JP2024078470A - Hydroball and its manufacturing method - Google Patents

Hydroball and its manufacturing method Download PDF

Info

Publication number
JP2024078470A
JP2024078470A JP2022190865A JP2022190865A JP2024078470A JP 2024078470 A JP2024078470 A JP 2024078470A JP 2022190865 A JP2022190865 A JP 2022190865A JP 2022190865 A JP2022190865 A JP 2022190865A JP 2024078470 A JP2024078470 A JP 2024078470A
Authority
JP
Japan
Prior art keywords
mullet
hydroballs
fired
pumice
baked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022190865A
Other languages
Japanese (ja)
Inventor
広幸 木之下
雅昭 霧村
賢太郎 安井
誠 南曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Institute of National Colleges of Technologies Japan
Original Assignee
University of Miyazaki NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC, Institute of National Colleges of Technologies Japan filed Critical University of Miyazaki NUC
Priority to JP2022190865A priority Critical patent/JP2024078470A/en
Publication of JP2024078470A publication Critical patent/JP2024078470A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

【課題】製造が簡便であり、良好な保水性を有し、植物の生育を阻害しないハイドロボールを提供する。【解決手段】吸水率が18%以上であり、一般生菌が存在しない焼成軽石を用いた。【選択図】図5The present invention provides hydroballs that are easy to manufacture, have good water retention, and do not inhibit plant growth. The present invention uses calcined pumice that has a water absorption rate of 18% or more and is free of general viable bacteria.

Description

特許法第30条第2項適用申請有り 発行日 令和4年2月20日,「令和3年度土木学会西部支部研究発表会講演概要集」(CD-ROM),第695-696頁,公益社団法人土木学会西部支部 〔刊行物等〕開催日 令和4年3月5日,学会名「令和3年度土木学会西部支部研究発表会」,Web会議システムZOOMを使用したリアルタイムでの発表Application for the application of Article 30, Paragraph 2 of the Patent Act has been filed. Publication date: February 20, 2022, "Reiwa 3rd Year Western Branch of the Japan Society of Civil Engineers Research Presentation Lecture Summary Collection" (CD-ROM), pages 695-696, Japan Society of Civil Engineers Western Branch [Publications, etc.] Date held: March 5, 2022, Name of the conference: "Reiwa 3rd Year Western Branch of the Japan Society of Civil Engineers Research Presentation", Real-time presentation using the web conferencing system ZOOM

本発明は、植物の栽培に用いられるハイドロボール及びその製造方法に関する。 The present invention relates to hydroballs used in plant cultivation and a method for producing the same.

従来、室内での観葉植物等の栽培に、ハイドロボールが用いられている。ハイドロボールは、球状に成形した粘土を高温で焼成し発泡させた多孔質材であることから、優れた保水性を有している。 Hydroballs have traditionally been used to grow ornamental plants indoors. Hydroballs are a porous material made by baking clay shaped into spheres at high temperatures to create foam, and therefore have excellent water retention properties.

このような技術として、例えば、特許文献1に示されるような無機粒体が開発されている。特許文献1に示される無機粒体は、押出機によって紐状に押し出された土壌と水との混練物をカッターで切断することでペレットに成形し、該ペレットを造粒機で粒体にする際に無機粉末を振りかけ、該粒体中の土壌の粒子が半融着状態になるような温度で焼成を行うことにより得られる。 As an example of such technology, inorganic granules have been developed as shown in Patent Document 1. The inorganic granules shown in Patent Document 1 are obtained by forming a mixture of soil and water extruded into strings by an extruder into pellets by cutting them with a cutter, sprinkling inorganic powder on the pellets when turning them into granules in a granulator, and firing them at a temperature at which the soil particles in the granules become semi-fused.

特許4243215号公報(第2頁~第3頁)Japanese Patent No. 4243215 (pages 2 to 3)

特許文献1に示される無機粒体は、粒径が略均一で形状が略球状であることから、均一な透水性、通気性が得られる点、及び、形状が略球状であることから、作業中に無機粒体相互がこすれて粉塵が発生しにくい点で有効である。 The inorganic particles shown in Patent Document 1 are effective in that they have a substantially uniform particle size and a substantially spherical shape, which provides uniform water permeability and air permeability, and because they are substantially spherical, they are less likely to rub against each other during work, generating dust.

しかしながら、上記の無機粒体にあっては、粒体の製造に、押出機、カッター、造粒機を用い、さらに、造粒された粒体相互の粘着を防ぎ、粒体の略球状形状を維持するため、無機粉末を用いることから、無機粒体の製造作業が煩雑になるという問題があった。 However, the above-mentioned inorganic granules require the use of an extruder, cutter, and granulator to manufacture the granules, and furthermore, inorganic powder is used to prevent the granules from sticking together and to maintain the roughly spherical shape of the granules, making the inorganic granule manufacturing process complicated.

本発明は、このような問題点に着目してなされたもので、焼成軽石に着眼することで、製造が簡便であり、良好な保水性を有し、植物の生育を阻害しないハイドロボールを提供することを目的とする。 The present invention was made to address these problems, and by focusing on burnt pumice, aims to provide hydroballs that are easy to manufacture, have good water retention, and do not inhibit plant growth.

前記課題を解決するために、本発明のハイドロボールは、
吸水率が18%以上であり、一般生菌が存在しない焼成軽石を用いたことを特徴としている。
この特徴によれば、すでに粒状である軽石を用いることにより成形加工する手間が軽減されるため、ハイドロボールの製造を簡便に行うことができる。また、十分な吸水率を有する焼成軽石を用いることにより、良好な保水性を有するハイドロボールを提供することができる。さらに、高温で焼成された軽石には一般生菌が存在しないため、植物の生育を阻害しないハイドロボールを提供することができる。
In order to solve the above problems, the hydroball of the present invention is
This product is characterized by using burnt pumice stone that has a water absorption rate of 18% or more and is free of general viable bacteria.
According to this feature, the use of pumice that is already in granular form reduces the labor required for molding, making it possible to easily manufacture hydroballs. In addition, the use of burned pumice with sufficient water absorption makes it possible to provide hydroballs with good water retention. Furthermore, since there are no general viable bacteria in pumice burned at high temperatures, it is possible to provide hydroballs that do not inhibit plant growth.

前記焼成軽石のビッカース硬さが33HVから476HVであることを特徴としている。
この特徴によれば、焼成による焼締まり(焼結と収縮)により組織の結合強度(硬さ)が増加した焼成軽石をハイドロボールに用いることにより、つぶれにくく、水に溶けにくいハイドロボールを提供することができる。
The burnt pumice has a Vickers hardness of 33 HV to 476 HV.
According to this feature, by using calcined pumice, whose structural bonding strength (hardness) has been increased due to compaction (sintering and shrinkage) during firing, it is possible to provide hydroballs that are less likely to be crushed and less likely to dissolve in water.

前記焼成軽石の密度が1.15g/cmから2.05g/cmであることを特徴としている。
この特徴によれば、密度の低い焼成軽石をハイドロボールに用いることにより、軽量で取り扱い性の高いハイドロボールを提供することができる。また、焼成軽石の密度は水の密度よりも高いため、底に穴のない植木鉢や容器に充填後注水されても、水に浮かないハイドロボールを提供することができる。
The calcined pumice has a density of 1.15 g/cm 3 to 2.05 g/cm 3 .
According to this feature, by using low-density burnt pumice for the hydroballs, it is possible to provide hydroballs that are lightweight and easy to handle. Also, since the density of burnt pumice is higher than the density of water, it is possible to provide hydroballs that do not float on water even when filled in a flowerpot or container without a hole in the bottom and then water is poured in.

前記焼成軽石は焼成ボラであることを特徴としている。
この特徴によれば、南九州地域で豊富に産出されるボラを原料として用いることにより、ハイドロボールを量産することができる。
The burnt pumice is characterized in that it is burnt bora.
This feature makes it possible to mass-produce hydroballs by using mullet, which is abundantly produced in the southern Kyushu region, as the raw material.

前記焼成軽石はアロフェンを含有しないことを特徴としている。
この特徴によれば、植物に必須の養分であるリンを吸着する性質を有するアロフェンを実質的に含有していない焼成軽石を用いることにより、植物の生育を阻害しないハイドロボールを提供することができる。
The calcined pumice is characterized by not containing allophane.
According to this feature, by using burnt pumice that is substantially free of allophane, which has the property of adsorbing phosphorus, an essential nutrient for plants, it is possible to provide hydroballs that do not inhibit plant growth.

軽石を600℃以上1100℃以下で30分以上焼成することを特徴としている。
この特徴によれば、すでに粒状である軽石を用いることにより成形加工する手間が軽減されるため、ハイドロボールの製造を簡便に行うことができる。また、十分な吸水率を有する焼成軽石を用いることにより、良好な保水性を有するハイドロボールを提供することができる。
The method is characterized in that the pumice is baked at 600°C to 1100°C for 30 minutes or more.
According to this feature, the use of pumice stone that is already in granular form reduces the labor required for molding, making it possible to easily manufacture hydroballs. In addition, the use of burnt pumice stone with sufficient water absorption makes it possible to provide hydroballs with good water retention.

前記軽石はボラであってアロフェンを含有しないことを特徴としている。
この特徴によれば、ボラにはアロフェンが実質的に存在せず、アロフェンを取り除く工程が不要で製造を簡素化できる。
The pumice is characterized in that it is bora and does not contain allophane.
According to this feature, allophane is substantially absent in the mullet, and a process for removing allophane is not required, simplifying the production.

本発明の実施例1における採掘可能なボラのサイズを示す図である。FIG. 1 is a diagram showing the size of minable mullet in Example 1 of the present invention. 実施例1における焼成ボラの焼成温度と密度との関係を示すグラフである。1 is a graph showing the relationship between the firing temperature and density of the fired bora in Example 1. 実施例1における焼成ボラの焼成温度とビッカース硬さとの関係を示すグラフである。1 is a graph showing the relationship between the firing temperature and Vickers hardness of the fired mullet in Example 1. 実施例1における焼成ボラを用いた浸漬水の沸騰試験における濁りの様相を焼成温度毎に示す図である。FIG. 1 is a diagram showing the state of turbidity in a boiling test of soaked water using baked mullet in Example 1 at each baking temperature. 実施例1における焼成ボラの焼成温度と吸水率との関係を示すグラフである。1 is a graph showing the relationship between the baking temperature and the water absorption rate of baked mullet in Example 1. (a)実施例1における未焼成ボラの細孔直径分布を示すグラフ、(b)実施例1における焼成温度800℃の焼成ボラの細孔直径分布を示すグラフである。1A is a graph showing the pore diameter distribution of unsintered borax in Example 1, and FIG. 1B is a graph showing the pore diameter distribution of sintered borax at a sintering temperature of 800° C. in Example 1. 実施例1における振盪抽出液中の一般生菌数を培地素材毎に示すグラフである。1 is a graph showing the general viable cell count in the shake extract for each medium material in Example 1. (a)実施例1におけるシマトネリコが植えられた生育用容器を示す斜視図、(b)実施例1におけるシマトネリコが植えられた生育用容器を示す断面図である。FIG. 2A is a perspective view showing a growing container in which Fraxinus serrata is planted in Example 1; FIG. 2B is a cross-sectional view showing a growing container in which Fraxinus serrata is planted in Example 1. 実施例1における焼成ボラをハイドロボールとして用いた場合の焼成温度毎のシマトネリコの生育状況を示す図である。FIG. 1 shows the growth status of Fraxinus serrata at each firing temperature when the fired mullet in Example 1 is used as a hydroball. 実施例1におけるコマツナの種が播種された育苗用セルトレイとバットを示す斜視図である。FIG. 2 is a perspective view showing a seedling cell tray and a tray in which komatsuna seeds are sown in Example 1. 実施例1における播種14日後の地上部生体重を培地素材毎に示すグラフである。1 is a graph showing the fresh weight of the aboveground part for each medium material 14 days after sowing in Example 1. 実施例1における焼成ボラを培地として用いたコマツナの育苗の様子を示す図である。FIG. 1 is a diagram showing the state of Komatsuna seedlings grown using baked mullet as a culture medium in Example 1. 実施例1におけるリン酸吸着試験の方法を示す図である。FIG. 2 is a diagram showing the method of the phosphate adsorption test in Example 1.

本発明に係るハイドロボール及びその製造を実施するための形態を実施例に基づいて以下に説明する。 The hydroball of the present invention and the mode for carrying out the manufacturing thereof are described below based on examples.

実施例1に係るハイドロボール及びその製造につき、図1から図12を参照して説明する。本実施例に係るハイドロボールは多孔質の粒体であり、ボラを焼成することで得られる。また、焼成温度が高くなるにしたがって、焼成ボラは赤みを帯びた色合いが増してくる。ハイドロボールの原料となるボラは、南九州地域で豊富に産出される多孔質の軽石であり、水分や養分を適度に吸収する性質や良好な排水性を有している。 The hydroballs of Example 1 and their manufacture will be described with reference to Figures 1 to 12. The hydroballs of this example are porous granules obtained by firing bora. As the firing temperature increases, the fired bora takes on a reddish hue. Bora, the raw material for the hydroballs, is a porous pumice stone that is abundant in the southern Kyushu region and has the ability to moderately absorb moisture and nutrients and has good drainage properties.

次に、ハイドロボールの製造方法について説明する。本実施例に係るハイドロボールの製造には、宮崎県都城地区産出のボラを用いた。ボラの成分組成比の一例を表1に示す。なお、成分組成比は、島津製作所社製エネルギー分散型蛍光X線分析装置EDX-720を用いて、JIS K0119:2008により分析した。 Next, we will explain the manufacturing method of hydroballs. To manufacture the hydroballs in this example, we used mullet produced in the Miyakonojo area of Miyazaki Prefecture. An example of the component composition ratio of mullet is shown in Table 1. The component composition ratio was analyzed according to JIS K0119:2008 using an energy dispersive X-ray fluorescence analyzer EDX-720 manufactured by Shimadzu Corporation.

Figure 2024078470000002
Figure 2024078470000002

表1に示されるように、未焼成のボラにおける主な成分組成比は、SiOが67.2%,Alが20.1%,Feが5.0%,CaOが3.19%,KOが2.98%である。 As shown in Table 1, the main component composition ratios in unsintered bora are SiO2 67.2%, Al2O3 20.1 %, Fe2O3 5.0 %, CaO 3.19%, and K2O 2.98%.

次に、篩を用いてボラの分級を行った。図1に示されるように、ボラは幅広い粒径のものが採掘可能であり、1号(粒径0~4mm),2号(粒径4~7mm),3号(粒径7~12mm),4号(粒径12~16mm),5号(粒径16~26mm),特大(粒径26mm以上)に分級される。これらの粒径のボラを焼成することにより、栽培される植物の根の大きさに最適な各種の粒径のハイドロボールを製造することができる。 Next, the mullet was classified using a sieve. As shown in Figure 1, mullet can be mined in a wide range of particle sizes, and is classified into No. 1 (0-4 mm), No. 2 (4-7 mm), No. 3 (7-12 mm), No. 4 (12-16 mm), No. 5 (16-26 mm), and extra large (26 mm or larger). By calcining mullet of these particle sizes, it is possible to produce hydroballs of various particle sizes that are optimal for the size of the roots of the plants being cultivated.

次に分級されたボラの焼成を行った。焼成には共栄電気炉製作所製焼成装置KY-4Nを用い、1時間当たり100℃のペースでボラを焼成温度まで昇温させた後、少なくとも30分以上保持させる。本実施例では、焼成温度まで昇温後60分間保持した。焼成温度は、600℃,700℃,800℃,900℃,1000℃,1100℃,1150℃である。 Next, the classified mullet was fired. For firing, a firing device KY-4N manufactured by Kyoei Electric Furnace Manufacturing Co., Ltd. was used, and the mullet was heated to the firing temperature at a rate of 100°C per hour, and then held for at least 30 minutes. In this example, the mullet was held for 60 minutes after being heated to the firing temperature. The firing temperatures were 600°C, 700°C, 800°C, 900°C, 1000°C, 1100°C, and 1150°C.

次に、焼成ボラの密度について説明する。密度の測定は、焼成温度900℃,1000℃,1100℃の焼成ボラ、および、比較のための未焼成ボラについて行った。焼成ボラおよび未焼成ボラの密度を、表2および図2にそれぞれ示す。 Next, the density of the fired mullet will be explained. Density measurements were performed on fired mullet fired at temperatures of 900°C, 1000°C, and 1100°C, as well as on unfired mullet for comparison. The densities of fired mullet and unfired mullet are shown in Table 2 and Figure 2, respectively.

Figure 2024078470000003
Figure 2024078470000003

表2および図2に示されるように、焼成温度900℃の焼成ボラの密度は1.15g/cmであり、未焼成ボラの密度1.44g/cmより低い。これは、焼成による焼締まりがまだ十分に進んでいない一方、焼成前のボラに含まれていた水分が焼成により蒸発すると共に、有機成分が気化するためと考えられる。 As shown in Table 2 and Figure 2, the density of the sintered mullet at a sintering temperature of 900 ° C. is 1.15 g / cm 3 , which is lower than the density of the unsintered mullet, 1.44 g / cm 3. This is thought to be because the densification by sintering has not yet progressed sufficiently, while the moisture contained in the mullet before sintering evaporates during sintering, and the organic components also vaporize.

表2および図2に示されるように、焼成温度が1000℃,1100℃と上昇するにしたがい、焼成ボラの密度はそれぞれ、1.77g/cm,2.05g/cmと高くなる。これは、焼成温度が上昇するにしたがい、焼成ボラの焼締まりが進むためである。 As shown in Table 2 and Figure 2, as the firing temperature increases to 1000°C and 1100°C, the density of the fired mullet increases to 1.77g/ cm3 and 2.05g/ cm3 , respectively. This is because the firing temperature increases and the densification of the fired mullet progresses.

ここで、焼成ボラ以外の物質の密度についてみると、例えば、レンガは約2.2g/cm,花崗岩は約2.6g/cmである。これらと比較して、焼成温度900℃,1000℃,1100℃の焼成ボラは密度が低いことがわかる。このことから、焼成温度900~1100℃の焼成ボラは、軽量で取り扱い性に優れたハイドロボールとして好適である。 Looking at the density of materials other than burnt mullet, for example, brick is about 2.2 g/ cm3 , and granite is about 2.6 g/ cm3 . In comparison, it can be seen that the density of burnt mullet fired at temperatures of 900°C, 1000°C, and 1100°C is low. For this reason, burnt mullet fired at temperatures of 900 to 1100°C is suitable as hydroballs, which are lightweight and easy to handle.

次に、焼成ボラのビッカース硬さについて説明する。ビッカース硬さの測定は、焼成温度600℃,700℃,800℃,900℃,1000℃,1100℃の焼成ボラ、および、比較のための未焼成ボラについて行った。焼成ボラおよび未焼成ボラのビッカース硬さを、表2および図3にそれぞれ示す。 Next, we will explain the Vickers hardness of the fired mullet. Vickers hardness measurements were performed on fired mullet fired at temperatures of 600°C, 700°C, 800°C, 900°C, 1000°C, and 1100°C, as well as on unfired mullet for comparison. The Vickers hardness of the fired mullet and unfired mullet are shown in Table 2 and Figure 3, respectively.

表2および図3に示されるように、ボラのビッカース硬さは、未焼成では14HV,焼成温度800℃では16HV,焼成温度900℃では33HV,焼成温度1000℃では171HV,焼成温度1100℃では476HVである。すなわち、未焼成から焼成温度800℃まではビッカース硬さにはほとんど変化が見られないものの、焼成温度800℃から900℃にかけては緩やかな上昇が見られ、さらに焼成温度900℃から1100℃にかけては急激な上昇がみられる。これは、焼成温度800℃から焼成ボラの焼締まりが始まり、焼成温度が高くなるにつれ焼締まりが進み、ボラの組織の結合強度(硬さ)が増加するためである。 As shown in Table 2 and Figure 3, the Vickers hardness of the mullet is 14 HV when unfired, 16 HV when fired at 800°C, 33 HV when fired at 900°C, 171 HV when fired at 1000°C, and 476 HV when fired at 1100°C. In other words, there is almost no change in Vickers hardness from unfired to a firing temperature of 800°C, but there is a gradual increase when the firing temperature is increased from 800°C to 900°C, and then a rapid increase when the firing temperature is increased from 900°C to 1100°C. This is because the fired mullet begins to harden at a firing temperature of 800°C, and as the firing temperature increases, the hardening progresses, increasing the bonding strength (hardness) of the mullet's structure.

ここで、焼成ボラ以外の物質のビッカース硬さについてみると、例えば、銀は平均25HV,モルタルは平均45HV,ステンレスは平均187HV,強化ガラスは平均640HVである。これらと比較して、焼成温度900~1100℃の焼成ボラは、十分な硬さを有していることがわかる。このことから、焼成温度900~1100℃の焼成ボラは、作業中につぶれにくく、作業者の手を汚しにくいハイドロボールとして好適である。 Looking at the Vickers hardness of materials other than fired mullets, for example, silver has an average of 25HV, mortar an average of 45HV, stainless steel an average of 187HV, and tempered glass an average of 640HV. In comparison, fired mullets fired at temperatures between 900 and 1100°C have sufficient hardness. For this reason, fired mullets fired at temperatures between 900 and 1100°C are suitable as hydroballs, as they are less likely to be crushed during handling and do not soil the hands of workers.

次に、焼成ボラを用いた浸漬水の沸騰試験について説明する。まず、ビーカーに150ccの水を入れ加熱し沸騰させる。次に10gの焼成ボラをビーカーの沸騰水中に浸漬し、加熱を続けながら沸騰状態を3時間保持する。その後加熱を終了し、すぐに各ビーカー中の浸漬水の濁りの様相を観察する。 Next, we will explain the boiling test of the immersion water using the baked mullet. First, 150cc of water is placed in a beaker and heated to boiling. Next, 10g of baked mullet is immersed in the boiling water in the beaker, and the boiling state is maintained for 3 hours while continuing to heat. After that, the heating is stopped and the turbidity of the immersion water in each beaker is immediately observed.

沸騰試験は、焼成温度600℃,700℃,800℃,900℃,1000℃,1100℃の焼成ボラ、および、比較のための未焼成ボラについて行った。また、各焼成ボラおよび未焼成ボラの粒径は、7~12mmのものを用いた。 The boiling test was carried out on fired borax with firing temperatures of 600°C, 700°C, 800°C, 900°C, 1000°C, and 1100°C, as well as on unfired borax for comparison. The particle size of each fired borax and unfired borax was 7 to 12 mm.

表2および図4に示されるように、未焼成ボラ、および、焼成温度600℃,700℃,800℃,900℃の焼成ボラの浸漬水には濁りが見られるが、焼成温度1000℃,1100℃の焼成ボラの浸漬水には殆ど濁りがないことが確認できる。これは、焼成温度が高くなるにつれボラの焼締まりが進み、ボラの硬度が増加するため、焼成ボラが水に溶けにくくなるためである。このことから、焼成温度1000~1100℃の焼成ボラは、水に溶けにくく、作業者の手を汚しにくいハイドロボールとして好適である。 As shown in Table 2 and Figure 4, the soaking water of unbaked mullets and baked mullets fired at temperatures of 600°C, 700°C, 800°C, and 900°C is cloudy, but it can be seen that the soaking water of baked mullets fired at temperatures of 1000°C and 1100°C is almost unclouded. This is because as the firing temperature increases, the mullets become more densified and their hardness increases, making the baked mullets less soluble in water. For this reason, baked mullets fired at temperatures of 1000 to 1100°C are suitable as hydroballs, as they are less soluble in water and do not stain the hands of workers.

次に、焼成ボラの吸水率について説明する。吸水率の測定は、焼成温度600℃,700℃,800℃,900℃,1000℃,1100℃の焼成ボラ、および、比較のための未焼成ボラについて行った。焼成ボラおよび未焼成ボラの吸水率を表2および図5にそれぞれ示す。 Next, the water absorption rate of the baked mullet will be explained. The water absorption rate was measured for baked mullet baked at temperatures of 600°C, 700°C, 800°C, 900°C, 1000°C, and 1100°C, as well as for unbaked mullet for comparison. The water absorption rates of baked mullet and unbaked mullet are shown in Table 2 and Figure 5, respectively.

表2および図5に示されるように、ボラの吸水率は、未焼成では120%,焼成温度600℃では110%,焼成温度700℃では106%,焼成温度800℃では105%,焼成温度900℃では100%,焼成温度1000℃では32%,焼成温度1100℃では15%である。すなわち、焼成温度600℃から800℃にかけては吸水率に大きな変化はないものの、焼成温度800℃から900℃にかけては吸水率に緩やかな下降が見られ、さらに900℃から1100℃にかけては急激な下降がみられる。これは、焼成温度600℃から800℃にかけては焼成ボラの細孔の大きさに大きな変化はないが、焼成温度800℃から始まる焼成ボラの焼締まりにより焼成ボラに含まれる細孔が閉塞し始め、900℃からは細孔の閉塞が急激に進むためであると考えられる。 As shown in Table 2 and Figure 5, the water absorption rate of mullet is 120% when unfired, 110% when fired at 600°C, 106% when fired at 700°C, 105% when fired at 800°C, 100% when fired at 900°C, 32% when fired at 1000°C, and 15% when fired at 1100°C. In other words, there is no significant change in water absorption rate between firing temperatures of 600°C and 800°C, but there is a gradual drop in water absorption rate between firing temperatures of 800°C and 900°C, and then a more rapid drop between 900°C and 1100°C. This is thought to be because, although there is no significant change in the size of the pores in the fired mullet when the firing temperature is between 600°C and 800°C, the pores in the fired mullet begin to close due to the densification of the fired mullet that begins at a firing temperature of 800°C, and the pores begin to close rapidly from 900°C onwards.

次に、焼成ボラの細孔直径分布について説明する。細孔直径分布の分析は、焼成温度800℃の焼成ボラ、および、比較のための未焼成ボラについて、MicrotracBEL社製BELSORP-maxを用いたガス吸着法(JIS Z8831-2:2001)により行った。焼成ボラおよび未焼成ボラの細孔直径分布を図6(a),(b)にそれぞれ示す。 Next, the pore diameter distribution of the calcined borax will be explained. The analysis of the pore diameter distribution was performed by gas adsorption method (JIS Z8831-2:2001) using BELSORP-max manufactured by MicrotracBEL for calcined borax fired at 800°C and uncalcined borax for comparison. The pore diameter distribution of calcined borax and uncalcined borax is shown in Figures 6(a) and (b), respectively.

図6(a)に示されるように、未焼成ボラの細孔は直径1~100nmに分布しており、特に、直径10~100nmに多く分布している。また、図6(b)に示されるように、焼成温度800℃の焼成ボラの細孔も直径1~100nmに分布しており、特に、直径10~100nmに多く分布している。このことから、未焼成から焼成温度800℃のボラは、組織の内部に多くの細孔を含んでいるため吸水率が高いことがわかる。 As shown in Figure 6(a), the pores in unsintered mullet are distributed in the 1-100 nm diameter range, with the majority being in the 10-100 nm diameter range. As shown in Figure 6(b), the pores in mullet fired at 800°C are also distributed in the 1-100 nm diameter range, with the majority being in the 10-100 nm diameter range. This shows that mullet fired at 800°C and unsintered mullet with a firing temperature of 800°C have a high water absorption rate due to the large number of pores inside the structure.

次に、焼成ボラの振盪抽出液中の一般生菌数について説明する。一般生菌数の測定は、焼成温度700℃の焼成ボラ、比較のための未焼成ボラ、その他の培地としてロックウール、ピートモスpH6.5,ピートモスpH4.0,ハイドロボール、ハイドロコーン、パーライト、黒土焼土について行った。焼成温度700℃の焼成ボラおよび未焼成ボラの振盪抽出液中の一般生菌数を表2に、焼成温度700℃の焼成ボラ、未焼成ボラ、その他の培地の振盪抽出液中の一般生菌数を示すグラフを図7に示す。 Next, the general viable bacterial count in the shake extract of baked mullet will be explained. The general viable bacterial count was measured for baked mullet baked at a temperature of 700°C, unbaked mullet for comparison, and other media including rock wool, peat moss pH 6.5, peat moss pH 4.0, hydroball, hydrocorn, perlite, and burnt black soil. The general viable bacterial count in the shake extract of baked mullet baked at a temperature of 700°C and unbaked mullet is shown in Table 2, and a graph showing the general viable bacterial count in the shake extract of baked mullet baked at a temperature of 700°C, unbaked mullet, and other media is shown in Figure 7.

表2および図7に示されるように、未焼成ボラの一般生菌数は467CFU/gであり、ロックウール(不検出)、ハイドロボール(17CFU/g)、ハイドロコーン(不検出)、パーライト(333CFU/g)よりは多いものの、黒土焼土(1616CFU/g)、ピートモスpH4.0(1333CFU/g)、ピートモスpH6.5(1071CFU/g)よりは少なかった。一方、焼成温度700℃の焼成ボラの一般生菌数は、検出されなかった。これは、ボラが高温で焼成されることにより一般生菌が死滅したためである。このことから、焼成温度700℃以上の焼成ボラは、衛生的なハイドロボールとして好適である。 As shown in Table 2 and Figure 7, the general viable bacteria count of unbaked mullet was 467 CFU/g, which was higher than that of rock wool (not detected), hydroball (17 CFU/g), hydrocorn (not detected), and perlite (333 CFU/g), but lower than that of burnt black soil (1616 CFU/g), peat moss pH 4.0 (1333 CFU/g), and peat moss pH 6.5 (1071 CFU/g). On the other hand, the general viable bacteria count of baked mullet at a baking temperature of 700°C was not detected. This is because the general viable bacteria were killed by baking the mullet at a high temperature. For this reason, baked mullet at a baking temperature of 700°C or higher is suitable as a hygienic hydroball.

次に、焼成ボラを用いたハイドロボールによるシマトネリコの生育について説明する。シマトネリコは、東南アジアを原産地とする常緑樹であり、主に観葉植物として用いられている。ハイドロボールには、焼成温度800℃,900℃,1000℃,1100℃,1150℃の焼成ボラをそれぞれ用いた。また、シマトネリコの生育は、水のみで行い、液肥等は使用しなかった。 Next, we will explain the growth of Fraxinus sieboldii using hydroballs made with burned mullet. Fraxinus sieboldii is an evergreen tree native to Southeast Asia and is primarily used as an ornamental plant. Burned mullet fired at temperatures of 800°C, 900°C, 1000°C, 1100°C, and 1150°C was used for the hydroballs. The Fraxinus sieboldii was grown using only water, with no liquid fertilizer, etc.

図8(a),(b)に示されるように、シマトネリコの生育には、焼成ボラを用いたハイドロボール1と、生育用容器2とが、主に用いられる。生育用容器2は、外鉢3とその内部に収容される内鉢4とから構成される二重構造となっている。外鉢3は、垂直な側壁部31と、底の部分を閉塞する底部32とから構成されている。本実施例では外鉢3として、汎用のガラス製ビーカーを用いた。内鉢4は、下部から上部にかけて拡がったテーパ筒状の側壁部41と、底の部分を閉塞する底部42と、底部42に設けられる流入孔43とから構成されている。本実施例では、内鉢4として、透明の樹脂製コップを用いた。また、底部42には、直径2mm程度の流入孔43を3つ設けた。 As shown in Fig. 8(a) and (b), hydroballs 1 made of burnt mullet and a growth container 2 are mainly used for growing Fraxinus sieboldii. The growth container 2 has a double structure consisting of an outer pot 3 and an inner pot 4 housed inside it. The outer pot 3 is composed of a vertical side wall 31 and a bottom 32 that closes the bottom. In this example, a general-purpose glass beaker was used as the outer pot 3. The inner pot 4 is composed of a tapered cylindrical side wall 41 that expands from the bottom to the top, a bottom 42 that closes the bottom, and an inlet hole 43 provided in the bottom 42. In this example, a transparent resin cup was used as the inner pot 4. In addition, three inlet holes 43 with a diameter of about 2 mm were provided in the bottom 42.

次に、外鉢3の内部に適量の水Wを溜める。次に、ハイドロボール1が充填されシマトネリコPが植えられた内鉢4を外鉢3の内部に収容すると、内鉢4の底部42に設けられた流入孔43から内鉢4の内部に水Wが流入し、内鉢4の内部のハイドロボール1に吸収されると共に、内鉢4と外鉢3との間にも水Wが溜まった状態になる。この時、外鉢3の側壁部31は透明であるため、外鉢3の内部の水Wの水位を監視することができる。 Next, an appropriate amount of water W is stored inside the outer pot 3. Next, the inner pot 4 filled with hydroballs 1 and planted with Fraxinus serrata P is placed inside the outer pot 3. The water W flows into the inner pot 4 through the inlet hole 43 provided in the bottom 42 of the inner pot 4 and is absorbed by the hydroballs 1 inside the inner pot 4, and the water W also accumulates between the inner pot 4 and the outer pot 3. At this time, since the side wall 31 of the outer pot 3 is transparent, the water level of the water W inside the outer pot 3 can be monitored.

表2および図9に示されるように、焼成温度800℃,900℃,1000℃,1100℃,1150℃の焼成ボラをそれぞれハイドロボールとして用いた場合、シマトネリコが生育することが確認された。その中でも特に、焼成温度800℃,900℃,1000℃,1100℃の焼成ボラをハイドロボールとして用いた場合、シマトネリコは1年以上生育することが確認された。これは、焼成温度が800℃,900℃,1000℃,1100℃の焼成ボラは焼締まりによる細孔の閉塞があるものの十分な吸水効果がある一方、焼成温度1150℃の焼成ボラは焼締まりによる細孔の閉塞が進みすぎ吸水効果が低減するためであると考えられる。このことから、焼成温度が800℃~1100℃の焼成ボラは、十分な吸水効果を有するハイドロボールとして好適である。 As shown in Table 2 and Figure 9, it was confirmed that when calcined mulberry at 800°C, 900°C, 1000°C, 1100°C, and 1150°C was used as hydroballs, Fraxinus sieboldii was able to grow. In particular, it was confirmed that when calcined mulberry at 800°C, 900°C, 1000°C, and 1100°C was used as hydroballs, Fraxinus sieboldii was able to grow for more than a year. This is thought to be because calcined mulberry at 800°C, 900°C, 1000°C, and 1100°C had sufficient water absorption effect despite pore blockage due to firing, whereas calcined mulberry at 1150°C had excessive pore blockage due to firing, reducing water absorption effect. For this reason, calcined mulberry at 800°C to 1100°C is suitable as a hydroball with sufficient water absorption effect.

次に、焼成ボラを用いたハイドロボールによるコマツナの育苗について説明する。図10に示されるように、コマツナの育苗は、ハイドロボール10を充填した育苗用セルトレイ5をバット6の内部に載置し、ハイドロボール10上にコマツナの種Sを播種した後、水Wをハイドロボール10の表面に散布することにより行った。 Next, we will explain how to grow komatsuna seedlings using hydroballs made from baked mullet. As shown in Figure 10, komatsuna seedlings were grown by placing a seedling cell tray 5 filled with hydroballs 10 inside a tray 6, sowing komatsuna seeds S on the hydroballs 10, and then spraying water W on the surface of the hydroballs 10.

ハイドロボール10には、焼成温度700℃,900℃,1100℃の焼成ボラを用いた。また、比較のため、未焼成ボラ、黒土焼土、ウレタンをそれぞれ培地としてコマツナを育苗した(図示略)。 Hydroballs 10 were made from baked mullet at temperatures of 700°C, 900°C, and 1100°C. For comparison, komatsuna seedlings were grown using unbaked mullet, baked black soil, and urethane as culture media (not shown).

表2および図11に示されるように、焼成ボラをハイドロボールとして用いた場合のコマツナの播種14日後の地上部生体重は、焼成温度1100℃では1216mg/plant,焼成温度900℃では1201mg/plant,焼成温度700℃では1530mg/plant(図12参照)であった。また、比較のための培地を用いた場合のコマツナの播種14日後の地上部生体重は、未焼成ボラでは1336mg/plant,黒土焼土では981mg/plant,ウレタンでは1243mg/plantであった。 As shown in Table 2 and Figure 11, when burned mullet was used as hydroballs, the aboveground fresh weight of komatsuna 14 days after sowing was 1216 mg/plant at a burning temperature of 1100°C, 1201 mg/plant at a burning temperature of 900°C, and 1530 mg/plant at a burning temperature of 700°C (see Figure 12). In addition, when comparative culture media were used, the aboveground fresh weight of komatsuna 14 days after sowing was 1336 mg/plant with unburned mullet, 981 mg/plant with burnt black soil, and 1243 mg/plant with urethane.

すなわち、焼成ボラを用いたハイドロボールによるコマツナの生育状況は、未焼成ボラ、黒土焼土、ウレタンを培地として生育した場合と同等であることから、ボラを焼成することによるコマツナの生育への悪影響はないと考えられる。このことから、焼成温度が700℃~1100℃の焼成ボラは、植物の生育を阻害しないハイドロボールとして好適である。 In other words, the growth of komatsuna in hydroballs using baked mullet is equivalent to that of komatsuna grown in culture medium made of unbaked mullet, baked black soil, and urethane, so it is believed that baking the mullet has no adverse effect on the growth of komatsuna. For this reason, baked mullet baked at temperatures between 700°C and 1100°C is suitable as a hydroball that does not inhibit plant growth.

次に、焼成ボラにおけるアロフェンの有無について説明する。アロフェンとは、アモルファスまたは結晶化度の低い水和アルミニウム珪酸塩でできた粘土準鉱物で、火山ガラスや長石が風化または熱水作用により変質したものである。アロフェンは、植物に必須の養分であるリンを多量に吸着する性質を有している。そのため、例えば、赤玉土や鹿沼土といったアロフェンを含む培土をハイドロボールとして用いることは、植物の生育を阻害するため、適していない。 Next, we will explain the presence or absence of allophane in fired bora. Allophane is a clay mineral made of amorphous or low-crystallinity hydrated aluminum silicate, which is formed when volcanic glass or feldspar is altered by weathering or hydrothermal action. Allophane has the property of absorbing large amounts of phosphorus, an essential nutrient for plants. For this reason, it is not suitable to use allophane-containing culture soil, such as Akadama soil or Kanuma soil, as hydroballs, as it will inhibit plant growth.

本実施例で用いられたボラの化学成分を、ボラの採取地である宮崎県都城地区と同地域で採取された、イモゴライト及びアロフェンを主成分とするアカホヤ、及び、クロライトを主成分とする緑泥石粘土(山之口粘土)の化学成分(表1参照)と比較し検討した。イモゴライト或いはアロフェンを主成分とするアカホヤは、アルミナ及び酸化鉄成分の組成が高い特徴があり、そのため、水溶液中の活性化Alイオン、或いはFeイオン濃度が高く、リン酸吸着性能を有する。ボラのアルミナ及び酸化鉄成分の組成は緑泥石粘土と同等であり、アロフェンやイモゴライトの組成とは明らかに異なる。このことから、本発明のボラは、アルミナと酸化鉄の成分の和が20~35質量%、より好ましくは22~29質量%である。 The chemical components of the mullet used in this example were compared and examined with the chemical components of Akahoya, which is mainly composed of imogolite and allophane, and chlorite clay (Yamanokuchi clay), which is mainly composed of chlorite, both of which were collected in the Miyakonojo district of Miyazaki Prefecture, where the mullet is collected (see Table 1). Akahoya, which is mainly composed of imogolite or allophane, is characterized by a high composition of alumina and iron oxide components, and therefore has a high concentration of activated Al ions or Fe ions in the aqueous solution and has phosphate adsorption performance. The composition of the alumina and iron oxide components of mullet is equivalent to that of chlorite clay, and is clearly different from the composition of allophane and imogolite. For this reason, the mullet of the present invention has a sum of alumina and iron oxide components of 20 to 35 mass%, more preferably 22 to 29 mass%.

また、ボラのリン酸吸着性能について検討するため、800℃で焼成した粒径4~7mmのボラについて、リン酸吸着試験を行った(図13)ところ、試験に用いた焼成ボラには、リン酸吸着性能は全く認められなかった(表3参照、攪拌試験後の水溶液のリン濃度は400ppmで変化なし)であった。この結果から、ボラはいわゆるアロフェン類を実質的に含まないと考えられる。 Furthermore, to examine the phosphate adsorption performance of mullet, a phosphate adsorption test was conducted on mullet with particle size of 4-7 mm that had been calcined at 800°C (Figure 13). The calcined mullet used in the test showed no phosphate adsorption performance at all (see Table 3; the phosphorus concentration of the aqueous solution after the stirring test was unchanged at 400 ppm). From this result, it is believed that mullet does not substantially contain so-called allophanes.

Figure 2024078470000004
Figure 2024078470000004

なお、リン酸吸着試験は、400ppmの リン酸二水素カリウム(KHPO)50mLに、800℃で焼成した粒径4~7mmのボラ8gを投入し、撹拌機(東京理科器械株式会社製、EYELA ZZ-1010, 東京理科器械株式会社)を用いて300rpmの速度で30分間撹拌した。そして、撹拌前後の水溶液のリン濃度を測定することによって行った。リン濃度の測定には、ICP発光分析装置(島津製作所製,ICPS-8100)を用いた。 The phosphate adsorption test was carried out by adding 8 g of mullet with a particle size of 4 to 7 mm, which had been calcined at 800°C, to 50 mL of 400 ppm potassium dihydrogen phosphate (KH 2 PO 4 ), and stirring the mixture at 300 rpm for 30 minutes using a stirrer (EYELA ZZ-1010, manufactured by Tokyo Rikakikai Co., Ltd.). The phosphorus concentration of the aqueous solution was then measured before and after stirring. An ICP emission spectrometer (Shimadzu Corporation, ICPS-8100) was used to measure the phosphorus concentration.

このことから、焼成ボラを用いたハイドロボールは、植物の生育を阻害しないハイドロボールとして好適である。 For this reason, hydroballs made from burnt mullet are ideal as hydroballs that do not inhibit plant growth.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention also includes modifications and additions that do not deviate from the gist of the present invention.

例えば、前記実施例では、篩により分級したボラを焼成したが、これに限らず、様々な粒径のボラを焼成した後、篩により分級してもよい。 For example, in the above embodiment, the borax was classified using a sieve and then fired, but this is not limited to the above. Borax of various particle sizes may be fired and then classified using a sieve.

1,10 ハイドロボール(焼成ボラ)
2 生育用容器
3 外鉢
31 側壁部
32 底部
4 内鉢
41 側壁部
42 底部
43 流入孔
5 育苗用セルトレイ
6 バット
P シマトネリコ
S コマツナの種
W 水

1.10 Hydroball (baked mullet)
2 Growth container 3 Outer pot 31 Side wall 32 Bottom 4 Inner pot 41 Side wall 42 Bottom 43 Inlet hole 5 Seedling cell tray 6 Vat P Fraxinus serrata
S Komatsuna seeds W Water

Claims (7)

吸水率が18%以上であり、一般生菌が存在しない焼成軽石を用いたことを特徴とするハイドロボール。 Hydroballs are made from burnt pumice stone that has a water absorption rate of 18% or more and is free of common live bacteria. 前記焼成軽石のビッカース硬さが33HVから476HVであることを特徴とする請求項1に記載のハイドロボール。 The hydroball according to claim 1, characterized in that the Vickers hardness of the burnt pumice is between 33 HV and 476 HV. 前記焼成軽石の密度が1.15g/cmから2.05g/cmであることを特徴とする請求項2に記載のハイドロボール。 3. The hydroball according to claim 2, characterized in that the density of the burnt pumice is from 1.15 g/cm 3 to 2.05 g/cm 3 . 前記焼成軽石は焼成ボラであることを特徴とする請求項3に記載のハイドロボール。 The hydroball according to claim 3, characterized in that the calcined pumice is calcined bora. 前記焼成軽石はアロフェンを含有しないことを特徴とする請求項4に記載のハイドロボール。 The hydroball according to claim 4, characterized in that the calcined pumice does not contain allophane. 軽石を600℃以上1100℃以下で30分以上焼成することを特徴とするハイドロボールの製造方法。 A method for producing hydroballs, characterized by firing pumice at 600°C to 1100°C for 30 minutes or more. 前記軽石はボラであってアロフェンを含有しないことを特徴とする請求項6に記載のハイドロボールの製造方法。

The method for producing hydroballs according to claim 6, characterized in that the pumice is bora and does not contain allophane.

JP2022190865A 2022-11-30 2022-11-30 Hydroball and its manufacturing method Pending JP2024078470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022190865A JP2024078470A (en) 2022-11-30 2022-11-30 Hydroball and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022190865A JP2024078470A (en) 2022-11-30 2022-11-30 Hydroball and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2024078470A true JP2024078470A (en) 2024-06-11

Family

ID=91391641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022190865A Pending JP2024078470A (en) 2022-11-30 2022-11-30 Hydroball and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2024078470A (en)

Similar Documents

Publication Publication Date Title
JP6268650B2 (en) Soil improver and soil containing it
KR101925909B1 (en) Culture soil for growing blueberry and method for preparing thereof
JP2010168239A (en) Zeolite molding, vegetation base material and water treating agent
KR20130068290A (en) Mat system to plant chrysanthemum for a flower bed
JP2024078470A (en) Hydroball and its manufacturing method
KR101444914B1 (en) Solid medium for nutrient solution culture and method for producing thereof
KR100750656B1 (en) Composition of compressed culture soil and manufacturing process thereof
JP2016049043A (en) Bed soil
Fields et al. Developments in inorganic materials, synthetic organic materials and peat in soilless culture systems
JP2012044961A (en) Gravel culture method, and method for producing container made of tuffaceous sandstone powder
CN112830809A (en) Red pottery plant planter capable of automatically supplying water and manufacturing method thereof
KR101064458B1 (en) Tobermorite hydrated microorganism carrier with seeded dolomoite, the process of manufacture of it and a soil conditioner using the microorganism carrier
KR101896779B1 (en) Bed soil composition for wild flower and its manufacturing method
JP4865196B2 (en) Superabsorbent lightweight soil containing water repellent organic material and method for producing the same
KR100825358B1 (en) Manufacturing method of the silicate fertilizer using zeolite ceramic ball
CN108834830A (en) The preparation method of multifunctional silicone diatomaceous earth desert storage water suction nutrient bag
JP2020066550A (en) Clinker ash compact and method for producing the same
CN108812202A (en) The preparation method of multi-functional illite desert storage water suction nutrient bag
CN107540326A (en) A kind of afforestation ardealite haydite and preparation method thereof
KR20200002401U (en) Flower pot for indoor air purification plant using environment friendly ceramic beads
JP4699771B2 (en) Nursery soil for machine-planting
KR100415829B1 (en) Manufacturing method of charcoal orchid stone
JP2700708B2 (en) Plant medium and method for producing the same
JP2020147612A (en) Soil improving material and method for producing the same, soil for use, and method for cultivating vegetable
Dinçel et al. Influence of Raw Rice Hulls in Green Roof Substrates

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20221130