JP2024072892A - 電力変換装置、モータ装置、および車両 - Google Patents

電力変換装置、モータ装置、および車両 Download PDF

Info

Publication number
JP2024072892A
JP2024072892A JP2021013485A JP2021013485A JP2024072892A JP 2024072892 A JP2024072892 A JP 2024072892A JP 2021013485 A JP2021013485 A JP 2021013485A JP 2021013485 A JP2021013485 A JP 2021013485A JP 2024072892 A JP2024072892 A JP 2024072892A
Authority
JP
Japan
Prior art keywords
power
reactor
control board
conversion device
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021013485A
Other languages
English (en)
Inventor
恒之 齋藤
本泰 大西
大地 古津
裕貴 笠井
翔太 古水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Elesys Corp
Original Assignee
Nidec Elesys Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Elesys Corp filed Critical Nidec Elesys Corp
Priority to JP2021013485A priority Critical patent/JP2024072892A/ja
Priority to PCT/JP2022/000956 priority patent/WO2022163367A1/ja
Priority to DE112022000836.9T priority patent/DE112022000836T5/de
Priority to CN202280011801.0A priority patent/CN116762268A/zh
Publication of JP2024072892A publication Critical patent/JP2024072892A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14322Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】リアクトルから発生する電磁波ノイズが他部材に影響を与え難い電力変換装置モータ装置及び車両を提供する。【解決手段】電力変換装置10は、インバータ回路を有するパワーモジュール21、22と、コンバータ回路に供給される直流電流を平滑化するリアクトル30と、インバータ回路およびコンバータ回路の少なくとも一方を制御する制御基板41、42と、を備える。制御基板41、42は、パワーモジュール21、22に対し第1方向の一方側に、第1方向を板厚方向として配置される。リアクトル30は、第1方向に沿う中心軸線周りに巻き回されるコイル部30aを有し、パワーモジュール21、22に対し第1方向と直交する第2方向の一方側に配置される。パワーモジュール21、22及び制御基板41、42は、第1方向から見て、リアクトル30の径方向外側に位置する。制御基板41、42は、リアクトル30より第1方向の一方側に位置する。【選択図】図2

Description

本発明は、電力変換装置、モータ装置、および車両に関する。
近年、電気自動車又はハイブリッド自動車に搭載されるモータおよび発電機用の電力変換装置の開発が進んでいる。このような電力変換装置には、コンバータ回路とインバータ回路とが設けられる。このため、コンバータ回路のリアクトル等から発生する電磁波ノイズが、他の部位に影響を与えることを抑制する必要がある。特許文献1には、リアクトル全体を覆うリアクトルケースが設けられ、リアクトルケースがリアクトルから発生する電磁波ノイズを遮蔽する構成が開示されている。
特開2020-089185号公報
従来、リアクトルから発生する電磁波ノイズに対する遮蔽効果を得るためには、リアクトル全体を覆うケースを設ける必要があった。
本発明は、上記事情に鑑みて、ケースによってリアクトル全体を覆わずともリアクトルから発生する電磁波ノイズが他部材に影響を与え難い電力変換装置、モータ装置、および車両を提供することを目的の一つとする。
本発明の電力変換装置の一つの態様は、インバータ回路およびコンバータ回路を有する電力変換装置である。電力変換装置は、前記インバータ回路を有するパワーモジュールと、前記コンバータ回路に供給される直流電流を平滑化するリアクトルと、前記インバータ回路および前記コンバータ回路の少なくとも一方を制御する制御基板と、を備える。前記制御基板は、前記パワーモジュールに対し第1方向の一方側に、第1方向を板厚方向として配置される。前記リアクトルは、前記第1方向に沿う中心軸線周りに巻き回されるコイル部を有し、前記パワーモジュールに対し前記第1方向と直交する第2方向の一方側に配置される。前記パワーモジュールおよび前記制御基板は、前記第1方向から見て、前記リアクトルの径方向外側に位置する。前記制御基板は、前記リアクトルより前記第1方向の一方側に位置する。
本発明のモータ装置の一つの態様は、上述の電力変換装置を有する。
本発明の車両の一つの態様は、上述のモータ装置を有する。
本発明の一つの態様によれば、リアクトルから発生する電磁波ノイズが他部材に影響を与え難い電力変換装置、モータ装置、および車両が提供される。
図1は、一実施形態のモータ装置の回路ブロック図である。 図2は、一実施形態の電力変換装置の縦断面を示す模式図である。 図3は、一実施形態のリアクトルの斜視図である。
以下、図面を参照しながら、本発明の実施形態に係る電力変換装置10、モータ装置1および車両9について説明する。なお、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
以下の説明では、電力変換装置10が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。なお、本明細書における電力変換装置10の姿勢は一例であって、実際に電力変換装置10が取り付けられる姿勢を限定するものではない。
図1は、モータ装置1の回路ブロック図である。本実施形態のモータ装置1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)等、エンジンとモータとを動力源とする車両9に搭載される。なお、モータ装置1は、エンジンを有さない電気自動車(EV)に搭載されていてもよい。
本実施形態の車両9は、モータ装置1とエンジン(図示略)と駆動輪(図示略)とを備える。また、モータ装置1は、図示しないエンジンにより駆動される発電機3と、発電機3により充電される直流電源としてのバッテリ4と、バッテリ4と発電機3との少なくとも一方を電源として図示しない駆動輪を駆動するモータ2と、を有する。
電力変換装置10は、バッテリ4から供給される直流電圧を昇圧した後に交流電圧に変換し、変換した交流電圧をモータ2に供給してモータ2を駆動すると共に、モータ2を回生作動させた際の電圧を直流電圧に変換した後に降圧してバッテリ4に供給する。電力変換装置10は、発電機3より発生する電圧を直流電圧に変換した後に降圧してバッテリ4に供給し、又は発電機3より発生する電圧でモータ2を駆動する。
以下、電力変換装置10の各構成について具体的に説明する。
モータ2は、減速機構(図示略)に機械的に接続される。モータ2は、減速機構を介して車両9の駆動輪を駆動する。発電機3は、減速機構に機械的に接続される。発電機3は、車両9の駆動に対して回生ブレーキとして機能し、減速時のエネルギを基に発電する。本実施形態のモータ2および発電機3は、3相モータであるが、4相以上の多相モータであってもよい。モータ2および発電機3は、それぞれ電力変換装置10に接続される。バッテリ4は、例えば、二次電池または電気二重層キャパシタである。バッテリ4は、電力変換装置10に接続される。バッテリ4は、電力変換装置10を介してモータ2に電力を供給する。また、バッテリ4には、電力変換装置10を介して発電機3から電力が供給される。
電力変換装置10は、コンバータ回路13と、モータ用インバータ回路(インバータ回路)11と、発電機用インバータ回路(インバータ回路)12と、を有する。コンバータ回路13は、いわゆるDC/DCコンバータである。コンバータ回路13は、バッテリ4から供給される直流電流の電圧を変換する。モータ用インバータ回路11は、コンバータ回路13から供給される直流電流を交流電流に変換してモータ2に供給する。発電機用インバータ回路12は、発電機3において発電された電力を、交流電流から直流電流に変換してバッテリ4に充電する。
以下の説明において、モータ用インバータ回路11と発電機用インバータ回路12とを区別しない場合、これらを単に、インバータ回路11、12と呼ぶ。
図2は、電力変換装置10の縦断面の模式図である。
図2には、第1方向D1と第2方向D2と第3方向D3を図示する。
本実施形態において、第1方向D1は上下方向であり、第1方向D1の一方側が上側であり、第1方向D1の他方側が下側である。
第2方向D2は、第1方向D1と直交する方向である。本実施形態において、第2方向D2は、水平面に沿う一方向である。第2方向D2の一方側が図2において右側であり、第2方向D2の他方側が図2において左側である。
第3方向D3は、水平方向に沿う方向であり、第1方向D1および第2方向D2と直交する方向である。すなわち、第1方向D1と第2方向D2と第3方向D3とは、それぞれ互いに直交する方向である。
電力変換装置10は、インバータ制御基板(制御基板)41と、コンバータ制御基板(制御基板)42と、パワー基板43と、第1駆動基板45と、第2駆動基板46と、モータ用パワーモジュール21と、発電機用パワーモジュール22と、リアクトル30と、リアクトル台座(第2伝熱板)35と、コンデンサモジュール15と、遮蔽板50と、伝熱板(第1伝熱板)55と、流路形成体60と、ハウジング19と、を有する。流路形成体60は、第1冷却板61、第2冷却板62、第3冷却板63、および連結管64と、を有する。
ハウジング19は、インバータ制御基板41、コンバータ制御基板42、パワー基板43、第1駆動基板45、第2駆動基板46、モータ用パワーモジュール21、発電機用パワーモジュール22、リアクトル30、リアクトル台座35、コンデンサモジュール15、遮蔽板50、伝熱板55、および流路形成体60を収容する。
図1に示すように、モータ用パワーモジュール21は、モータ用インバータ回路11を有する。一方で発電機用パワーモジュール22は、発電機用インバータ回路12を有する。モータ用インバータ回路11および発電機用インバータ回路12は、直流電圧を交流電圧に、又は交流電圧を直流電圧に変換する。
以下の説明において、モータ用パワーモジュール21と発電機用パワーモジュール22とを区別しない場合、これらを単に、パワーモジュール21、22と呼ぶ。
モータ用パワーモジュール21および発電機用パワーモジュール22は、それぞれ、6つの第1スイッチング素子(スイッチング素子)16を有する。第1スイッチング素子16は、本実施形態の場合、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)である。すなわち、パワーモジュール21、22は、絶縁ゲートバイポーラトランジスタを有する。第1スイッチング素子16として絶縁ゲートバイポーラトランジスタを採用することで、パワーモジュール21、22を比較的安価に構成できる。インバータ回路11、12は、第1スイッチング素子16をブリッジ接続したブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータである。
図2に示すように、モータ用パワーモジュール21および発電機用パワーモジュール22は、それぞれ、水平面(第1方向D1と直交する平面)に沿って配置される。発電機用パワーモジュール22は、モータ用パワーモジュール21の上側に、第3冷却板63を介して積層される。すなわち、第3冷却板63は、モータ用パワーモジュール21と発電機用パワーモジュール22との間に挟まれる。後述するように、第3冷却板63は、内部を流れる冷媒Lによって、モータ用パワーモジュール21および発電機用パワーモジュール22を冷却する。
モータ用パワーモジュール21の下側には、第1駆動基板45が配置される。また、発電機用パワーモジュール22の上側には、第2駆動基板46が配置される。第1駆動基板45および第2駆動基板46の基板本体45a、46aは、水平面(第1方向D1と直交する平面)に沿って配置される。
第1駆動基板45は、モータ用パワーモジュール21およびインバータ制御基板41に接続される。同様に、第2駆動基板46は、発電機用パワーモジュール22およびインバータ制御基板41に接続される。第1駆動基板45および第2駆動基板46は、それぞれインバータ制御基板41で生成された第1スイッチング素子16を制御するための制御信号に基づいて、第1スイッチング素子16の駆動電力を生成する。
図1に示すように、パワー基板43は、コンバータ回路13を有する。コンバータ回路13は、バッテリ4から供給される電圧を昇圧、又はバッテリ4に供給する電圧を降圧する。コンバータ回路13とバッテリ4との間には、リアクトル30が直列に接続される。また、コンバータ回路13の下流側には、コンデンサモジュール15が並列に接続される。
パワー基板43は、2つの第2スイッチング素子(スイッチング素子)17と、第2スイッチング素子17が実装される基板本体(図1において省略)を有する。第2スイッチング素子17は、本実施形態の場合、シリコンカーバイド(SiC)を含むトランジスタである。すなわち、パワー基板43は、シリコンカーバイドを含むトランジスタを有する。第2スイッチング素子17としてシリコンカーバイドを含むトランジスタを採用することで、第2スイッチング素子17における電圧の変換効率を高めることができるとともに、パワー基板43の発熱を抑制できる。コンバータ回路13は、第2スイッチング素子17を接続したチョッパ回路を具備する。
図2に示すように、パワー基板43の基板本体43aは、水平面(第1方向D1と直交する平面)に沿って配置される。すなわち、パワー基板43は、上下方向(第1方向D1)を板厚方向として配置される。パワー基板43の下側(第1方向D1の他方側)には、伝熱板55を介して第1冷却板61が配置される。
伝熱板55は、伝熱性の高い金属材料から構成される。伝熱板55を構成する材料として、例えばアルミニウム合金、銅合金などが例示される。伝熱板55を構成する材料としては、磁気をシールドする材料(例えば、アルミニウム合金)を採用することがより好ましい。
伝熱板55は、水平面(第1方向D1と直交する平面)に沿って配置され板状である。すなわち、伝熱板55は、上下方向(第1方向D1)を板厚方向として配置される。また、伝熱板55は、上下方向(第1方向D1)に沿ってパワー基板43と積層して配置される。
伝熱板55は、パワー基板43に接触する。より具体的には、伝熱板55は、パワー基板43に実装される第2スイッチング素子17(図2において不図示)に接触する。伝熱板55は、第1冷却板61の内部を流れる冷媒Lによって冷却される。パワー基板43は、伝熱板55を介して冷媒Lによって冷却される。伝熱板55は、冷媒Lと接触する面に放熱フィンを有する構成としても良い。
図1に示すように、コンデンサモジュール15は、コンバータ回路13とインバータ回路11、12との間に並列接続される。コンデンサモジュール15は、コンデンサ素子15aにおいて、コンバータ回路13からモータ用インバータ回路11に供給される直流電流を平滑化する。
図2に示すように、コンデンサモジュール15は、コンデンサ素子15aと、コンデンサ素子15aを収容するコンデンサケース15bと、を有する。コンデンサモジュール15は、モータ用パワーモジュール21、発電機用パワーモジュール22、および第3冷却板63に対し、第2方向D2の一方側(図2中右側)に配置される。また、コンデンサモジュール15は、第2冷却板62に対し、第2方向D2の他方側(図2中左側)に配置される。
コンデンサモジュール15は、第2冷却板62および第3冷却板63に接触する。第2冷却板62および第3冷却板63は、内部を冷媒Lが流れることで冷却されている。本実施形態によれば、コンデンサモジュール15は、第2方向D2の一方側および他方側にそれぞれ配置される第2冷却板62および第3冷却板63に接触することで、第2方向D2の両側から効率的に冷却される。これにより、コンデンサモジュール15が高温となることを抑制し、コンデンサ素子15aの信頼性が高められる。
図1に示すように、リアクトル30は、バッテリ4とコンバータ回路13との間に直列接続される。リアクトル30は、バッテリ4からコンバータ回路13に供給される直流電流を平滑化する。
図2に示すように、リアクトル30は、パワーモジュール21、22および第3冷却板63に対し、第2方向D2の一方側(図2中右側)に配置される。リアクトル30と、パワーモジュール21、22および第3冷却板63と、の間には、コンデンサモジュール15、第3冷却板63、およびリアクトル台座35が配置される。
リアクトル30は、リアクトル台座35に支持される。リアクトル台座35は、第2方向D2を板厚方向とする板状の部分を有する。リアクトル台座35は、伝熱性の高い金属材料から構成される。リアクトル台座35を構成する材料として、例えばアルミニウム合金、銅合金などの伝熱性に優れた材料が例示される。さらに、リアクトル台座35を構成する材料としては、磁気をシールドする材料(例えば、アルミニウム合金)を採用することがより好ましい。
リアクトル台座35は、リアクトル30に接触する。リアクトル台座35は、第2冷却板62の内部を流れる冷媒Lによって冷却される。リアクトル30は、リアクトル台座35を介して冷媒Lによって冷却される。リアクトル台座35は冷媒Lとの接触面に放熱フィンを有していても良い。
図3は、リアクトル30の斜視図である。
リアクトル30は、3つのコイル部30aと、リアクトルケース30bと、を有する。コイル部30aは、上下方向(第1方向D1)に沿う中心軸線J周りに巻き回される導線から構成される。リアクトルケース30bは、例えば、樹脂材料から構成される。リアクトルケース30bは、3つのコイル部30aを収容する。コイル部30aおよびリアクトルケース30bは、リアクトル台座35の第2方向D2の一方側(図2中右側)に位置する。3つのコイル部30aは、リアクトル台座35の面方向に沿って並ぶ。
リアクトル台座35の一部が厚み方向に突出しており、リアクトルケース30bの周囲を支持する構成としても良い。
図2に示すように、インバータ制御基板41およびコンバータ制御基板42は、パワーモジュール21、22に対し上側(第1方向D1の一方側)に配置される。
以下の説明において、インバータ制御基板41とコンバータ制御基板42とを区別しない場合、これらを単に、制御基板41、42と呼ぶ。
インバータ制御基板41は、第1駆動基板45および第2駆動基板46を介してモータ用パワーモジュール21および発電機用パワーモジュール22に電気的に接続される。インバータ制御基板41は、インバータ回路11、12を制御する。インバータ制御基板41は、モータ用パワーモジュール21の第1スイッチング素子16、および発電機用パワーモジュール22の第1スイッチング素子16を制御するための制御信号を生成する。
コンバータ制御基板42は、パワー基板43に電気的に接続される。コンバータ制御基板42は、パワー基板43のコンバータ回路13を制御する。コンバータ制御基板42は、パワー基板43の第2スイッチング素子17を制御するための制御信号を生成する。
制御基板41、42の基板本体45a、46aは、水平面(第1方向D1と直交する平面)に沿って配置される。すなわち、制御基板41、42は、上下方向(第1方向D1)を板厚方向として配置される。インバータ制御基板41は、コンバータ制御基板42に対し上側(第1方向D1の一方側)に配置される。
制御基板41、42は、高周波の電磁波ノイズに対し比較的影響を受け易い。本発明者らは、リアクトル30から発生する高周波の電磁波ノイズは、リアクトル30の中心軸線Jの径方向外側に伝搬することを見出した。本実施形態によれば、制御基板41、42は、上下方向(第1方向D1)から見て、リアクトル30の径方向外側に位置する。また、制御基板41、42は、リアクトル30より上側(第1方向D1の一方側)に位置する。このため、本実施形態によれば、リアクトル30から径方向外側に向かって伝搬する高周波の電磁波ノイズが、制御基板41、42に達し難くなる。結果的に、制御基板41、42が高周波の電磁波ノイズの影響を受け難くなり、制御基板41、42の信頼性を高めることができる。
なお、本実施形態では、インバータ制御基板41およびコンバータ制御基板42の何れもが、リアクトル30に対し上述の配置とされる場合について説明した。しかしながら、インバータ制御基板41およびコンバータ制御基板42の何れか一方が、上述の配置とされることで、当該制御基板について電磁波ノイズの影響を受け難くする効果を得ることができる。すなわち、インバータ回路11、12およびコンバータ回路13の少なくとも一方を制御する制御基板が上述の配置とされていれば、当該制御基板について一定の効果を得ることができる。
本実施形態によれば、上下方向(第1方向D1)から見て、リアクトル台座35は、リアクトル30と、制御基板41、42およびパワーモジュール21、22と、の間に配置される。また、リアクトル台座35を構成する材料として磁気をシールドする材料(例えば、アルミニウム合金)を採用することが好ましい。この場合、リアクトル台座35は、リアクトル30から中心軸線Jの径方向外側に伝搬し、制御基板41、42およびパワーモジュール21、22に向かう電磁波ノイズを遮蔽する。なお、リアクトル台座35による電磁波のシールド効果は、あくまで補助的なものである。このため、シールド効果を高めるためにリアクトル台座35を厚くすることを要しない。
本実施形態において、パワーモジュール21、22とリアクトル30との間には、上下方向(第1方向D1)に沿って延びる第2冷却板62が配置される。また、第2冷却板62を構成する材料として磁気をシールドする材料(例えば、アルミニウム合金)を採用することが好ましい。この場合、第2冷却板62は、リアクトル30から中心軸線Jの径方向外側に伝搬し、制御基板41、42およびパワーモジュール21、22に向かう電磁波ノイズを遮蔽する。
本実施形態において、コンデンサモジュール15は、パワーモジュール21、22と第2冷却板62との間に配置される。このため、コンデンサモジュール15は、リアクトル30から中心軸線Jの径方向外側に伝搬し、制御基板41、42およびパワーモジュール21、22に向かう電磁波ノイズを遮蔽する。
さらに、本実施形態によれば、パワーモジュール21、22は、上下方向(第1方向D1)から見て、リアクトル30の径方向外側に位置する。パワーモジュール21、22は、電力変換装置10を構成する部材のうち、比較的大型の部品である。本実施形態によれば、パワーモジュール21、22を、上述の配置とすることで、ハウジング19の内部のスペースを効率的に利用して電力変換装置10の小型化を図ることができる。
なお、本実施形態において、コイル部30aの中心軸線Jは、第1方向D1に沿う。ここで、中心軸線Jが、「第1方向D1に沿う」とは、中心軸線Jが第1方向D1と厳密に平行な場合のみならず、第1方向D1に対して±45°の範囲で、第2方向D2および第3方向D3の少なくとも一方に傾斜する場合を含む。本実施形態によれば、コイル部30aの中心軸線Jが、上下方向(第1方向D1)に対して、±45°の範囲で傾いた姿勢で配置されていても、上述の一定の効果を得ることができる。
本実施形態において、制御基板41、42およびパワー基板43は、上下方向(第1方向D1)に沿って積層配置される。すなわち、パワー基板43は、制御基板41、42と積層して配置される。本実施形態によれば、制御基板41、42およびパワー基板43を近づけて配置し易くなり、基板同士を繋ぐハーネス(図示略)を短縮できる。これにより、ハーネスから発生する電磁波ノイズを低減することができる。
遮蔽板50は、インバータ制御基板41とコンバータ制御基板42との間に配置される。遮蔽板50は、水平面(第1方向D1と直交する平面)に沿って配置され板状である。すなわち、遮蔽板50は、上下方向(第1方向D1)を板厚方向として配置される。遮蔽板50は、制御基板41、42を支持する。すなわち、インバータ制御基板41は、遮蔽板50の上面に固定され、コンバータ制御基板42は、遮蔽板50の上面に固定される。また、遮蔽板50は、ハウジング19の内側面に固定される。
遮蔽板50は、インバータ制御基板41とコンバータ制御基板42の間で磁気をシールドする。したがって、遮蔽板50は、インバータ制御基板41およびコンバータ制御基板42のうち一方で生じた電磁波ノイズが、他方に達して影響を与えることを抑制する。遮蔽板50は、例えば、アルミニウム合金から構成される。しかしながら、遮蔽板50は、磁気シールドの効果を高める目的で鉄系合金から構成されるものを用いてもよい。
なお、本実施形態のコンバータ制御基板42には、高圧電流が流れる高電圧領域と、低圧電流が流れる低電圧領域と、の両方が設けられる。一方で、インバータ制御基板41には、低圧電流が流れる低電圧領域のみが設けられる。本実施形態によれば、コンバータ制御基板42の高電圧領域で生じた電磁波ノイズが、インバータ制御基板41に影響を与えることを抑制できる。
本実施形態において遮蔽板50は、インバータ制御基板41の下面の全体を覆う。すなわち、上下方向(第1方向D1)から見て、遮蔽板50は、インバータ制御基板41の全体に重なる。これにより、遮蔽板50は、電磁波ノイズが、下側からインバータ制御基板41に達することを効果的に抑制する。
本実施形態によれば、インバータ制御基板41は、遮蔽板50より上側(第1方向D1の一方側)に配置され、コンバータ制御基板42は、遮蔽板50より下側に配置される。インバータ制御基板41は、コンバータ制御基板42と比較して、リアクトル30からの高周波の電磁波ノイズの影響をより一層受けやすい。本実施形態によれば、インバータ制御基板41を遮蔽板50の上側に配置することで、遮蔽板50のさらに下側に位置するリアクトル30の電磁波ノイズが、インバータ制御基板41に達することを抑制でき、電力変換装置10の信頼性を高めることができる。
流路形成体60は、内部を冷媒Lが流れる。流路形成体60は、ハウジング19とは別部材である。流路形成体60は、ハウジング19の内部において冷媒Lの流路を形成する。流路形成体60の流路を流れる冷媒Lは、ハウジング19の内部に配置される部品を冷却する。
流路形成体60は、互いに分割可能な第1流路形成部60Aと第2流路形成部60Bを有する。第1流路形成部60Aは、第1冷却板61および第2冷却板62を有する。一方で、第2流路形成部60Bは、第3冷却板63および連結管64を有する。第2流路形成部60Bは、連結管64を第1冷却板61に接続することで、第1流路形成部60Aに連結される。すなわち、第1流路形成部60Aと第2流路形成部60Bとは、互いに連結される。
本実施形態の電力変換装置10によれば、ハウジング19の内部に複数の冷却板61、62、63が設けられ、これら冷却板61、62、63が互いに接続される。このため、ハウジング19の内部に複数の冷却板61、62、63を複雑に配置することができ、ハウジング19内部の構成部材を効率的に冷却できる。
第1流路形成部60Aおよび第2流路形成部60Bは、伝熱性の高い金属材料から構成される。第1流路形成部60Aおよび第2流路形成部60Bを構成する材料として、例えばアルミニウム合金、銅合金などが例示される。第1流路形成部60Aおよび第2流路形成部60Bを構成する材料としては、磁気をシールドする材料(例えば、アルミニウム合金)を採用することがより好ましい。
冷媒Lは、第3冷却板63は、連結管64、第1冷却板61、および第2冷却板62の順で、流路形成体60の内部を流れる。以下、冷媒Lの流れに沿って流路形成体60の各部を説明する。
第3冷却板63は、水平面(第1方向D1と直交する平面)に沿って配置され板状である。すなわち、第3冷却板63は、上下方向(第1方向D1)を板厚方向として配置される。
第3冷却板63は、モータ用パワーモジュール21と発電機用パワーモジュール22との間に配置される。第3冷却板63は、内部を流れる冷媒Lによってモータ用パワーモジュール21および発電機用パワーモジュール22を冷却する。
第3冷却板63には、第1接続孔63cと第3凹部63aと第1連通孔63dと第4凹部63bとが設けられる。冷媒Lは、第1接続孔63cにおいて、流路形成体60の内部に流入する。
第1接続孔63cは、第2方向D2に開口する。第1接続孔63cの開口には、冷媒Lの流入口69が接続される。また、第1接続孔63cは、第3凹部63aの内側面に開口する。
第3凹部63aは、第3冷却板63の下面に設けられる。第3凹部63aは、下側に開口する。すなわち、第3凹部63aは、モータ用パワーモジュール21側に開口する。第3凹部63aは、モータ用パワーモジュール21に覆われる。モータ用パワーモジュール21の上面には、放熱フィン21pが向けられる。放熱フィン21pは、第3凹部63aの内部に配置される。第3凹部63a内において、冷媒Lは、放熱フィン21pの間を流れる。
第1連通孔63dは、第3冷却板63を上下方向(第1方向D1)に貫通する。第1連通孔63dは、第3凹部63aの底面および第4凹部63bの底面に開口する。第1連通孔63dは、第3凹部63aと第4凹部63bとを互いに連通させる。
第4凹部63bは、第3冷却板63の上面に設けられる。第4凹部63bは、上側に開口する。すなわち、第4凹部63bは、発電機用パワーモジュール22側に開口する。第4凹部63bは、発電機用パワーモジュール22に覆われる。発電機用パワーモジュール22の下面には、放熱フィン22pが向けられる。放熱フィン22pは、第4凹部63bの内部に配置される。第4凹部63b内において、冷媒Lは、放熱フィン22pの間を流れる。
本実施形態において、冷媒Lは、第1接続孔63c、第3凹部63a、第1連通孔63d、および第4凹部63bを、この順で通過する。冷媒Lは、第3凹部63aを通過する際にモータ用パワーモジュール21を冷却し、第4凹部63bを通過する際に発電機用パワーモジュール22を冷却する。
本実施形態によれば、パワーモジュール21、22に放熱フィン21p、22pが設けられることで、パワーモジュール21、22と冷媒Lとの接触面積を広く確保することができ、パワーモジュール21、22を冷媒Lによって効率的に冷却できる。
なお、第3冷却板63の第2方向D2の一方側(図2中の右側)を向く面は、コンデンサモジュール15に接触する。これにより、第3冷却板63は、コンデンサモジュール15を冷却する。
連結管64は、上下方向(第1方向D1)に沿って延びる。連結管64は、第3冷却板63と第1冷却板61とを繋ぐ。冷媒Lは、連結管64を介して、第3冷却板63の内部から第1冷却板61の内部に移動する。
第1冷却板61は、水平面(第1方向D1と直交する平面)に沿って配置され板状である。すなわち、第1冷却板61は、上下方向(第1方向D1)を板厚方向として配置される。
第1冷却板61は、パワー基板43の下面に沿って配置される。第1冷却板61とパワー基板43との間には、伝熱板55が設けられる。第1冷却板61は、内部を流れる冷媒Lによってパワー基板43を冷却する。すなわち、パワー基板43は、第1冷却板61の一方の面側に配置され冷媒Lによって冷却される。
第1冷却板61には、第2接続孔61bと第1凹部61aと第2連通孔61cとが設けられる。冷媒Lは、第2接続孔61b、第1凹部61a、および第2連通孔61cをこの順で通過する。
第2接続孔61bは、上下方向(第1方向D1)に貫通する。第2接続孔61bは、下側に開口する。第2接続孔61bの開口には、連結管64が接続される。また、第2接続孔61bは、第1凹部61aの底面61fに開口する。
第1凹部61aは、第1冷却板61の下面に設けられる。第1凹部61aは、上側に開口する。すなわち、第1凹部61aは、パワー基板43側に開口する。第1凹部61aには、冷媒Lが流れる。また、第1凹部61aは、伝熱板55に覆われる。第1凹部61a内の冷媒Lは、伝熱板55を介して、パワー基板43を冷却する。
第1凹部61aは、開口側を向く底面61fを有する。底面61fは、傾斜面61sを有する。傾斜面61sは、冷媒Lの下流側に向かって開口深さを深くする。これにより、第1凹部61a内を流れる冷媒Lの圧力損失を低減できる。結果的に、冷媒Lを圧送するポンプの消費電力を低減できる。なお、本実施形態では、傾斜面61sは、底面61fの一部に設けられる。しかしながら、底面61fの全体が冷媒Lの下流側に向かって開口深さを深くする傾斜面であってもよい。
第2連通孔61cは、第2方向D2に沿って延びる。第2連通孔61cは、第1凹部61aの底面61fに開口する。また、第2連通孔61cは、第2凹部62aの底面62fに開口する。第2連通孔61cは、第1凹部61aと第2凹部62aとを互いに連通させる。
第2冷却板62は、上下方向(第1方向D1)に沿って配置され板状である。また、第2冷却板62は、第2方向D2を板厚方向として配置される。
第2冷却板62は、リアクトル30に沿って配置される。第2冷却板62とリアクトル30との間には、リアクトル台座35が設けられる。第2冷却板62は、内部を流れる冷媒Lによってリアクトル30を冷却する。すなわち、リアクトル30は、第2冷却板62の一方の面側に配置され冷媒Lによって冷却される。
第2冷却板62には、第2凹部62aと排出孔62bとが設けられる。冷媒Lは、第2凹部62aおよび排出孔62bを、この順で通過する。
第2凹部62aは、第2冷却板62の第2方向D2の一方側(図2中の右側)を向く面に設けられる。第2凹部62aは、第2方向D2の一方側に開口する。すなわち、第2凹部62aは、リアクトル30側に開口する。第2凹部62aは、開口側を向く底面62fを有する。底面62fには、第1冷却板61から延びる第2連通孔61cが開口する。第2凹部62aには、第2連通孔61cを介して冷媒Lが流入する。第2凹部62aには、冷媒Lが流れる。また、第2凹部62aは、リアクトル台座35に覆われる。第2凹部62a内の冷媒Lは、リアクトル台座35を介して、パワー基板43を冷却する。
第2冷却板62の第2方向D2の他方側(図2中の左側)を向く面は、コンデンサモジュール15に接触する。これにより、第2冷却板62は、コンデンサモジュール15を冷却する。
排出孔62bは、第2凹部62aの内壁面から上下方向(第1方向D1)に延びる。すなわち、排出孔62bは、第2凹部62aの内壁面に開口する。また、排出孔62bは、第2冷却板62の下端部に開口する。排出孔62bは、流路形成体60の最下流側に配置され、流路形成体60の内部の冷媒Lを排出する。なお、排出孔62bの下流側に、別の流路形成部を配置してもよい。
本実施形態の第1流路形成部60Aは、互いに交差する第1冷却板61および第2冷却板62を有する。すなわち、第2冷却板62は、第1冷却板61に交差して第1冷却板61に接続される。ここで、第1冷却板61と第2冷却板62とが「交差する」とは、第1冷却板61と第2冷却板62が、互いに平行ではない面に沿って配置され、かつ互いに接続されることを意味する。
本実施形態によれば、互いに交差する第1冷却板61および第2冷却板62がハウジング19内に配置される。これにより、ハウジングそのものに流路を設けて、発熱体をハウジングに沿って配置することで冷却する場合と比較して、ハウジング19内での各構成部材の配置の自由度が高まる。結果的に、ハウジング19内で各部材を効率的に配置して全体としての小型化を実現できる。特に、本実施形態では、第1冷却板61と第2冷却板62とを互いに交差して配置するため、電力変換装置10の各構成部材の間の隙間に、流路形成体60を効率的に配置できる。
ここで、第1冷却板61と第2冷却板62とがなす2つの交差角のうち大きい一方を優角αとし、小さい他方を劣角βとする。優角αは、180°を超える角度である。各ベータは、180°に満たない角度である。なお、本実施形態によれば、第1冷却板61と第2冷却板62とは、互いに直交する。したがって、優角αは270°であり、劣角βは90°である。
本実施形態によれば、リアクトル30およびパワー基板43は、第1冷却板61と第2冷却板62とがなす優角α側に配置される。また、パワーモジュール21、22およびコンデンサモジュール15は、第1冷却板61と第2冷却板62とがなす劣角β側に配置される。本実施形態によれば、発熱体のうち比較的厚さ寸法の小さいリアクトル30とパワー基板43とを、第1流路形成部60Aの優角α側に配置することで、電力変換装置10を小型化できる。また、本実施形態によれば、発熱体のうち比較的大型のパワーモジュール21、22およびコンデンサモジュール15を、第1流路形成部60Aの劣角β側に配置することで、第1冷却板61と第2冷却板62とで囲まれた領域を効率的に利用し電力変換装置10を小型化できる。本実施形態によれば、リアクトル30、パワー基板43、パワーモジュール21、22、およびコンデンサモジュール15を効率的に冷却できる。本実施形態によれば、リアクトル30およびパワー基板43が配置される領域とパワーモジュール21、22およびコンデンサモジュール15が配置される領域とを、流路形成体60によって区画できる。これにより、ハウジング19の内部を効率的に利用できる。
本実施形態によれば、第1冷却板61は、パワー基板43とパワーモジュール21、22との間に配置される。これにより、第1冷却板61は、パワー基板43配置スペースとパワーモジュール21、22の配置スペースとを区画して、これらの間の熱交換を抑制する。これにより、パワー基板43およびパワーモジュール21、22のうち、一方が他方によって加熱されることを抑制でき、パワー基板43およびパワーモジュール21、22の信頼性を高めることができる。
本実施形態によれば、第2冷却板62は、リアクトル30とコンデンサモジュール15との間に配置される。これにより、第2冷却板62は、両面でリアクトル30とコンデンサモジュール15とを効率的に冷却する。さらに、第2冷却板62は、リアクトル30配置スペースとコンデンサモジュール15の配置スペースとを区画して、これらの間の熱交換を抑制する。これにより、リアクトル30およびコンデンサモジュール15のうち、一方が他方によって加熱されることを抑制でき、リアクトル30およびコンデンサモジュール15の信頼性を高めることができる。
本実施形態によれば、モータ用パワーモジュール21、第3冷却板63、発電機用パワーモジュール22、第1冷却板61、およびパワー基板43が、積層構造をなす。このため、これらの部品を高密度の配置し易く、ハウジング19の内部空間を有効利用でき、電力変換装置10を全体として小型化できる。また、発熱体であるパワーモジュール21、22およびパワー基板43を、第1冷却板61および第3冷却板63を用いて効率的に冷却できる。加えて、発熱体であるパワーモジュール21、22およびパワー基板43の間に、それぞれ第1冷却板61および第3冷却板63が配置される。このため、発熱体同士を近接して配置しても、発熱体同士が加熱しあうことを抑制でき、発熱体であるパワーモジュール21、22およびパワー基板43の信頼性を高めることができる。
本実施形態の流路形成体60において、冷媒Lは、パワーモジュール21、22、パワー基板43、およびリアクトル30を、上流側から下流側に向かってこの順に冷却する。一般的に、電力変換装置10の発熱体は、パワーモジュール21、22、パワー基板43、およびリアクトル30の順で温度が高まり易い。本実施形態によれば、冷媒Lがこの順で冷却することで、より冷却が必要な発熱体に、より温度が低い冷媒を供給することができ、電力変換装置10の信頼性を高めることができる。
一般的に、モータ用パワーモジュール21は、発電機用パワーモジュール22と比較して使用頻度が高く高温となり易い。本実施形態によれば、冷媒Lは、モータ用パワーモジュール21と発電機用パワーモジュール22とをこの順で冷却する。このため、高温となり易いモータ用パワーモジュール21が高温となることを抑制し、電力変換装置10の信頼性を高めることができる。
以上に、本発明の実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
例えば、上述の実施形態では、パワーモジュールとして、モータ2に接続されるモータ用パワーモジュール21、および発電機3に接続される発電機用パワーモジュール22をそれぞれ備える電力変換装置10について説明した。しかしながら、電力変換装置10は、モータ用パワーモジュール21および発電機用パワーモジュール22のうち何れか一方のみを有するものであってもよい。
また、上述の実施形態では、第1凹部61aの底面に傾斜面61sが設けられる場合について説明した。しかしながら、傾斜面は、第2凹部62aの底面に設けられていてもよい。すなわち、傾斜面は、第1凹部61aおよび第2凹部62aの少なくとも一方の底面を有していればよい。
さらに、上述の実施形態では、パワーモジュールやリアクトル台座や伝熱板に放熱フィンが設けられる場合について説明したが、放熱面積を増やすことができれば、フィンの形状は限定しない。たとえば、複数のピンフィンや板状フィンでも構わない。
1…モータ装置、2…モータ、3…発電機、9…車両、10…電力変換装置、11…モータ用インバータ回路(インバータ回路)、12…発電機用インバータ回路(インバータ回路)、13…コンバータ回路、15…コンデンサモジュール、19…ハウジング、21…パワーモジュール、21…モータ用パワーモジュール、22…発電機用パワーモジュール、30…リアクトル、30a…コイル部、35…リアクトル台座(第2伝熱板)、41…インバータ制御基板(制御基板)、42…コンバータ制御基板(制御基板)、43…パワー基板、50…遮蔽板、55…伝熱板(第1伝熱板)、60…流路形成体、60A…第1流路形成部、60B…第2流路形成部、61…第1冷却板、61a…第1凹部、61f,62f…底面、61s…傾斜面、62…第2冷却板、62a…第2凹部、63…第3冷却板、D1…第1方向、D2…第2方向、J…中心軸線、L…冷媒、α…優角、β…劣角

Claims (12)

  1. インバータ回路およびコンバータ回路を有する電力変換装置であって、
    前記インバータ回路を有するパワーモジュールと、
    前記コンバータ回路に供給される直流電流を平滑化するリアクトルと、
    前記インバータ回路および前記コンバータ回路の少なくとも一方を制御する制御基板と、を備え、
    前記制御基板は、前記パワーモジュールに対し第1方向の一方側に、第1方向を板厚方向として配置され、
    前記リアクトルは、前記第1方向に沿う中心軸線周りに巻き回されるコイル部を有し、前記パワーモジュールに対し前記第1方向と直交する第2方向の一方側に配置され、
    前記パワーモジュールおよび前記制御基板は、前記第1方向から見て、前記リアクトルの径方向外側に位置し、
    前記制御基板は、前記リアクトルより前記第1方向の一方側に位置する、
    電力変換装置。
  2. 前記制御基板として、前記インバータ回路を制御するインバータ制御基板、および前記コンバータ回路を制御するコンバータ制御基板をそれぞれ備え、
    前記インバータ制御基板と前記コンバータ制御基板との間に前記第1方向を板厚方向として配置される遮蔽板を備え、
    前記遮蔽板は、前記インバータ制御基板と前記コンバータ制御基板の間で磁気をシールドする、
    請求項1に記載の電力変換装置。
  3. 前記インバータ制御基板は、前記遮蔽板より前記第1方向の一方側に配置される、
    請求項2に記載の電力変換装置。
  4. 前記コンバータ回路を有するパワー基板を備え、
    前記パワー基板は、前記第1方向を板厚方向とし前記第1方向に沿って前記制御基板と積層して配置される、
    請求項1~3の何れか一項に記載の電力変換装置。
  5. 前記パワーモジュールと前記リアクトルとの間に配置され前記第1方向に沿って延びる冷却板を備え、
    前記冷却板は、内部を冷媒が流れ前記リアクトルを冷却する、
    請求項1~4の何れか一項に記載の電力変換装置。
  6. 前記インバータ回路に供給される直流電流を平滑化するコンデンサモジュールを備え、
    前記コンデンサモジュールは、前記パワーモジュールと前記冷却板との間に配置される、
    請求項5に記載の電力変換装置。
  7. 前記コンバータ回路を有するパワー基板と、
    内部を冷媒が流れる流路形成体と、を備え、
    前記冷媒は、前記パワーモジュール、前記パワー基板、および前記リアクトルを、上流側から下流側に向かってこの順に冷却する、
    請求項1~6の何れか一項に記載の電力変換装置。
  8. 前記パワーモジュールとして、モータに接続されるモータ用パワーモジュール、および発電機に接続される発電機用パワーモジュールをそれぞれ備える、
    請求項1~7の何れか一項に記載の電力変換装置。
  9. 前記コンバータ回路を有するパワー基板と、を備え、
    前記パワー基板は、シリコンカーバイドを含むトランジスタを有し、
    前記パワーモジュールは、絶縁ゲートバイポーラトランジスタを有する、
    請求項1~8の何れか一項に記載の電力変換装置。
  10. 前記第2方向を板厚方向とする板状のリアクトル台座を備え、
    前記リアクトルは、前記リアクトル台座の前記第2方向の一方側に位置し前記リアクトル台座の面方向に沿って並ぶ3つの前記コイル部を有する、
    請求項1~9の何れか一項に記載の電力変換装置。
  11. 請求項1~10の何れか一項に記載の電力変換装置を有するモータ装置。
  12. 請求項11に記載のモータ装置を有する車両。
JP2021013485A 2021-01-29 2021-01-29 電力変換装置、モータ装置、および車両 Pending JP2024072892A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021013485A JP2024072892A (ja) 2021-01-29 2021-01-29 電力変換装置、モータ装置、および車両
PCT/JP2022/000956 WO2022163367A1 (ja) 2021-01-29 2022-01-13 電力変換装置、モータ装置、および車両
DE112022000836.9T DE112022000836T5 (de) 2021-01-29 2022-01-13 Leistungswandlervorrichtung, motorvorrichtung und fahrzeug
CN202280011801.0A CN116762268A (zh) 2021-01-29 2022-01-13 功率转换装置、电动机装置及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021013485A JP2024072892A (ja) 2021-01-29 2021-01-29 電力変換装置、モータ装置、および車両

Publications (1)

Publication Number Publication Date
JP2024072892A true JP2024072892A (ja) 2024-05-29

Family

ID=82653371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021013485A Pending JP2024072892A (ja) 2021-01-29 2021-01-29 電力変換装置、モータ装置、および車両

Country Status (4)

Country Link
JP (1) JP2024072892A (ja)
CN (1) CN116762268A (ja)
DE (1) DE112022000836T5 (ja)
WO (1) WO2022163367A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505080B2 (ja) * 2010-05-21 2014-05-28 株式会社デンソー 電力変換装置
CN103153754B (zh) * 2010-10-27 2016-11-16 三菱电机株式会社 电动助力转向用电动机驱动控制装置
JP6021727B2 (ja) * 2013-04-30 2016-11-09 新電元工業株式会社 トランス、このトランスを備えた電源装置、および、このトランスを備えたステージ装置
JP7124530B2 (ja) * 2018-08-01 2022-08-24 株式会社デンソー 電力変換装置
US10707771B1 (en) * 2019-02-07 2020-07-07 Ford Global Technologies, Llc Integrated mechanical and thermal design for power storage of a traction inverter

Also Published As

Publication number Publication date
CN116762268A (zh) 2023-09-15
DE112022000836T5 (de) 2023-11-23
WO2022163367A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5855899B2 (ja) Dc−dcコンバータ及び電力変換装置
JP5504219B2 (ja) 電力変換装置
JP5738794B2 (ja) 電力変換装置
JP4988665B2 (ja) 半導体装置および半導体装置を用いた電力変換装置
JP5851372B2 (ja) 電力変換装置
JP5439309B2 (ja) 電力変換装置
JP5508357B2 (ja) 電力変換装置
CN107645232B (zh) 包括具有层叠结构的半导体模块的功率转换设备
JP5846854B2 (ja) 一体型電力変換装置及びそれに用いられるdcdcコンバータ装置
JP5268688B2 (ja) 電力変換装置
JP5622658B2 (ja) 電力変換装置
JP2013051882A (ja) 電力変換装置
JP2009044891A (ja) 電力変換装置
JP2008228502A (ja) 電力変換装置
JP2013123030A (ja) 電力変換装置用冷却システム
JP5103318B2 (ja) 車両用電力変換装置、パワーモジュール用金属ベースおよびパワーモジュール
JP6039356B2 (ja) 電力変換装置
JP6055868B2 (ja) 電力変換装置
JP2010011671A (ja) 電力変換装置
JP2024072892A (ja) 電力変換装置、モータ装置、および車両
JP2024072891A (ja) 電力変換装置、モータ装置、および車両
KR102653325B1 (ko) 전기자동차 또는 하이브리드 자동차의 전력변환장치 하우징
Yuichi et al. Development of Inverter Drive Unit for Battery Electric Vehicle
CN115708304A (zh) 机动车辆的逆变器装置
JP2024079025A (ja) 電源モジュール