JP2024083065A - ショベル、及び作業機械 - Google Patents

ショベル、及び作業機械 Download PDF

Info

Publication number
JP2024083065A
JP2024083065A JP2022197367A JP2022197367A JP2024083065A JP 2024083065 A JP2024083065 A JP 2024083065A JP 2022197367 A JP2022197367 A JP 2022197367A JP 2022197367 A JP2022197367 A JP 2022197367A JP 2024083065 A JP2024083065 A JP 2024083065A
Authority
JP
Japan
Prior art keywords
shovel
attachment
bucket
space
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022197367A
Other languages
English (en)
Inventor
将 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2022197367A priority Critical patent/JP2024083065A/ja
Publication of JP2024083065A publication Critical patent/JP2024083065A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)

Abstract

Figure 2024083065000001
【課題】処理負担を軽減する。
【解決手段】本開示の一態様に係るショベルは、上部旋回体と、上部旋回体から移動可能に設けられたアタッチメントと、アタッチメントで施工された後の施工対象の表面形状を多角形の集合で示した形状情報を記憶する記憶部と、形状情報で示された表面形状から、アタッチメントが移動可能な空間に含まれている多角形を抽出し、抽出された多角形で表される三次元形状に基づいて制御を行うように構成されている。
【選択図】図3

Description

本発明は、ショベル、及び作業機械に関する。
従来から、油圧ポンプから供給される作動油によって、ショベルの各構成を動作させる油圧回路を備えるショベルが知られている。近年、当該ショベルが施工を行うためにコンピュータを用いて支援する技術が提案されている。
例えば、特許文献1では、バケットの速度制御を行うための掘削対象の目標形状を、バケットの現在位置に近い面に制限することで、処理負担を軽減している。
特開2013-217138号公報
しかしながら、バケットの現在位置に近い面が、バケットの掘削対象とは限らない。例えば、バケットの現在位置に近い面であっても、アタッチメントを駆動させた際に当該面がバケットの移動可能な範囲に含まれていない場合、施工対象とはならない。さらに、施工対象とならないにもかかわらず、バケットの現在に近い面の形状が細かすぎる場合に処理負担が大きくなる。
上述に鑑み、ショベルのアタッチメントの移動可能な空間に含まれている三次元形状を抽出し、抽出された三次元形状を用いることで、処理負担の軽減を実現する技術を提供する。
本発明の一態様に係るショベルは、上部旋回体と、上部旋回体から移動可能に設けられたアタッチメントと、アタッチメントで施工された後の施工対象の表面形状を多角形の集合で示した形状情報を記憶する記憶部と、形状情報で示された表面形状から、アタッチメントが移動可能な空間に含まれている多角形を抽出し、抽出された多角形で表される三次元形状に基づいて制御を行うように構成されている。
本発明の一態様によれば、アタッチメントが移動可能な空間に含まれる、三次元形状を用いることで、処理負担の軽減を実現する。
図1は、第1の実施形態に係るショベル(掘削機)を示す側面図である。 図2は、第1の実施形態に係るショベルの駆動制御系の構成例を示す図である。 図3は、第1の実施形態に係るショベルのショベルコントローラの構成例を示す機能ブロック図である。 図4は、第1の実施形態に係る領域特定部により特定されたバケットの移動可能空間を示した図である。 図5は、第1の実施形態に係る設計情報で示された施工後の物体の表面形状を示した図である。 図6は、第1の実施形態に係る設計情報で示された施工後の物体の表面形状の一部領域を示した図である。 図7は、第1の実施形態に係る設計情報で示された施工後の物体の表面形状の一部領域に対して、移動可能空間を重畳した図である。 図8は、第1の実施形態に係るショベルコントローラがバケットを移動させるための半自動制御を示したフローチャートである。
以下、本発明の実施形態について図面を参照して説明する。また、以下で説明する実施形態は、発明を限定するものではなく例示であって、実施形態に記述される全ての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。なお、各図面において同一の又は対応する構成には同一の又は対応する符号を付し、説明を省略することがある。
(第1の実施形態)
次に、図1を参照して、本実施形態に係るショベル100の概要について説明する。図1は、第1の実施形態に係る掘削機としてのショベル100の側面図である。ショベル100の下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載される。上部旋回体3にはブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられる。エンドアタッチメントは、法面用バケット又は浚渫用バケット等であってもよい。
ブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられる。掘削アタッチメントには、バケットチルト機構が設けられていてもよい。
ブーム角度センサS1はブーム4の回動角度を検出する。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度であるブーム角度を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。
アーム角度センサS2はアーム5の回動角度を検出する。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度であるアーム角度を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。
バケット角度センサS3はバケット6の回動角度を検出する。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度であるバケット角度を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。
ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、又は、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよい。ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、掘削アタッチメントの姿勢を検出する姿勢センサを構成する。
上部旋回体3には、運転室としてのキャビン10、エンジン11、機体傾斜センサS4、旋回角速度センサS5、撮像装置S6、空間認識装置S7、測位装置S8、及び通信装置T1等が搭載されている。
キャビン10内には、ショベルコントローラ30が設置される。また、キャビン10内には、運転席及び操作装置等が設置されている。
ショベルコントローラ30は、各種演算を実行する演算装置である。ショベルコントローラ30は、例えば、キャビン10内に設けられ、ショベル100の駆動制御を行う。ショベルコントローラ30は、その機能が任意のハードウェア、ソフトウェア、或いは、その組み合わせにより実現されてよい。例えば、ショベルコントローラ30は、CPU(Central Processing Unit)、RAM(Random Access Memory)等のメモリ装置、ROM(Read Only Memory)等の不揮発性の補助記憶装置、及び各種入出力用のインターフェース装置等を含むマイクロコンピュータを中心に構成される。ショベルコントローラ30は、例えば、不揮発性の補助記憶装置にインストールされる各種プログラムをCPU上で実行することにより各種機能を実現する。
エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、ディーゼルエンジンである。エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。
機体傾斜センサS4は、所定の平面に対する上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は、水平面に関する上部旋回体3の前後軸回りの傾斜角及び左右軸回りの傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、互いに直交してショベル100の旋回軸上の一点であるショベル中心点を通る。
旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ又はロータリエンコーダ等であってもよい。旋回角速度センサS5は、旋回速度を検出してもよい。旋回速度は、旋回角速度から算出されてもよい。
撮像装置S6はショベル100の周辺の画像を取得するように構成されている。本実施形態では、撮像装置S6は、ショベル100の前方の空間を撮像する前カメラS6F、ショベル100の左方の空間を撮像する左カメラS6L、ショベル100の右方の空間を撮像する右カメラS6R、及びショベル100の後方の空間を撮像する後カメラS6Bを含む。
撮像装置S6は、例えば、CCDやCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置DIに出力してもよい。
前カメラS6Fは、例えば、キャビン10の屋根に取り付けられている。左カメラS6Lは、上部旋回体3の上面左端に取り付けられている。右カメラS6Rは、上部旋回体3の上面右端に取り付けられている。後カメラS6Bは、上部旋回体3の上面後端に取り付けられている。
本実施形態は、撮像装置S6を上述した配置に設けることで、ショベル100の周辺に存在する物体を撮像できる。
空間認識装置S7は、ショベル100の周囲の空間の状態を認識するように構成されている。空間認識装置S7は、ショベル100の後方の空間の検知を行う後方空間認識装置S7B、ショベル100の左方の空間の検知を行う左方空間認識装置S7L、ショベル100の右方の空間の検知を行う右方空間認識装置S7R、及び、ショベル100の前方の空間の検知を行う前方空間認識装置S7Fを含む。
空間認識装置S7は、ショベル100の周辺に存在する物体を検出するためにLIDARを用いてもよい。LIDARは、例えば、監視範囲内にある100万点以上の点とLIDARとの間の距離を測定する。なお、本実施形態は、LIDARを用いる手法に制限するものではなく、物体との間の距離を計測可能な空間認識装置であればよい。例えば、ステレオカメラを用いてもよいし、距離画像カメラ、又はミリ波レーダなどの測距装置を用いてもよい。空間認識装置S7としてミリ波レーダ等が利用される場合には、空間認識装置S7から多数の信号(レーザ光等)を物体に向けて発信し、その反射信号を受信することで、反射信号から物体の距離及び方向を導き出してもよい。
後方空間認識装置S7Bは、上部旋回体3の上面の後端に取り付けられる。左方空間認識装置S7Lは、上部旋回体3の上面の左端に取り付けられる。右方空間認識装置S7Rは、上部旋回体3の上面の右端に取り付けられる。前方空間認識装置S7Fは、キャビン10の上面の前端に取り付けられる。
空間認識装置S7は、ショベル100の周囲に設定された所定領域内の所定物体を検知するように構成されていてもよい。例えば、空間認識装置S7は、人と人以外の物体とを区別しながら人を検知できるように構成された人検知機能を有していてもよい。
測位装置S8は、ショベル100の位置に関する情報を取得するように構成されている。本実施形態では、測位装置S8は、基準座標系におけるショベル100の位置及び向きを測定するように構成されている。具体的には、測位装置S8は、電子コンパスを組み込んだGNSS受信機であり、ショベル100の現在位置の緯度、経度、及び高度を測定し、且つ、ショベル100の向きを測定する。本実施形態に係る基準座標系とは、例えば、世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向に、Y軸を東経90度の方向に、そして、Z軸を北極の方向にとる三次元直交XYZ座標系である。
通信装置T1は、ショベル100の外部にある機器との通信を制御するように構成されている。本実施形態では、通信装置T1は、無線通信網を介し、通信装置T1とショベル100の外部にある機器との間の通信を制御するように構成されている。通信装置T1は、例えば、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の移動体通信規格に対応する移動体通信モジュールや衛星通信網に接続するための衛星通信モジュール等を含む。
また、通信装置T1は、例えば、外部のGNSS(Global Navigation Satellite System)測量システムとショベル100との間の無線通信を制御する。
図2は、図1のショベル100の駆動制御系の構成例を示す図である。図2において、機械的動力伝達系は二重線、作動油ラインは太実線、パイロットラインは破線、電気駆動・制御系は点線でそれぞれ示される。
本実施形態に係るショベル100の駆動系は、エンジン11と、レギュレータ13と、メインポンプ14と、コントロールバルブユニット17を含む。また、本実施形態に係るショベル100の油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを油圧駆動する走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等の油圧アクチュエータを含む。
エンジン11は、油圧駆動系におけるメイン動力源であり、例えば、上部旋回体3の後部に搭載される。具体的には、エンジン11は、後述するショベルコントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。
レギュレータ13は、メインポンプ14の吐出量を制御する。例えば、レギュレータ13は、ショベルコントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(傾転角)を調節する。
メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、高圧油圧ラインを通じてコントロールバルブユニット17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、ショベルコントローラ30による制御下で、レギュレータ13により斜板の傾転角が調節されることでピストンのストローク長が調整され、吐出流量(吐出圧)が制御される。
コントロールバルブユニット17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブユニット17は、制御弁171~176を含む。コントロールバルブユニット17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できるように構成されている。制御弁171~176は、例えば、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行油圧モータ1L、1R、及び旋回油圧モータ2Aを含む。より具体的には、制御弁171は、左走行油圧モータ1Lに対応し、制御弁172は、右走行油圧モータ1Rに対応し、制御弁173は、旋回油圧モータ2Aに対応する。また、制御弁174は、バケットシリンダ9に対応し、制御弁175は、ブームシリンダ7に対応し、制御弁176は、アームシリンダ8に対応する。
パイロットポンプ15は、パイロット圧生成装置の一例であり、パイロットラインを介して油圧制御機器に作動油を供給できるように構成されている。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロット圧生成装置は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給する機能に加え、パイロットラインを介して各種油圧制御機器に作動油を供給する機能を備えていてもよい。この場合、パイロットポンプ15は、省略されてもよい。
操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも一方を含む。
吐出圧センサ28は、メインポンプ14の吐出圧を検出するように構成されている。本実施形態では、吐出圧センサ28は、検出した値をショベルコントローラ30に対して出力する。
操作センサ29は、操作装置26を用いた操作者の操作内容を検出するように構成されている。本実施形態では、操作センサ29は、アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を検出し、検出した値をショベルコントローラ30に対して出力する。本実施形態では、ショベルコントローラ30は、操作センサ29の出力に応じて比例弁31の開口面積を制御する。そして、ショベルコントローラ30は、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、原則として、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に応じた圧力である。このように、操作装置26は、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できるように構成されている。
マシンコントロール用制御弁として機能する比例弁31は、パイロットポンプ15とコントロールバルブユニット17内の制御弁のパイロットポートとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁31は、ショベルコントローラ30が出力する制御指令に応じて動作する。そのため、ショベルコントローラ30は、操作者による操作装置26の操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31を介し、コントロールバルブユニット17内の制御弁のパイロットポートに供給できる。
この構成により、ショベルコントローラ30は、特定の操作装置26に対する操作が行われていない場合であっても、その特定の操作装置26に対応する油圧アクチュエータを動作させることができる。
例えば、ショベルコントローラ30は、操作者等の所定操作により予め設定される作業モード等に基づき、目標回転数を設定し、エンジン11を一定回転させる駆動制御を行う。
また、例えば、ショベルコントローラ30は、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
また、例えば、ショベルコントローラ30は、例えば、操作者による操作装置26を通じたショベル100の手動操作をガイド(案内)するマシンガイダンス機能に関する制御を行う。また、ショベルコントローラ30は、例えば、操作者による操作装置26を通じたショベル100の手動操作を自動的に支援するマシンコントロール機能に関する制御を行う。
なお、ショベルコントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、ショベルコントローラ30の機能は、複数のコントローラにより分散される態様で実現されてもよい。例えば、マシンガイダンス機能及びマシンコントロール機能は、専用のコントローラ(制御装置)により実現されてもよい。
<ショベルコントローラのブロック構成>
図3は、本実施形態に係るショベル100のショベルコントローラ30の構成例を示す機能ブロック図である。
ショベルコントローラ30は、アタッチメント処理部310と、補助記憶装置320と、を有している。
補助記憶装置320は、ショベルコントローラ30内に設けられ、設計情報記憶部321と、ショベル情報記憶部322と、を備える。
設計情報記憶部321は、ショベル100が作業現場で作業を行うための設計情報(形状情報の一例)を記憶する。設計情報とは、作業現場に存在する土砂等の施工後の形状を表した3次元データとする。設計情報は、施工後の物体の3次元形状及び位置を、上述した基準座標系で表現されている。
本実施形態に係る設計情報は、いわゆるTIN形式のデータであって、ショベル100の施工後の物体の3次元形状の表面を、三角形の集合で表したデジタルデータである。
本実施形態に係る設計情報に含まれる三角形の各頂点は、上述した基準座標系における位置情報で示されている。
換言すると、設計情報は、基準座標系において施工後の物体の表面上に多数の点を付与し、付与された点同士を直線でつないで三角形の集合として表された情報である。任意の情報処理装置が、設計情報を読み込んで、当該三角形の面をレンダリングすることで、施工後の物体の表面を、三次元的な形状として視覚化できる。
設計情報は、例えば、施工後の物体の3次元形状の表面をTIN形式で含んだLandXMLデータでもよい。設計情報は、本実施形態で示したデジタルデータに制限するものではなく、施工後の物体の3次元形状の表面を、多角形の集合で表したデジタルデータであればよい。
ショベル情報記憶部322は、ショベル100の寸法に関する情報を記憶する。例えば、ショベル情報記憶部322は、ショベル100に設けられたバケット6(作業具)の形状を示した情報を記憶する。具体的には、ショベル情報記憶部322は、ショベル100に設けられたバケット6の車幅方向の長さを示す情報を記憶する。
本実施形態では、ショベル100にバケット6が設けられた場合について説明する。ショベル100に設けられるバケット6の種類は、設計情報に従ってショベル100が施工可能なバケットであればよく、例えば、法面バケットが装着されてもよい。
本実施形態に係るショベル100では、ショベル100のキャビン10に搭乗している操作者の操作に従ってショベルコントローラ30が半自動制御を行う例とする。
半自動制御としては、例えば、操作センサ29が、操作者から操作装置26に対してブーム4の下げ操作を受け付けた場合に、ショベルコントローラ30は、バケット6の底面が、設計情報で示された施工後の物体の表面に沿うように、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の油圧駆動の制御を行う。
当該半自動制御を行うためには、ショベルコントローラ30は、バケット6と、設計情報で示された施工後の物体の表面と、の位置関係を認識する必要がある。しかしながら、設計情報で示された施工後の物体の表面全てを演算に用いる場合、ショベルコントローラ30の演算負荷が大きくなる。
そこで、本実施形態に係るショベルコントローラ30のアタッチメント処理部310が、ショベル100の現在位置及び上部旋回体3の現在の旋回角で、バケット6が移動可能な空間(以下、移動可能空間)を特定する。そして、アタッチメント処理部310は、TIN形式の設計情報に含まれている、施工後の物体の表面を構成する三角形の集合から、移動可能空間に含まれている三角形を抽出する。そして、アタッチメント処理部310は、抽出された三角形の組み合わせた三次元形状に基づいて制御を行うように構成されている次に、アタッチメント処理部310の具体的な構成について説明する。
アタッチメント処理部310は、ショベルコントローラ30内のCPUが、補助記憶装置内のプログラムを読み出すことで実現された機能であって、取得部311と、領域特定部312と、抽出部313と、経路生成部314と、制御部315と、を備える。
取得部311は、ショベル100内の各種構成の信号を取得する。例えば、取得部311は、測位装置S8から、ショベル100の現在位置の緯度、経度、及び高度、並びにショベル100の向きを示した測定結果を取得する。また、取得部311は、各種センサ(例えば、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、及び旋回角速度センサS5)からの検出結果を取得する。また、取得部311は、補助記憶装置320から情報の読み出しを行う。
さらに、取得部311は、空間認識装置S7から、ショベル100の周囲に存在する物体の測定結果を示した情報を取得する。また、取得部311は、撮像装置S6からショベル100の周囲を撮像した結果を示した画像情報を取得する。
さらに、取得部311は、操作センサ29から、操作信号を取得する。これにより、ショベルコントローラ30は、操作装置26を用いた操作者の操作内容を認識できる。
また、取得部311は、通信装置T1を介して、外部装置からの通信情報を取得する。
領域特定部312は、ショベル100のバケット6の移動可能空間を特定する。
図4は、本実施形態に係る領域特定部312により特定されたバケット6の移動可能空間を示した図である。図4に示される移動可能空間1401は、ショベル100の中心位置を基準とした機体座標系における、ショベル100のアタッチメントに対する駆動制御によってバケット6が移動可能な空間を示している。なお、図4で示される機体座標系では、ショベル100の進行方向をX軸方向とし、ショベル100の車幅方向をY軸方向とし、ショベル100の高さ方向をZ軸方向とする。そして、ショベル100の中心位置(基準点の一例)1411を含んだ、ショベル100の進行方向(X軸方向)及び高さ方向(Z軸方向)に延長した無限平面とした中心面1402を表す。
移動可能空間1401の+Y軸方向に存在する左側面1403は、バケット6の左側面をショベル100の進行方向(X軸方向)及び高さ方向(Z軸方向)に延長した無限平面とする。
移動可能空間1401の―Y軸方向の右側面1404は、バケット6の右側面をショベル100の進行方向(X軸方向)及び高さ方向(Z軸方向)に延長した無限平面とする。
左側面1403と右側面1404との間のY軸方向の距離は、バケット6のY軸方向(車幅方向)の長さに対応している。そこで本実施形態では、移動可能空間1401内であれば、バケット6で施工可能な領域として処理する。
このように、移動可能空間1401を構成する対向した2つの面は、バケット6の側面を、バケット6が移動可能な直交する2軸方向(X軸方向及びZ軸方向)に延長した無限平面(平面の一例)である。そして2つの面の間の距離は、Y軸方向におけるバケット6の幅となる。換言すれば、移動可能空間1401のY軸方向(車幅方向)の幅の長さは、ショベル100のY軸方向(車幅方向)におけるバケット6の長さに対応している。このため、設計情報に表されている、施工後の表面形状を形成している三角形の集合の各々が、移動可能空間1401に含まれているか否かに応じて、バケット6で施工可能な位置に存在するか否かを判断できる。つまり当該判断によって、バケット6で施工可能な空間に存在する三角形を抽出できる。そして、バケット6との位置関係の演算には、抽出した三角形を用いればよいので負担の軽減が可能となる。
図4に示される移動可能空間1401は、ショベル100の中心位置1411を基準とした機体座標系で示された空間である。これに対して、設計情報で示される、施工後の物体の3次元形状の表面は、基準座標系で示されている。そこで、領域特定部312は、取得部311が取得したショベル100の現在位置及び向きに基づいて、移動可能空間1401の位置及び向き等を基準座標系に変換する。基準座標系は上述した通りとして説明を省略する。したがって、ショベルコントローラ30は、移動可能空間1401と、設計情報に示された施工後の物体の表面形状を形成している三角形の集合と、の位置関係を認識できる。
移動可能空間1401は、ショベル100によるアタッチメントの駆動制御で、バケット6が移動しても変化しないように定められた空間であるが、ショベル100の上部旋回体3が旋回した場合、又はショベル100の下部走行体1で移動した場合には変化する領域である。つまり、ショベル100が現在の状況で施工が完了するまで、同一の移動可能空間1401を用いて判定を行い、ショベルが現在の状況における施工が完了し、上部旋回体3が旋回した場合、又はショベル100の下部走行体1で移動した場合に、領域特定部312が、移動可能空間1401の更新を行ってもよい。
さらには、領域特定部312が、ショベルコントローラ30の処理を行うサイクル(例えば数十ms)毎に、移動可能空間1401の更新を行ってもよい。
抽出部313は、設計情報(形状情報の一例)で示された施工後の物体の表面形状を構成する三角形の集合から、移動可能空間1401に含まれている、三角形を抽出する。抽出された三角形の組み合わせで表される三次元形状は、ショベル100の現在位置及び上部旋回体3の現在の旋回角度における、バケット6による施工後の形状として用いられる。
図5は、本実施形態に係る設計情報で示された施工後の物体の表面形状を示した図である。図5は、設計情報で示された施工後の物体の表面形状1501は、上述した基準座標系1511で示されている例とする。
さらに、図5に示される例では、ショベル100の中心位置1411'が示されている。当該中心位置1411'は、機体座標系の原点であるとともに、取得部311が取得したショベル100の基準座標系の現在位置でもある。したがって、機体座標系の原点を、図5に示される基準座標系の位置として、中心位置1411'に変換できる。したがって、機体座標系の位置及び向きを、基準座標系の位置及び向きに変換できる。
図5で示される施工後の物体の表面形状1501は、実際には、図5で示した三角形よりも細かい三角形の集合で実現されている。そこで、表面形状1501の一部領域1521について説明する。
図6は、施工後の物体の表面形状1501の一部領域1521を示した図である。図6に示されるように、表面形状1501の一部領域1521は、TIN形式で形成されているため、三角形の集合で表されている。
本実施形態では、抽出部313が、表面形状1501を形成している三角形毎に、バケット6の半自動制御に必要か否かを判定する。本実施形態では、抽出部313は、表面形状1501を構成する当該三角形の各頂点のうちいずれか一つ以上が、移動可能空間1401に含まれるか否かに基づいて当該判定を行う。
図6に示される例では、一部領域1521に含まれる全ての三角形1601~1613の各頂点について、移動可能空間1401に含まれるか否かの判定が行われる。
図7は、施工後の物体の表面形状1501の一部領域1521に対して、移動可能空間1401を重畳した図である。図7に示される例では、移動可能空間1401として、中心面1402を基準として、幅wだけ離れた位置に側面1403、1404(端部の一例)が表されている。
例えば、一部領域1521の三角形1601の場合、抽出部313は、三角形1601の各頂点(p1,p2、p3)が移動可能空間1401に含まれるか否かを判定する。次に判定手法について説明する。式(1)、式(2)は、基準座標系における、移動可能空間1401内のショベル100の中心位置(基準点)1411'を含むと共にバケット6が移動可能な2軸の方向を含む中心面1402を表した方程式である。変数a、b、c、dは、中心面1402上の座標をx、y、zに代入した場合に式(1)を満足するように定められている。また、変数a、b、cは、式(2)を満足するように(法線ベクトルが1になるように)定められている。
ax+by+cz+d=0……(1)
2+b2+c2=1……(2)
そして、抽出部313は、式(1)で示される中心面1402と、三角形の各頂点pn=[xn、yn、zn](例えばn=1,2,3)と、の間の距離dnを、下記の式(3)で算出する。
n=-(axn+byn+czn+d)……(3)
そして、抽出部313は、式(3)で算出された三角形の各頂点pnの距離dnと移動可能空間1401の側面端までの幅wとの和及び差を算出する。算出には下の式(4)及び式(5)を用いる。三角形の頂点全てが式(4)又は式(5)を満足した(換言すれば、中心面1402から頂点までの距離が幅wよりも長い)場合に、当該三角形は、移動可能空間1401に含まれないので、半自動制御に必要のない面として、抽出部313による抽出対象から除かれる。
n-w≧0(n=1,2,3)……(4)
n-w≦0(n=1,2,3)……(5)
例えば、距離d~d3は、式(4)を満足するので、頂点p~p3は、移動可能空間1401に含まれない。したがって、三角形1601は、移動可能空間1401に含まれないので、抽出部313は、三角形1601を抽出しない。
一方、三角形の頂点のうちいずれか一つでも、式(4)及び式(5)を満足しない(換言すれば、中心面1402から頂点までの距離が幅wよりも短い)場合、当該頂点が、移動可能空間1401に含まれる。このため、当該頂点を含む三角形は、半自動制御に必要のある面として、抽出部313により抽出される。
抽出部313は、他の三角形1602~1613についても、三角形1601と同様の処理を行う。その結果、抽出部313は、半自動制御に必要な面として、三角形1603、1604、1605、1606、1609、1610、1611、1613を組み合わせた三次元形状を抽出する。本実施形態においては、式(3)、式(4)、式(5)を用いることで、三角形が抽出対象か否か、換言すれば現在のショベル100の位置でバケット6の施工対象となるか否かの判定を容易に行うことができる。半自動制御では、バケット6との位置関係の演算に、抽出部313が抽出した三角形のみ用いればよいので、処理負担を軽減できる。
また、三角形の頂点が移動可能空間1401に含まれないにもかかわらず、三角形の一部が移動可能空間に含まれるのを抑制するために、全ての三角形の辺の長さが2wより長くならないように設計情報を生成してもよい。さらに、抽出部313は、三角形の頂点毎に算出された3個のdnに正の値と負の値とが含まれているか否かに基づいて、移動可能空間1401に含まれるか否かの判定も行ってもよい。
図7で示される例では、ショベル100が水平な地面上に存在する場合(中心面1402が垂直になる場合)について説明したが、ショベル100の状況を制限するものではなく、ショベル100が傾斜面状に存在する場合でも上述した演算によって、バケット6の半自動制御に必要な面を抽出可能である。
本実施形態においては、抽出部313は、設計情報に含まれる施工後の物体の表面を構成する全ての三角形について、当該三角形の各頂点が、移動可能空間1401に含まれるか否かを判定する。また、抽出部313は、上述した判定の対象を制限してもよい。例えば、抽出部313は、ショベル100を基準に所定の範囲内(例えば、10~15m以内)に存在する施工後の物体の表面を構成する三角形のみを判定の対象としてもよい。
そして、ショベルコントローラ30は、抽出部313により抽出された三角形で表される3次元形状を、バケット6を移動させるための半自動制御に用いる。本実施形態においては、半自動制御として、バケット6の移動経路を生成し、当該移動経路に沿ってバケット6を移動させるための制御を行う例とする。本実施形態は、半自動制御の一例として移動経路を生成する例を示したものであって、実施される制御を制限するものではない。つまり、ショベルコントローラ30が、抽出部313により抽出された三角形で表される三次元形状に基づいて、バケット6を移動させる制御であればよい。
経路生成部314は、抽出部313により抽出された三角形で表される三次元形状に基づいて、バケット6の移動経路を生成する。
本実施形態に係る経路生成部314は、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3からの検出結果に基づいて、バケット6の位置を特定する。
例えば、特定されたバケット6の位置が抽出された面から離れている場合に、経路生成部314は、抽出された面にバケット6が接触するまでの移動経路を生成する。
バケット6が抽出された面に接触している場合、経路生成部314は、設計情報で示された、施工後の物体の3次元形状を形成するためのバケット6の移動経路を生成する。具体的には、経路生成部314は、設計情報と、空間認識装置S7により検出された現在の物体の形状と、に基づいて、どのようにバケット6が動いた場合に、施工後の土砂(物体の一例)の三次元形状が形成されるのかを推定し、当該推定結果に基づいて、抽出された三次元形状を形成するためのバケット6の移動経路を生成する。
制御部315は、経路生成部314によって生成された移動経路に沿ってバケット6が移動するような半自動制御を行う。例えば、操作センサ29がブーム4の下げ操作を受け付けた場合に、制御部315が、移動経路に沿ってバケット6を移動させるように、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9を油圧駆動させる施工制御を行う。抽出部313で抽出された三角形で表される三次元形状には、バケット6が移動可能な面が全て含まれているので、当該面を考慮した施工制御を行うことで、設計情報で示された土砂(物体の一例)の3次元形状の形成を実現できる。
図8は、本実施形態に係るショベルコントローラ30がバケット6を移動させるための半自動制御を示したフローチャートである。
まず、取得部311が、設計情報記憶部321に記憶されている設計情報、及びショベル情報記憶部322に記憶されているバケット6の車幅方向の長さを読み出す(S1801)。
次に、取得部311は、ショベル100内の各種構成の信号を取得する(S1802)。例えば、取得部311は、測位装置S8により測定されたショベル100の位置及び向き、並びに、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3及び旋回角速度センサS5の検出結果を取得する。
領域特定部312は、読み出されたバケット6の車幅方向の長さ、及びショベル100の位置及び向きに基づいて、基準座標系におけるバケット6の移動可能空間を特定する(S1803)。
抽出部313は、設計情報(形状情報の一例)で示された施工後の物体の表面形状を構成する三角形の集合から、移動可能空間1401に含まれている三角形を抽出し、当該三角形を組み合わせた三次元形状を抽出する(S1804)。
経路生成部314は、バケット6の現在の位置と、抽出部313により抽出された三角形で表される三次元形状と、に基づいて、バケット6の移動経路を生成する(S1805)。
制御部315は、操作者の操作を受け付けた場合に、経路生成部314によって生成された移動経路に沿ってバケット6が移動するような半自動制御を行う(S1806)。
さらに、取得部311は、ショベル100内の各種構成の信号を取得する(S1807)。例えば、取得部311は、測位装置S8により測定されたショベル100の位置及び向き、並びに、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3及び旋回角速度センサS5の検出結果を取得する。
そして、領域特定部312は、取得した信号に基づいて、ショベル100の上部旋回体3による旋回駆動、又は下部走行体1による移動が行われたか否かを判定する(S1808)。旋回駆動又は移動が行われたと判定した場合(S1808:YES)、再びS1803から処理を行う。
一方、領域特定部312が、旋回駆動及び移動が行われなかったと判定した場合(S1808:NO)、ショベルコントローラ30は、設計情報に基づいた施工が終了したか否かを判定する(S1809)。施工が終了していないと判定した場合(S1809:NO)、再びS1805から処理を行う。
一方、ショベルコントローラ30は、施工が終了したと判定した場合(S1809:YES)、処理を終了する。
上述した処理手順においては、バケット6の移動可能空間に含まれる三角形のみを組み合わせた三次元形状を用いて、バケット6の制御を行うので、演算負荷を軽減できる。上述した処理手順では、ショベル100の現在の状況が変化する(例えば旋回又は移動する)毎に、バケット6の移動可能空間を特定する例について説明した。しかしながら、本実施形態は、バケット6の移動可能空間を特定するタイミングを制限するものではなく、ショベルコントローラ30の処理サイクル(例えば数十ms)毎にバケット6の移動可能空間を特定してもよい。
本実施形態は、ショベル100のキャビン10に搭乗している操作者の操作に従ってショベルコントローラ30が半自動制御を行う例について説明するが、半自動制御をキャビン10に搭乗している操作者の操作に制限するものではなく、ショベル100の通知な通信端末による遠隔操作を行う場合に適用してもよい。
(変形例)
上述した実施形態においては、ショベルコントローラ30が、操作者から操作を受け付けた場合に、バケット6を経路に沿って移動させる半自動制御を行う例について説明した。しかしながら、上述した実施形態は、バケット6を移動させるために半自動制御を行う例に制限するものではない。変形例では、ショベルコントローラ30が、操作を受け付けることなく、バケット6を経路に沿って移動させる自動制御を行う例とする。本変形例では、キャビン10に操作者が搭乗してもよいし、搭乗していなくともよい。
本変形例に係る抽出部313は、上述した実施形態と同様の手法を用いて、バケット6の施工対象として、移動可能空間に含まれる三角形のみを組み合わせた三次元形状を抽出する。
その後、経路生成部314は、上述した実施形態と同様に、抽出された三次元形状に基づいて、バケット6の移動経路を生成し、制御部315が、生成された移動経路に沿ってバケット6が移動するように、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9を油圧駆動させる制御を自動で行う。当該制御を行うことで、上述した実施形態と同様の効果を得られる。
<作用>
上述した実施形態及び変形例においては、施工後の物体の表面形状を構成する三角形の集合から、移動可能空間に頂点が含まれるか否かを判定し、判定結果に基づいて、移動可能空間に含まれる三角形を組み合わせた三次元形状を抽出する例について説明した。移動可能空間に三角形の頂点が含まれるか否かの判定は、その後の処理(例えば位置関係の認識処理)に比べると負荷が非常に少ない。このため、上述した実施形態及び変形例は、移動可能空間に含まれる、三角形を組み合わせた三次元形状を抽出することで、処理負担を軽減できる。
上述した実施形態及び変形例においては、ショベル100の現在位置及び上部旋回体3の現在の旋回角で、バケット6が移動した場合に、当該バケット6が接触可能な三角形を抽出している。
つまり、従来の手法では、バケットの移動制御のために、バケットの近い物体の表面形状を抽出する際、当該表面形状がバケット近傍で複雑であれば、抽出される表面形状の情報量が大きくなる。抽出される表面形状の情報量が大きい場合、表面形状とバケットとの間の位置関係を認識するための演算負荷も大きくなる。
これに対して、上述した実施形態及び変形例においては、バケット6の近傍で表面形状が複雑な場合であっても、ショベル100が現在の状態でバケット6が接触する可能性のない表面形状については抽出対象から除かれる。したがって、バケット6が接触する可能性のある表面形状を抽出する一方、バケット6が接触する可能性のない表面形状の抽出を抑制するので、接触する可能性、換言すれば施工対象となる表面形状とバケット6との間の位置関係を正確に認識できる。したがって、バケット6が移動可能な表面形状を施工対象から除くことなく、処理負担の軽減を実現する。
上述した実施形態及び変形例においては、ショベルコントローラ30が、一般的な情報処理装置に搭載するCPUと比べて演算性能が低い演算装置であっても、上述した処理を行うことで処理負担を軽減できるので、バケット6を移動させるための半自動制御又は全自動制御が容易になる。
上述した実施形態及び変形例においては、ショベルを用いた例について説明した。しかしながら、上述した実施形態及び変形例は、ショベルに制限するものではなく、ブルトーザーなどの地面の形状を形成可能な作業機械であれば適用可能とする。ブルトーザーの場合、ブルトーザーの本体から移動可能に設けられたバケットの移動可能空間に基づいて、上述した実施形態及び変形例と同様の処理を行う。
以上、本発明に係るショベルを含む作業機械の実施形態について説明したが、本発明は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本発明の技術的範囲に属する。
100 ショベル
1 下部走行体
2 旋回機構
3 上部旋回体
4 ブーム
5 アーム
6 バケット
7 ブームシリンダ
8 アームシリンダ
9 バケットシリンダ
11 エンジン
S1 ブーム角度センサ
S2 アーム角度センサ
S3 バケット角度センサ
S4 機体傾斜センサ
S5 旋回角速度センサ
S6 撮像装置
S7 空間認識装置
S8 測位装置
T1 通信装置
30 ショベルコントローラ
310 アタッチメント処理部
311 取得部
312 領域特定部
313 抽出部
314 経路生成部
315 制御部
320 補助記憶装置
321 設計情報記憶部
322 ショベル情報記憶部

Claims (6)

  1. 上部旋回体と、
    前記上部旋回体から移動可能に設けられたアタッチメントと、
    前記アタッチメントで施工された後の施工対象の表面形状を多角形の集合で示した形状情報を記憶する記憶部と、
    前記形状情報で示された前記表面形状から、前記アタッチメントが移動可能な空間に含まれている前記多角形を抽出し、抽出された前記多角形で表される三次元形状に基づいて制御を行うように構成されている、
    ショベル。
  2. 前記アタッチメントが移動可能な空間の幅の長さは、前記ショベルの車幅方向における前記アタッチメントの長さに対応している、
    請求項1に記載のショベル。
  3. 前記アタッチメントが移動可能な空間を構成する対向した2つの面は、前記アタッチメントの車幅方向の側面を、前記アタッチメントが移動可能な方向に延長した平面である、
    請求項2に記載のショベル。
  4. 前記移動可能な空間内に定められた基準点を含むと共に前記アタッチメントが移動可能な2軸の方向を含む平面と、前記表面形状を構成する前記多角形の各頂点と、の距離が、前記基準点から前記アタッチメントの前記車幅方向の端部までの距離より短いか否かに基づいて、前記多角形を抽出する、
    請求項2に記載のショベル。
  5. 抽出された前記多角形で表される前記三次元形状を形成させるよう、前記アタッチメントを用いて施工制御を行うように構成されている、
    請求項1乃至4のいずれか一つに記載のショベル。
  6. 当該作業機械の本体から移動可能に設けられたアタッチメントと、
    前記アタッチメントで施工された後の施工対象の表面形状を多角形の集合で示した形状情報を記憶する記憶部と、
    前記形状情報で示された前記表面形状から、前記アタッチメントの移動可能な空間に含まれている前記多角形を抽出し、抽出された前記多角形で表される三次元形状を、前記アタッチメントの施工に用いるように構成されている、
    作業機械。
JP2022197367A 2022-12-09 2022-12-09 ショベル、及び作業機械 Pending JP2024083065A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022197367A JP2024083065A (ja) 2022-12-09 2022-12-09 ショベル、及び作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022197367A JP2024083065A (ja) 2022-12-09 2022-12-09 ショベル、及び作業機械

Publications (1)

Publication Number Publication Date
JP2024083065A true JP2024083065A (ja) 2024-06-20

Family

ID=91539410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022197367A Pending JP2024083065A (ja) 2022-12-09 2022-12-09 ショベル、及び作業機械

Country Status (1)

Country Link
JP (1) JP2024083065A (ja)

Similar Documents

Publication Publication Date Title
KR102013761B1 (ko) 작업 기계의 화상 표시 시스템, 작업 기계의 원격 조작 시스템 및 작업 기계
JP7507559B2 (ja) ショベル及びショベルの制御方法
KR102570490B1 (ko) 쇼벨 및 쇼벨의 표시장치
JP7285051B2 (ja) 表示制御装置、および表示制御方法
JP7420733B2 (ja) 表示制御システムおよび表示制御方法
AU2017318911B2 (en) Image display system of work machine, remote operation system of work machine, work machine, and method for displaying image of work machine
JP2018035645A (ja) 作業機械の画像表示システム
JP7080750B2 (ja) 表示制御システム、遠隔操作システム、表示制御装置、および表示制御方法
JP7372029B2 (ja) 表示制御装置、表示制御システムおよび表示制御方法
US11746505B2 (en) Bucket height notification device and bucket height notification method
KR20180115756A (ko) 형상 계측 시스템, 작업 기계 및 형상 계측 방법
JP7462710B2 (ja) 作業機械の画像表示システム及び作業機械の画像表示方法
JP2024052764A (ja) 表示制御装置及び表示方法
US20230267895A1 (en) Display control device and display control method
JP2024083065A (ja) ショベル、及び作業機械
JP2021188260A (ja) ショベル
JP2020165235A (ja) ショベル
JP2023143985A (ja) 作業機械の画像表示システム