ2は、δ2=Lw-DBALLとなり、+0.001mm~+0.050mm程度である。これにより、ボール4がポケット5a内で滑らかに転がることができ、スライド抵抗の低減が図れる。
Fig. 13 is a vertical sectional view of a first modified example of the inner assembly of the sliding type constant velocity universal joint according to the second embodiment. As shown in Fig. 13, the inner assembly I includes an inner joint member 3, a cage 5,
It is made up of balls 4, and a positive axial clearance δ2 is formed between the balls 4 and wall surfaces 5d of the pocket 5a of the cage 5 that face each other in the joint axial direction. If the diameter of the balls 4 is D BALL and the width between the wall surfaces 5d of the pocket 5a of the cage 5 that face each other in the joint axial direction is Lw, then the axial clearance δ2 is δ2 = Lw - D BALL , which is about +0.001 mm to +0.050 mm. This allows the balls 4 to roll smoothly within the pocket 5a, reducing sliding resistance.

本発明の第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第2の変形例を図14、図15に基づいて説明する。本変形例の内側組合せ体は、ケージのポケットとボールとの間に正の軸方向すきまを設けた点および内側継手部材とケージとの軸方向の相対移動を可能にする軸方向すきまを設けた点が第2の実施形態と異なる。その他の構成については、第2の実施形態と同じであるので、同様の機能を有する部位には同一の符号を付し、要点のみを説明する。 A second modified example of the inner combination body of a sliding type constant velocity universal joint according to the second embodiment of the present invention will be described with reference to Figures 14 and 15. The inner combination body of this modified example differs from the second embodiment in that a positive axial clearance is provided between the cage pocket and the ball, and an axial clearance is provided that allows relative axial movement between the inner joint member and the cage. As the rest of the configuration is the same as in the second embodiment, parts having similar functions are given the same reference numerals, and only the main points will be described.

図14は、第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第2の変形例の縦断面図であり、図15は、図14のE部の拡大図である。図14に示すように、内側組合せ体Iは、内側継手部材3、ケージ5、ボール4からなり、ケージ5のポケット5aの
継手軸方向に対向する壁面5dとボール4との間に正の軸方向すきまδ2が形成されている。ケージ5の球状外周面11は曲率中心Oc1とする曲率半径Rc1で形成され、球状内周面12は曲率中心Oc2とする曲率半径Rc2で形成されている。内側継手部材3の球状外周面8は曲率中心Oi2とする曲率半径Riで形成されている。曲率中心Oc1、Oi2は、軸線N上に位置し、継手中心Oに対して軸方向に等距離Fでオフセットされている。また、ケージ5の球状内周面12の曲率中心Oc2は、Rc2>Riとなるよう曲率中心Oi2に対して軸線Nより半径方向にオフセットして位置し、継手中心Oに対して軸方向に距離Fでオフセットされている。
Fig. 14 is a longitudinal sectional view of a second modified example of the inner combination body of the sliding type constant velocity universal joint according to the second embodiment, and Fig. 15 is an enlarged view of the E part in Fig. 14. As shown in Fig. 14, the inner combination body I is composed of the inner joint member 3, the cage 5, and the ball 4, and a positive axial clearance δ2 is formed between the ball 4 and the wall surface 5d of the pocket 5a of the cage 5 facing in the joint axial direction. The spherical outer peripheral surface 11 of the cage 5 is formed with a radius of curvature Rc1 with a center of curvature Oc1, and the spherical inner peripheral surface 12 is formed with a radius of curvature Rc2 with a center of curvature Oc2. The spherical outer peripheral surface 8 of the inner joint member 3 is formed with a radius of curvature Ri with a center of curvature Oi2. The centers of curvature Oc1 and Oi2 are located on the axis N and are offset from the joint center O by an equal distance F in the axial direction. In addition, the center of curvature Oc2 of the spherical inner surface 12 of the cage 5 is radially offset from the axis N with respect to the center of curvature Oi2 so that Rc2>Ri, and is axially offset from the joint center O by a distance F.

図15に示すように、内側継手部材3の球状外周面8の軸方向中央部でケージ5の球状内周面12に対して接触案内を可能にする球面すきまδ3が形成され、中央部の両側には、内側継手部材3とケージ5との軸方向の相対移動を可能にする軸方向すきまδ4が形成される。球面すきまδ3は、中央値で0.050mm程度である。軸方向すきまδ4は、1mm程度である。外側継手部材2に対する内側継手部材3の軸方向の移動可能量は、軸方向すきまδ4の1mm程度の2倍の2mm程度となり、この範囲の軸方向の移動可能量で振動が吸収される。すなわち、汎用される振動条件に対してスライド抵抗を低減することができる。球面すきまδ3および軸方向すきまδ4は、それぞれ誇張して図示している。 As shown in FIG. 15, a spherical clearance δ3 is formed at the axial center of the spherical outer peripheral surface 8 of the inner joint member 3, which allows contact guiding with the spherical inner peripheral surface 12 of the cage 5, and an axial clearance δ4 is formed on both sides of the center, which allows relative axial movement between the inner joint member 3 and the cage 5. The median value of the spherical clearance δ3 is about 0.050 mm. The axial clearance δ4 is about 1 mm. The axial movement of the inner joint member 3 relative to the outer joint member 2 is about 2 mm, which is twice the axial clearance δ4 of about 1 mm, and vibrations are absorbed within this range of axial movement. In other words, sliding resistance can be reduced under commonly used vibration conditions. The spherical clearance δ3 and the axial clearance δ4 are each exaggerated in the illustration.

ケージ5と内側継手部材3との間の軸方向すきまδ4と、ケージ5のポケット5aの継手軸方向に対向する壁面5dとボール4との間の正の軸方向すきまδ2とが相俟って、スライド抵抗を低減することができる。 The axial clearance δ4 between the cage 5 and the inner joint member 3, combined with the positive axial clearance δ2 between the ball 4 and the wall surface 5d of the cage 5's pocket 5a that faces the joint axial direction, reduces the sliding resistance.

本発明の第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第3の変形例を図16に基づいて説明する。本変形例の内側組合せ体は、ケージの球状内周面の形状が第2の変形例と異なる。その他の構成については、第2の実施形態、第2の変形例と同様であるので、同様の機能を有する部位には同一の符号を付し、要点のみを説明する。 A third modified example of the inner assembly of the sliding type constant velocity universal joint according to the second embodiment of the present invention will be described with reference to FIG. 16. The inner assembly of this modified example differs from the second modified example in the shape of the spherical inner peripheral surface of the cage. The rest of the configuration is the same as in the second embodiment and the second modified example, so parts having similar functions are given the same reference numerals and only the main points will be described.

図16は、第2の実施形態に係る摺動式等速自在継手の内側組合せ体の第3の変形例の縦断面図である。図16に示すように、ケージ5の球状内周面12は、曲率中心Oc2とする曲率半径Rc2の球面部12aと、曲率中心Oc3とする曲率半径Rc2の球面部12bと、球面部12aと球面部12bとの間を接線で結ぶ円筒部12cとから構成されている。曲率中心Oc2、曲率中心Oc3は、軸線N上に位置し、曲率中心Oc2と曲率中心Oc3との軸方向の中心点が継手中心Oに対してFだけオフセットされている。内側継手部材3の球状外周面8は、曲率中心Oi2とする曲率半径Riで形成されている。図16の配置状態では、ケージ5の球状内周面12の曲率中心Oc2と曲率中心Oc3との軸方向の中心点は、内側継手部材3の球状外周面8の曲率中心Oi2と一致している。 Figure 16 is a longitudinal sectional view of a third modified example of the inner assembly of the sliding type constant velocity universal joint according to the second embodiment. As shown in Figure 16, the spherical inner peripheral surface 12 of the cage 5 is composed of a spherical portion 12a with a radius of curvature Rc2 with a center of curvature Oc2, a spherical portion 12b with a radius of curvature Rc2 with a center of curvature Oc3, and a cylindrical portion 12c connecting the spherical portion 12a and the spherical portion 12b with a tangent line. The centers of curvature Oc2 and Oc3 are located on the axis N, and the axial center points of the centers of curvature Oc2 and Oc3 are offset by F with respect to the joint center O. The spherical outer peripheral surface 8 of the inner joint member 3 is formed with a radius of curvature Ri with a center of curvature Oi2. In the arrangement shown in FIG. 16, the axial center point between the center of curvature Oc2 and the center of curvature Oc3 of the spherical inner peripheral surface 12 of the cage 5 coincides with the center of curvature Oi2 of the spherical outer peripheral surface 8 of the inner joint member 3.

内側継手部材3の球状外周面8の軸方向中央部でケージ5の円筒部12cに対して接触案内を可能にする球面すきまδ3が形成され、中央部の両側には、内側継手部材3とケージ5との軸方向の相対移動を可能にする軸方向すきまδ4が形成される。円筒部12cの長さは1mm程度であり、軸方向すきまδ4は円筒部12cの長さに対応する。外側継手部材2に対する内側継手部材3の軸方向の移動可能量は、円筒部12cの長さ1mm程度の2倍の2mm程度となり、この範囲の軸方向の移動可能量で振動が吸収される。すなわち、汎用される振動条件に対してスライド抵抗を低減することができる。 A spherical clearance δ3 is formed in the axial center of the spherical outer peripheral surface 8 of the inner joint member 3, which allows contact guiding with the cylindrical portion 12c of the cage 5, and an axial clearance δ4 is formed on both sides of the center, which allows relative axial movement between the inner joint member 3 and the cage 5. The length of the cylindrical portion 12c is about 1 mm, and the axial clearance δ4 corresponds to the length of the cylindrical portion 12c. The amount of axial movement of the inner joint member 3 relative to the outer joint member 2 is about 2 mm, which is twice the length of the cylindrical portion 12c (about 1 mm), and vibrations are absorbed within this range of axial movement. In other words, sliding resistance can be reduced under commonly used vibration conditions.

本変形例では、ケージ5の球状内周面12は、曲率中心Oc2とする曲率半径Rc2の球面部12aと、曲率中心Oc3とする曲率半径Rc2の球面部12bと、球面部12aと球面部12bとの間を接線で結ぶ円筒部12cとから構成されている。曲率半径Rc2と曲率半径Riとが実質的に同じであるので、ケージ5の球状内周面12と内側継手部材3の球状外周面8との間の接触案内が滑らかで、かつ安定する。第1、第2の変形例と同様、ケージ5のポケット5aの継手軸方向に対向する壁面5dとボール4との間に正の軸方向すきまδ2が形成されている。 In this modification, the spherical inner peripheral surface 12 of the cage 5 is composed of a spherical portion 12a with a radius of curvature Rc2 and a center of curvature Oc2, a spherical portion 12b with a radius of curvature Rc2 and a center of curvature Oc3, and a cylindrical portion 12c that connects the spherical portions 12a and 12b with a tangent. Since the radius of curvature Rc2 and the radius of curvature Ri are substantially the same, the contact guide between the spherical inner peripheral surface 12 of the cage 5 and the spherical outer peripheral surface 8 of the inner joint member 3 is smooth and stable. As in the first and second modifications, a positive axial clearance δ2 is formed between the ball 4 and the wall surface 5d of the pocket 5a of the cage 5 facing the joint axial direction.

第1~3の変形例の内側組合せ体からなるダブルオフセット型の摺動式等速自在継手1においても、前述した第1の実施形態に係るダブルオフセット型の摺動式等速自在継手1と同様に、次の特徴的な構成(1)~(3)を備えている。
(1)外側継手部材の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲Wとし、当該中央範囲Wに、前記外側継手部材の円筒状内周面の内径が最小となる部位を形成したこと。
(2)中央範囲Wにおける外側継手部材の円筒状内周面とケージの球状外周面との間のすきまGの最小値Gminを0.010mm~0.160mmとしたこと。
(3)前記すきまGの最大値Gmaxを0.210mm以下としたこと。
The double offset type sliding constant velocity universal joint 1 consisting of the inner combination bodies of the first to third modified examples also has the following characteristic configurations (1) to (3) as with the double offset type sliding constant velocity universal joint 1 according to the first embodiment described above.
(1) A central range W is defined as a range extending from 10 mm toward the rear side to 10 mm toward the opening side with respect to the center of the sliding range in the axial direction of the outer joint member, and a portion where the inner diameter of the cylindrical inner circumferential surface of the outer joint member is smallest is formed in the central range W.
(2) The minimum value Gmin of the gap G between the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the cage in the central region W is set to 0.010 mm to 0.160 mm.
(3) The maximum value Gmax of the gap G is set to 0.210 mm or less.

上記の特徴的な構成(1)~(3)が相俟って、上記の特徴的な構成(1)~(3)が相俟って、鍛造、熱処理の実用精度レベルを基に、外側継手部材に対するケージの選択組合せを可能にし、かつ等速性、耐久性、NVH特性を高性能に確保できる。上記の特徴的な構成(1)~(3)について第1の実施形態のダブルオフセット型の摺動式等速自在継手1で説明した内容は、本実施形態のダブルオフセット型の摺動式等速自在継手1でも同様であるので準用する。 The above characteristic configurations (1) to (3) work together to enable the selection and combination of cages for the outer joint member based on the practical precision level of forging and heat treatment, while ensuring high performance in terms of constant velocity, durability, and NVH characteristics. The above characteristic configurations (1) to (3) explained in the first embodiment of the double offset type sliding constant velocity universal joint 1 are also applicable to the double offset type sliding constant velocity universal joint 1 of this embodiment, and so apply mutatis mutandis.

また、上記の中央範囲Wを除く領域における上記の外側継手部材の円筒状内周面と上記のケージの球状外周面との間のすきまGの最小値Gmin’を0.010mm~0.260mmとすると共に、当該すきまGの最大値Gmax’を0.310mm以下とすることが望ましい。これにより、継手を車両に組み付ける際や、走行中滑らかにスライドすることができる。 In addition, it is desirable to set the minimum value Gmin' of the gap G between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the region excluding the central region W to 0.010 mm to 0.260 mm, and the maximum value Gmax' of the gap G to 0.310 mm or less. This allows the joint to slide smoothly when assembled to the vehicle and while it is traveling.

第2の実施形態に係る摺動式等速自在継手の内側組合せ体Iの第1~3の変形例は、ボール4の個数を6個から8個に変更して、第1の実施形態のダブルオフセット型の摺動式等速自在継手1に適用することができる。 The first to third modified examples of the inner combination body I of the sliding type constant velocity universal joint according to the second embodiment can be applied to the double offset type sliding type constant velocity universal joint 1 of the first embodiment by changing the number of balls 4 from six to eight.

本発明は前述した実施形態、変形例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments and modifications, and may of course be embodied in various other forms without departing from the spirit of the present invention. The scope of the present invention is indicated by the claims, and includes all equivalents and modifications within the scope of the claims.

1 摺動式等速自在継手
2 外側継手部材
3 内側継手部材
4 ボール
5 ケージ
5a ポケット
6 円筒状内周面
6a 円筒状内周面の内径が最小となる部位
7 トラック溝
8 球状外周面
9 トラック溝
11 球状外周面
12 球状内周面
C スライド範囲中央部
BALL ボール径
F オフセット量
G すきま
Gmin すきまの最小値
Gmax すきまの最大値
O 継手中心
O1 曲率中心
O2 曲率中心
PCD ピッチ円直径
W 中央範囲
Δ PCDすきま
δ2 ボールとポケット間の正の軸方向すきま
δ3 球面すきま
δ4 ケージと内側継手部材間の軸方向すきま
1 Sliding type constant velocity universal joint 2 Outer joint member 3 Inner joint member 4 Ball 5 Cage 5a Pocket 6 Cylindrical inner peripheral surface 6a Portion where the inner diameter of the cylindrical inner peripheral surface is smallest 7 Track groove 8 Spherical outer peripheral surface 9 Track groove 11 Spherical outer peripheral surface 12 Spherical inner peripheral surface C Slide range central portion D BALL ball diameter F Offset amount G Clearance Gmin Minimum value of clearance Gmax Maximum value of clearance O Joint center O1 Center of curvature O2 Center of curvature PCD Pitch circle diameter W Central range Δ PCD clearance δ2 Positive axial clearance between ball and pocket δ3 Spherical clearance δ4 Axial clearance between cage and inner joint member

Claims (4)

円筒状内周面に直線状の複数のトラック溝が軸方向に沿って形成された外側継手部材と、球状外周面に前記外側継手部材の直線状の複数のトラック溝に対向する直線状の複数のトラック溝が軸方向に沿って形成された内側継手部材と、前記外側継手部材の直線状の複数のトラック溝と前記内側継手部材の直線状の複数のトラック溝間に組込まれ、トルクを伝達する複数のボールと、前記ボールをポケットに収容し、前記外側継手部材の円筒状内周面と前記内側継手部材の球状外周面にそれぞれ接触案内される球状外周面と球状内周面を有するケージとからなり、前記ケージの球状外周面の曲率中心と球状内周面の曲率中心が、継手中心に対して軸方向の反対側にオフセットした摺動式等速自在継手において、
前記外側継手部材の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、前記外側継手部材の円筒状内周面の内径が最小となる部位を形成し、
前記中央範囲における前記外側継手部材の円筒状内周面と前記ケージの球状外周面との間のすきまの最小値を0.010mm~0.160mmとすると共に、当該すきまの最大値を0.210mm以下としたことを特徴とする摺動式等速自在継手。
a sliding type constant velocity universal joint comprising an outer joint member having a cylindrical inner circumferential surface on which a plurality of linear track grooves are formed along the axial direction; an inner joint member having a spherical outer circumferential surface on which a plurality of linear track grooves facing the plurality of linear track grooves of the outer joint member are formed along the axial direction; a plurality of balls that are fitted between the plurality of linear track grooves of the outer joint member and the plurality of linear track grooves of the inner joint member to transmit torque; and a cage that houses the balls in pockets and has a spherical outer circumferential surface and a spherical inner circumferential surface that are contact-guided by the cylindrical inner circumferential surface of the outer joint member and the spherical outer circumferential surface of the inner joint member, respectively, wherein the center of curvature of the spherical outer circumferential surface and the center of curvature of the spherical inner circumferential surface of the cage are offset to opposite sides in the axial direction with respect to a joint center,
a central range is a range from 10 mm on the back side to 10 mm on the opening side with respect to a central portion of a sliding range in the joint axial direction of the outer joint member, and a portion where an inner diameter of a cylindrical inner circumferential surface of the outer joint member is smallest is formed in the central range,
A sliding type constant velocity universal joint, characterized in that the minimum value of the gap between the cylindrical inner surface of the outer joint member and the spherical outer surface of the cage in the central range is 0.010 mm to 0.160 mm, and the maximum value of the gap is 0.210 mm or less.
前記中央範囲を除く領域における前記外側継手部材の円筒状内周面と前記ケージの球状外周面との間のすきまの最小値を0.010mm~0.260mmとすると共に、当該すきまの最大値を0.310mm以下としたことを特徴とする請求項1に記載の摺動式等速自在継手。 The sliding type constant velocity universal joint according to claim 1, characterized in that the minimum value of the gap between the cylindrical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage in the area excluding the central range is 0.010 mm to 0.260 mm, and the maximum value of the gap is 0.310 mm or less. 前記外側継手部材の円筒状内周面とトラック溝が塑性加工で成形された表面であることを特徴とする請求項1又は請求項2に記載の摺動式等速自在継手。 The sliding type constant velocity universal joint according to claim 1 or 2, characterized in that the cylindrical inner peripheral surface of the outer joint member and the track groove are surfaces formed by plastic processing. 前記複数のボールの個数を6~8個としたことを特徴とする請求項1~3のいずれか一項に記載の摺動式等速自在継手。 A sliding constant velocity universal joint according to any one of claims 1 to 3, characterized in that the number of the balls is 6 to 8.
JP2022206846A 2022-12-23 2022-12-23 Sliding constant velocity joint Pending JP2024090755A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022206846A JP2024090755A (en) 2022-12-23 2022-12-23 Sliding constant velocity joint
CN202311776167.2A CN118242367A (en) 2022-12-23 2023-12-21 Sliding constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022206846A JP2024090755A (en) 2022-12-23 2022-12-23 Sliding constant velocity joint

Publications (1)

Publication Number Publication Date
JP2024090755A true JP2024090755A (en) 2024-07-04

Family

ID=91559247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022206846A Pending JP2024090755A (en) 2022-12-23 2022-12-23 Sliding constant velocity joint

Country Status (2)

Country Link
JP (1) JP2024090755A (en)
CN (1) CN118242367A (en)

Also Published As

Publication number Publication date
CN118242367A (en) 2024-06-25

Similar Documents

Publication Publication Date Title
EP1705395B1 (en) Fixed-type constant-velocity universal joint
KR100556574B1 (en) Sliding Constant Velocity Universal Joint
US6506122B2 (en) Constant velocity universal joint
US8510955B2 (en) Inner joint part for a constant velocity universal joint and process of producing same
JP5214336B2 (en) Fixed constant velocity universal joint
US6910970B2 (en) Constant velocity universal joint
JP4537304B2 (en) Fixed constant velocity universal joint
JP2024090755A (en) Sliding constant velocity joint
CN220227581U (en) Sliding constant velocity universal joint
JP2005180641A (en) Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint
US8029373B2 (en) Fixed constant velocity universal joint
US10968958B2 (en) Ball cage for cross-groove type plunging and fixed constant velocity joints
WO2023068018A1 (en) Tripod-type constant-velocity universal joint
CN218266870U (en) Sliding type constant velocity universal joint
JPH0914281A (en) Constant velocity universal joint and manufacture thereof
WO2017013993A1 (en) Fixed type constant velocity universal joint
WO2023248683A1 (en) Constant velocity universal joint and method for manufacturing same
JP2023041415A (en) Sliding-type constant velocity universal joint
JP2009191901A (en) Cage of constant speed universal joint, propeller shaft assembly, and drive shaft assembly
JP2024093536A (en) Power transmission shaft
JP2024083925A (en) Fixed constant velocity joint
JP2023107189A (en) Torque transmission structure
JP2011208674A (en) Constant velocity universal joint
JP2009174660A (en) Cage of constant velocity universal joint, propeller shaft assembly and drive shaft assembly
JP2010019344A (en) Sliding type constant velocity universal joint