JP2024070601A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2024070601A
JP2024070601A JP2022181195A JP2022181195A JP2024070601A JP 2024070601 A JP2024070601 A JP 2024070601A JP 2022181195 A JP2022181195 A JP 2022181195A JP 2022181195 A JP2022181195 A JP 2022181195A JP 2024070601 A JP2024070601 A JP 2024070601A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022181195A
Other languages
Japanese (ja)
Inventor
匡彦 増渕
俊博 森
大 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022181195A priority Critical patent/JP2024070601A/en
Publication of JP2024070601A publication Critical patent/JP2024070601A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】排気ガス中の大気汚染物質を低減させる。【解決手段】複数の気筒♯1~♯4と、複数の気筒♯1~♯4から排出された排気ガスを浄化する三元触媒32と、を備える内燃機関1を制御し、複数の気筒♯1~♯4にそれぞれ異なる空燃比を設定できる内燃機関の制御装置10であって、複数の気筒♯1~♯4の気筒毎に空燃比を設定して、複数の気筒♯1~♯4が1回ずつ燃焼する1サイクルの中に理論空燃比より空燃比がリッチな気筒と理論空燃比より空燃比がリーンな気筒とを少なくとも1つずつ含むように制御する。【選択図】図2[Problem] To reduce air pollutants in exhaust gas. [Solution] An internal combustion engine control device 10 controls an internal combustion engine 1 equipped with multiple cylinders #1 to #4 and a three-way catalyst 32 that purifies exhaust gas discharged from the multiple cylinders #1 to #4, and can set different air-fuel ratios for each of the multiple cylinders #1 to #4, and controls the air-fuel ratio for each of the multiple cylinders #1 to #4 so that one cycle in which each of the multiple cylinders #1 to #4 combusts once includes at least one cylinder whose air-fuel ratio is richer than the theoretical air-fuel ratio and at least one cylinder whose air-fuel ratio is leaner than the theoretical air-fuel ratio. [Selected Figure] Figure 2

Description

本発明は、複数の気筒から排出された排気ガスを浄化する浄化触媒を備える内燃機関を制御対象とする内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine that controls an internal combustion engine equipped with a purification catalyst that purifies exhaust gas discharged from multiple cylinders.

特許文献1には、浄化触媒の暖機要求があった際に、4つの気筒のうち1つの気筒を理論空燃比より空燃比がリッチな気筒として、残りの3つの気筒を理論空燃比より空燃比がリーンな気筒とするように燃料噴射弁を操作する制御を行うことによって、浄化触媒を昇温させる内燃機関の制御装置が開示されている。 Patent Document 1 discloses a control device for an internal combustion engine that, when there is a request to warm up the purification catalyst, controls the fuel injection valve so that one of the four cylinders has an air-fuel ratio richer than the theoretical air-fuel ratio, and the remaining three cylinders have an air-fuel ratio leaner than the theoretical air-fuel ratio, thereby raising the temperature of the purification catalyst.

特開2020-070787号公報JP 2020-070787 A

特許文献1に開示された内燃機関の制御装置では、リッチな空燃比に設定された気筒から排出された余剰燃料が浄化触媒に付着し、リーンな空燃比に設定された気筒から排出された排気ガスによるリーン雰囲気下で燃焼することによって、浄化触媒が昇温し、浄化触媒から被毒物質を離脱させることができる。この昇温処理は、浄化触媒の暖機要求があった際のみ実行され、実行される度に浄化触媒から被毒物質を離脱させて、触媒の浄化性能を回復させることができる。しかし、特許文献1に開示された発明は、昇温処理によって一時的に浄化触媒を昇温させて浄化性能を回復させるものであって、昇温処理を実行していない状態における排気ガス中の大気汚染物質を低減させる点については、更に改善の余地がある。 In the control device for an internal combustion engine disclosed in Patent Document 1, excess fuel discharged from a cylinder set to a rich air-fuel ratio adheres to a purification catalyst, and is burned in a lean atmosphere by exhaust gas discharged from a cylinder set to a lean air-fuel ratio, thereby raising the temperature of the purification catalyst and removing poisonous substances from the purification catalyst. This temperature raising process is executed only when there is a request to warm up the purification catalyst, and each time it is executed, poisonous substances are removed from the purification catalyst and the purification performance of the catalyst can be restored. However, the invention disclosed in Patent Document 1 temporarily raises the temperature of the purification catalyst by the temperature raising process to restore the purification performance, and there is room for further improvement in terms of reducing air pollutants in the exhaust gas when the temperature raising process is not being executed.

そこで、本発明は、排気ガス中の大気汚染物質を低減させることができる内燃機関の制御装置を提供することを目的とする。 The present invention aims to provide a control device for an internal combustion engine that can reduce air pollutants in exhaust gas.

本発明に係る内燃機関の制御装置は、複数の気筒と、前記複数の気筒から排出された排気ガスを浄化する浄化触媒と、を備える内燃機関を制御し、前記複数の気筒にそれぞれ異なる空燃比を設定できる内燃機関の制御装置であって、前記複数の気筒の気筒毎に空燃比を設定して、前記複数の気筒が1回ずつ燃焼する1サイクルの中に理論空燃比より空燃比がリッチな気筒と前記理論空燃比より空燃比がリーンな気筒とを少なくとも1つずつ含むように制御することを特徴とする。 The control device for an internal combustion engine according to the present invention is a control device for an internal combustion engine that controls an internal combustion engine having a plurality of cylinders and a purification catalyst that purifies exhaust gas discharged from the plurality of cylinders, and can set different air-fuel ratios for each of the plurality of cylinders, and is characterized in that the control device sets an air-fuel ratio for each of the plurality of cylinders, and controls the air-fuel ratio so that one cycle in which each of the plurality of cylinders combusts once includes at least one cylinder whose air-fuel ratio is richer than the theoretical air-fuel ratio and at least one cylinder whose air-fuel ratio is leaner than the theoretical air-fuel ratio.

本発明に係る内燃機関の制御装置の一態様において、前記複数の気筒が1回ずつ燃焼する1サイクルの中に、燃焼する順番に気筒毎の空燃比を増減させる周期が1回又は複数回含まれるように制御してもよい。 In one aspect of the control device for an internal combustion engine according to the present invention, one cycle in which each of the multiple cylinders combusts once may include one or more periods in which the air-fuel ratio of each cylinder is increased or decreased in the order in which the cylinders combust.

本発明は、排気ガス中の大気汚染物質を低減させることができる。 The present invention can reduce air pollutants in exhaust gases.

本開示の実施形態の内燃機関の制御装置の制御系統を示す図である。1 is a diagram showing a control system of an internal combustion engine control device according to an embodiment of the present disclosure. 本実施形態の内燃機関の制御装置における各気筒の空燃比の設定値の一例を示す図である。4 is a diagram showing an example of setting values of the air-fuel ratio of each cylinder in the control device for the internal combustion engine of the present embodiment. FIG. 三元触媒における吸蔵酸素量の変化を説明する図である。FIG. 4 is a diagram illustrating a change in the amount of oxygen stored in a three-way catalyst.

以下、図1~3を参照しながら、本実施形態の内燃機関の制御装置10について説明する。図1は、内燃機関の制御装置10の制御系統を示す図である。内燃機関の制御装置10は、図1に示す内燃機関1を制御する。内燃機関1は、4つの気筒♯1~♯4が一方向に並べられた直列4気筒型の内燃機関として構成されている。内燃機関1では、気筒♯1、気筒♯3、気筒♯4、気筒♯2の順番に燃焼が行われる。内燃機関1は、この順番に4つの気筒♯1~♯4が1回ずつ燃焼する度にクランクシャフトが2回転する。内燃機関1は、4つの気筒♯1~♯4へそれぞれ燃料を供給する4つのインジェクタ11を備える。 The internal combustion engine control device 10 of this embodiment will be described below with reference to Figures 1 to 3. Figure 1 is a diagram showing a control system of the internal combustion engine control device 10. The internal combustion engine control device 10 controls the internal combustion engine 1 shown in Figure 1. The internal combustion engine 1 is configured as an in-line four-cylinder internal combustion engine in which four cylinders #1 to #4 are arranged in one direction. In the internal combustion engine 1, combustion occurs in the order of cylinder #1, cylinder #3, cylinder #4, and cylinder #2. In the internal combustion engine 1, the crankshaft rotates two times each time the four cylinders #1 to #4 combust once in this order. The internal combustion engine 1 has four injectors 11 that supply fuel to each of the four cylinders #1 to #4.

4つの気筒♯1~♯4は、吸気マニホールド21を介して吸気通路2に接続し、排気マニホールド31を介して排気通路3に接続している。そのため、吸気通路2を流れる吸入空気は吸気マニホールド21で4つの気筒♯1~♯4へ分流され、4つの気筒♯1~4から排出される排気ガスは、排気マニホールド31で合流されて排気通路3へ流入し、後述する三元触媒32で浄化されてから大気へ放出される。 The four cylinders #1 to #4 are connected to the intake passage 2 via the intake manifold 21, and to the exhaust passage 3 via the exhaust manifold 31. Therefore, the intake air flowing through the intake passage 2 is divided into the four cylinders #1 to #4 by the intake manifold 21, and the exhaust gas discharged from the four cylinders #1 to #4 is merged in the exhaust manifold 31 and flows into the exhaust passage 3, where it is purified by the three-way catalyst 32 described below before being released into the atmosphere.

吸気通路2には、吸気通路2を流れる吸入空気の流量を検出するエアフローメータ22と、吸入空気の流量を調整するスロットル弁23と、スロットル弁23の開度を検出するスロットル弁開度センサ24が設けられている。 The intake passage 2 is provided with an air flow meter 22 that detects the flow rate of intake air flowing through the intake passage 2, a throttle valve 23 that adjusts the flow rate of intake air, and a throttle valve opening sensor 24 that detects the opening degree of the throttle valve 23.

内燃機関1は、排気通路3に設けられた三元触媒32を備える。三元触媒32は、4つの気筒♯1~♯4から排出された排気ガスを浄化する浄化触媒である。三元触媒32は、酸素吸蔵能力を有し、排気ガス中の炭化水素を水と二酸化炭素に酸化し、一酸化炭素を二酸化炭素に酸化し、窒素酸化物を窒素に還元する。そのため、三元触媒32は排気ガス中の炭化水素、一酸化炭素及び窒素酸化物等の大気汚染物質を無害な物質に化学変化させることによって、排気ガスを浄化することができる。 The internal combustion engine 1 is equipped with a three-way catalyst 32 provided in the exhaust passage 3. The three-way catalyst 32 is a purification catalyst that purifies the exhaust gas discharged from the four cylinders #1 to #4. The three-way catalyst 32 has oxygen storage capacity, and oxidizes the hydrocarbons in the exhaust gas to water and carbon dioxide, oxidizes the carbon monoxide to carbon dioxide, and reduces the nitrogen oxides to nitrogen. Therefore, the three-way catalyst 32 can purify the exhaust gas by chemically changing air pollutants such as hydrocarbons, carbon monoxide, and nitrogen oxides in the exhaust gas into harmless substances.

排気通路3の三元触媒32より上流側には、A/Fセンサ33が設けられており、三元触媒32より上流側の排気の酸素濃度を検出することができる。A/Fセンサ33で検出する酸素濃度は内燃機関1の空燃比に対応するため、A/Fセンサ33は内燃機関1の空燃比のモニターの用途に用いることができる。 An A/F sensor 33 is provided upstream of the three-way catalyst 32 in the exhaust passage 3, and is capable of detecting the oxygen concentration in the exhaust upstream of the three-way catalyst 32. Since the oxygen concentration detected by the A/F sensor 33 corresponds to the air-fuel ratio of the internal combustion engine 1, the A/F sensor 33 can be used to monitor the air-fuel ratio of the internal combustion engine 1.

内燃機関の制御装置10は、ECU(Electronic Control Unit)4を備える。ECU4には、内燃機関1のクランク角センサ12、アクセル開度センサ5、エアフローメータ22、スロットル弁開度センサ24及びA/Fセンサ33から出力信号が入力される。そして、スロットル弁23及びインジェクタ11はECU4によって制御される。ECU4は、4つのインジェクタ11にそれぞれ異なる燃料噴射量を設定できる。そのため、ECU4は、4つの気筒♯1~♯4にそれぞれ設けられた不図示の吸気バルブのリフト量が全て同一であっても、4つのインジェクタ11にそれぞれ異なる燃料噴射量を設定することによって、4つの気筒♯1~♯4にそれぞれ異なる空燃比を設定することができる。 The control device 10 of the internal combustion engine includes an ECU (Electronic Control Unit) 4. The ECU 4 receives output signals from the crank angle sensor 12, the accelerator opening sensor 5, the air flow meter 22, the throttle valve opening sensor 24, and the A/F sensor 33 of the internal combustion engine 1. The throttle valve 23 and the injector 11 are controlled by the ECU 4. The ECU 4 can set different fuel injection amounts for each of the four injectors 11. Therefore, even if the lift amounts of the intake valves (not shown) provided in each of the four cylinders #1 to #4 are all the same, the ECU 4 can set different air-fuel ratios for each of the four cylinders #1 to #4 by setting different fuel injection amounts for each of the four injectors 11.

ECU4は、アクセル開度センサ5により検出されたアクセル開度に基づいてスロットル弁23の開度を制御する。そして、ECU4は、A/Fセンサ33の検出値から内燃機関1の空燃比を算出して、4つの気筒♯1~♯4の空燃比の平均値が理論空燃比へ近づくようにインジェクタ11の燃料噴射量を調整するフィードバック制御を行う。このフィードバック制御では、ECU4は、4つの気筒♯1~♯4のうち一部の気筒が理論空燃比よりリッチな空燃比となって、その他の気筒が理論空燃比よりリーンな空燃比となるように4つのインジェクタ11の燃料噴射量を制御する。図2は、4つの気筒♯1~♯4の空燃比の設定値の一例を示す図である。図2に示す実施例では、ECU4は、気筒♯1及び気筒♯2の空燃比が理論空燃比よりリーンとなって、気筒♯3及び気筒♯4の空燃比が理論空燃比よりリッチとなるように4つのインジェクタ11の燃料噴射量を制御している。なお、吸気マニホールド21の形状などの影響により、4つのインジェクタ11の燃料噴射量を同一の値に設定した場合でも、4つの気筒♯1~♯4の空燃比にばらつきが生じることもあり得る。内燃機関の制御装置10では、4つの気筒♯1~♯4の空燃比のばらつきの範囲が、4つのインジェクタ11の燃料噴射量を同一の値に設定した場合に生じる気筒間の空燃比のばらつきの範囲よりも大きくなるように、ECU4が4つのインジェクタ11の燃料噴射量を制御する。 The ECU 4 controls the opening of the throttle valve 23 based on the accelerator opening detected by the accelerator opening sensor 5. The ECU 4 then calculates the air-fuel ratio of the internal combustion engine 1 from the detection value of the A/F sensor 33, and performs feedback control to adjust the fuel injection amount of the injector 11 so that the average value of the air-fuel ratio of the four cylinders #1 to #4 approaches the theoretical air-fuel ratio. In this feedback control, the ECU 4 controls the fuel injection amount of the four injectors 11 so that some of the four cylinders #1 to #4 have an air-fuel ratio richer than the theoretical air-fuel ratio, and the other cylinders have an air-fuel ratio leaner than the theoretical air-fuel ratio. Figure 2 is a diagram showing an example of the set values of the air-fuel ratios of the four cylinders #1 to #4. In the embodiment shown in FIG. 2, the ECU 4 controls the fuel injection amount of the four injectors 11 so that the air-fuel ratio of cylinders #1 and #2 is leaner than the theoretical air-fuel ratio, and the air-fuel ratio of cylinders #3 and #4 is richer than the theoretical air-fuel ratio. Note that even if the fuel injection amount of the four injectors 11 is set to the same value, the air-fuel ratio of the four cylinders #1 to #4 may vary due to the influence of the shape of the intake manifold 21, etc. In the control device 10 of the internal combustion engine, the ECU 4 controls the fuel injection amount of the four injectors 11 so that the range of variation in the air-fuel ratio of the four cylinders #1 to #4 is larger than the range of variation in the air-fuel ratio between the cylinders that occurs when the fuel injection amount of the four injectors 11 is set to the same value.

内燃機関1では、気筒♯1、気筒♯3、気筒♯4、気筒♯2の順番に燃焼が行われるため、図2に示すように空燃比を設定すると、気筒♯3及び気筒♯4から酸素濃度が低い排気ガスが排出された後に気筒♯2及び気筒♯1から酸素濃度が高い排気ガスが排出される現象が繰り返される。つまり、内燃機関1から排出される排気ガスの酸素濃度は、4つの気筒♯1~♯4が1回ずつ燃焼する1サイクル毎に増減することになる。そして、ECU4は、少なくとも2サイクル以上、4つの気筒♯1~♯4の空燃比の設定値を維持する。 In the internal combustion engine 1, combustion takes place in the order of cylinder #1, cylinder #3, cylinder #4, and cylinder #2. Therefore, when the air-fuel ratio is set as shown in FIG. 2, the phenomenon in which exhaust gas with a low oxygen concentration is discharged from cylinder #3 and cylinder #4, and then exhaust gas with a high oxygen concentration is discharged from cylinder #2 and cylinder #1 is repeated. In other words, the oxygen concentration of the exhaust gas discharged from the internal combustion engine 1 increases or decreases with each cycle in which each of the four cylinders #1 to #4 burns once. The ECU 4 then maintains the set values of the air-fuel ratios of the four cylinders #1 to #4 for at least two cycles.

三元触媒32では、空燃比がリーンの条件では酸化セリウムや貴金属に酸素が吸蔵され、空燃比がリッチな条件では酸化セリウムや貴金属から酸素が放出される。そのため、三元触媒32は、図3に示すように、内燃機関1の空燃比がリーンな状態では吸蔵酸素量を増加させ、内燃機関1の空燃比がリッチな状態では吸蔵酸素量を減少させる。そして、空燃比をリッチな状態からリーンな状態に切り換えた直後は三元触媒32の吸蔵酸素量が急上昇するものの、更にリーンな状態を継続すると吸蔵酸素量の上限に近づいて上昇速度が低下する。このような三元触媒32の吸蔵酸素量の上限付近では、排気ガス中の窒素酸化物を還元させる能力が低下する。また、空燃比をリーンな状態からリッチな状態に切り換えた直後は三元触媒32の吸蔵酸素量が急下降するものの、更にリッチな状態を継続すると吸蔵酸素量の下限に近づいて下降速度が低下する。このような三元触媒32の吸蔵酸素量の下限付近では、排気ガス中の炭化水素と一酸化炭素を酸化させる能力が低下する。そのため、排気ガス中の大気汚染物質を低減させる効果が得られるメカニズムの1つとして、内燃機関1の空燃比を短い周期で理論空燃比よりリーンな状態とリッチな状態とを交互に繰り返すように切り替えることにより、三元触媒32の吸蔵酸素量が上限付近又は下限付近に留まっている期間が短くなり、図3に破線で囲む吸放出速度が速い部分を頻繁に用いることが可能となり、排気ガス中の窒素酸化物を還元する能力が低下する期間や炭化水素及び一酸化炭素を酸化する能力が低下する期間を短くすることができる。 In the three-way catalyst 32, oxygen is stored in cerium oxide or precious metals when the air-fuel ratio is lean, and oxygen is released from cerium oxide or precious metals when the air-fuel ratio is rich. Therefore, as shown in FIG. 3, the three-way catalyst 32 increases the amount of stored oxygen when the air-fuel ratio of the internal combustion engine 1 is lean, and decreases the amount of stored oxygen when the air-fuel ratio of the internal combustion engine 1 is rich. Then, immediately after switching the air-fuel ratio from a rich state to a lean state, the amount of stored oxygen in the three-way catalyst 32 rises sharply, but if the lean state is continued, the amount of stored oxygen approaches the upper limit and the rate of increase decreases. Near the upper limit of the amount of stored oxygen in such a three-way catalyst 32, the ability to reduce nitrogen oxides in the exhaust gas decreases. Also, immediately after switching the air-fuel ratio from a lean state to a rich state, the amount of stored oxygen in the three-way catalyst 32 falls sharply, but if the rich state is continued, the rate of decrease decreases as the amount of stored oxygen approaches the lower limit. When the amount of oxygen stored in the three-way catalyst 32 is near the lower limit, the ability to oxidize the hydrocarbons and carbon monoxide in the exhaust gas decreases. Therefore, one mechanism for reducing the air pollutants in the exhaust gas is to alternate between a leaner and richer state than the theoretical air-fuel ratio in a short period of time. This shortens the period during which the amount of oxygen stored in the three-way catalyst 32 remains near the upper or lower limit, and the area with a high absorption and release speed, surrounded by the dashed line in Figure 3, can be used frequently, shortening the period during which the ability to reduce nitrogen oxides in the exhaust gas decreases and the ability to oxidize hydrocarbons and carbon monoxide decreases.

本実施形態の内燃機関の制御装置10では、4つの気筒♯1~♯4が1回ずつ燃焼する1サイクル毎の短い周期で空燃比を理論空燃比よりリーンな状態とリッチな状態とを交互に繰り返すように増減させるため、上記のメカニズムにより、排気ガス中の窒素酸化物を還元する能力が低下する期間や炭化水素及び一酸化炭素を酸化する能力が低下する期間を短くすることができる。そのため、内燃機関の制御装置10は、排気ガス中の窒素酸化物、炭化水素及び一酸化炭素等の大気汚染物質が低減させた状態で内燃機関1の使用を継続することができる。 In the internal combustion engine control device 10 of this embodiment, the air-fuel ratio is increased and decreased alternately between leaner and richer than the theoretical air-fuel ratio in a short period of one cycle in which each of the four cylinders #1 to #4 burns once, so that the above mechanism can shorten the period during which the ability to reduce nitrogen oxides in the exhaust gas decreases and the ability to oxidize hydrocarbons and carbon monoxide decreases. Therefore, the internal combustion engine control device 10 can continue to use the internal combustion engine 1 in a state in which air pollutants such as nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust gas are reduced.

排気ガス中の大気汚染物質の低減効果を検証するため、内燃機関1の回転速度と単位時間当たりの吸入空気量を同一の条件として、4つの気筒♯1~♯4のインジェクタ11の燃料噴射量を同一の値に設定した場合と、4つの気筒♯1~♯4を図2に示す空燃比に設定されるようにインジェクタ11の燃料噴射量を制御した場合について、排気ガス中の窒素酸化物と炭化水素の質量の合計値を実測した。その結果、4つの気筒♯1~♯4を図2に示す空燃比に設定されるようにインジェクタ11の燃料噴射量を制御した場合は、4つの気筒♯1~♯4のインジェクタ11の燃料噴射量を同一の値に設定した場合と比較して、排気ガス中の窒素酸化物と炭化水素の質量の合計値を基礎評価において最大で40パーセント以上低減できることが判明した。 To verify the effect of reducing air pollutants in exhaust gas, the total mass of nitrogen oxides and hydrocarbons in exhaust gas was measured in the case where the fuel injection amount of the injectors 11 for the four cylinders #1 to #4 was set to the same value under the same conditions of the rotation speed of the internal combustion engine 1 and the intake air amount per unit time, and in the case where the fuel injection amount of the injectors 11 was controlled so that the air-fuel ratio of the four cylinders #1 to #4 was set as shown in Figure 2. As a result, it was found that the total mass of nitrogen oxides and hydrocarbons in exhaust gas can be reduced by up to 40% or more in the basic evaluation when the fuel injection amount of the injectors 11 for the four cylinders #1 to #4 was controlled so that the air-fuel ratio of the four cylinders #1 to #4 was set as shown in Figure 2, compared to the case where the fuel injection amount of the injectors 11 for the four cylinders #1 to #4 was set to the same value.

なお、図2に示す4つの気筒♯1~♯4の空燃比は設定値の一例であって、図2に示す設定値とは異なる空燃比となるように4つのインジェクタ11の燃料噴射量を制御してもよい。例えば、気筒♯1及び気筒♯3の空燃比が理論空燃比よりリッチとなって、気筒♯4及び気筒♯2の空燃比が理論空燃比よりリーンとなるように4つのインジェクタ11の燃料噴射量を制御してもよい。このような条件で内燃機関1を使用した場合でも、4つの気筒♯1~♯4のインジェクタ11の燃料噴射量を同一の値に設定した場合と比較して、排気ガス中の窒素酸化物と炭化水素の質量の合計値を基礎評価において最大で40パーセント低減できることが判明している。また、内燃機関1の回転速度が遅い条件では、例えば、気筒♯1及び気筒♯4の空燃比が理論空燃比よりリーンとなって、気筒♯3及び気筒♯2の空燃比が理論空燃比よりリッチとなるように4つのインジェクタ11の燃料噴射量を制御してもよい。この場合、4つの気筒♯1~♯4が1回ずつ燃焼する1サイクル毎に空燃比を2回増減させることになる。 Note that the air-fuel ratios of the four cylinders #1 to #4 shown in FIG. 2 are examples of set values, and the fuel injection amounts of the four injectors 11 may be controlled to achieve air-fuel ratios different from the set values shown in FIG. 2. For example, the fuel injection amounts of the four injectors 11 may be controlled so that the air-fuel ratios of the cylinders #1 and #3 are richer than the theoretical air-fuel ratio, and the air-fuel ratios of the cylinders #4 and #2 are leaner than the theoretical air-fuel ratio. Even when the internal combustion engine 1 is used under such conditions, it has been found that the total mass of nitrogen oxides and hydrocarbons in the exhaust gas can be reduced by up to 40% in a basic evaluation, compared to when the fuel injection amounts of the injectors 11 of the four cylinders #1 to #4 are set to the same value. In addition, under conditions where the rotation speed of the internal combustion engine 1 is slow, for example, the fuel injection amounts of the four injectors 11 may be controlled so that the air-fuel ratios of the cylinders #1 and #4 are leaner than the theoretical air-fuel ratio, and the air-fuel ratios of the cylinders #3 and #2 are richer than the theoretical air-fuel ratio. In this case, the air-fuel ratio will be increased or decreased twice for each cycle in which each of the four cylinders #1 to #4 burns once.

<実施形態の補足>
本開示の内燃機関の制御装置は、上述した形態に限定されず、本開示の要旨の範囲内において種々の形態にて実施できる。例えば、制御の対象となる内燃機関は、直列3気筒エンジンやV型6気筒エンジンやV型8気筒エンジンなど、直列4気筒型以外の内燃機関であってもよい。
<Supplementary description of embodiment>
The internal combustion engine control device of the present disclosure is not limited to the above-described embodiment, and may be embodied in various forms within the scope of the gist of the present disclosure. For example, the internal combustion engine to be controlled may be an internal combustion engine other than an inline 4-cylinder engine, such as an inline 3-cylinder engine, a V6 engine, or a V8 engine.

1 内燃機関、2 吸気通路、3 排気通路、4 ECU、5 アクセル開度センサ、10 内燃機関の制御装置、11 インジェクタ、12 クランク角センサ、21 吸気マニホールド、22 エアフローメータ、23 スロットル弁、24 スロットル弁開度センサ、31 排気マニホールド、32 三元触媒、33 A/Fセンサ、♯1,♯2,♯3,♯4 気筒。 1 internal combustion engine, 2 intake passage, 3 exhaust passage, 4 ECU, 5 accelerator opening sensor, 10 internal combustion engine control device, 11 injector, 12 crank angle sensor, 21 intake manifold, 22 air flow meter, 23 throttle valve, 24 throttle valve opening sensor, 31 exhaust manifold, 32 three-way catalyst, 33 A/F sensor, #1, #2, #3, #4 cylinders.

Claims (2)

複数の気筒と、前記複数の気筒から排出された排気ガスを浄化する浄化触媒と、を備える内燃機関を制御し、前記複数の気筒にそれぞれ異なる空燃比を設定できる内燃機関の制御装置であって、
前記複数の気筒の気筒毎に空燃比を設定して、前記複数の気筒が1回ずつ燃焼する1サイクルの中に理論空燃比より空燃比がリッチな気筒と前記理論空燃比より空燃比がリーンな気筒とを少なくとも1つずつ含むように制御することを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine that controls an internal combustion engine having a plurality of cylinders and a purification catalyst that purifies exhaust gas discharged from the plurality of cylinders, and that can set different air-fuel ratios for the plurality of cylinders,
a control device for an internal combustion engine, the control device setting an air-fuel ratio for each of the plurality of cylinders, and controlling the air-fuel ratio so that one cycle in which each of the plurality of cylinders combusts once includes at least one cylinder whose air-fuel ratio is richer than the stoichiometric air-fuel ratio and at least one cylinder whose air-fuel ratio is leaner than the stoichiometric air-fuel ratio.
請求項1に記載の内燃機関の制御装置であって、
前記複数の気筒が1回ずつ燃焼する1サイクルの中に、燃焼する順番に気筒毎の空燃比を増減させる周期が1回又は複数回含まれるように制御することを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to claim 1,
A control device for an internal combustion engine, characterized in that one cycle in which each of the plurality of cylinders combusts once includes one or more periods in which the air-fuel ratio of each cylinder is increased or decreased in accordance with the order of combustion.
JP2022181195A 2022-11-11 2022-11-11 Control device for internal combustion engine Pending JP2024070601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022181195A JP2024070601A (en) 2022-11-11 2022-11-11 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022181195A JP2024070601A (en) 2022-11-11 2022-11-11 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2024070601A true JP2024070601A (en) 2024-05-23

Family

ID=91128721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022181195A Pending JP2024070601A (en) 2022-11-11 2022-11-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2024070601A (en)

Similar Documents

Publication Publication Date Title
US7753039B2 (en) Exhaust gas control apparatus of an internal combustion engine
JP2012057492A (en) Catalyst warming-up control device
JP2018119447A (en) Control device for internal combustion engine
JP5664884B2 (en) Air-fuel ratio control device for internal combustion engine
JP2013011222A (en) Control apparatus for internal combustion engine
JP2016211395A (en) Internal combustion engine
JP4645585B2 (en) Engine torque control device
US10443520B2 (en) Control apparatus for internal combustion engine
CN108240265B (en) Control device for internal combustion engine
JP2018141445A (en) Control device of vehicle
JP6669100B2 (en) Abnormality diagnosis device for internal combustion engine
US6173704B1 (en) Exhaust gas purification system of internal combustion engine
JP2018119477A (en) Misfire determination device for internal combustion engine
WO2013084307A1 (en) Internal combustion engine exhaust purifying apparatus
US8448425B2 (en) Engine system and a method for a regeneration of an exhaust gas treatment device in such a system
JP2024070601A (en) Control device for internal combustion engine
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2024070606A (en) Control device for internal combustion engine
JP3721878B2 (en) Air-fuel ratio control device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JP7459813B2 (en) Control device for internal combustion engine
JP2014015841A (en) Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine
JP3551083B2 (en) Exhaust gas purification device for internal combustion engine
US11434806B2 (en) Catalyst deterioration detection system
JP2011012687A (en) Engine torque control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231213