JP2024084083A - A multi-stage circulation and filtration aquaculture method for different species of organisms utilizing the low temperature characteristics of deep ocean water - Google Patents

A multi-stage circulation and filtration aquaculture method for different species of organisms utilizing the low temperature characteristics of deep ocean water Download PDF

Info

Publication number
JP2024084083A
JP2024084083A JP2022200550A JP2022200550A JP2024084083A JP 2024084083 A JP2024084083 A JP 2024084083A JP 2022200550 A JP2022200550 A JP 2022200550A JP 2022200550 A JP2022200550 A JP 2022200550A JP 2024084083 A JP2024084083 A JP 2024084083A
Authority
JP
Japan
Prior art keywords
water
breeding
tank
aquaculture
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022200550A
Other languages
Japanese (ja)
Other versions
JP7450194B1 (en
Inventor
炳起 金
祐根 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gangwon State University Industry Cooperation Foundation
Original Assignee
Gangwon State University Industry Cooperation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220173154A external-priority patent/KR102597574B1/en
Application filed by Gangwon State University Industry Cooperation Foundation filed Critical Gangwon State University Industry Cooperation Foundation
Application granted granted Critical
Publication of JP7450194B1 publication Critical patent/JP7450194B1/en
Publication of JP2024084083A publication Critical patent/JP2024084083A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 海洋深層水の低温性を利用した異種生物の多段階循環濾過式養殖方法を提供する。
【解決手段】本発明は取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を養殖し、前記第1養殖水槽から排水された飼育水は第2養殖水槽に供給され、水温10~12℃で寒海性海藻類を養殖し、前記第2養殖水槽から排水された飼育水は第3養殖水槽に供給して水温14~16℃で鮭類を循環濾過養殖システムで養殖し、前記第3養殖水槽から再循環された飼育水が第4養殖水槽に供給され、水温16~18℃でナマコを養殖できる海洋深層水を利用した多段階養殖方法を提供することにより、寒海性水産資源サーモン類、海藻類及びナマコのような対象生物を深層水を活用した低水温飼育環境での飼育が可能となり、異種生物を年中生産可能となる。
【選択図】 図2

The present invention provides a multi-stage circulation and filtration type aquaculture method for different kinds of organisms that utilizes the low temperature characteristics of deep ocean water.
[Solution] The present invention provides a multi-stage aquaculture method using deep sea water, in which deep sea water is taken and supplied to a first aquaculture tank, where cold-water crustaceans are cultured at a water temperature of 3 to 5°C, the breeding water discharged from the first aquaculture tank is supplied to a second aquaculture tank, where cold-water seaweeds are cultured at a water temperature of 10 to 12°C, the breeding water discharged from the second aquaculture tank is supplied to a third aquaculture tank, where salmon are cultured in a circulating filtration aquaculture system at a water temperature of 14 to 16°C, and the breeding water recirculated from the third aquaculture tank is supplied to a fourth aquaculture tank, where sea cucumbers are cultured at a water temperature of 16 to 18°C. This makes it possible to breed target organisms such as cold-water aquatic resource salmon, seaweed, and sea cucumbers in a low-water temperature breeding environment using deep sea water, and makes it possible to produce different organisms all year round.
[Selected figure] Figure 2

Description

本発明は、海洋深層水の低温性を利用した異種生物の多段階循環濾過式養殖方法に関するものであり、特に、海洋深層水の低温性を活用して飼育生物の適正水温及び水質環境に適合するように各段階別養殖方法をモジュール化し、養殖場運用と省エネが可能な海洋深層水を利用した多段階養殖方法に関する。 The present invention relates to a multi-stage circulating filtration type aquaculture method for different kinds of organisms that utilizes the low temperature of deep sea water, and in particular, to a multi-stage aquaculture method that utilizes the low temperature of deep sea water to modularize each stage of the aquaculture method so that it is suited to the appropriate water temperature and water quality environment of the organisms being raised, and that uses deep sea water to enable farm operation and energy saving.

海洋深層水とは、太陽光が届かない通常水深200m以上の深さにある表層の海水と混ざらない海水であり、およそ1200~2000年の間、地球を循環している深層流のことを指す。海洋深層水は、地球に存在する海水の約95%を占めており、水産分野だけでなく食品や、医療、健康産業、飲料水、化粧品などの分野においても活用されている。 Deep ocean water is seawater that does not mix with the surface seawater, usually at depths of 200m or more where sunlight does not reach, and refers to the deep currents that have been circulating around the Earth for approximately 1,200 to 2,000 years. Deep ocean water accounts for approximately 95% of the seawater on Earth, and is used not only in the fisheries industry, but also in food, medicine, the health industry, drinking water, cosmetics, and other fields.

表層海水の水温は、季節によって大幅に変動するのに対し、海洋深層水は、季節によって水温の変化がなく、低温で安定した低温安定性を持つ。深層において陸上の河川水、大気からの汚染を受けにくく、化学物質、汚染物質と細菌が少ない清浄性を持つ。海洋深層水は、表層海水に比べて植物プランクトンの栄養源となる窒素、リン、ケイ素などを含む無機栄養塩類が、表層海水の約5~10倍豊富に含まれるという富栄養性を持つ。
また、多種多様な元素を含む豊富なミネラルと、表層海水に比べてpHが低く、有機物含量が少なく表層海水から分離され、低温高圧下で長い期間熟成された熟成性を持っている。
While the temperature of surface seawater varies greatly with the seasons, deep ocean water has no seasonal changes in temperature and remains stable at low temperatures. Deep ocean water is less susceptible to pollution from river water on land and the atmosphere, and is clean with fewer chemicals, pollutants and bacteria. Deep ocean water is eutrophic, containing about 5 to 10 times more inorganic nutrients, including nitrogen, phosphorus and silicon, which serve as nutritional sources for phytoplankton, than surface seawater.
It also contains a wealth of minerals including a wide variety of elements, a lower pH than surface seawater, and a low organic matter content, and is separated from surface seawater and has the ability to mature for a long period of time under low temperature and high pressure.

世界的に、水産物は養殖されており、国内養殖量も増加している。
海洋深層水の低温性、富栄養性、高ミネラル性を活用すれば、これまで養殖しにくかった寒海性高付加価値魚種を畜養したり、養殖できる新しい事業領域を開拓することができ、新たな将来潜在産業を育成することができる。海洋深層水を利用した水産分野の研究は海外ではすでに70年代から行われ、米国、台湾、ノルウェーではすでに産業化が進んでいる。
Seafood is farmed worldwide, and the amount of domestic aquaculture is also increasing.
By utilizing the low temperature, nutrient richness, and high mineral content of deep sea water, it will be possible to raise high value-added cold water fish species that have been difficult to farm until now, and to develop new business areas where they can be farmed, thus fostering new potential industries for the future. Research into the use of deep sea water in the fisheries field has been underway overseas since the 1970s, and industrialization has already progressed in the United States, Taiwan, and Norway.

大韓民国特許登録番号第10-0861134号には海洋深層水を利用した海藻養殖方法が、大韓民国特許登録番号第10-1578927号には海藻養殖方法について開示されているが、前記先行文献は単一魚種の養殖方法のみに限られている。
また、現在の水産分野の産業的活用としては、蟹などの寒海性魚種をしばらく保管する畜養程度の活用である。
そこで、本発明は低温性、富栄養性、高ミネラル性などの特性を持つ海洋深層水を利用して高付加価値のある様々な魚種を段階的に養殖できるシステムを提供する。
Korean Patent Registration No. 10-0861134 discloses a method for cultivating seaweed using deep ocean water, and Korean Patent Registration No. 10-1578927 discloses a method for cultivating seaweed, but these prior documents are limited to cultivating a single fish species.
In addition, the current industrial use of fisheries is limited to the farming of cold-water fish species such as crabs for a period of time.
Therefore, the present invention provides a system that can gradually cultivate various high-added-value fish species by utilizing deep ocean water that has characteristics such as low temperature tolerance, nutrient richness, and high mineral content.

韓国登録特許番号第10-0861134号公報Korean Patent Registration No. 10-0861134 韓国登録特許番号第10-1578927号公報Korean Patent Registration No. 10-1578927 韓国登録特許番号第10-0789389号公報Korean Patent Registration No. 10-0789389

本発明は、海洋深層水の低温性を活用して飼育生物の適正水温及び水質環境に適合するように各段階別養殖方法をモジュール化し、水温別多様な養殖魚種の飼育が可能であり、取水された海洋深層水を多様な魚種の飼育のため養殖場の運用と省エネが可能な多段階養殖方法を提供する。 The present invention provides a multi-stage aquaculture method that utilizes the low temperature of deep ocean water to modularize the aquaculture method for each stage to suit the appropriate water temperature and water quality environment for the organisms being raised, making it possible to raise a variety of fish species according to water temperature, and allows for the operation of a farm to raise a variety of fish species using the deep ocean water taken in, while also saving energy.

本発明の海洋深層水の低温性を利用した異種生物の多段階循環濾過式養殖方法は、取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を養殖する。
第1養殖水槽で排水された飼育水は、第2養殖水槽に供給され、水温10~12℃で寒海性海藻類を養殖する。
第2養殖水槽で排水された飼育水は、第3養殖水槽に供給され、水温14~16℃で鮭類を養殖する。
前記第3養殖水槽で排水された飼育水は、第4養殖水槽に供給され、水温16~18℃でナマコを養殖する。
取水された海洋深層水は前記第1~第4養殖水槽を順次的に移動して供給され、前記養殖水槽は水位差で海洋深層水が移動可能に設けられ、単一の位置エネルギーで養殖水槽に海洋深層水を供給及び移動できる。
The multi-stage circulation and filtration aquaculture method of different species of organisms of the present invention, which utilizes the low temperature properties of deep-sea water, supplies taken deep-sea water to a first aquaculture tank, and cultivates cold-water crustaceans at a water temperature of 3 to 5°C.
The breeding water discharged from the first aquaculture tank is supplied to the second aquaculture tank, where cold-water seaweeds are cultivated at a water temperature of 10 to 12°C.
The breeding water discharged from the second aquaculture tank is supplied to the third aquaculture tank, where salmon are cultured at a water temperature of 14 to 16°C.
The breeding water discharged from the third culture tank is supplied to a fourth culture tank, where sea cucumbers are cultured at a water temperature of 16 to 18°C.
The deep sea water taken in is supplied by moving sequentially through the first to fourth aquaculture tanks, and the aquaculture tanks are installed so that the deep sea water can move due to the difference in water level, so that the deep sea water can be supplied and moved to the aquaculture tanks using a single potential energy.

前記第3養殖水槽の循環濾過システムは、第2養殖水槽で排水された飼育水が供給され、鮭類が養殖される飼育水槽が1つ以上設けられ、前記飼育水槽で排水された飼育水は沈殿槽に貯蔵された後、有機物除去装置、脱気装置、濾過装置、オゾン注入装置を順次経由して再供給水として一部は飼育水槽に再供給され、残りは第4養殖水槽に飼育水として供給できるのが望ましい。 The circulation filtration system for the third aquaculture tank is provided with one or more rearing tanks in which salmon are cultivated and which are supplied with the rearing water drained from the second aquaculture tank, and it is preferable that the rearing water drained from the rearing tanks is stored in a settling tank and then passed through an organic matter removal device, a degassing device, a filtration device, and an ozone injection device in sequence, with a portion of the water being resupplied to the rearing tanks as resupply water, and the remainder being supplied to the fourth aquaculture tank as rearing water.

前記有機物除去装置から分離された有機物は、外部に排出されるか、第4養殖水槽のナマコ餌として供給され、脱気装置により飼育水と分離された二酸化炭素、及び濾過装置で飼育水と分離された窒素化合物は、第2養殖水槽の海藻に栄養塩として供給される。 The organic matter separated from the organic matter removal device is either discharged to the outside or supplied as sea cucumber food to the fourth aquaculture tank, and the carbon dioxide separated from the breeding water by the deaeration device and the nitrogen compounds separated from the breeding water by the filtration device are supplied as nutrients to the seaweed in the second aquaculture tank.

前記オゾン注入装置はオゾンを発生して飼育水に溶解させるオゾン発生装置と、総残留酸化物(total residual oxidants,TRO)ベースモニタリングを行うオゾン制御装置からなり、前記飼育水にオゾンはTRO濃度0.040(mg/L)の量で維持するのが望ましい。 The ozone injection device is composed of an ozone generator that generates ozone and dissolves it in the breeding water, and an ozone control device that performs total residual oxides (TRO)-based monitoring, and it is desirable to maintain the amount of ozone in the breeding water at a TRO concentration of 0.040 (mg/L).

本発明による海洋深層水の低温性を活用した養殖方法は、養殖対象異種生物の前、後養殖段階で要求される水温差が小さく、加温に要するエネルギーが少なく、水温維持のミスで水産物の斃死を防ぐことができる。
また、本発明により海洋深層水を活用した低水温飼育環境の維持が可能となり、養殖される寒海性水産資源サケ類、海藻類及びナマコのような対象生物を年中生産可能となる。
The aquaculture method of the present invention utilizing the low temperature of deep sea water requires a small difference in water temperature before and after the aquaculture of different species of the target organisms, requires less energy for heating, and prevents the death of marine products due to improper water temperature maintenance.
In addition, the present invention makes it possible to maintain a low-temperature breeding environment using deep ocean water, making it possible to produce target organisms such as cold-water aquatic resources salmon, seaweed, and sea cucumbers all year round.

本発明の海洋深層水を用いた異種生物の多段階養殖方法の模式図Schematic diagram of the multi-stage culture method for different species of organisms using deep ocean water of the present invention. 本発明の海洋深層水を用いた異種生物の多段階養殖方法の概略図Schematic diagram of the multi-stage culture method for different species of organisms using deep ocean water of the present invention. 本発明の第3養殖水槽循環濾過システムの概略図Schematic diagram of the third aquaculture tank circulation and filtration system of the present invention. 本発明の有機物除去装置、脱気装置、濾過装置の概略図Schematic diagram of the organic matter removal device, degassing device, and filtration device of the present invention. 本発明の有機物除去装置の概念図Conceptual diagram of an organic matter removal device of the present invention. 本発明の脱気装置の概略図Schematic diagram of the degassing device of the present invention. 本発明の実験例1による二酸化炭素の変化を示す図FIG. 1 shows the change in carbon dioxide according to Experimental Example 1 of the present invention. 本発明の実験例2による脱気装置の稼動による二酸化炭素除去率を示す図FIG. 13 is a graph showing the carbon dioxide removal rate by operating a degassing device according to Experimental Example 2 of the present invention. 実験例2による脱気装置の稼動における飼育水槽内の二酸化炭素濃度の変化を示す図FIG. 13 shows the change in carbon dioxide concentration in the breeding tank when the degassing device is in operation according to Experimental Example 2. 本発明の実験例3によるTRO濃度による飼育生物飼料摂取量を示す図FIG. 1 shows the amount of feed intake by captive animals depending on the TRO concentration according to Experimental Example 3 of the present invention. 本発明の実験例3によるTRO濃度による微生物変化を示す図FIG. 3 shows the change in microorganisms depending on the TRO concentration according to Experimental Example 3 of the present invention.

本発明の海洋深層水を用いた異種生物の多段階養殖方法に関して、図面を参照して説明する。
図1は、本発明の海洋深層水を用いた異種生物の多段階養殖方法の模式図を示し、図2は本発明の海洋深層水を用いた異種生物の多段階養殖方法の模式図を示す。
本発明の海洋深層水を用いた異種生物の多段階養殖方法は、海洋深層水が位置する水層の海水を取水する海洋深層水取水段階(A)、取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を養殖する第1養殖水槽供給段階(B)、前記(B)段階で飼育水として使用され、排水された飼育水を第2養殖水槽に供給して水温10~12℃で寒海性海藻養殖する第2養殖水槽供給段階(C)、前記(C)段階で排水された飼育水を第3養殖水槽に供給し、水温14~16℃でサケ類を養殖する第3養殖水槽供給段階(D)、前記(D)段階で排水された飼育水を第4養殖水槽に供給して水温16~18℃でナマコを養殖する第4養殖水槽供給段階(E)からなる。
The multi-stage culture method for different species of organisms using deep-sea water of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic diagram of the multi-stage aquaculture method of different organisms using deep-sea water of the present invention, and FIG. 2 shows a schematic diagram of the multi-stage aquaculture method of different organisms using deep-sea water of the present invention.
The multi-stage culture method of different species using deep sea water of the present invention includes a deep sea water intake step (A) of taking in seawater from a water layer in which the deep sea water is located, a first culture tank supply step (B) of supplying the taken deep sea water to a first culture tank and cultivating cold-sea crustaceans at a water temperature of 3 to 5 ° C., a second culture tank supply step (C) of supplying the drained breeding water used as breeding water in the step (B) to a second culture tank to cultivate cold-sea seaweed at a water temperature of 10 to 12 ° C., a third culture tank supply step (D) of supplying the drained breeding water in the step (C) to a third culture tank to cultivate salmon at a water temperature of 14 to 16 ° C., and a fourth culture tank supply step (E) of supplying the drained breeding water in the step (D) to a fourth culture tank to cultivate sea cucumbers at a water temperature of 16 to 18 ° C.

本発明において海洋深層水は、前記第1~第4養殖水槽を順次的に移動し、養殖飼育水として利用することができ、前記養殖水槽は水位差によって飼育水の流れ調節が可能である。 In the present invention, deep sea water can be used as aquaculture water by moving sequentially through the first to fourth aquaculture tanks, and the flow of the aquaculture water can be adjusted according to the water level difference in the aquaculture tanks.

本発明の海洋深層水取水段階(A)は、取水管を用いて海洋深層水を取水する段階である。
本発明の海洋深層水は、水深200m以下に位置する太陽光が到達しない海水で、2℃以下水温の清浄性、低水温性、水質安定性に優れ、溶存酸素量が少なくミネラルと栄養塩類が豊富な海水である。
また、本発明の海洋深層水を取水する方法は、取水管を海底に延長して取水する。前記取水方法は、従来公知された方法を選択することができる。
The deep-sea water intake step (A) of the present invention is a step of taking in deep-sea water using an intake pipe.
The deep seawater of the present invention is seawater located at a depth of 200 m or less where sunlight does not reach, has excellent cleanliness, low water temperature characteristics, and water quality stability with a water temperature of 2°C or less, has a low dissolved oxygen content, and is rich in minerals and nutrients.
In addition, the deep sea water intake method of the present invention includes extending an intake pipe to the bottom of the sea and taking in water. The intake method may be any of the conventionally known methods.

本発明の第1養殖水槽供給段階(B)は、前記(A)段階で取水された海洋深層水を第1養殖水槽に供給して養殖する段階である。
(B)段階で養殖される水産生物は、水温3~5℃で養殖することができる寒海性甲殻類である。本発明の実施形態では、蟹畜養が実施された。
本発明で取水された海洋深層水は、低温性、清浄性、細菌及びウイルスが含まれないという特性があり、別途の加温と水質管理なしに飼育水として供給ができる。
The first culture tank supply step (B) of the present invention is a step of supplying the deep sea water taken in the step (A) to the first culture tank for culture.
The aquatic organisms cultured in the (B) step are cold-water crustaceans that can be cultured at water temperatures of 3 to 5° C. In an embodiment of the present invention, crab farming was carried out.
The deep sea water extracted in the present invention has the characteristics of being low-temperature compatible, clean, and free of bacteria and viruses, and can be supplied as breeding water without additional heating or water quality management.

本発明の第2養殖水槽供給段階(C)は、上記(B)段階で飼育水として使用され、排水された飼育水を第2養殖水槽に供給して養殖する段階である。
前記(C)段階で養殖される水産生物は、水温10~12℃で養殖することができる寒海性海藻類である。海藻類は、昆布、わかめなどを含むことができる。
本発明の実施例では、第2養殖水槽では昆布を養殖した。昆布は12~3月に幼葉が出て7月まで成長し、水温12~13℃を超えると枯れ、初秋10℃以下では活発に生育する寒海性植物として年中海藻養殖が可能である。
The second culture tank supply step (C) of the present invention is a step of supplying the culture water used as culture water in the above step (B) and then drained to the second culture tank for culture.
The aquatic organisms cultured in step (C) are cold-water seaweeds that can be cultured at water temperatures of 10 to 12° C. Seaweeds may include kelp, wakame, and the like.
In the embodiment of the present invention, kelp was cultivated in the second cultivation tank. Kelp produces young leaves from December to March and grows until July. It dies when the water temperature exceeds 12 to 13°C, but grows actively in early autumn at temperatures below 10°C. This cold-water plant allows seaweed cultivation all year round.

本発明の第3養殖水槽供給段階(D)は、前記(C)段階で排水された飼育水を第3養殖水槽に供給して養殖する段階である。
(D)段階で養殖される水産生物は、水温14~16℃で養殖されるサケ類が望ましい。
本発明の第3養殖水槽及び第4養殖水槽は、循環濾過養殖システムからなるものがよい。
The third culture tank supply step (D) of the present invention is a step of supplying the culture water discharged in the step (C) to the third culture tank for culture.
The aquatic organisms cultured in step (D) are preferably salmonids cultured at water temperatures between 14 and 16°C.
The third and fourth culture tanks of the present invention preferably comprise a circulating filtration culture system.

図3は、本発明の第3養殖水槽および第4養殖水槽の循環濾過養殖システムの概略図を示す。
本発明の循環濾過養殖システムは、第2養殖水槽または第3養殖水槽から排水された飼育水が供給され、鮭類やナマコを飼育する飼育水槽100が1つ以上設けられる。
前記飼育水槽で排水された飼育水は沈殿槽200に貯蔵された後、有機物除去装置300、脱気装置400、濾過装置500、オゾン注入装置600を順次的に経て再供給水として、一部は第3養殖水槽水槽に再供給され、残りは第4養殖水槽の飼育水として供給することができる。
FIG. 3 is a schematic diagram of a circulating filtration culture system including a third culture tank and a fourth culture tank according to the present invention.
The circulating filtration aquaculture system of the present invention is provided with one or more breeding tanks 100 for breeding salmon or sea cucumbers, which are supplied with breeding water discharged from the second aquaculture tank or the third aquaculture tank.
The breeding water discharged from the breeding tank is stored in a sedimentation tank 200, and then passes through an organic matter removal device 300, a degassing device 400, a filtration device 500, and an ozone injection device 600 in sequence to be resupplied, with a portion of the resupplied water being resupplied to the third aquaculture tank and the remaining portion being supplied as breeding water to the fourth aquaculture tank.

循環濾過養殖システムは、水中ポンプのような動力源を用いて飼育水を移動させ、浄化過程を経る。また、飼育水の移動は、水位差に応じてシステム内を移動することにより、1回の動力を使用することで循環が可能である。
本発明の循環濾過養殖システム(Recirculating aquaculture system; RAS)は、高密度養殖が可能で、生産性増大と養殖に必要な飼育水を再利用することにより、少ない水量だけで運転が可能となり、膨大な揚水用消費電力を低減することができる。
飼育水槽100は、鮭が飼育される場所である。沈殿槽200は、飼育水槽から排水された飼育水の固形物を一次的に除去する。
A circulating filtration aquaculture system uses a power source such as an underwater pump to move the breeding water and purify it. The breeding water moves within the system according to the difference in water level, making it possible to circulate the water with just one power source.
The recirculating aquaculture system (RAS) of the present invention enables high-density aquaculture, and by reusing the breeding water necessary for aquaculture and increasing productivity, it can be operated with only a small amount of water, thereby reducing the enormous amount of power consumed for pumping.
The breeding tank 100 is where the salmon are bred. The settling tank 200 primarily removes solid matter from the breeding water discharged from the breeding tank.

図4は、本発明の有機物除去装置、脱気装置、濾過装置の概略図を示す。図5は、本発明の有機物除去装置の概念図を示す。
本発明の有機物除去装置300は、上部に開閉可能に装着された蓋を備えた処理槽1と、前記処理槽1の中間には、処理槽を上部処理槽3と下部処理槽4に分けるように傾斜して延びる傾斜仕切り部10が設置される。
Fig. 4 shows a schematic diagram of an organic matter removal device, a degassing device, and a filtering device of the present invention, and Fig. 5 shows a conceptual diagram of an organic matter removal device of the present invention.
The organic matter removal device 300 of the present invention comprises a treatment tank 1 having a lid attached to the top that can be opened and closed, and an inclined partition section 10 disposed in the middle of the treatment tank 1, which extends at an angle so as to divide the treatment tank into an upper treatment tank 3 and a lower treatment tank 4.

上部処理槽3には、内部空間を2つの部分に区画するように水平に延びる水平多孔仕切り部20が設けられている。水平多孔仕切り部20と傾斜仕切り部10との間には、バイオボール31が複数積層されたバイオボール層30が形成される。バイオボール31は脱気濾過媒体としての機能を持つ。 The upper treatment tank 3 is provided with a horizontal porous partition 20 that extends horizontally to divide the internal space into two parts. Between the horizontal porous partition 20 and the inclined partition 10, a bioball layer 30 is formed in which multiple bioballs 31 are stacked. The bioballs 31 function as a deaeration filter medium.

用水供給ラインは、沈殿槽200と連結されて飼育水が移動し、第1給水供給ライン及び第2用水供給ラインからなる。水平多孔仕切り部20よりも高い上部処理槽3の壁部には第1下流端が連結され、第1下流端は第1用水供給ライン42に連結される。下部処理槽4は、第2用水供給ラインと接続される。 The water supply line is connected to the sedimentation tank 200 to move the rearing water, and is composed of a first water supply line and a second water supply line. The first downstream end is connected to the wall of the upper treatment tank 3 that is higher than the horizontal porous partition 20, and the first downstream end is connected to the first water supply line 42. The lower treatment tank 4 is connected to the second water supply line.

曝気管60には、沈殿槽と接続される下流端が吐出側に接続され、負圧室が大気と流通するベンチュリ管50が設けられている。上流端は下部処理槽4の下端壁に接続され、下部処理槽4と流通する。上流端が傾斜仕切り部10の下部に面する位置まで鉛直方向に延びて下部処理槽4に貯蔵された飼育水の水位に応じて水位差により、下部処理槽4に貯蔵された飼育水を排水ライン70が脱気装置に供給することができる。 The aeration pipe 60 is provided with a Venturi tube 50, the downstream end of which is connected to the settling tank and is connected to the discharge side, and the negative pressure chamber is in communication with the atmosphere. The upstream end is connected to the lower end wall of the lower treatment tank 4 and is in communication with the lower treatment tank 4. The upstream end extends vertically to a position facing the lower part of the inclined partition 10, and depending on the water level of the rearing water stored in the lower treatment tank 4, the drain line 70 can supply the rearing water stored in the lower treatment tank 4 to the deaeration device due to the water level difference.

エア供給ライン80は、エア供給源81に接続され、水平多孔仕切り部20の下部に位置するバイオボール層30の上部に面している上部処理槽3の壁部に接続されている。
傾斜仕切り部10の下部には、上部処理槽3と下部処理槽4に飼育水の流通が可能な流通管11が設けられている。傾斜仕切り部10の下部には、エア供給ライン80を経由して上部処理槽3に流入した空気が下部処理槽4を経由して処理槽外に排水されるように抜ける通気管12が形成される。
The air supply line 80 is connected to an air supply source 81 and is connected to the wall of the upper treatment tank 3 facing the top of the bioball layer 30 located at the bottom of the horizontal porous partition 20.
A circulation pipe 11 is provided at the bottom of the inclined partition 10, which allows the culture water to circulate between the upper treatment tank 3 and the lower treatment tank 4. A vent pipe 12 is formed at the bottom of the inclined partition 10, which allows air that has flowed into the upper treatment tank 3 via the air supply line 80 to be discharged outside the treatment tank via the lower treatment tank 4.

前記通気管12の上流端入口は、上部処理槽3内の傾斜仕切り部10の上部上面に隣接して配置され、傾斜仕切り部10の長さ方向から下方に向かって開口される。
通気管12の下流端の出口は下部処理槽4内に配置され、下部処理槽4内の傾斜仕切り部10の上下面に隣接して浮遊した有機物層の上面と前記有機物吐出口90に向かって開口される。前記吐出口90から排出された有機物は、後述する第4養殖水槽で飼育されるナマコの餌として活用が可能である。
The upstream end inlet of the vent pipe 12 is disposed adjacent to the upper surface of the upper portion of the inclined partition 10 in the upper treatment tank 3, and opens downward in the longitudinal direction of the inclined partition 10.
The outlet at the downstream end of the aeration pipe 12 is disposed in the lower treatment tank 4 and opens toward the upper surface of the floating organic matter layer adjacent to the upper and lower surfaces of the inclined partition 10 in the lower treatment tank 4 and toward the organic matter discharge port 90. The organic matter discharged from the discharge port 90 can be used as food for sea cucumbers raised in a fourth aquaculture tank described later.

エア供給ライン80を経由して空気を供給する状態でポンプ41を稼動する。沈殿槽200から重量を持つ有機物が濾過された飼育水を、水供給ラインの第1用水供給ライン42、第2用水供給ライン43及び曝気管60を経由して上部処理槽3と下部処理槽4へ供給する。 The pump 41 is operated while supplying air via the air supply line 80. The breeding water from the settling tank 200, from which heavy organic matter has been filtered, is supplied to the upper treatment tank 3 and the lower treatment tank 4 via the first water supply line 42, the second water supply line 43, and the aeration pipe 60 of the water supply line.

曝気管60を経由して移送された飼育水は、曝気管60の途中に介在したベンチュリ管を通じて大気の空気が流入され、下部処理槽4の空気とともに供給されるようにする。
前記通気管を経由して搬送される飼育水に発生した微細空気粒子及び微細空気粒子の界面活性反応により、空気粒子表面に付着した有機物残渣が泡の形態で有機物吐出口90に徴集される。
The rearing water transported through the aeration pipe 60 is supplied with atmospheric air together with the air in the lower treatment tank 4 through a Venturi tube disposed midway through the aeration pipe 60 .
The fine air particles generated in the breeding water transported through the aeration pipe and the organic residues attached to the surfaces of the air particles due to the surface activity reaction of the fine air particles are collected in the form of bubbles at the organic matter outlet 90.

有機物は、一定体積を超えると外部に排出され廃棄されるか、または上述のように第4養殖水槽で飼育されるナマコの餌に供給することができる。このとき、有機物吐出口90を介して上部処理槽3に強制排出されて通気される空気(二酸化炭素除去後に排出された空気)は、下部処理槽4の水面に徴集された泡(微細孔粒子形態の有機物残渣)を押し出す作用をすることができる。 When the organic matter exceeds a certain volume, it is discharged to the outside and disposed of, or it can be supplied as food for the sea cucumbers being raised in the fourth aquaculture tank as described above. At this time, the air (air discharged after removing carbon dioxide) that is forcibly discharged and aerated into the upper treatment tank 3 through the organic matter outlet 90 can act to push out bubbles (organic matter residue in the form of microporous particles) that have collected on the water surface of the lower treatment tank 4.

下部処理槽4に供給された飼育水は、傾斜仕切り部10の中間部位まで達する。傾斜仕切り部10の中間水位を越えると水位差により排水ラインを経由して越流して脱気装置に移動することになる。
下部処理槽4に貯蔵された飼育水に含まれる浮遊物質である有機物は、水面上に浮かび上がり、有機物吐出口90付近に収集される。
上部処理槽3に供給された飼育水は、水平多孔仕切り部20の上に落下する。落下した飼育水は水平多孔仕切り部20の上に浅い層として積層され、水平多孔仕切り部20に形成された複数の貫通孔を通過してバイオボール層上に落ちる。
The rearing water supplied to the lower treatment tank 4 reaches the middle part of the inclined partition 10. When the water exceeds the middle water level of the inclined partition 10, the difference in water level causes the water to overflow via the drain line and move to the deaeration device.
Organic matter, which is suspended matter contained in the breeding water stored in the lower treatment tank 4, rises to the water surface and is collected near the organic matter discharge outlet 90.
The breeding water supplied to the upper treatment tank 3 falls onto the horizontal porous partition 20. The falling breeding water is layered as a shallow layer on the horizontal porous partition 20, passes through the multiple through holes formed in the horizontal porous partition 20, and falls onto the bioball layer.

エア供給ラインを経由した空気は、水平多孔仕切り部20の上に浅い層で積層された飼育水により、水平多孔仕切り部20の複数個の貫通孔を通じて水平多孔仕切り部20を通過できず、バイオボール層30を貫通して下に流動してから通気口及び有機物吐出口90を経由して処理槽外に放出される。 The air that passes through the air supply line cannot pass through the horizontal porous partition 20 through the multiple through holes in the horizontal porous partition 20 due to the shallow layer of rearing water stacked on top of the horizontal porous partition 20, but instead passes through the bioball layer 30 and flows downward before being released outside the treatment tank via the air vent and organic matter discharge port 90.

バイオボール層30上に落ちた飼育水は、バイオボール層30を浸透しながらバイオボール層30を浸透している空気との接触面積及び接触時間が増大し、空気との反応効率が極大化する。飼育水に高度に溶存した二酸化炭素は、浸透した空気によって強力に水面が撹拌されるため、水面上の空気中に吹き飛ばされて除去される。 As the breeding water falls onto the bio-ball layer 30, the contact area and contact time with the air permeating the bio-ball layer 30 increases as it permeates the bio-ball layer 30, maximizing the reaction efficiency with the air. Carbon dioxide highly dissolved in the breeding water is blown away into the air above the water surface and removed because the water surface is strongly stirred by the permeating air.

溶存二酸化炭素が除去された飼育水は、重力で通気口を介して下部処理槽4に流入することができず、流通管11を介して下部処理槽4に流入される。流通管、第2用水供給ライン及び曝気管を通じて下部処理槽4に供給された飼育水の有機物は、浮上して下部処理槽4内の傾斜仕切り部10の上部下面に隣接して収集される。
収集された有機物は、通気管12を通って放出される空気によって有機物吐出口90に向かって押し出され、処理槽から排出される。
The breeding water from which the dissolved carbon dioxide has been removed cannot flow into the lower treatment tank 4 through the vent hole by gravity, but flows into the lower treatment tank 4 through the circulation pipe 11. The organic matter in the breeding water supplied to the lower treatment tank 4 through the circulation pipe, the second water supply line, and the aeration pipe floats up and is collected adjacent to the lower surface of the upper part of the inclined partition 10 in the lower treatment tank 4.
The collected organic matter is pushed toward the organic matter outlet 90 by the air discharged through the vent pipe 12 and discharged from the treatment tank.

本発明に係る有機物除去装置は、溶存二酸化炭素と有機物を除去するため、単一の処理槽に単一の動力源が使われるので、飼育水処理の製造コスト及び運用コストを従来よりも低減することができ、分離された有機物質は後述する第4養殖水槽の養殖生物(ナマコ)に餌として供給することができる。 The organic matter removal device of the present invention uses a single power source in a single treatment tank to remove dissolved carbon dioxide and organic matter, which reduces the manufacturing and operating costs of breeding water treatment compared to conventional methods, and the separated organic matter can be supplied as food to the cultured organisms (sea cucumbers) in the fourth aquaculture tank described below.

図6は、本発明の脱気装置の概略図を示す。
本発明の脱気装置は一定サイズで内部が空である形態の充填塔410が設けられる。
前記充填塔410の内部には濾過媒体440が積層設置される。本発明による脱気装置の送風量は、25m/分~50m/分の送風量で運転することができる。
FIG. 6 shows a schematic diagram of a degassing apparatus according to the present invention.
The degassing apparatus of the present invention is provided with a packed tower 410 having a fixed size and an empty interior.
A filter medium 440 is stacked inside the packed tower 410. The degassing device according to the present invention can be operated at an air flow rate of 25 m 3 /min to 50 m 3 /min.

充填塔410の上部には、有機物除去装置と連結され、有機物が除去された飼育水を内部に流入させる飼育水流入管420が設けられる。飼育水流入管420には、飼育水の流入量を調節可能な流入量調整弁430が設けられている。流入量調節弁430は、有機物除去装置から流入する飼育水の流量を調節する。濾過媒体440に流入する飼育水の容量を調節することにより、適正流量供給による脱気効果を最大化する。 A breeding water inlet pipe 420 is provided at the top of the packed tower 410, which is connected to the organic matter removal device and allows the breeding water from which organic matter has been removed to flow into the interior. The breeding water inlet pipe 420 is provided with an inflow rate control valve 430 that can adjust the inflow rate of breeding water. The inflow rate control valve 430 adjusts the flow rate of breeding water flowing in from the organic matter removal device. By adjusting the volume of breeding water flowing into the filtration medium 440, the deaeration effect is maximized by supplying the appropriate flow rate.

充填塔410の下部には、濾過媒体440を通過した飼育水が濾過装置に移動できるように排出管450が設けられている。充填塔410のいずれかの側面には、空気を充填塔410内部に供給する空気注入口460と、空気注入口460を介して供給された空気を充填塔外部に排出する空気排出口470とが設けられている。
また、空気注入口460および空気排出口470の空気注入および排出量を調整することができる空気調整弁480を設けてもよい。
A discharge pipe 450 is provided at the bottom of the packed tower 410 so that the breeding water that has passed through the filtration medium 440 can move to the filtration device. An air inlet 460 for supplying air into the packed tower 410 and an air outlet 470 for discharging the air supplied through the air inlet 460 to the outside of the packed tower are provided on either side of the packed tower 410.
In addition, an air adjustment valve 480 may be provided that can adjust the amount of air injected and discharged from the air inlet 460 and the air outlet 470 .

飼育水流入管420は、第3養殖水槽で飼育した飼育生物の呼吸で発生した高濃度の溶存二酸化炭素を脱気装置に供給する引入管路である。空気調整弁480は、脱気装置に供給される飼育水の数量を調整するバルブで、装置の容量に合った適正流量を供給し、効果を最大化することができる。 The breeding water inlet pipe 420 is an intake pipe that supplies high concentrations of dissolved carbon dioxide generated by the respiration of the breeding organisms in the third aquaculture tank to the degassing device. The air adjustment valve 480 is a valve that adjusts the amount of breeding water supplied to the degassing device, and can supply the appropriate flow rate according to the capacity of the device to maximize its effectiveness.

排出管450は、脱気段階が完了した飼育水の排出口として内部に空気が通じないようにS-TRAP形態で作製することが好ましい。充填塔カバー部分は、空気の通気ができないように密閉処理される。前記密閉された蓋下端に散水形態の多孔板を設置し、飼育水を充填塔内部に貯蔵された濾過媒体440に均等に分散させる。 The discharge pipe 450 is preferably made in an S-TRAP shape to prevent air from passing inside as an outlet for the culture water after the degassing step is completed. The packed tower cover is sealed to prevent air from passing through. A sprinkler-type perforated plate is installed at the bottom of the sealed cover to evenly distribute the culture water to the filter medium 440 stored inside the packed tower.

空気排出口470に設けられた送風機を用いて吸入及び排出する空気が空気注入口460のみを介して装置内部に供給されるようにする。このとき、空気調節弁480は空気の吸入量を調節し、内部に供給される空気の量を調節することができ、これは内部の負の圧力の強度を調節するためである。 The air taken in and taken out is supplied to the inside of the device only through the air inlet 460 by using a blower installed in the air outlet 470. At this time, the air control valve 480 can adjust the amount of air taken in and the amount of air supplied to the inside, in order to adjust the strength of the negative pressure inside.

空気排出口470は、装置内部に吸入した空気を排出する所で充填塔410の外部に設置することが好ましい。本発明の実施形態によれば、強制吸引および排出のための換気器および送風機などで実施された。
前記空気排出口470及び空気注入口460の数量は関係なく設置が可能であるが、空気排出口470の断面積の合計より空気注入口460の断面積の合計が小さくなければならない。さらに、空気排出口470および空気注入口460は、空気流の効率を高めるために対向するように設置する。
The air outlet 470 is a place where the air drawn into the inside of the device is discharged, and is preferably installed outside the packed tower 410. According to an embodiment of the present invention, the air outlet 470 is implemented by a ventilator and a blower for forced suction and discharge.
The air outlets 470 and the air inlets 460 may be installed regardless of the number, but the total cross-sectional area of the air inlets 460 must be smaller than the total cross-sectional area of the air outlets 470. Furthermore, the air outlets 470 and the air inlets 460 are installed facing each other to increase the efficiency of the air flow.

また、充填塔410のいずれかの側面には空気調節弁480を設けることにより、容易かつ精密に空気注入量を調整して充填塔内の圧力強度を調整することができる。これにより、本発明の充填塔内部に微細な負圧が形成され、二酸化炭素(CO)排出能力を最大化することができる。 In addition, by providing an air control valve 480 on either side of the packed tower 410, the amount of air injected can be easily and precisely adjusted to adjust the pressure intensity inside the packed tower, thereby forming a minute negative pressure inside the packed tower of the present invention, thereby maximizing the carbon dioxide ( CO2 ) discharge capacity.

前記空気注入口460及び空気排出口470が設けられた充填塔410内部は、媒体の設置及び空気が密閉された構造で媒体に飼育水が注入される。注入された飼育水から二酸化炭素が分離されると、急速に空気排出口470が二酸化炭素を吸入して排出し、既存および通常の脱気装置に比べて脱気効率を向上させる。 The inside of the packed tower 410, which is provided with the air inlet 460 and air outlet 470, is a structure in which the medium is installed and the air is sealed, and the culture water is injected into the medium. When carbon dioxide is separated from the injected culture water, the air outlet 470 quickly takes in and releases the carbon dioxide, improving the degassing efficiency compared to existing and normal degassing devices.

濾過媒体440は充填塔410の内部に貯蔵され、格子状に一定の間隔を維持するプラスチック材料採盤を垂直に積み重ねて設置される。飼育水が垂直に落下し、濾過媒体440にぶつかって粒子状に粉砕される過程で脱気作用が発生する。濾材上部に流入する飼育水が濾過媒体を通過し、飼育水粒子が衝突して最小化される。この時、飼育水粒子から二酸化炭素(CO2)が分離され、飼育水分子は比較的空気分子よりも大きいため、媒体に形成された通孔を通って下部に流れ出す。 The filter media 440 is stored inside the packed tower 410 and is installed by stacking plastic material plates vertically at regular intervals in a lattice pattern. As the breeding water falls vertically and hits the filter media 440 and is crushed into particles, a deaeration action occurs. The breeding water flowing into the top of the filter passes through the filter media and the breeding water particles collide and are minimized. At this time, carbon dioxide ( CO2 ) is separated from the breeding water particles, and since the breeding water molecules are relatively larger than air molecules, they flow out to the bottom through holes formed in the media.

本発明の脱気装置は、包装されたカラムの形でカラム内に媒体を充填し、通過する水が効果的に空気と接触することを可能にし、より多くの酸素を供給することができる。
充填塔の上部には飼育水流入管420が連結設置される。飼育水流入管420に流入する飼育水は、有機物が除去された飼育生物の呼吸によって発生した高濃度の溶存二酸化炭素が溶解したものを含む。
飼育水排出管420はSトラップ構造で形成され、充填塔内部に空気が注入されず、収集された飼育水のみ外部に排出されるようにする。前記媒体を通過して二酸化炭素が除去され、下部に収集された飼育水を後段の濾過装置に移動させることができる。
The degassing device of the present invention is in the form of a packaged column in which the media is packed, allowing the passing water to effectively come into contact with air, thereby supplying more oxygen.
A breeding water inlet pipe 420 is connected to the top of the packed tower. The breeding water flowing into the breeding water inlet pipe 420 contains high-concentration dissolved carbon dioxide generated by the respiration of the breeding organisms from which organic matter has been removed.
The breeding water discharge pipe 420 is formed with an S-trap structure so that air is not injected into the packed tower and only the collected breeding water is discharged to the outside. The breeding water that has passed through the medium and has carbon dioxide removed and is collected at the bottom can be moved to a downstream filtration device.

本発明の実施形態による濾過装置は、バイボール濾過媒体を用いた流動床濾過装置であることが好ましい。本発明の濾過装置を経て飼育水に残存するアンモニア、亜硝酸など溶存物質の浄化が可能であり、飼育水として再使用することができる。この場合、分離された水中アンモニアおよび亜硝酸は、上記の第2の養殖装置の海藻に栄養塩として提供することができる。 The filtration device according to an embodiment of the present invention is preferably a fluidized bed filtration device using a biball filtration medium. Dissolved substances such as ammonia and nitrite remaining in the breeding water can be purified by passing through the filtration device of the present invention, and the water can be reused as breeding water. In this case, the separated ammonia and nitrite in the water can be provided as nutrients to the seaweed in the second aquaculture device.

前記濾過装置を経た飼育水はオゾン注入装置に供給される。通常オゾンは、自由酸素原子が酸素分子と結合したガス物質であり、不安定性のため、水中で強い酸化力を示す。オゾンは海水中の溶存Br-と素早く反応してBrO-/OHBrを生成して強い殺菌力を生成することで、飼育水の微生物制御と水中窒素化合物の除去に優れた効果がある。
しかし、オゾンは高い生物危害がある。特に、オゾン由来残留酸化物に養殖生物が鋭敏に反応し、養殖方法に適用するのに多くの困難があるため、種特異性に合った適正水質環境(水温、塩分度)を考慮した安全濃度のオゾン注入が必要である。
The breeding water that has passed through the filtration device is supplied to an ozone injector. Ozone is a gaseous substance in which free oxygen atoms are combined with oxygen molecules, and is unstable, so it exhibits strong oxidizing power in water. Ozone reacts quickly with dissolved Br- in seawater to generate BrO-/OHBr, which generates strong sterilizing power, and is therefore effective in controlling microorganisms in the breeding water and removing nitrogen compounds in water.
However, ozone is highly harmful to living organisms. In particular, farmed organisms react sensitively to residual oxides derived from ozone, making it difficult to apply it to farming methods. Therefore, it is necessary to inject ozone at a safe concentration that takes into account the appropriate water quality environment (water temperature, salinity) specific to each species.

総残留酸化物(total residual oxidants,TRO)は、残存する酸化物質である。総残留酸化物は、魚に安全なTRO濃度レベルを維持すれば魚類の斃死は発生しない。
TROの生成および作用に関して海水にオゾンを処理するプロセスは、淡水とは異なり、海水中に豊富に臭素イオン(Br-)が存在するのため、化学反応プロセスははるかに複雑である。
海水中のオゾン反応は、いくつかの化学的海水化合物と非常に迅速に反応しながら複数の反応を形成するため、オゾンの半減期はわずか数秒である。オゾンによって生成される酸化剤はOPOと呼ばれ、主なOPOはハイポアブロミン酸(HOBr)とハイポアブロミン酸イオン(OBr-)である。OPOは濃度値によって魚への毒性が大きいため、循環段階で残留OPOを制御することは養殖魚の保護に最も重要である。
Total residual oxides (TROs) are the remaining oxidants that, if maintained at a fish-safe TRO concentration level, will not cause fish mortality.
The process of ozonating seawater with respect to the formation and action of TRO is different from freshwater, in that the chemical reaction process is much more complicated due to the abundant presence of bromide ions (Br-) in seawater.
Ozone reacts in seawater very quickly with some chemical seawater compounds to form multiple reactions, so the half-life of ozone is only a few seconds. The oxidants produced by ozone are called OPO, and the main OPOs are hypoabrominated acid (HOBr) and hypoabrominated acid ion (OBr-). OPO is highly toxic to fish depending on its concentration, so controlling residual OPO in the circulation stage is of utmost importance for the protection of farmed fish.

魚に要求される適正許容濃度以上の場合、これを中和した後に供給しなければならない。本発明によるオゾン注入装置において飼育水に注入されるオゾンの量は、TRO濃度0.04(mg/L)であることが望ましい。前記TRO濃度の量は、飼育水にオゾン処理が完了した後、第3飼育水槽に再供給されるか、第4飼育水槽に排水されて飼育水に供給される場合、魚類の斃死を防止できる濃度である。 If the concentration exceeds the appropriate tolerance required by fish, it must be neutralized before being supplied. The amount of ozone injected into the breeding water in the ozone injection device of the present invention is preferably a TRO concentration of 0.04 (mg/L). The amount of TRO concentration is a concentration that can prevent the death of fish when the breeding water is resupplied to the third breeding tank after ozone treatment is completed, or when it is drained into the fourth breeding tank and supplied to the breeding water.

オゾン注入装置は、オゾンを発生して飼育水に溶解させるオゾン発生装置と、総残留酸化物(TRO)基盤モニタリングを行うオゾン制御装置で構成される。
本発明の実施形態によるオゾン発生装置は、無性放電方法、電解法、光化学反応、放射線照射法、高周波電界法のうちの1つ以上を選択してオゾンを発生させるものである。
また、前記オゾン発生装置には、オゾン溶解器及び酸素発生装置を追加的に設置可能である。
The ozone injection device is composed of an ozone generator that generates ozone and dissolves it in the breeding water, and an ozone control device that performs total residual oxide (TRO) based monitoring.
The ozone generator according to the embodiment of the present invention generates ozone by selecting one or more of an aerosol discharge method, an electrolysis method, a photochemical reaction, a radiation irradiation method, and a high-frequency electric field method.
In addition, the ozone generator can be additionally equipped with an ozone dissolver and an oxygen generator.

本発明のオゾン制御装置は、総残留酸化物(TRO)連続測定によりモニタリングが可能であり、実施例では、通常公知のHF scientific社 CLX Online residual chlorine monitor(U.S.A)で具現している。総残留酸化物(TRO)ベースのモニタリング方式の制御装置は、微生物の増感特性と運転安定性がある。 The ozone control device of the present invention is capable of monitoring by continuous measurement of total residual chlorine (TRO), and in the embodiment, it is embodied in the commonly known HF Scientific CLX Online Residual Chlorine Monitor (U.S.A.). The control device with a total residual chlorine (TRO) based monitoring method has microbial sensitization properties and operational stability.

本発明による循環濾過養殖システムにおいて、飼育水の再循環で特定の病原菌や寄生虫が一度流入された場合、システム全体に急速に拡散する。したがって、本発明によるオゾン注入装置は、殺菌効果に優れたオゾンを供給して病原体および寄生虫を死滅させる必要がある。
本発明の第4養殖水槽供給段階(E)は、上記(D)段階で排水された飼育水を第4養殖水槽に供給して養殖する段階である。
(E)段階で養殖される水産生物は、水温16~18℃で養殖されるナマコが好適である。上記(D)段階で、排水される飼育水には、鮭類養殖から排出される鮭の***物と飼料残渣を含む有機物とを一緒に排出することができ、このような養殖有機物はナマコの餌として提供することができる。また、本発明の第4養殖水槽は、上述した第3養殖水槽と同様の方法による循環濾過養殖システムとして運用することができる。
In the recirculating filtration aquaculture system according to the present invention, if a specific pathogen or parasite is introduced once due to recirculation of the breeding water, it will spread rapidly throughout the system. Therefore, the ozone injector according to the present invention needs to supply ozone with excellent sterilizing effect to kill the pathogens and parasites.
The fourth culture tank supply step (E) of the present invention is a step of supplying the culture water discharged in the above step (D) to the fourth culture tank for culture.
The aquatic organisms cultured in step (E) are preferably sea cucumbers cultured at a water temperature of 16 to 18° C. In step (D), the drained rearing water may contain salmon excrement and organic matter including feed residues discharged from salmon farming, and such farmed organic matter may be provided as food for the sea cucumbers. The fourth aquaculture tank of the present invention may be operated as a circulating filtration aquaculture system in the same manner as the third aquaculture tank described above.

本発明の(D)または(E)段階で飼育水に分離された二酸化炭素と窒素性化合物は、第2養殖水槽に再供給して海藻栄養塩を供給することができる。
上記(D)~(E)段階に移動する飼育水は、後段階に移動する際に加温処理をせずに貯水槽に一時的に収集し、室温で水温が上がるようにしたり、加温装置で加温して各水槽に設定された水温に供給することができる。
The carbon dioxide and nitrogenous compounds separated in the rearing water in step (D) or (E) of the present invention can be resupplied to the second aquaculture tank to supply seaweed nutrients.
The rearing water to be moved to the above stages (D) to (E) can be temporarily collected in a water tank without being heated when moved to the later stage, and the water temperature can be raised at room temperature, or it can be heated by a heating device and supplied to each tank at the set water temperature.

通常、陸上養殖場では季節変化により養殖場の温度を一定に維持するため大量の熱エネルギー供給システムが要求され、適切な温度維持のミスで多量の生物が斃死する事故が続いている。また、海洋深層水を活用したミネラル供給は、冬季養殖槽の水温を急激に低下させる原因となり、精巧な温度補正が求められる。
しかしながら、本発明による養殖方法は、前後の養殖段階で要求される水温差が大きくないため、加温に要するエネルギーが少なく、水温維持のミスによる水生物の斃死を防止することができる。
Normally, land-based aquaculture farms require a large amount of heat energy supply system to maintain a constant temperature in the farm due to seasonal changes, and there have been many accidents in which large numbers of organisms have died due to failure to maintain the appropriate temperature. In addition, the supply of minerals using deep sea water causes the water temperature in the aquaculture tanks to drop rapidly in winter, requiring precise temperature adjustment.
However, in the culture method of the present invention, the difference in water temperature required between the previous and next culture stages is not large, so less energy is required for heating and it is possible to prevent the death of aquatic organisms due to incorrect water temperature maintenance.

また、本発明により養殖される寒海性水産資源サーモン類、海藻類及びナマコのような対象生物は、深層水を活用した低水温飼育環境の維持が可能であれば、年中生産が可能な利点を有するため、養殖生物生産率を高める効果がある。
上記各段階による養殖方法は、分離及び結合が可能であるため、必要に応じて生産しようとする魚種のみ養殖可能な効果がある。
In addition, the target organisms such as cold-water aquatic resource salmon, seaweed, and sea cucumbers cultured according to the present invention have the advantage that they can be produced all year round if it is possible to maintain a low-temperature breeding environment using deep water, which has the effect of increasing the productivity of cultured organisms.
The above-mentioned cultivation method has an advantage that each step can be separated and combined, so that only the fish species to be produced can be cultivated as needed.

以下、下記の実験例は、第3養殖水槽の脱気装置及びオゾン注入装置の運転による効果を確認したものである。
<実験例1> 脱気装置の二酸化炭素濃度の確認
実験例1は、正常稼働している第3養殖水槽の循環濾過システムに脱気装置を設置後、未稼働状態と正常稼働状態を区分して二酸化炭素を測定した。
飼料はそれぞれ5日間正常供給し、飼料供給を停止した後、二酸化炭素が最高点と最低点に到達するのにかかる速度を測定し、脱気装置の稼働有無による飼育水内の二酸化炭素濃度の還元効率を比較した。飼育水中の二酸化炭素濃度は10分間隔で測定し、飼料供給最終日から濃度最低点まで測定した。
The following experimental examples were carried out to confirm the effects of operating the deaerator and ozone injector in the third aquaculture tank.
Experimental Example 1: Confirmation of carbon dioxide concentration in the degassing device In Experimental Example 1, a degassing device was installed in the circulation filtration system of the third aquaculture tank which was operating normally, and carbon dioxide was measured separately for a non-operating state and a normally operating state.
Feed was normally supplied for 5 days, and after the feed supply was stopped, the speed at which carbon dioxide reached its highest and lowest points was measured, and the reduction efficiency of the carbon dioxide concentration in the rearing water was compared with and without the operation of the degassing device. The carbon dioxide concentration in the rearing water was measured at 10-minute intervals from the last day of feed supply to the lowest concentration point.

図7は、本発明の実験例1による二酸化炭素の変化を示す図である。
脱気装置を運転しなかった場合、19.4mg/Lから始まり、最大29.2mg/Lまで上昇した。二酸化炭素が最低点11.4mg/Lに達するのに約29.5hr程度が必要であった。
一方、脱気装置を起動した場合、約16.1mg/Lから始まり、最大24.7mg/Lまで上昇し、最低点11.3mg/Lに達するために24.9hr程度が必要であった。
脱気装置が稼働していない場合、稼働した場合よりも二酸化炭素の濃度は最大濃度基準1.18倍高く、脱気装置によって改善されることが示された。運転中に二酸化炭素の濃度も低く保たれることがわかった。
FIG. 7 is a diagram showing the change in carbon dioxide according to Experimental Example 1 of the present invention.
When the degasser was not operated, the carbon dioxide concentration started at 19.4 mg/L and rose to a maximum of 29.2 mg/L. It took about 29.5 hours for the carbon dioxide concentration to reach a minimum of 11.4 mg/L.
On the other hand, when the degassing device was started, the concentration started from about 16.1 mg/L, rose to a maximum of 24.7 mg/L, and required about 24.9 hours to reach a minimum of 11.3 mg/L.
When the degassing device was not in operation, the carbon dioxide concentration was 1.18 times higher than the maximum concentration standard, indicating that the degassing device can improve the situation. It was also found that the carbon dioxide concentration was kept low during operation.

<実験例2> 脱気装置稼働効率(送風量)による脱気装置の効率
実験例2は実験例1と同様に実施した。以下の表1は脱気装置に供給される送風量による除去効率条件を示し、図8は脱気装置の稼動による二酸化炭素除去率を示す図である。
脱気装置の送風量が0m3/minで稼動していない場合は、平均31.8±7.3%で不安定な低い除去効率を示したが、送風量が25m3/minの場合は、平均46.2±2.9%、送風量が50m3/minの場合は、平均59.0±3.1%の安定した除去効率が示された。

Figure 2024084083000002
Experimental Example 2: Efficiency of the degassing device depending on the degassing device operation efficiency (airflow rate) Experimental Example 2 was carried out in the same manner as Experimental Example 1. Table 1 below shows the removal efficiency conditions depending on the airflow rate supplied to the degassing device, and Fig. 8 is a diagram showing the carbon dioxide removal rate by operation of the degassing device.
When the degassing device was not operating with an air flow rate of 0 m3 /min, an unstable low removal efficiency of 31.8±7.3% was observed on average. However, when the air flow rate was 25 m3 /min, a stable removal efficiency of 46.2±2.9% was observed on average, and when the air flow rate was 50 m3 /min, a stable removal efficiency of 59.0±3.1% was observed on average.
Figure 2024084083000002

次に、脱気装置の稼働効率(送風量)による飼育水の二酸化炭素濃度を確認した。
正常稼働している脱気装置の送風量に応じたシステム内の二酸化炭素の溶存濃度維持範囲と除去効率を調べるため、0m3/min(未可動)、25m3/分、50m3/分の送風量の差を置いて比較した。飼料は正常供給(6個水槽×5kg=30kg/日間)しながら飼育水内の溶存二酸化炭素の濃度を10分間隔で5日間連続測定した。
Next, the carbon dioxide concentration in the rearing water was confirmed according to the operating efficiency (airflow rate) of the degassing device.
To investigate the range of dissolved carbon dioxide concentration and removal efficiency in the system according to the airflow rate of the normally operating deaerator, comparisons were made with airflow rates of 0 m3 /min (not in operation), 25 m3 /min, and 50 m3/min. Feed was supplied normally (6 tanks x 5 kg = 30 kg/day) and the dissolved carbon dioxide concentration in the rearing water was measured continuously for 5 days at 10-minute intervals.

図9は、実験例2による脱気装置の稼動における飼育水槽内の二酸化炭素濃度の変化を示す図である。
脱気装置の送風機を稼動していない場合は最低25~38mg/Lの範囲に維持したが、送風量が25m3/minの場合は20~30mg/Lであった。
そして、送風量が50m3/minの場合、18~28mg/Lの範囲で分布した。
FIG. 9 is a graph showing the change in carbon dioxide concentration in the breeding aquarium during operation of the degassing device according to Experimental Example 2.
When the deaerator fan was not running, the concentration was maintained at a minimum of 25-38 mg/L, but when the airflow rate was 25 m 3 /min, it was 20-30 mg/L.
When the air flow rate was 50 m 3 /min, the concentration was distributed in the range of 18 to 28 mg/L.

すべての実験区で飼料を供給した昼間の場合、飼育魚類の活動と飼料摂取に伴う呼吸増加によって二酸化炭素の濃度が増加したが、活動と飼料摂取が中断される日没後には溶存二酸化炭素の濃度が減少することが現れた。 In all experimental areas, when feed was provided during the day, carbon dioxide concentrations increased due to increased respiration caused by the activity of the fish and their feeding, but after sunset, when activity and feeding ceased, the concentration of dissolved carbon dioxide decreased.

<実験例3> 適正TRO濃度確認
実験例3では、本発明によるTRO連続測定装置を用いてリアルタイム飼育水槽内のTRO濃度を測定し、飼育生物の行動(飼料摂取量基準)変化と飼育水内の微生物変化を調査した。
本発明の実験例3による実験魚は海マスで、高密度飼育システムにおけるオゾン処理の効果を調べた。飼料摂取量の調査は、1日2回飼料供給時の満腹供給を基準に供給飼料の残りが発生しないように手作業で供給した。
微生物調査項目は、生物学的濾過槽の濾過微生物と関連が深く、濾過効率に影響を及ぼす可能性があるheterotrophic marine bacteriaと魚類疾患に大きく関与する病原性微生物であるgram-negative strainとVibrio sppを対象に調査した。
<Experimental Example 3> Confirmation of appropriate TRO concentration In Experimental Example 3, the TRO concentration in the breeding tank was measured in real time using the TRO continuous measuring device according to the present invention, and changes in the behavior of the reared organisms (based on feed intake) and changes in microorganisms in the breeding water were investigated.
The experimental fish in Experimental Example 3 of the present invention was sea trout, and the effect of ozone treatment in a high-density rearing system was examined. The amount of feed intake was examined by manually feeding twice a day based on the amount of feed consumed, so that no feed was left over.
The microbial survey items included heterotrophic marine bacteria that are closely related to the filtering microorganisms in the biological filtration tank and may affect the filtering efficiency, as well as gram-negative strains and Vibrio spp, which are pathogenic microorganisms closely related to fish diseases.

以下の表2は、TRO濃度による飼料摂取量の変化と飼育水内の微生物の変化を示す図である。図10、11は、本発明の実験例3によるTRO濃度による飼育生物飼料摂取量(図10)および微生物変化(図11)を示す。
飼育生物の飼料摂取量は、TRO 0.00実験区(対照区)で2,168g/day、TRO 0.04実験区で2,155g/day、0.08実験区で713g/dayであり、TRO 0.08以上の濃度では飼育生物の飼料摂取に異常の変化が発生すると判断される。

Figure 2024084083000003
The following Table 2 shows the change in feed intake and the change in microorganisms in the rearing water depending on the TRO concentration. Figures 10 and 11 show the feed intake (Figure 10) and the change in microorganisms (Figure 11) of reared organisms depending on the TRO concentration according to Experimental Example 3 of the present invention.
The feed intake of the reared organisms was 2,168 g/day in the TRO 0.00 experimental group (control group), 2,155 g/day in the TRO 0.04 experimental group, and 713 g/day in the TRO 0.08 experimental group. It is considered that abnormal changes in the feed intake of the reared organisms occurred at concentrations of TRO 0.08 or higher.
Figure 2024084083000003

飼育水微生物のうち、Heterotrophic marine bacteriaはTRO 0.00実験区(対照区)で3.4×103CFU/ml、TRO 0.04実験区で1.0×103CFU/ml、0.08実験区で1.0×103CFU/mlであった。
Gram-negat ive strainは、対照区で1.4×103CFU/ml、0.04実験区で5.6×101CFU/ml、0.08実験区を4.5×101CFU/mlで検出した。
Among the microorganisms in the rearing water, the heterotrophic marine bacteria were 3.4×10 3 CFU/ml in the TRO 0.00 experimental group (control group), 1.0×10 3 CFU/ml in the TRO 0.04 experimental group, and 1.0×10 3 CFU/ml in the TRO 0.08 experimental group.
Gram-negative strain was detected at 1.4×10 3 CFU/ml in the control group, 5.6×10 1 CFU/ml in the 0.04 experimental group, and 4.5×10 1 CFU/ml in the 0.08 experimental group.

Vibrio sppの場合、対照区では9.5×102CFU/ml、TRO 0.04実験区では2.3×101CFU/ml、0.08実験区では0.7×101CFU/mlであった。
TRO 0.04mg/L実験区で魚類病に大きく影響するGram-negat ive strainおよびVibrio spp微生物の個体数がそれぞれ1/26、1/41レベルに減少し、0.08mg/L実験区でGram-negat ive strainは1/32で大きな変動はなかったが、Vibrio sppは1/127レベルで0.04に比べて3倍ほど減少したことが分かった。
For Vibrio spp, the count was 9.5 x 102 CFU/ml in the control group, 2.3 x 101 CFU/ml in the TRO 0.04 group, and 0.7 x 101 CFU/ml in the TRO 0.08 group.
In the 0.04 mg/L TRO experimental area, the numbers of Gram-negative strain and Vibrio spp microorganisms, which have a significant impact on fish diseases, decreased to 1/26 and 1/41 levels, respectively. In the 0.08 mg/L experimental area, the Gram-negative strain was 1/32, with no significant change, but Vibrio spp was 1/127, a three-fold decrease compared to the 0.04 level.

このように飼育水内のTRO濃度が高くなると、病気誘発微生物を低減できるメリットがあるが、飼料摂取量の低下など、魚類の成長に影響を及ぼす濃度以上のオゾン注入は危険なものと考えられ、循環濾過養殖システムで海マスの飼育時、オゾンの滴定注入濃度は飼料摂取に影響がなく、微生物の個体数は著しく減少するTRO基準0.04mg/Lレベルを維持して循環濾過養殖システムを運転することが望ましいことを確認した。 Increasing the TRO concentration in the breeding water in this way has the advantage of reducing disease-inducing microorganisms, but injecting ozone at a concentration that affects fish growth, such as reducing feed intake, is considered dangerous. We have confirmed that when breeding sea trout in a circulating filtration aquaculture system, it is desirable to operate the circulating filtration aquaculture system while maintaining the TRO standard level of 0.04 mg/L, which does not affect feed intake and significantly reduces the number of microorganisms.

本発明にかかる海洋深層水を利用した異種生物多段階養殖方法は、海洋深層水の長所と環境にやさしい先端養殖技術の長所を組み合わせて、環境にやさしい海洋深層水先端養殖事業を推進し、未来型輸出産業に進化させ、世界市場の先導が可能で産業上利用可能性がある。 The multi-stage cultivation method of different species using deep ocean water according to the present invention combines the advantages of deep ocean water with the advantages of environmentally friendly advanced cultivation technology, promoting the environmentally friendly advanced deep ocean water cultivation business, evolving it into a futuristic export industry, and leading the global market with industrial applicability.

1: 処理槽
10:傾斜仕切り部
11:流通管
12:通気管
20:水平多孔仕切り部
3:上部処理槽
30:バイオボールレイヤー
31:バイオボール
4:下部処理槽
40:ベンチュリ管
41:ポンプ
42:第1給水供給ライン
43:第2給水供給ライン
60:曝気管
80:エア供給ライン
81:エア供給元
90:吐出口
100:飼育水槽
200:沈殿槽
300:有機物除去装置
400:脱気装置
410:充填塔
420:飼育水流入管
430:流入量調節弁
440:濾過媒体
450:排出管
460:空気注入口
470:エアアウトレット
480:エアコントロールバルブ
500:濾過装置
600:オゾン注入装置


1: Treatment tank 10: Inclined partition section 11: Flow pipe 12: Vent pipe 20: Horizontal porous partition section 3: Upper treatment tank 30: Bioball layer 31: Bioball 4: Lower treatment tank 40: Venturi tube 41: Pump 42: First water supply line 43: Second water supply line 60: Aeration pipe 80: Air supply line 81: Air supply source 90: Discharge port 100: Breeding aquarium tank 200: Sedimentation tank 300: Organic matter removal device 400: Deaeration device 410: Packing tower 420: Breeding water inlet pipe 430: Inflow rate control valve 440: Filtration medium 450: Discharge pipe 460: Air inlet 470: Air outlet 480: Air control valve 500: Filtration device 600: Ozone injection device


Claims (3)

取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を畜養し、第1養殖水槽から排水された飼育水は第2養殖水槽に供給し、水温10~12℃で海藻類を養殖し、
第2養殖水槽から排水された飼育水は、第3養殖水槽に供給され、水温14~16℃でサケ類を養殖し、前記第3養殖水槽から排水された飼育水を第4養殖水槽に供給し、水温16~18℃でナマコを養殖し、
前記取水された海洋深層水は、水位差移動エネルギーで第1~第4養殖水槽に順次的に供給され、第3及び第4養殖水槽は循環濾過養殖システムで構成され、飼育水を再循環することを特徴とする海洋深層水を利用した異種生物多段階養殖方法。
The deep ocean water is supplied to a first aquaculture tank, and cold-water crustaceans are cultured at a water temperature of 3 to 5°C. The breeding water discharged from the first aquaculture tank is supplied to a second aquaculture tank, and seaweed is cultured at a water temperature of 10 to 12°C.
The breeding water discharged from the second aquaculture tank is supplied to a third aquaculture tank, and salmonids are cultured at a water temperature of 14 to 16°C. The breeding water discharged from the third aquaculture tank is supplied to a fourth aquaculture tank, and sea cucumbers are cultured at a water temperature of 16 to 18°C.
The deep sea water taken is sequentially supplied to the first to fourth culture tanks by water level difference movement energy, and the third and fourth culture tanks are configured with a circulation filtration culture system, and the culture water is recirculated.
前記循環濾過養殖システムには、飼育水槽が1つ以上設けられ、前記飼育水槽で排水された飼育水は沈殿槽に貯蔵された後、有機物除去装置、脱気装置、濾過装置、オゾン注入装置を順次に経て飼育水槽に再供給され、
前記有機物除去装置から分離された有機物は外部に排出されるか、第4養殖水槽のナマコ餌として供給され、脱気装置で飼育水と分離された二酸化炭素と濾過装置で飼育水と分離された窒素化合物は、第2養殖水槽の海藻類の栄養塩として供給されることを特徴とする請求項1記載の海洋深層水を用いた異種生物多段階養殖方法。
The circulating filtration aquaculture system includes one or more breeding tanks, and breeding water discharged from the breeding tank is stored in a settling tank and then sequentially passed through an organic matter removal device, a degassing device, a filtration device, and an ozone injection device, and then resupplied to the breeding tank.
The organic matter separated from the organic matter removal device is discharged to the outside or supplied as sea cucumber food to the fourth aquaculture tank, and the carbon dioxide separated from the rearing water by the deaeration device and the nitrogen compounds separated from the rearing water by the filtration device are supplied as nutrients for seaweed in the second aquaculture tank. The method for multi-stage aquaculture of different organisms using deep ocean water according to claim 1.
前記オゾン注入装置は、オゾンを発生して飼育水に溶解させるオゾン発生装置の総残留酸化物(TRO)値をモニタリングするオゾン制御装置とからなり、前記飼育水のオゾンはTRO濃度0.04(mg/L)に維持することを特徴とする請求項2記載の海洋深層水を用いた異種生物多段階養殖方法。
3. The method for multi-stage cultivation of different organisms using deep sea water according to claim 2, characterized in that the ozone injection device comprises an ozone control device that monitors a total residual oxide (TRO) value of an ozone generator that generates ozone and dissolves it in the breeding water, and the ozone in the breeding water is maintained at a TRO concentration of 0.04 (mg/L).
JP2022200550A 2022-12-12 2022-12-15 A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water. Active JP7450194B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220173154A KR102597574B1 (en) 2022-12-12 2022-12-12 Multi-stage recirculating aquaculture method of various organisms using the low temperature of deep sea water.
KR10-2022-0173154 2022-12-12

Publications (2)

Publication Number Publication Date
JP7450194B1 JP7450194B1 (en) 2024-03-15
JP2024084083A true JP2024084083A (en) 2024-06-24

Family

ID=88747452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022200550A Active JP7450194B1 (en) 2022-12-12 2022-12-15 A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water.

Country Status (2)

Country Link
JP (1) JP7450194B1 (en)
KR (1) KR102597574B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861134B1 (en) 2006-08-07 2008-09-30 서희동 A cultured method of the seaweed which used deep sea water and surface sea water
KR100789389B1 (en) 2006-12-21 2007-12-28 주식회사 씨에버 Method of Producing Shellfish Using Concentrated Mineral-form Water in the Deep Sea
KR100869033B1 (en) * 2007-07-04 2008-11-18 서희동 A cultured method of the fish which used deep and surface seawater
KR101578927B1 (en) 2009-08-10 2015-12-23 박귀조 Method for the culture of sea cucumbers using surface sea water and deep sea water
KR101539348B1 (en) * 2015-01-07 2015-07-29 경상북도 Ozonation Equipment for Fish Farms using Mass Transfer and Reaction
KR20160090613A (en) * 2015-01-22 2016-08-01 (주)영진글로지텍 A city farming system using a food chain
KR20170029280A (en) * 2015-09-07 2017-03-15 주식회사하남엔지니어링 the rearing system using the food chain structure
KR101660867B1 (en) * 2015-12-28 2016-09-28 주식회사 그린플러스 Building type fish forming systerm
KR102074613B1 (en) * 2019-06-28 2020-02-06 조희룡 The recirculating aquaculture system

Similar Documents

Publication Publication Date Title
US5732654A (en) Open air mariculture system and method of culturing marine animals
CN103112996B (en) Aquaculture water circulation purification method and device
MXPA97004360A (en) System and method of mariculture to open heaven to raise animals mari
KR102051259B1 (en) An eco-friendly denitration device based on salinity tolerant aerobic granular sludge
JP2017148007A (en) Cultivation system of fish seedling
KR101498990B1 (en) Continuous Flow Sterile Water Fish Aquaculture System
CN108569820A (en) A kind of pollution-free breeding system and its cultural method
CN105692969A (en) Circulating water treatment method of seawater for cultivation and device thereof
KR20040095236A (en) Pre-and post-treatment system and method for periphyton filtration using ozone
RU2595670C2 (en) System for decomposition of organic compounds and operating method thereof
MXPA03011026A (en) Decentralized oxygen supply system for aquaculture.
KR101578927B1 (en) Method for the culture of sea cucumbers using surface sea water and deep sea water
CN108633802B (en) Method for ecologically cultivating parent penaeus vannamei boone
JP2024084083A (en) A multi-stage circulation and filtration aquaculture method for different species of organisms utilizing the low temperature characteristics of deep ocean water
JP7450194B1 (en) A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water.
CN111357703A (en) Water body culture and planting circulating ecological system
RU2721534C1 (en) Method of water treatment for cultivation of hydrobionts in closed volumes and device implementing thereof
KR101170880B1 (en) A method to treat domestic animal water to drink using deep-ocean water
KR101626793B1 (en) Drinking water treatment method of the domestic animal using deep-ocean water
CN105613355A (en) Technology for storage cultivating of seafood products
CN110178784A (en) A kind of C. guichenoti circulating water culture system
CN215123386U (en) Water treatment device for seawater recirculating aquaculture
Santoso et al. Use of probiotics in fish feed and clams (Pilsbryoconcha exilis) as biofilter components of aquaponic system in archipelagic dryland
CN108865893A (en) A kind of method of alkali flocculation harvest and Cyclic culture microalgae
JP2002320426A (en) Seaweeds culturing equipment and fishes and shellfishes culturing equipment furnished with the seaweeds culturing equipment