JP2024067279A - Static electromagnetic device and bidirectional DC-DC converter using static electromagnetic device - Google Patents

Static electromagnetic device and bidirectional DC-DC converter using static electromagnetic device Download PDF

Info

Publication number
JP2024067279A
JP2024067279A JP2022177230A JP2022177230A JP2024067279A JP 2024067279 A JP2024067279 A JP 2024067279A JP 2022177230 A JP2022177230 A JP 2022177230A JP 2022177230 A JP2022177230 A JP 2022177230A JP 2024067279 A JP2024067279 A JP 2024067279A
Authority
JP
Japan
Prior art keywords
primary winding
winding
secondary winding
electromagnetic device
magnetic leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022177230A
Other languages
Japanese (ja)
Inventor
直幸 栗田
誠 舘村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2022177230A priority Critical patent/JP2024067279A/en
Priority to PCT/JP2023/013851 priority patent/WO2024095508A1/en
Publication of JP2024067279A publication Critical patent/JP2024067279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

【課題】特殊な構造や工法を適用することなく、広い範囲の漏れインダクタンスを設定可能な巻線構造を持つ静止電磁機器を提供する。【解決手段】磁性材料を環状に成形してなる単相鉄心2の第1の磁脚部2aに、第1の一次巻線11と第1の二次巻線21をスペーサ7を隔てて一定の間隔を保持しつつ重ねるように配置し、第2の磁脚部に第2の一次巻線12と第2の二次巻線を22を中心軸線B1方向にスペーサ8を隔てて一定の間隔を保持しつつ並ぶように配置した。第1及び第2の一次巻線11、12は接続手段11aで直列に接続され、第1及び第2の二次巻線21、22は接続手段21aで直列に接続される。【選択図】 図1[Problem] To provide a static electromagnetic device having a winding structure that can set a wide range of leakage inductance without applying a special structure or construction method. [Solution] A first primary winding 11 and a first secondary winding 21 are arranged on a first magnetic leg 2a of a single-phase iron core 2 formed by molding a magnetic material into a ring shape, so as to overlap with each other while maintaining a constant gap between them and separated by a spacer 7, and a second primary winding 12 and a second secondary winding 22 are arranged on a second magnetic leg so as to be lined up with each other while maintaining a constant gap between them and separated by a spacer 8 in the direction of a central axis B1. The first and second primary windings 11, 12 are connected in series by a connecting means 11a, and the first and second secondary windings 21, 22 are connected in series by a connecting means 21a. [Selected Figure] Figure 1

Description

本発明は静止電磁機器に関し、スイッチング電源、電力変換器等に用いられる高周波変圧器において、その巻線構造により漏れインダクタンスを調整するための技術に関する。 The present invention relates to static electromagnetic equipment, and to a technique for adjusting leakage inductance by the winding structure in high-frequency transformers used in switching power supplies, power converters, etc.

近年、太陽光発電システムや停電時の非常用蓄電池の充放電システム、さらに電気自動車への充電システムなど、直流電力を扱う送配電機器が増加しており、入力された直流電圧をインバータ回路によって交流電圧に変換し、高周波変圧器によりこれを変圧し、整流回路によりこれを直流電圧に変換して出力する、直流変換器(DC-DCコンバータ)の需要が増加している。DC-DCコンバータの用途によっては、インバータ、および整流回路を構成するスイッチング素子の動作タイミングを制御し、直流電力を双方向に送る機能が要求される。さらに、スイッチング素子で発生するスイッチング損失は、DC-DCコンバータの変換効率を低下させる原因のひとつのため、回路中のインダクタ成分Lとキャパシタ成分Cの共振現象を利用して、ゼロ電圧スイッチング、またはゼロ電流スイッチング動作を実現し、スイッチング損失を抑制することが求められる。 In recent years, the number of power transmission and distribution devices that handle DC power, such as solar power generation systems, systems for charging and discharging emergency storage batteries during power outages, and systems for charging electric vehicles, has increased. This has led to an increase in demand for DC-DC converters, which convert the input DC voltage into AC voltage using an inverter circuit, transform this voltage using a high-frequency transformer, and convert this voltage into DC voltage using a rectifier circuit for output. Depending on the application of the DC-DC converter, it may be required to control the operation timing of the switching elements that make up the inverter and rectifier circuit and transmit DC power in both directions. Furthermore, since switching loss generated by the switching elements is one of the causes of reducing the conversion efficiency of DC-DC converters, it is necessary to realize zero-voltage switching or zero-current switching operation by utilizing the resonance phenomenon of the inductor component L and capacitor component C in the circuit, and suppress switching loss.

DC-DCコンバータの性能向上に必要となる上記の直流電力の双方向制御機能、およびゼロ電圧スイッチング、またはゼロ電流スイッチング機能を持たせるには、高周波変圧器と直列に、適切な値のインダクタ成分Lを備える必要がある(例えば、特許文献1参照)。インダクタ成分Lは、高周波変圧器とは別にリアクトル装置等を備える方法のほか、高周波変圧器の巻線構造の工夫により、漏れインダクタンスLsを、高周波変圧器に内蔵させる方法が一般的である。前者の方法に比べて、後者の方法は部品点数が削減され、コストも低減できる。 To provide the above-mentioned bidirectional DC power control function and zero voltage switching or zero current switching function, which are necessary to improve the performance of a DC-DC converter, it is necessary to provide an inductor component L of an appropriate value in series with the high-frequency transformer (see, for example, Patent Document 1). Inductor component L is generally obtained by providing a reactor device or the like separate from the high-frequency transformer, or by incorporating leakage inductance Ls into the high-frequency transformer by devising the winding structure of the high-frequency transformer. Compared to the former method, the latter method reduces the number of parts and also reduces costs.

これに関連して、所望の漏れインダクタンスLsを備えた高周波変圧器の巻線構造に関する技術が開示されている。例えば特許文献2には、単相鉄心部の一方の磁脚部に配置される一次巻線部と、一次巻線部が配置された磁脚と同一の磁脚上であって、一次巻線部と磁気的に密となる少なくとも一つの第1の二次巻線部と、一次巻線部と磁気的に疎となる鉄心の他方の磁脚部に配置される少なくとも一つの第2の二次巻線部とを備えるトランス(静止電磁機器)の構成が開示されている。また、特許文献3には、鉄心に一次巻線と二次巻線を所要の間隔を隔てて配置するとともに、両巻線間に透磁率の低いフェライト粉モールド板をパスコアとして介装し、適切な値の漏れインダクタンスLsを得る高周波磁気漏洩変圧器の構成が開示されている。 In this regard, a technique for the winding structure of a high-frequency transformer with a desired leakage inductance Ls has been disclosed. For example, Patent Document 2 discloses a configuration of a transformer (static electromagnetic device) that includes a primary winding arranged on one magnetic leg of a single-phase iron core, at least one first secondary winding on the same magnetic leg as the magnetic leg on which the primary winding is arranged and magnetically dense with the primary winding, and at least one second secondary winding arranged on the other magnetic leg of the iron core and magnetically sparse with the primary winding. Patent Document 3 also discloses a configuration of a high-frequency magnetic leakage transformer that obtains an appropriate value of leakage inductance Ls by arranging the primary winding and secondary winding on the iron core at a required interval and interposing a ferrite powder molded plate with low magnetic permeability between the two windings as a path core.

特開2019-103257号公報JP 2019-103257 A 特開2013-98189号公報JP 2013-98189 A 特開2004-39847号公報JP 2004-39847 A

特許文献2で開示されている静止電磁機器は、第1の二次巻線を一次巻線と同一の磁脚に、第2の二次巻線を異なる磁脚に備え、磁気的に密となる部分と疎となる部分に分けることで、静止電磁機器の漏れインダクタンスの値Lsを制御する技術であるが、一次巻線はひとつの磁脚のみに備えた構成なので、Lsの取り得る値の範囲は、従来の構成と同等であって狭い。また、特許文献3で開示されている高周波磁気漏洩変圧器は、従来の構成に比べてLsの取り得る値の範囲が広がるが、透磁率の低い磁性材料を鉄心部に組み合わせるため、従来より余分な部材コストが必要になる。 The static electromagnetic device disclosed in Patent Document 2 has a first secondary winding on the same magnetic leg as the primary winding and a second secondary winding on a different magnetic leg, and is divided into magnetically dense and sparse parts, which is a technology for controlling the leakage inductance value Ls of the static electromagnetic device. However, since the primary winding is configured to be on only one magnetic leg, the range of possible values for Ls is narrow, equivalent to that of conventional configurations. In addition, the high-frequency magnetic leakage transformer disclosed in Patent Document 3 has a wider range of possible values for Ls compared to conventional configurations, but since a magnetic material with low magnetic permeability is combined with the iron core, additional material costs are required compared to conventional configurations.

本発明は上記背景に鑑みてなされたもので、その目的は、広い範囲の漏れインダクタンスLsを設定可能とした静止電磁機器を提供することにある。
本発明の他の目的は、双方向DC-DCコンバータに用いるのに好適な静止電磁機器を提供することにある。
The present invention has been made in view of the above background, and an object of the present invention is to provide a static electromagnetic device in which the leakage inductance Ls can be set within a wide range.
Another object of the present invention is to provide a static electromagnetic machine suitable for use in a bidirectional DC-DC converter.

本願において開示される発明のうち代表的な特徴を説明すれば次のとおりである。
本発明の一つの特徴によれば、磁性材料を環状に成形してなる単相鉄心の2本の磁脚部に第1および第2の一次巻線と第1および第2の二次巻線を巻いて、一次巻線同士および二次巻線同士を直列接続するようにした静止電磁機器において、第1の磁脚部には第1の一次巻線と第1の二次巻線を一定の間隔を保持しつつ重ねて巻回し、第2の磁脚部には第2の一次巻線と第2の二次巻線を一定の間隔を保持しつつ縦方向に並べて巻回するようにした。重ね巻される第1の磁脚部では、高圧側となる第1の一次巻線が外周側に配置され、低圧側となる第1の二次巻線が内周側に配置される。一次巻線、二次巻線はそれぞれ複数回巻かれた素線を含んで構成され、これら素線は第一の絶縁材、第二の絶縁材にて円筒状に封止される。
Representative features of the invention disclosed in this application are as follows.
According to one feature of the present invention, in a stationary electromagnetic device in which first and second primary windings and first and second secondary windings are wound around two magnetic legs of a single-phase iron core formed into a ring shape from a magnetic material, and the primary windings and the secondary windings are connected in series, the first primary winding and the first secondary winding are wound around the first magnetic leg in an overlapping manner while maintaining a certain interval, and the second primary winding and the second secondary winding are wound around the second magnetic leg in a vertically arranged manner while maintaining a certain interval. In the first magnetic leg in an overlapping manner, the first primary winding, which is the high-voltage side, is arranged on the outer periphery, and the first secondary winding, which is the low-voltage side, is arranged on the inner periphery. Each of the primary winding and the secondary winding includes a wire wound multiple times, and these wires are sealed in a cylindrical shape with a first insulating material and a second insulating material.

本発明の他の特徴によれば、磁脚部に巻回される一次巻線、および二次巻線を構成する素線は磁脚の軸方向と平行に整列され、樹脂等の絶縁材で封止する構造とし、構造同士の間隙部に不導体で構成されるスペーサを介在させて、一定の間隔を維持するように構成した。なお、第1の磁脚部に重ねて巻回される第1の一次巻線と第1の二次巻線を構成する素線を磁脚の軸方向に対して一定の角度を持たせるように整列させ、それらを封止する樹脂等の絶縁材をテーパ状の構造とし、これらの間隙部にスペーサを介在させて、一定の間隔を保持するように構成してもよい。 According to another feature of the present invention, the wires constituting the primary winding and secondary winding wound around the magnetic leg are aligned parallel to the axial direction of the magnetic leg and sealed with an insulating material such as resin, and a spacer made of a non-conductor is interposed in the gap between the structures to maintain a constant distance. It is also possible to align the wires constituting the first primary winding and the first secondary winding wound around the first magnetic leg at a constant angle to the axial direction of the magnetic leg, and to make the insulating material such as resin that seals them have a tapered structure, and to interpose a spacer in the gap between them to maintain a constant distance.

本発明の他の特徴によれば、上述の静止電磁機器と、静止電磁機器の一次巻線に接続される第一のインバータ回路と、二次巻線に接続されるインバータ回路を有し、第一のインバータ回路が入力される直流から交流に変換をする際には、静止電磁機器によって電圧変換された交流を第二のインバータ回路によって直流に変換するように制御し、第二のインバータ回路が入力される直流から交流に変換をする際には、静止電磁機器によって電圧変換された交流を第一のインバータ回路によって交流から直流変換をするように制御することによって二次側から一次側への逆方向へのDC-DC変換を行う。 According to another feature of the present invention, the present invention includes the above-mentioned stationary electromagnetic device, a first inverter circuit connected to the primary winding of the stationary electromagnetic device, and an inverter circuit connected to the secondary winding, and when the first inverter circuit converts input direct current to alternating current, the second inverter circuit is controlled to convert the alternating current voltage-converted by the stationary electromagnetic device to direct current, and when the second inverter circuit converts input direct current to alternating current, the first inverter circuit is controlled to convert the alternating current voltage-converted by the stationary electromagnetic device from alternating current to direct current, thereby performing DC-DC conversion in the reverse direction from the secondary side to the primary side.

本発明の構成によれば、様々な用途に使われるDC-DCコンバータ内の静止電磁機器(高周波変圧器)について、特殊な構造や工法を適用することなく、広い範囲の漏れインダクタンスLsを高周波変圧器に内蔵させることができる。また、従来の構造に比べて高周波変圧器の体積が抑制されるため、小形、低コスト化の効果が得られる。さらに、直流電力の双方向制御機能に好適な高周波変圧器を有する静止電磁機器が実現できるので、全体的な変換効率に優れ、電力ロスを抑制して省エネルギー化を進めた静止電磁機器及びそれを用いた双方向DC-DCコンバータを実現できる。 According to the configuration of the present invention, a wide range of leakage inductance Ls can be built into the static electromagnetic device (high-frequency transformer) in DC-DC converters used for various applications without applying any special structure or construction method. In addition, the volume of the high-frequency transformer is reduced compared to conventional structures, resulting in a smaller size and lower cost. Furthermore, since a static electromagnetic device having a high-frequency transformer suitable for bidirectional control of DC power can be realized, a static electromagnetic device with excellent overall conversion efficiency and reduced power loss for improved energy savings, and a bidirectional DC-DC converter using the same can be realized.

本発明の第1の実施例に係る静止電磁機器1の縦断面図である。1 is a longitudinal sectional view of a stationary electromagnetic device 1 according to a first embodiment of the present invention. 本発明の第1の実施例に係る静止電磁機器1の上面図である。1 is a top view of a stationary electromagnetic device 1 according to a first embodiment of the present invention; 本発明の第1の実施例に係る静止電磁機器1の巻線内部の構造を示す縦断面図である。1 is a longitudinal sectional view showing the internal structure of a winding of a static electromagnetic device 1 according to a first embodiment of the present invention. 本発明の第1の実施例と従来例における、静止電磁機器1の体積と、漏れインダクタンスとの相関関係を示すグラフである。4 is a graph showing the correlation between the volume of the stationary electromagnetic device 1 and the leakage inductance in the first embodiment of the present invention and the conventional example. 本発明の第2の実施例に係る静止電磁機器1Aの巻線内部の構造を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing the internal structure of a winding of a static electromagnetic device 1A according to a second embodiment of the present invention. 図5の巻線の構造を変更した変形例を示す静止電磁機器1Bの縦断面図である。6 is a longitudinal sectional view of a static electromagnetic device 1B showing a modified example in which the winding structure of FIG. 5 is changed. 本発明の第2の実施例に係る静止電磁機器1Aの組立方法を示す模式図である。11A to 11C are schematic diagrams showing a method of assembling a stationary electromagnetic device 1A according to a second embodiment of the present invention. 図7に示した組立方法の変形例となる静止電磁機器1Cの組立方法を示す模式図である。8 is a schematic diagram showing a method for assembling a stationary electromagnetic device 1C which is a modified example of the assembling method shown in FIG. 7. 本発明の第3の実施例に係る静止電磁機器1Dの縦断面図である。FIG. 11 is a longitudinal sectional view of a stationary electromagnetic device 1D according to a third embodiment of the present invention. 本発明の第4の実施例に係る静止電磁機器1Eの縦断面図である。FIG. 11 is a longitudinal sectional view of a stationary electromagnetic device 1E according to a fourth embodiment of the present invention. 本発明の第5の実施例を示す静止電磁機器1Fの適用例を示す図であり、インバータ回路60、70を組み合わせたDC-DCコンバータの回路図である。FIG. 13 is a diagram showing an application example of a static electromagnetic device 1F according to a fifth embodiment of the present invention, and is a circuit diagram of a DC-DC converter in which inverter circuits 60 and 70 are combined. 従来例1における静止電磁機器101Aの縦断面図である。FIG. 1 is a vertical sectional view of a static electromagnetic device 101A according to a first conventional example. 従来例2における静止電磁機器101Bの縦断面図である。FIG. 11 is a vertical sectional view of a static electromagnetic device 101B according to a second conventional example.

以下、本発明の実施例を、図面を用いて詳細に説明する。なお、以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。また、本明細書においては、前後左右、上下の方向は図中に示す方向であるとして説明する。 The following describes in detail an embodiment of the present invention with reference to the drawings. In the following drawings, the same parts are given the same reference numerals, and repeated explanations will be omitted. In addition, in this specification, the front-back, left-right, and up-down directions will be described as being the directions shown in the drawings.

本発明の第1の実施例の構成と効果について、図1から図4を用いて説明する。ここで第1の実施例の説明の前に、図12および図13を用いて従来の静止電磁機器101A、101Bの構成を説明する。図12は、従来の静止電磁機器の鉛直面における縦断面図である。鉛直面は2つの第1の磁脚部2aと第2の磁脚部2bの中心軸を通る面である。図12において静止電磁機器101Aは環状に成形した単相鉄心2を有し、単相鉄心2に形成される2本の磁脚部2aおよび2bの周囲に、一次巻線11と12、および二次巻線21と22がそれぞれ重ねて巻回される。本明細書では、磁脚部2aのように、磁脚部に対して近い側(内側)と遠い側(外側)に一次巻線と二次巻線を巻くことによって、磁脚部の中心軸線から径方向に見て一次巻線と二次巻線の全体が、又は一部分が重なるように巻く方法を「重ね巻」と称する。この「重ね巻」では、通常、高圧電流が流れる一次巻線11、12を磁脚部2a、2bから離れた外側に巻き、低圧電流が流れる二次巻線21、22が磁脚部2a、2bに近い内側に巻かれることが一般的である。一次巻線11と12の間は接続手段11aで接続され、一次巻線の端部は、電極14a、14bに接続される。同様に、二次巻線21と22の間は接続手段21aで接続され、二次巻線の端部は、電極24a、24bに接続される。一次巻線11と二次巻線21の間、及び、一次巻線12と二次巻線22の間には、径方向に一定のギャップ長dが備えられる。ギャップ長dは、磁脚部2a、2bの中心軸線A1、B1方向において一定になるように設定される。このように従来では、ギャップ長dの大きさにより所望の漏れインダクタンスLsを一次巻線及び二次巻線間に持たせるようにしていた。 The configuration and effects of the first embodiment of the present invention will be described with reference to FIGS. 1 to 4. Before describing the first embodiment, the configurations of conventional static electromagnetic devices 101A and 101B will be described with reference to FIGS. 12 and 13. FIG. 12 is a vertical cross-sectional view of a conventional static electromagnetic device. The vertical plane is a plane passing through the central axes of the two first magnetic leg parts 2a and the second magnetic leg part 2b. In FIG. 12, the static electromagnetic device 101A has a single-phase iron core 2 formed into an annular shape, and the primary windings 11 and 12, and the secondary windings 21 and 22 are wound around the two magnetic leg parts 2a and 2b formed on the single-phase iron core 2 in an overlapping manner. In this specification, the method of winding the primary winding and the secondary winding so that the entirety or a part of the primary winding and the secondary winding overlap when viewed radially from the central axis of the magnetic leg part by winding the primary winding and the secondary winding on the closer side (inner side) and the farther side (outer side) of the magnetic leg part, as in the magnetic leg part 2a, is called "lap winding". In this "lap winding", the primary windings 11 and 12 through which high-voltage current flows are generally wound on the outside away from the magnetic legs 2a and 2b, and the secondary windings 21 and 22 through which low-voltage current flows are generally wound on the inside close to the magnetic legs 2a and 2b. The primary windings 11 and 12 are connected by a connection means 11a, and the ends of the primary windings are connected to electrodes 14a and 14b. Similarly, the secondary windings 21 and 22 are connected by a connection means 21a, and the ends of the secondary windings are connected to electrodes 24a and 24b. A constant gap length d is provided in the radial direction between the primary winding 11 and the secondary winding 21, and between the primary winding 12 and the secondary winding 22. The gap length d is set to be constant in the direction of the central axes A1 and B1 of the magnetic legs 2a and 2b. In this way, in the past, the desired leakage inductance Ls was provided between the primary winding and the secondary winding depending on the size of the gap length d.

図13は別の従来例の静止電磁機器101Bを示す。この静止電磁機器101Bは環状に成形した単相鉄心2を有し、単相鉄心2に形成される2本の磁脚部2aおよび2bのうち、磁脚部2aの周囲に一次巻線11と二次巻線21が上下方向に隙間(ギャップd)を有するように並べて巻回され、磁脚部2bの周囲に一次巻線12と二次巻線22が上下方向に隙間(ギャップd)を有するように並べて巻回される。このように一つの磁脚部に対して中心軸線方向に見て一方側(ここでは下側)と他方側(ここでは上側)に一次巻線と二次巻線を並べて巻くことによって、磁脚部の中心軸線方向に見て一次巻線と二次巻線が非接触状態で隣接するように巻線を形成する方法を本明細書では「並び巻」と称する。2本の磁脚部2a、2bに巻回された一次巻線11、12は接続手段11aにより直列に接続され、二次巻線21、22は接続手段21aにより直列に接続される。第1の一次巻線11と第1の二次巻線21は磁脚部2aの中心軸線方向に一定のギャップ長dを有するように配置され、第2の一次巻線12と第2の二次巻線22は中心軸線B1方向に一定のギャップ長dを有するように配置される。ギャップ長さdは、周方向のどの位置においても一定になるように設定される。一次巻線11、12の端部には電極14a、14bが備えられ、二次巻線21、22の端部には電極24a、24bが備えられる。 Figure 13 shows another conventional static electromagnetic device 101B. This static electromagnetic device 101B has a single-phase core 2 formed into an annular shape, and of the two magnetic leg parts 2a and 2b formed on the single-phase core 2, the primary winding 11 and the secondary winding 21 are wound around the magnetic leg part 2a in a line with a gap (gap d) in the vertical direction, and the primary winding 12 and the secondary winding 22 are wound around the magnetic leg part 2b in a line with a gap (gap d) in the vertical direction. In this specification, the method of winding such that the primary winding and the secondary winding are adjacent to each other in a non-contact state when viewed in the central axis direction of the magnetic leg part by winding the primary winding and the secondary winding side by side on one side (here, the lower side) and the other side (here, the upper side) of one magnetic leg part in this way is referred to as "parallel winding". The primary windings 11 and 12 wound around the two magnetic leg portions 2a and 2b are connected in series by a connecting means 11a, and the secondary windings 21 and 22 are connected in series by a connecting means 21a. The first primary winding 11 and the first secondary winding 21 are arranged to have a constant gap length d in the direction of the central axis of the magnetic leg portion 2a, and the second primary winding 12 and the second secondary winding 22 are arranged to have a constant gap length d in the direction of the central axis B1. The gap length d is set to be constant at any position in the circumferential direction. Electrodes 14a and 14b are provided at the ends of the primary windings 11 and 12, and electrodes 24a and 24b are provided at the ends of the secondary windings 21 and 22.

次に、図1を用いて本実施例の静止電磁機器1を説明する。図1は第1の実施例に係る静止電磁機器1の鉛直面における縦断面図である。この断面(鉛直面)は第1の磁脚部2aの中心軸線A1と第2の磁脚部2bの中心軸線B1を通る面である。静止電磁機器1は、環状に成形した単相鉄心2を有する。単相鉄心2は、薄いアモルファス、ナノ結晶材料等の薄板状磁性材料を多数積層して製造される。積層鉄心を用いることで渦電流損を小さくできる。尚、図1では単相鉄心2の分割面の図示を省略しているが、図1のような環状の部分に分割面が存在しない一体式の鉄心として構成しても良いし、後述の図7、図8にて説明するように単相鉄心2を分割形式で構成しても良い。さらには、単相鉄心2としてフェライト等の絶縁性磁性材料を粉末原料として混合・焼結・成型して製造される焼結型(セラミックス)フェライトにて構成しても良い。 Next, the static electromagnetic device 1 of this embodiment will be described with reference to FIG. 1. FIG. 1 is a vertical cross-sectional view of the static electromagnetic device 1 according to the first embodiment. This cross-section (vertical plane) is a plane passing through the central axis A1 of the first magnetic leg portion 2a and the central axis B1 of the second magnetic leg portion 2b. The static electromagnetic device 1 has a single-phase iron core 2 formed into an annular shape. The single-phase iron core 2 is manufactured by laminating a large number of thin plate-shaped magnetic materials such as thin amorphous and nanocrystalline materials. The use of a laminated iron core can reduce eddy current loss. Note that the division surface of the single-phase iron core 2 is omitted in FIG. 1, but it may be configured as an integrated iron core with no division surface in the annular portion as in FIG. 1, or the single-phase iron core 2 may be configured in a divided form as described later in FIG. 7 and FIG. 8. Furthermore, the single-phase iron core 2 may be configured of sintered (ceramic) ferrite manufactured by mixing, sintering, and molding insulating magnetic materials such as ferrite as powder raw materials.

単相鉄心2に形成される第1の磁脚部2aの周囲には、第1の一次巻線11と第1の二次巻線21が重ねて巻回され(重ね巻)、第2の磁脚部2bの周囲には、第2の一次巻線12と第2の二次巻線22が中心軸線B1方向に隣接するように巻回される(並び巻)。2つの磁脚部2a、2bに渡って巻回された一次巻線11、12は接続手段11aにより直列に接続され、各巻線の他端には、電極14a、14bが設けられる。同様に、2つの磁脚部2a、2bに渡って巻回された二次巻線21、22は接続手段21aにより直列に接続され、二次巻線21、22のそれぞれの他端側(接続手段21aとは離れた側の端部)には、電極24a、24bが設けられる。図1の模式図では接続手段11aと接続手段21aが鉄心2の内部に配線されているかのように見えるが、実際には鉄心2の外側に配線される。本実施例では、第1の一次巻線11と第2の一次巻線12は同一の巻き数又は異なる巻き数とすることができる。また、第1の二次巻線21と第2の二次巻線22は、同一の巻き数又は異なる巻き数とすることができる。接続手段11aと接続手段21aは、一次巻線と二次巻線の端部を引き出して分断せずに接続する、もしくは、分断後に再接続するようにしても良いし、接続用の配線を準備しても良いし、その他の方法で電気的に接続するようにしても良い。 The first primary winding 11 and the first secondary winding 21 are wound around the first magnetic leg 2a formed on the single-phase core 2 in an overlapping manner (lap winding), and the second primary winding 12 and the second secondary winding 22 are wound around the second magnetic leg 2b so as to be adjacent to each other in the direction of the central axis B1 (parallel winding). The primary windings 11 and 12 wound around the two magnetic leg parts 2a and 2b are connected in series by a connecting means 11a, and electrodes 14a and 14b are provided at the other end of each winding. Similarly, the secondary windings 21 and 22 wound around the two magnetic leg parts 2a and 2b are connected in series by a connecting means 21a, and electrodes 24a and 24b are provided at the other end side (the end away from the connecting means 21a) of the secondary windings 21 and 22, respectively. In the schematic diagram of FIG. 1, the connection means 11a and the connection means 21a appear to be wired inside the iron core 2, but in reality, they are wired outside the iron core 2. In this embodiment, the first primary winding 11 and the second primary winding 12 can have the same number of turns or different numbers of turns. Also, the first secondary winding 21 and the second secondary winding 22 can have the same number of turns or different numbers of turns. The connection means 11a and the connection means 21a may be connected by drawing out the ends of the primary winding and the secondary winding and connecting them without cutting them, or they may be reconnected after cutting them, or wiring for connection may be prepared, or they may be electrically connected by other methods.

第1の磁脚部2a側において、第1の一次巻線11と第2の二次巻線21は、中心軸線A1に対して径方向に一定のギャップdを有するように配置される。第1の二次巻線21の内周面と磁脚部2aの外周面の間にも一定のギャップが形成される。また、第1の二次巻線21の内周面と第1の磁脚部2aの外周面との間も所定のギャップを有するような位置関係とされる。第2の磁脚部2b側においては、一次巻線12と二次巻線22は、中心軸線B1に対して軸方向に一定のギャップを有するように離れて配置される(重ね巻)。つまり、本実施例でいう「重ね巻」状態では、第2の磁脚部2bの中心軸B1方向において、一次巻線12と二次巻線22の位置する領域が重ならないような位置関係にある。第2の磁脚部2b側において、第2の二次巻線22と第2の一次巻線12は、中心軸線B1方向に一定のギャップdを有するように配置される。ギャップ長dは、一次巻線12の上面と二次巻線22の下面のいずれの位置においても一定になるように設定される。また、第2の二次巻線22の内周面と磁脚部2aの外周面の間、及び、第2の一次巻線12の内周面と磁脚部2aの外周面の間にも一定のギャップが形成される。 On the first magnetic leg portion 2a side, the first primary winding 11 and the second secondary winding 21 are arranged so as to have a certain gap d in the radial direction with respect to the central axis A1. A certain gap is also formed between the inner peripheral surface of the first secondary winding 21 and the outer peripheral surface of the magnetic leg portion 2a. In addition, a positional relationship is established so that a certain gap is also formed between the inner peripheral surface of the first secondary winding 21 and the outer peripheral surface of the first magnetic leg portion 2a. On the second magnetic leg portion 2b side, the primary winding 12 and the secondary winding 22 are arranged apart from each other so as to have a certain gap in the axial direction with respect to the central axis B1 (lap winding). In other words, in the "lap winding" state in this embodiment, the primary winding 12 and the secondary winding 22 are in a positional relationship in the central axis B1 direction of the second magnetic leg portion 2b such that they do not overlap. On the second magnetic leg portion 2b side, the second secondary winding 22 and the second primary winding 12 are arranged so as to have a certain gap d in the central axis B1 direction. The gap length d is set to be constant at both the top surface of the primary winding 12 and the bottom surface of the secondary winding 22. In addition, a constant gap is formed between the inner surface of the second secondary winding 22 and the outer surface of the magnetic leg portion 2a, and between the inner surface of the second primary winding 12 and the outer surface of the magnetic leg portion 2a.

通常、AC電源用の変圧器においては、漏れインダクタンスLsをできるだけ小さくするように構成されるので、一次巻線11と二次巻線21の間のギャップd、二次巻線21と第1の磁脚部2aの間のギャップdはできるだけ小さい方が好ましかった。AC用の変圧器では、本実施例の静止電磁機器1では、一次側巻線から二次側巻線への電磁誘導作用により変換された電圧にて二次側巻線から交流電力が出力されるという、一方向の電圧変換が行われていたためである。一方、本実施例による静止電磁機器1は、一次巻線11、12から二次巻線21、22側への交流電圧変換に加えて、二次巻線21、22側から一次巻線11、12側への逆方向の交流電圧変換を行う必要がある。そのため、漏れインダクタンスLsをできるだけ小さくするというよりも、双方向の電圧変換効率がトータルで最良になるように、一次巻線11、12と二次巻線21、22の間のギャップdを調整して、漏れインダクタンスLsが所望の大きさ(範囲内)に収まるように構成している。 Normally, in a transformer for an AC power supply, the leakage inductance Ls is configured to be as small as possible, so it is preferable that the gap d between the primary winding 11 and the secondary winding 21 and the gap d between the secondary winding 21 and the first magnetic leg portion 2a are as small as possible. This is because, in the static electromagnetic device 1 of this embodiment, in an AC transformer, a one-way voltage conversion is performed in which AC power is output from the secondary winding at a voltage converted by electromagnetic induction from the primary winding to the secondary winding. On the other hand, in the static electromagnetic device 1 of this embodiment, in addition to AC voltage conversion from the primary windings 11 and 12 to the secondary windings 21 and 22, it is necessary to perform AC voltage conversion in the reverse direction from the secondary windings 21 and 22 to the primary windings 11 and 12. Therefore, rather than making the leakage inductance Ls as small as possible, the gap d between the primary windings 11 and 12 and the secondary windings 21 and 22 is adjusted so that the leakage inductance Ls is within a desired size (range) so that the bidirectional voltage conversion efficiency is optimal in total.

図1に示す実施例では、第1の磁脚部2a側の重ね巻によるギャップdと、第2の磁脚部2b側の並び巻によるギャップdの長さを等しくなるように設定した。しかしながら、第1の磁脚部2a側のギャップ長をdとし、第2の磁脚部2b側のギャップ長をdとして、dとdを異なる値に設定して、磁脚部2a、2b毎に所望の漏れインダクタンスLsを巻線間に持たせるように設定しても良い。静止電磁機器1は、幅W、奥行D(符号は後述の図2参照)、高さHとなるように構成される。W、H、Dの大きさは任意であるが、例えば6.6KVの交流電圧を例えば7つの静止電磁機器1を用いて、静止電磁機器1あたり380Vの2次側直流電圧に変換するような場合は、静止電磁機器1の大きさ(W、D、H)は、20~30cm程度の大きさとなる。尚、本実施例の静止電磁機器1は、その大きさや重さには制限はなく、(W、D、H)がそれぞれ20cm未満の小型のものであっても良いし、30cm以上、例えば(W、D、H)がそれぞれ1m程度の大型のものであっても良く、本発明は様々な大きさの担当鉄心2を有する静止電磁機器1に適用できる。 In the embodiment shown in FIG. 1, the length of the gap d due to the lap winding on the first magnetic leg portion 2a side and the length of the gap d due to the parallel winding on the second magnetic leg portion 2b side are set to be equal. However, the gap length on the first magnetic leg portion 2a side may be set to d1 , the gap length on the second magnetic leg portion 2b side may be set to d2 , and d1 and d2 may be set to different values so that the desired leakage inductance Ls is provided between the windings for each of the magnetic legs 2a and 2b. The static electromagnetic device 1 is configured to have a width W, a depth D (see FIG. 2 for the symbols described later), and a height H. The sizes of W, H, and D are arbitrary, but in the case where, for example, an AC voltage of 6.6 KV is converted to a secondary DC voltage of 380 V per static electromagnetic device 1 using, for example, seven static electromagnetic devices 1, the size (W, D, H) of the static electromagnetic device 1 is about 20 to 30 cm. Furthermore, there are no restrictions on the size or weight of the stationary electromagnetic equipment 1 of this embodiment, and it may be small, with (W, D, H) each less than 20 cm, or large, with (W, D, H) greater than 30 cm, for example, with (W, D, H) each approximately 1 m, and the present invention can be applied to stationary electromagnetic equipment 1 having assigned cores 2 of various sizes.

図2は図1で示す静止電磁機器1の上面図である。第2の磁脚部2b側の一次巻線12と二次巻線22は、それらの内形と外形が同一であるので、図2の例では上面視で二次巻線22だけが見える状態にある。ここでは単相鉄心(コア)2の磁脚部2a、2bの周囲にコイルを巻く、いわゆる「外鉄形」の形状である。単相鉄心2は同一形式の薄板状磁性材料を多数積層して形成される。よって、第1の磁脚部2aと、第2の磁脚部2b部分の外形は上面視にて略長方形の断面形状とされる。第1の磁脚部2aに対して同軸に巻かれる一次巻線11、二次巻線21は円筒状であるが、単相鉄心2の外形に沿って完全な円形断面でなく、一次巻線11、二次巻線21の外周面の断面形状、及び、内周面の断面形状は長方形に近い形(略長方形)になる。同様に、第2の磁脚部2bに同軸に巻かれる一次巻線12と二次巻線22も円筒状であり、それらの外周面及び内周面の断面形状は、それぞれ略長方形になる。 Figure 2 is a top view of the static electromagnetic device 1 shown in Figure 1. The primary winding 12 and the secondary winding 22 on the second magnetic leg portion 2b side have the same inner and outer shapes, so in the example of Figure 2, only the secondary winding 22 is visible when viewed from above. Here, the coil is wound around the magnetic leg portions 2a and 2b of the single-phase core (core) 2, which is a so-called "shell-shaped" shape. The single-phase core 2 is formed by stacking a large number of thin plate-shaped magnetic materials of the same type. Therefore, the outer shapes of the first magnetic leg portion 2a and the second magnetic leg portion 2b are approximately rectangular in cross section when viewed from above. The primary winding 11 and the secondary winding 21, which are wound coaxially around the first magnetic leg portion 2a, are cylindrical, but are not completely circular in cross section along the outer shape of the single-phase core 2, and the cross-sectional shapes of the outer peripheral surface and the inner peripheral surface of the primary winding 11 and the secondary winding 21 are close to a rectangle (approximately rectangular). Similarly, the primary winding 12 and secondary winding 22, which are wound coaxially around the second magnetic leg portion 2b, are also cylindrical, and the cross-sectional shapes of their outer and inner surfaces are each approximately rectangular.

図3は、本実施例における巻線部の構造の一例を示した縦断面図である。図3(A)は、第1の磁脚部2aに重ねて巻回された第1の一次巻線11と第1の二次巻線21の断面を示し、図3(B)は、第2の磁脚部2bに並べて巻回された第2の一次巻線12と第2の二次巻線22を示す。第1の一次巻線11は細めの素線15が中心軸線A1(図1参照)と平行に整列するように巻かれ、第1の二次巻線21は太めの素線25が中心軸線A1と平行に整列するように巻かれる。図3では、素線15を2重巻きの状態、素線25を1回巻いた状態を図示してるが、第1の磁脚部2aに対して素線15、25を何重に巻くかは設計事項であって、適宜設定すれば良い。素線15および25は、表面に絶縁材を塗布した銅、アルミニウム等の複数の細線を撚って構成されるリッツ線、または銅、アルミニウム等の薄板材を鉄心に巻回するようにして形成され、巻回されたのちに樹脂等の絶縁材16、26にてそれぞれ封止される。 Figure 3 is a vertical cross-sectional view showing an example of the structure of the winding section in this embodiment. Figure 3 (A) shows a cross-section of the first primary winding 11 and the first secondary winding 21 wound in a stacked manner around the first magnetic leg portion 2a, and Figure 3 (B) shows the second primary winding 12 and the second secondary winding 22 wound side by side around the second magnetic leg portion 2b. The first primary winding 11 is wound so that the thin wire 15 is aligned parallel to the central axis A1 (see Figure 1), and the first secondary winding 21 is wound so that the thick wire 25 is aligned parallel to the central axis A1. Figure 3 shows the wire 15 wound twice and the wire 25 wound once, but the number of times the wires 15 and 25 are wound around the first magnetic leg portion 2a is a design matter and can be set appropriately. The wires 15 and 25 are made of Litz wire, which is made by twisting together multiple thin wires of copper, aluminum, etc. with an insulating material applied to the surface, or by winding a thin plate of copper, aluminum, etc. around an iron core, and after winding, they are sealed with insulating material 16, 26, such as resin, respectively.

静止電磁機器1の製造時には、封止された巻線11、21の間隙部にスペーサ7を介在させるようにして組み立てられる。同様にして、第2の磁脚部2b側では、素線15が巻回された第2の一次巻線12と、素線25が巻回された第2の二次巻線22がスペーサ8を介在させるようにして組み立てられる。スペーサ7、8は、電気を通さない絶縁材料によって製造され、例えば合成樹脂をリング状に一体成型することで製造できる。このようにスペーサ7、8の間の寸法を精密に制御することにより、所望の漏れインダクタンスLsを巻線間に持たせることができる。本明細書では、ギャップdとして第一の絶縁材16と第二の絶縁材26の間隔、及び、第一の絶縁材17と第二の絶縁材27の間隔として説明している。しかしながら電気的に見た場合は、ギャップdは絶縁材部分でみるのではなく素線15の端面と素線25の端面との間隔であるので、素線の位置と絶縁材の外面位置を考慮の上で、ギャップdの値を決定することになる。 When the static electromagnetic device 1 is manufactured, it is assembled so that the spacer 7 is interposed between the sealed windings 11 and 21. Similarly, on the second magnetic leg 2b side, the second primary winding 12 around which the wire 15 is wound and the second secondary winding 22 around which the wire 25 is wound are assembled so that the spacer 8 is interposed. The spacers 7 and 8 are made of an insulating material that does not conduct electricity, and can be manufactured by integrally molding synthetic resin into a ring shape, for example. By precisely controlling the dimensions between the spacers 7 and 8 in this way, the desired leakage inductance Ls can be provided between the windings. In this specification, the gap d is described as the distance between the first insulating material 16 and the second insulating material 26, and the distance between the first insulating material 17 and the second insulating material 27. However, from an electrical perspective, the gap d is not seen in the insulating material part but is the distance between the end face of the wire 15 and the end face of the wire 25, so the value of the gap d is determined taking into consideration the position of the wire and the outer surface position of the insulating material.

次に図4を用いて、本実施例の静止電磁機器の体積と漏れインダクタンスLsの相関を説明する。図4は、同一の仕様の静止電磁機器について、一次巻線と二次巻線間のギャップ長dを変化させた際の、体積と漏れインダクタンスLsの相対変化の状態を示したグラフである。破線45は図12に示した第1の従来例の静止電磁機器101Aにおける漏れインダクタンスLsの変化状態を示す線であり、破線46は図13に示した第2の従来例の静止電磁機器101Bにおける漏れインダクタンスLsの変化状態を示す線である。実線40が本実施例の静止電磁機器1の体積(=W×D×H)と漏れインダクタンスLsの関係を示す直線である。 Next, the correlation between the volume and leakage inductance Ls of the stationary electromagnetic device of this embodiment will be explained using FIG. 4. FIG. 4 is a graph showing the relative change in volume and leakage inductance Ls when the gap length d between the primary winding and secondary winding is changed for stationary electromagnetic devices of the same specifications. The dashed line 45 is a line showing the change in leakage inductance Ls in the stationary electromagnetic device 101A of the first conventional example shown in FIG. 12, and the dashed line 46 is a line showing the change in leakage inductance Ls in the stationary electromagnetic device 101B of the second conventional example shown in FIG. 13. The solid line 40 is a straight line showing the relationship between the volume (= W x D x H) and leakage inductance Ls of the stationary electromagnetic device 1 of this embodiment.

各線40、45、46上にdと記した点は、一次巻線と二次巻線のギャップ長が、絶縁耐圧を保持するために必要な最小値における点であり、2dと記した点は、ギャップ長を最小値dの2倍とした際の点である。なお、静止電磁機器の体積は、図1および図2に示したように、静止電磁機器1の幅W、高さH、および奥行きDの積により求めた値である。また、静止電磁機器1の漏れインダクタンスLsは、静止電磁機器1の二次巻線を短絡し、一次巻線に周波数f、実効値Iの正弦波電流を流した際に、一次巻線の電極14aと14b間に発生する電圧の実効値Vを3次元電磁界解析により求め、
Ls=V/(2πfI) … (式1)
で求めた結果である。
The point marked d on each line 40, 45, 46 is the point where the gap length between the primary winding and secondary winding is the minimum value required to maintain the dielectric strength voltage, and the point marked 2d is the point where the gap length is twice the minimum value d. The volume of the stationary electromagnetic device is a value calculated by the product of the width W, height H, and depth D of the stationary electromagnetic device 1, as shown in Figures 1 and 2. The leakage inductance Ls of the stationary electromagnetic device 1 is calculated by calculating the effective value V of the voltage generated between the electrodes 14a and 14b of the primary winding by three-dimensional electromagnetic field analysis when the secondary winding of the stationary electromagnetic device 1 is short-circuited and a sinusoidal current of frequency f and effective value I is passed through the primary winding,
Ls=V/(2πfI) (Equation 1)
This is the result obtained by:

第1の従来例の静止電磁機器101A(図12参照)を構成する一次巻線と二次巻線は重ねて巻回されているので、磁気的な結合が密であり、漏れインダクタンスLsは、破線45で示したように最も小さくなる。この巻線構造で、ギャップ長dを増やすことで磁気的な結合は減少するのでLsが増加するが、同時に静止電磁機器の幅Wを増加するので、その体積が増加する。これに対して、第2の従来例の静止電磁機器101B(図13参照)を構成する一次巻線と二次巻線は並べて巻回されているので、磁気的な結合が疎であり、漏れインダクタンスLsは、破線46で示したように最も大きくなる。この巻線構造で、ギャップ長dを増やすことで磁気的な結合はさらに減少するのでLsが増加する。一方、ギャップ長dは、一次巻線と二次巻線間の絶縁耐圧を保持するために、これ以上減らすことができず、Lsをこれより減少させることができない。破線45の特性を有する静止電磁機器101Aと破線46の特性を有する静止電磁機器101Bを見るとわかるように、静止電磁機器101A又は101Bのいずれの構造を採用するかで漏れインダクタンスLsが大きく異なる上に、ギャップ長dの変更によるそれぞれの調整範囲は限定的である。 The primary winding and secondary winding constituting the static electromagnetic device 101A of the first conventional example (see FIG. 12) are wound overlapping each other, so the magnetic coupling is tight, and the leakage inductance Ls is smallest, as shown by the broken line 45. In this winding structure, increasing the gap length d reduces the magnetic coupling, so Ls increases, but at the same time, the width W of the static electromagnetic device is increased, so its volume increases. In contrast, the primary winding and secondary winding constituting the static electromagnetic device 101B of the second conventional example (see FIG. 13) are wound side by side, so the magnetic coupling is loose, and the leakage inductance Ls is largest, as shown by the broken line 46. In this winding structure, increasing the gap length d reduces the magnetic coupling further, so Ls increases. On the other hand, the gap length d cannot be reduced any further in order to maintain the dielectric strength between the primary winding and the secondary winding, and Ls cannot be reduced any further. As can be seen from the static electromagnetic device 101A having the characteristics of dashed line 45 and the static electromagnetic device 101B having the characteristics of dashed line 46, the leakage inductance Ls differs greatly depending on whether the structure of the static electromagnetic device 101A or 101B is adopted, and the adjustment range for each by changing the gap length d is limited.

本実施例では、静止電磁機器の第1の磁脚部2aに、図12で示した一次巻線11と二次巻線21を重ねて巻回する構造と、第2の磁脚部2bに、図12に示した一次巻線12と二次巻線22を並べて巻回する構造を混在させるようにした。この構造における漏れインダクタンスLsの値は、実線40で示したように2つの従来例の中間付近の特性を有するようになる。本実施例はさらに、2つの構造を持つ第1と第2の一次巻線11、12の巻き数の比率、第1と第2の二次巻線21、22の巻き数の比率をそれぞれ変えることにより、漏れインダクタンスLsの値を調整することができる。実線40は両者の巻き数を同数とした場合であるが、図4中に示した実線40aは、一次巻線と二次巻線を重ねて巻回した磁脚部2aと、並べて巻回した磁脚部2bの巻き数の比率を1:2とした場合の体積とLsの相関であり、実線40bは、巻き数の比率を2:1とした場合の相関である。磁気的な結合の強さが異なる2つの巻線構造の巻き数比を変えることにより、漏れインダクタンスLsの調整可能範囲が広がり、図4中のハッチングにて示した領域41内の任意の体積範囲と漏れインダクタンスLsを持つ静止電磁機器1を設計することができる。よって本実施例による静止電磁機器1は、2つの従来例の特性45と46では設計不可能な領域を含む、広い範囲の漏れインダクタンスLsを、静止電磁機器1の体積を必要以上に大きくすることなく実現できる。 In this embodiment, a structure in which the primary winding 11 and secondary winding 21 shown in FIG. 12 are wound in an overlapping manner on the first magnetic leg portion 2a of the static electromagnetic device, and a structure in which the primary winding 12 and secondary winding 22 shown in FIG. 12 are wound side by side on the second magnetic leg portion 2b are mixed. The value of leakage inductance Ls in this structure has characteristics near the middle of the two conventional examples, as shown by the solid line 40. In this embodiment, the value of leakage inductance Ls can be adjusted by changing the ratio of the number of turns of the first and second primary windings 11 and 12 having the two structures and the ratio of the number of turns of the first and second secondary windings 21 and 22. The solid line 40 is the case where the number of turns of both windings is the same, while the solid line 40a shown in FIG. 4 is the correlation between the volume and Ls when the ratio of the number of turns of the magnetic leg part 2a in which the primary winding and the secondary winding are wound overlapping each other and the magnetic leg part 2b in which they are wound side by side is 1:2, and the solid line 40b is the correlation when the ratio of the number of turns is 2:1. By changing the ratio of the number of turns of the two winding structures with different magnetic coupling strengths, the adjustable range of the leakage inductance Ls is expanded, and it is possible to design a static electromagnetic device 1 having any volume range and leakage inductance Ls within the hatched area 41 shown in FIG. 4. Therefore, the static electromagnetic device 1 according to this embodiment can realize a wide range of leakage inductance Ls, including the area that cannot be designed with the characteristics 45 and 46 of the two conventional examples, without making the volume of the static electromagnetic device 1 larger than necessary.

次に本発明の第2の実施例について、図5および図6を用いて説明する。図5は本発明の第2の実施例に係る静止電磁機器1Aの巻線内部の構造を示す縦断面図である。図5(A)は、第1の磁脚部2aに重ねて巻回された第1の一次巻線11と第1の二次巻線21を示す。第1の磁脚部2a側で重ねて巻回される第1の一次巻線11と第1の二次巻線21を構成する素線15および25は、第1の磁脚部2aの軸方向に対して一定の角度θを持たせつつ整列させ、それらを樹脂等のスペーサ7aにより封止した。角度θは、例えば0°~20°程度である。この際、一次巻線11のスペーサ7aの内周面は、上側で内径が小さく、下側に行くにつれて内径が大きくなるようなテーパ状の構造とする。一方、第2の磁脚部2b側では、重ねて巻回された第2の一次巻線12と第2の二次巻線22を構成する素線15および25は、第2の磁脚部2bの中心軸線B1方向と平行に整列され、一次巻線12と第2の二次巻線22が図3で示した実施例1と同様に磁脚部2bに並べて配置される。 Next, a second embodiment of the present invention will be described with reference to Figs. 5 and 6. Fig. 5 is a vertical cross-sectional view showing the internal structure of the winding of the static electromagnetic device 1A according to the second embodiment of the present invention. Fig. 5(A) shows the first primary winding 11 and the first secondary winding 21 wound in an overlapping manner on the first magnetic leg portion 2a. The wires 15 and 25 constituting the first primary winding 11 and the first secondary winding 21 wound in an overlapping manner on the first magnetic leg portion 2a side are aligned with a certain angle θ relative to the axial direction of the first magnetic leg portion 2a, and are sealed with a spacer 7a such as a resin. The angle θ is, for example, about 0° to 20°. In this case, the inner peripheral surface of the spacer 7a of the primary winding 11 has a tapered structure in which the inner diameter is small on the upper side and the inner diameter becomes larger as it goes downward. On the other hand, on the second magnetic leg portion 2b side, the wires 15 and 25 constituting the overlapping wound second primary winding 12 and second secondary winding 22 are aligned parallel to the central axis B1 direction of the second magnetic leg portion 2b, and the primary winding 12 and the second secondary winding 22 are arranged side by side on the magnetic leg portion 2b in the same manner as in Example 1 shown in FIG. 3.

二次巻線21の絶縁材26aの外周面は、上側で外径が小さく、下側に行くにつれて外径が大きくなるような円錐面状の外形とする。そして、一次巻線11の絶縁材16aの内周面と、二次巻線21の絶縁材26aの外周面の間の間隙部にスペーサ7aを介在させた。ここでは3つのリング状のスペーサ7aを用いており、一次巻線11と二次巻線21間のギャップ長が所定の値となるようにスペーサ7aの寸法やギャップdを調整することにより、所望の漏れインダクタンスLsを巻線間に持たせるようにした。 The outer peripheral surface of the insulating material 26a of the secondary winding 21 has a conical shape with a small outer diameter at the top and a larger outer diameter at the bottom. A spacer 7a is interposed in the gap between the inner peripheral surface of the insulating material 16a of the primary winding 11 and the outer peripheral surface of the insulating material 26a of the secondary winding 21. Three ring-shaped spacers 7a are used here, and the dimensions of the spacer 7a and the gap d are adjusted so that the gap length between the primary winding 11 and the secondary winding 21 is a specified value, thereby providing the desired leakage inductance Ls between the windings.

図5(B)は、第2の磁脚部2bに並べて巻回された第2の一次巻線12と第2の二次巻線22を示す。並べ巻をする第2の磁脚部2b部分の構造は、図3(B)で示した構造と同一であり、異なる径の2つのリング状のスペーサ8によって第2の一次巻線12と第2の二次巻線22が中心軸線B1方向に隙間を隔てて並ぶように配置される。 Figure 5 (B) shows the second primary winding 12 and the second secondary winding 22 wound side by side on the second magnetic leg portion 2b. The structure of the second magnetic leg portion 2b that is wound side by side is the same as the structure shown in Figure 3 (B), and the second primary winding 12 and the second secondary winding 22 are arranged side by side with a gap between them in the direction of the central axis B1 by two ring-shaped spacers 8 of different diameters.

図6は、図5の静止電磁機器1Bの巻線の構造を変更した変形例に係る静止電磁機器1Bを示す縦断面図である。図5の静止電磁機器1Bでは素線15および25がそれぞれ第1の磁脚部2aの中心軸線A1に対してわずかな角度θを隔てるように上下方向に整列させていた。これに対して、図6に示す静止電磁機器1Bでは、素線15および25はそれぞれ第1の磁脚部2aの中心軸線A1(図1参照)と平行方向に整列させた状態にある。一次巻線11の絶縁材16bの内周面の形状、及び、二次巻線21の絶縁材26bの外周面の形状は、部分的な径方向の厚みを変えることにより図5(a)と同様に円錐面状とされ、それらの間に径の異なる3つのスペーサ7aを介在させることによって所定のギャップdが形成される。一方、並べ巻される第2の磁脚部2b部分の構造は、図3(B)及び図5(b)で示した一次巻線12及び二次巻線22の構造と同一であり、異なる径の2つのリング状のスペーサ8によって第2の一次巻線12と第2の二次巻線22が中心軸線B1方向に隙間を隔てて並ぶように配置される。 Figure 6 is a longitudinal cross-sectional view showing a static electromagnetic device 1B according to a modified example in which the winding structure of the static electromagnetic device 1B of Figure 5 is changed. In the static electromagnetic device 1B of Figure 5, the wires 15 and 25 are aligned vertically so as to be spaced at a slight angle θ from the central axis A1 of the first magnetic leg portion 2a. In contrast, in the static electromagnetic device 1B shown in Figure 6, the wires 15 and 25 are aligned parallel to the central axis A1 of the first magnetic leg portion 2a (see Figure 1). The shape of the inner circumferential surface of the insulating material 16b of the primary winding 11 and the shape of the outer circumferential surface of the insulating material 26b of the secondary winding 21 are made conical as in Figure 5(a) by changing the partial radial thickness, and a predetermined gap d is formed by interposing three spacers 7a of different diameters between them. On the other hand, the structure of the second magnetic leg portion 2b that is wound side by side is the same as the structure of the primary winding 12 and secondary winding 22 shown in Figures 3(B) and 5(b), and the second primary winding 12 and the second secondary winding 22 are arranged side by side with a gap in the direction of the central axis B1 by two ring-shaped spacers 8 of different diameters.

図7は第2の実施例における静止電磁機器1Aの組み立て方法を示す模式図である。この例では、単相鉄心2が上下の中央位置にて分割されている。この形状は、単相鉄心2の上側部品と下側部品が対称形状であるため、同一部品を上側と下側に配置することで単相鉄心2を形成できるという利点がある。最初に、下側の単相鉄心2を作業台等に載置し、単相鉄心2の第1の磁脚部2aに第1の二次巻線21を挿入する。二次巻線21はその下面の一部が、単相鉄心2の第1の磁脚部2aの下端と第2の磁脚部2bの下端を接続する下側接続部2dの上面と所定の間隔を隔てるように図示していない治具等で保持される。次に、3つの大きさの異なるスぺーサ7を二次巻線21の外側に載置する。スぺーサ7のうち大径のものは、下側付近の二次巻線21に外周面にて保持され、中径のものは中央付近に、小径のものは上側端部の二次巻線21に外周面にて保持される。このように3つのスペーサ7を位置決めした後に、第1の一次巻線11を上から下方向に挿入する。この際、一次巻線11の内側のテーパ形状により、3つのスペーサ7により下方向の移動が制限される状態となる。この状態が図6に示す、一次巻線11、スペーサ7、二次巻線21の位置関係になる。以上、第1の一次巻線11及び第1の二次巻線21側では、第1の一次巻線11の内周面と第1の二次巻線21の外交面による対向部に、一定の角度θが設けられるように構成することで、その仕上がり寸法にばらつきがあっても、第1の一次巻線11を上部から挿入する際、その自重によって介在させる絶縁材7によりギャップ長dを一定に保持した状態にできる。よって静止電磁機器1Aの漏れインダクタンスLsの調整に要する時間を縮減することができる。 Figure 7 is a schematic diagram showing a method of assembling a static electromagnetic device 1A in the second embodiment. In this example, the single-phase core 2 is divided at the center position between the top and bottom. This shape has the advantage that the upper and lower parts of the single-phase core 2 are symmetrical, so that the single-phase core 2 can be formed by arranging the same parts on the upper and lower sides. First, the lower single-phase core 2 is placed on a workbench or the like, and the first secondary winding 21 is inserted into the first magnetic leg 2a of the single-phase core 2. The secondary winding 21 is held by a jig or the like (not shown) so that a part of its lower surface is spaced a predetermined distance from the upper surface of the lower connection part 2d that connects the lower end of the first magnetic leg 2a and the lower end of the second magnetic leg 2b of the single-phase core 2. Next, three spacers 7 of different sizes are placed on the outside of the secondary winding 21. The spacers 7 with larger diameters are held by the outer peripheral surface of the secondary winding 21 near the lower side, the spacers with medium diameters are held by the outer peripheral surface of the secondary winding 21 near the center, and the spacers with small diameters are held by the outer peripheral surface of the secondary winding 21 at the upper end. After the three spacers 7 are positioned in this way, the first primary winding 11 is inserted from above downward. At this time, the three spacers 7 restrict the downward movement of the primary winding 11 due to the tapered shape of the inside. This state is the positional relationship of the primary winding 11, the spacers 7, and the secondary winding 21 shown in FIG. 6. As described above, by configuring the first primary winding 11 and the first secondary winding 21 side so that a certain angle θ is provided at the opposing portion between the inner peripheral surface of the first primary winding 11 and the outer peripheral surface of the first secondary winding 21, even if there is variation in the finished dimensions, when the first primary winding 11 is inserted from above, the gap length d can be held constant by the insulating material 7 interposed by its own weight. This reduces the time required to adjust the leakage inductance Ls of the static electromagnetic device 1A.

次に、単相鉄心2の第2の磁脚部2bに第2の一次巻線12を挿入する。一次巻線12はその下面の一部が、単相鉄心2の第1の磁脚部2aの下端と第2の磁脚部2bの下端を接続する下側接続部2dの上面と所定の間隔を隔てるように治具等で保持される。次に、一次巻線12の上に2つの径の異なるリング状のスペーサ8を載置する。次に、これらスペーサ8の上に第2の二次巻線22を載置する。この後に、上側の単相鉄心2を上から下方向に図のように挿入させることによって、上側の単相鉄心2と下側の単相鉄心2の磁脚部2a、2bを接合させる。このようにして、第2の実施例における静止電動機器1Aが組み立てられる。尚、図1に示した静止電磁機器1と図8に示した静止電磁機器1Bも同様の手順で組み立てることができる。 Next, the second primary winding 12 is inserted into the second magnetic leg 2b of the single-phase core 2. The primary winding 12 is held by a jig or the like so that a part of its lower surface is spaced a predetermined distance from the upper surface of the lower connection portion 2d that connects the lower end of the first magnetic leg 2a and the lower end of the second magnetic leg 2b of the single-phase core 2. Next, two ring-shaped spacers 8 with different diameters are placed on the primary winding 12. Next, the second secondary winding 22 is placed on these spacers 8. After this, the upper single-phase core 2 is inserted from top to bottom as shown in the figure, thereby joining the magnetic legs 2a, 2b of the upper single-phase core 2 and the lower single-phase core 2. In this way, the stationary electric device 1A in the second embodiment is assembled. The stationary electromagnetic device 1 shown in FIG. 1 and the stationary electromagnetic device 1B shown in FIG. 8 can also be assembled in the same manner.

図8は図7に示した組立方法の変形例である静止電磁機器1Cの組立方法を示す模式図である。図7の方法では、上側の単相鉄心2と下側の単相鉄心2の分割面は、並び巻される第2の一次巻線12と第2の二次巻線22の間に位置していた。上側の単相鉄心2を上から下方向に移動させて下側の単相鉄心2に接合させる際には、第2の一次巻線12の上にスペーサ8を介して載置された第2の二次巻線22の間を通すようにしなければならない。この際、何らかの手段(例えば、製造時に使用する治具)によって第2の二次巻線22に対し横方向(中心軸線B1に垂直な水平方向)にずれないように保持しないと、第2の二次巻線22が水平方向にずれてしまう虞があり、上側の単相鉄心2を第1の二次巻線21と第2の二次巻線22の間に挿入できないことが生じ、組み立て性を悪化させる要因になっていた。そこで、図8の静止電磁機器1Cでは上側の鉄心3と下側の鉄心4を非対称形状として、分割面を第2の二次巻線22の上面よりも少なくとも上側に位置するようにした。 Figure 8 is a schematic diagram showing a method of assembling a static electromagnetic device 1C, which is a modified example of the assembly method shown in Figure 7. In the method of Figure 7, the dividing surface of the upper single-phase core 2 and the lower single-phase core 2 was located between the second primary winding 12 and the second secondary winding 22, which are wound side by side. When moving the upper single-phase core 2 downward from above to join it to the lower single-phase core 2, it must be passed between the second secondary winding 22 placed on the second primary winding 12 via a spacer 8. At this time, if some means (for example, a jig used during manufacturing) is not used to hold the second secondary winding 22 so as not to shift laterally (horizontally perpendicular to the central axis B1), there is a risk that the second secondary winding 22 will shift horizontally, and the upper single-phase core 2 cannot be inserted between the first secondary winding 21 and the second secondary winding 22, which is a factor that deteriorates the ease of assembly. Therefore, in the static electromagnetic device 1C of FIG. 8, the upper iron core 3 and the lower iron core 4 are asymmetrically shaped, and the dividing surface is positioned at least above the top surface of the second secondary winding 22.

図8の例では、分割面が組み立て後の第1の二次巻線21と第2の二次巻線22のいずれの上面よりも上側に位置するような位置に分割面を設定することで、一次巻線11、12と二次巻線21、22の組立性、特に二次巻線21、22側の組立性を向上させることができる。また、直列接続させる一次巻線(11と12)同士の配線の取り出し鉄心3、4の周囲での引き回しが容易になり、直列接続させる二次巻線(21と22)同士の配線の取り出し鉄心3、4の周囲での引き回しが容易になり、鉄心3、4への巻線11、12、21、22の装着作業を容易にできる。尚、単相鉄心2の分割の仕方は図7、図8の例だけに限られず、例えば図8の下側の鉄心4はU字状であるが、これをJ字状して、上側の鉄心3を倒立したJ字状に形成するようにしても良い。その場合、第1の磁脚部側の分割面を図6の第一の磁脚部側と同じとし、第2の磁脚部側の分割面を図8の第2の磁脚部側の分割面と同一とすれば、第2の磁脚部側の組み立て性を阻害しない。また、上側の鉄心3、4を共通部品とすることができる。 In the example of FIG. 8, the dividing surface is set at a position where it is located above the upper surface of either the first secondary winding 21 or the second secondary winding 22 after assembly, thereby improving the assembly of the primary windings 11, 12 and the secondary windings 21, 22, especially the secondary windings 21, 22. In addition, the wiring of the primary windings (11 and 12) to be connected in series can be easily routed around the take-out cores 3, 4, and the wiring of the secondary windings (21 and 22) to be connected in series can be easily routed around the take-out cores 3, 4, making it easier to attach the windings 11, 12, 21, 22 to the cores 3, 4. The method of dividing the single-phase core 2 is not limited to the examples of FIG. 7 and FIG. 8. For example, the lower core 4 in FIG. 8 is U-shaped, but it may be J-shaped and the upper core 3 may be formed in an inverted J-shape. In this case, if the dividing surface on the first magnetic leg side is the same as that on the first magnetic leg side in FIG. 6, and the dividing surface on the second magnetic leg side is the same as that on the second magnetic leg side in FIG. 8, the ease of assembly on the second magnetic leg side is not impeded. Also, the upper iron cores 3 and 4 can be common parts.

図9は本発明の第3の実施例に係る静止電磁機器1Dの縦断面図である。静止電磁機器1Dでは、 環状に成形した単相鉄心2に形成される一方側、即ち第1の磁脚部2aの周囲に、第1の一次巻線11と第1の二次巻線21を、磁脚部2aの長手方向に並べて巻回した。また、他方側の第2の磁脚部2bの一部の周囲に、第2の一次巻線12と第2の二次巻線22を重ねて巻回する。さらに、第2の磁脚部2bの第2の二次巻線22の下側に磁脚部2bの長手方向に並べて第3の一次巻線13を巻回する。2本の磁脚部に巻回した一次巻線(11、12、13)同士は、接続手段11a、12aにより直列接続される。ここで、高圧側となる接続手段11aは素線にて形成できるが、第1の磁脚部2a側では、一次巻線11が上側に配置され、重ね巻される第2の磁脚部2b側の一次巻線12が外周側に配置されるので、第1の磁脚部2aと第2の磁脚部2bの間において一次巻線11と12を接続手段11aにて最短距離で接続できる。また、一次巻線12と13も磁脚部2bの外側において、接続手段12aにて最短距離で接続できる。 Figure 9 is a longitudinal cross-sectional view of a static electromagnetic device 1D according to a third embodiment of the present invention. In the static electromagnetic device 1D, the first primary winding 11 and the first secondary winding 21 are wound around one side of the annularly shaped single-phase core 2, i.e., the first magnetic leg 2a, in the longitudinal direction of the magnetic leg 2a. The second primary winding 12 and the second secondary winding 22 are wound around a part of the second magnetic leg 2b on the other side in an overlapping manner. Furthermore, the third primary winding 13 is wound around the lower side of the second secondary winding 22 of the second magnetic leg 2b in the longitudinal direction of the magnetic leg 2b. The primary windings (11, 12, 13) wound around the two magnetic legs are connected in series by the connection means 11a and 12a. Here, the connection means 11a on the high-voltage side can be formed of a solid wire, but on the first magnetic leg 2a side, the primary winding 11 is placed on the upper side, and the primary winding 12 on the second magnetic leg 2b side, which is wound in a lap, is placed on the outer periphery, so that the primary windings 11 and 12 can be connected at the shortest distance between the first magnetic leg 2a and the second magnetic leg 2b by the connection means 11a. Also, the primary windings 12 and 13 can be connected at the shortest distance by the connection means 12a on the outside of the magnetic leg 2b.

並び巻される一次巻線11と二次巻線21の間には一定のギャップ長dが備えられ、重ね巻きされる一次巻線12と二次巻線22との間には一定のギャップ長dが備えられ、並び巻きされる一次巻線13と二次巻線22との間には一定のギャップ長dが備えられ、これらギャップd~dの長さを調整することにより所望の漏れインダクタンスLsを巻線間に持たせることができる。なお図9には示していないが、本実施例においても、巻線間のギャップ長を確実に保持するために、実施例1、2と同様に、絶縁材によるスペーサ7、8を各巻線間に設けると良い。 A constant gap length d1 is provided between the primary winding 11 and secondary winding 21 which are wound in parallel, a constant gap length d2 is provided between the primary winding 12 and secondary winding 22 which are wound in lap, and a constant gap length d3 is provided between the primary winding 13 and secondary winding 22 which are wound in parallel, and a desired leakage inductance Ls can be provided between the windings by adjusting the lengths of these gaps d1 to d3 . Although not shown in Fig. 9, in this embodiment as well, in order to reliably maintain the gap length between the windings, it is advisable to provide spacers 7 and 8 made of insulating material between the windings as in the first and second embodiments.

第3の実施例では、一次巻線12と二次巻線22の磁気的結合が密となる。この重ねて巻回した部分が第2の磁脚部2bの一部分であり、残りの部分の磁気的結合は疎である。よって、第1および第2の実施例より漏れインダクタンスLsが大きくなる。さらに、本実施例の構成のまま、第1の磁脚部2aと第2の磁脚部2bに巻回した巻線の巻き数比を変えることで漏れインダクタンスLsの値を制御することができる。このとき、静止電磁機器1Dに内蔵させることができる漏れインダクタンスLsの範囲、すなわち図4中に示した領域41を、上の方向にずらずことができる。 In the third embodiment, the primary winding 12 and the secondary winding 22 are tightly magnetically coupled. This overlapping winding is a part of the second magnetic leg portion 2b, and the remaining portion is loosely magnetically coupled. Therefore, the leakage inductance Ls is larger than in the first and second embodiments. Furthermore, while keeping the configuration of this embodiment, the value of the leakage inductance Ls can be controlled by changing the turn ratio of the windings wound around the first magnetic leg portion 2a and the second magnetic leg portion 2b. In this case, the range of leakage inductance Ls that can be built into the static electromagnetic device 1D, i.e., the area 41 shown in Figure 4, can be prevented from shifting upward.

本発明の第4の実施例について図10を用いて説明する。図10は本発明の第4の実施例に係る静止電磁機器1Eの縦断面図である。静止電磁機器1Eでは、 環状に成形した単相鉄心2に形成される第1の磁脚部2aの周囲に、第1の一次巻線11と第1の二次巻線21を重ねて巻回し、第2の磁脚部2bに、第2の一次巻線12と第2の二次巻線22を並べて巻回する。さらに、第2の二次巻線22の外側に、第3の一次巻線13を巻回する。2本の磁脚部に巻回した一次巻線11と12、12と13の間は、接続手段11a、13aにより直列に接続される。一次巻線11と二次巻線21の間には、一定のギャップ長d~dが設けられ、d1の設定値により所望の漏れインダクタンスLsを巻線間に持たせることが容易になった。なお、図10には示していないが、実施例4においても、巻線間のギャップ長d~dを安定的に維持するために、実施例1、2と同様に、絶縁材によるスペーサ7、8を各巻線間に設けると良い。 A fourth embodiment of the present invention will be described with reference to FIG. 10. FIG. 10 is a longitudinal sectional view of a static electromagnetic device 1E according to the fourth embodiment of the present invention. In the static electromagnetic device 1E, the first primary winding 11 and the first secondary winding 21 are wound around the first magnetic leg 2a formed on the single-phase iron core 2 formed in an annular shape, and the second primary winding 12 and the second secondary winding 22 are wound side by side around the second magnetic leg 2b. Furthermore, the third primary winding 13 is wound around the outside of the second secondary winding 22. The primary windings 11 and 12, and 12 and 13 wound around the two magnetic legs are connected in series by connecting means 11a and 13a. Constant gap lengths d 1 to d 3 are provided between the primary winding 11 and the secondary winding 21, and it is easy to provide a desired leakage inductance Ls between the windings by setting the value of d1. Although not shown in FIG. 10, in the fourth embodiment as well, in order to stably maintain the gap lengths d 1 to d 3 between the windings, it is advisable to provide spacers 7 and 8 made of insulating material between the windings, as in the first and second embodiments.

第4の実施例では、第1の磁脚部2aでは、一次巻線11と二次巻線21が重ね巻され、これらの巻線の磁気的結合が密となる。第2の磁脚部2b側では、中心軸線B1方向に見て上側部分で、二次巻線22の外周側に一次巻線13が重ね巻される、残りの下側部にて一次巻線12が配置されることにより、二次巻線22と一次巻線13が並び巻きとされる。この際の第2の二次巻線22と第3の一次巻線13の磁気的結合は密であり、第2の二次巻線22と第2の一次巻線12の磁気的結合は疎である。よって、第1および第2の実施例よりも漏れインダクタンスLsが小さくなる。さらに、本実施例の構成のまま、第1の磁脚部2aと第2の磁脚部2bに巻回した巻線の巻き数比を変えることで漏れインダクタンスLsの値を制御することができる。このとき、静止電磁機器1Eに内蔵させることができる漏れインダクタンスLsの範囲、すなわち図4中に示した領域41を、下の方向にずらすことができる。 In the fourth embodiment, the primary winding 11 and the secondary winding 21 are lap-wound in the first magnetic leg portion 2a, and the magnetic coupling between these windings is tight. In the second magnetic leg portion 2b, the primary winding 13 is lap-wound on the outer periphery of the secondary winding 22 in the upper portion as viewed in the direction of the central axis B1, and the primary winding 12 is arranged in the remaining lower portion, so that the secondary winding 22 and the primary winding 13 are wound side by side. In this case, the magnetic coupling between the second secondary winding 22 and the third primary winding 13 is tight, and the magnetic coupling between the second secondary winding 22 and the second primary winding 12 is loose. Therefore, the leakage inductance Ls is smaller than in the first and second embodiments. Furthermore, the value of the leakage inductance Ls can be controlled by changing the turn ratio of the windings wound around the first magnetic leg portion 2a and the second magnetic leg portion 2b while keeping the configuration of this embodiment. In this case, the range of leakage inductance Ls that can be built into the stationary electromagnetic device 1E, i.e., the area 41 shown in FIG. 4, can be shifted downward.

次に図11を用いて本発明の第5の実施例を説明する。図11は第1の実施例の静止電磁機器1と、静止電磁機器1の一次側(14a、14b)に接続されるインバータ回路60と、静止電磁機器1の二次側に配置されるインバータ回路70を組み合わせ、直流電圧を変圧する双方向DC-DCコンバータ50の回路模式図である。静止電磁機器1は図1~図3で示した構成と同一であるが、あくまで一例であり、実施例2から実施例4で示した静止電磁機器1A~1Eのいずれかを図11の回路に含めてもよい。静止電磁機器1の一次巻線の電極14a、14b側には、第一のインバータ回路60が接続され、静止電磁機器1の二次巻線の電極24a、24b側には、第二のインバータ回路70が接続される。インバータ回路60、70は公知の回路を用いることができるので、ここでは簡単な説明のみを行う。 Next, a fifth embodiment of the present invention will be described with reference to FIG. 11. FIG. 11 is a schematic circuit diagram of a bidirectional DC-DC converter 50 that combines the static electromagnetic device 1 of the first embodiment, an inverter circuit 60 connected to the primary side (14a, 14b) of the static electromagnetic device 1, and an inverter circuit 70 arranged on the secondary side of the static electromagnetic device 1 to transform a DC voltage. The static electromagnetic device 1 has the same configuration as that shown in FIG. 1 to FIG. 3, but this is merely an example, and any of the static electromagnetic devices 1A to 1E shown in the second to fourth embodiments may be included in the circuit of FIG. 11. A first inverter circuit 60 is connected to the electrodes 14a, 14b of the primary winding of the static electromagnetic device 1, and a second inverter circuit 70 is connected to the electrodes 24a, 24b of the secondary winding of the static electromagnetic device 1. Since the inverter circuits 60 and 70 can be publicly known circuits, only a brief description will be given here.

第一のインバータ回路60は、複数のスイッチング素子(ここでは4つ)61~64と、一つ以上のコンデンサ65を含んで構成される。DC-DCコンバータ50に入力される直流電圧Vdc1は、ブリッジ状に配置されたスイッチング素子61~64によって、任意の周波数の交流電圧に変換され、静止電磁機器1の一次巻線11、21に入力される。図11では図示していないが、インバータ回路60は、図示しない制御部によってゲート電圧がオンオフ制御されることにより、所定の周波数の交流が一次巻線11、12間に供給される。スイッチング素子61~64としては、電界効果トランジスタ(FET)、絶縁ゲート型バイポーラートランジスタ(IGBT)等を用いることができる。 The first inverter circuit 60 includes a plurality of switching elements (four in this example) 61-64 and one or more capacitors 65. The DC voltage V dc1 input to the DC-DC converter 50 is converted to an AC voltage of a given frequency by the switching elements 61-64 arranged in a bridge shape, and input to the primary windings 11, 21 of the static electromagnetic device 1. Although not shown in FIG. 11, the inverter circuit 60 supplies AC of a given frequency between the primary windings 11, 12 by controlling the gate voltage on and off by a control unit (not shown). As the switching elements 61-64, field effect transistors (FETs), insulated gate bipolar transistors (IGBTs), etc. can be used.

静止電磁機器1は、一次巻線11、12と二次巻線21、22の巻き数比に対応して電圧を変換し、変圧された交流が電極24a、24bに出力される。電極24a、24bに出力された交流は、第二のインバータ回路70によって再度直流に変換され、直流電圧Vdc2が出力される。第二のインバータ回路70は、第一のインバータ回路60と同様の回路構成とすることができ、図示しない制御部によってブリッジ状に接続された4つのスイッチング素子71~74のゲート電圧がオンオフ制御される。スイッチング素子71~74の出力側の正極と負極の間には、一つ以上のコンデンサ75が設けられる。 The static electromagnetic device 1 converts the voltage in accordance with the turn ratio between the primary windings 11, 12 and the secondary windings 21, 22, and the transformed AC is output to the electrodes 24a, 24b. The AC output to the electrodes 24a, 24b is converted back to DC by the second inverter circuit 70, and a DC voltage Vdc2 is output. The second inverter circuit 70 may have a circuit configuration similar to that of the first inverter circuit 60, and the gate voltages of four switching elements 71 to 74 connected in a bridge shape are turned on and off by a control unit (not shown). One or more capacitors 75 are provided between the positive and negative electrodes on the output side of the switching elements 71 to 74.

双方向DC-DCコンバータ50では、二次巻き線側からの入力を、一次巻線側に出力することによって、二次巻き線側の誘導機器からの回生電力を一次巻線側の供給側へと戻すことが可能である。このため、二次巻き線側にダイオードブリッジ等による単なる整流回路を設けるのではなくて、インバータ回路70を設けている。このような双方向DC-DCコンバータ50においては、正方向の電圧変換(一次巻線から二次巻線側への電圧変換)だけでなく、逆方向の電圧変換(二次巻線から一次巻線側への電圧変換)を考慮した最適な漏れインダクタンスLs値が設定できるので、二次側に設けた蓄電池等の余剰エネルギーを一次側に戻す場合への変換ロスを小さくすることができ。このように、本発明によって、トータルとしてのエネルギーの再利用効率を高めて、省エネルギーに貢献できる双方向DC-DCコンバータ50と、それに用いるのに好適な静止電磁機器1を実現できた。 In the bidirectional DC-DC converter 50, the input from the secondary winding side is output to the primary winding side, so that the regenerative power from the induction device on the secondary winding side can be returned to the supply side of the primary winding side. For this reason, an inverter circuit 70 is provided on the secondary winding side, rather than simply providing a rectifier circuit such as a diode bridge. In such a bidirectional DC-DC converter 50, an optimal leakage inductance Ls value can be set that takes into account not only forward voltage conversion (voltage conversion from the primary winding to the secondary winding side) but also reverse voltage conversion (voltage conversion from the secondary winding to the primary winding side), so that the conversion loss when returning surplus energy from a storage battery or the like provided on the secondary side to the primary side can be reduced. In this way, the present invention has realized a bidirectional DC-DC converter 50 that can contribute to energy saving by increasing the total energy reuse efficiency, and a static electromagnetic device 1 suitable for use therewith.

以上、本発明を複数の実施例に基づいて説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。 The present invention has been described above based on several embodiments, but the present invention is not limited to the above embodiments, and various modifications are possible without departing from the spirit of the present invention.

1、1A~1F 静止電磁機器
2 (単相)鉄心
2a、2b 磁脚部
2d (磁脚部の)下側接続部
3、4 鉄心
7、8 スペーサ
11、12、13 一次巻線
11a、12b、13a (一次巻線の)接続手段
14a、14b (一次巻線の)電極
15 (一次巻線の)素線
16、16a、16b、17、18 (一次巻線の)絶縁体
21、22 二次巻線
21a、22a (二次巻線の)接続手段
24a、24b (二次巻線の)電極
25 (二次巻線の)素線
26、26a、26b、27、28 (二次巻線の)絶縁体
40、40a、40b 本発明の第1の実施例の静止電磁機器の、体積と漏れインダクタ
41 本発明の第1の実施例の静止電磁機器の設計可能範囲
45 第1の従来例の静止電磁機器101Aの、体積と漏れインダクタンスの相関
46 第2の従来例の静止電磁機器101Bの、体積と漏れインダクタンスの相関
50 DC-DCコンバータ
60、70 インバータ回路
d 一次巻線と二次巻線間のギャップ長
Ls (静止電磁機器の)漏れインダクタンス
W (静止電磁機器の)幅
H (静止電磁機器の)高さ
D (静止電磁機器の)奥行き
Reference Signs List 1, 1A to 1F Static electromagnetic device 2 (single-phase) iron core 2a, 2b Magnetic leg portion 2d Lower connection portion (of magnetic leg portion) 3, 4 Iron core 7, 8 Spacer 11, 12, 13 Primary winding 11a, 12b, 13a Connection means (of primary winding) 14a, 14b Electrode (of primary winding) 15 Wire (of primary winding) 16, 16a, 16b, 17, 18 Insulator (of primary winding) 21, 22 Secondary winding 21a, 22a Connection means (of secondary winding) 24a, 24b Electrode (of secondary winding) 25 Wire (of secondary winding) 26, 26a, 26b, 27, 28 Insulator (of secondary winding) 40, 40a, 40b Volume and leakage inductance 41 of the static electromagnetic device according to the first embodiment of the present invention Designable range 45 of the static electromagnetic device according to the first embodiment of the present invention Correlation between volume and leakage inductance 46 of the stationary electromagnetic device 101A of the first conventional example Correlation between volume and leakage inductance 50 of the stationary electromagnetic device 101B of the second conventional example DC-DC converters 60, 70 Inverter circuit d Gap length Ls between the primary winding and the secondary winding Leakage inductance W (of the stationary electromagnetic device) Width H (of the stationary electromagnetic device) Height D (of the stationary electromagnetic device) Depth (of the stationary electromagnetic device)

Claims (13)

磁性材料を環状に成形してなる単相鉄心の第1の磁脚部と第2の磁脚部に、第1および第2の一次巻線と、第1および第2の二次巻線をそれぞれ巻き、前記第1の一次巻線と前記第2の一次巻線を直列接続し、前記第1の二次巻線と前記第2の二次巻線を直列接続した静止電磁機器において、
前記第1の磁脚部には、前記第1の一次巻線と前記第1の二次巻線を、一定の間隔を保持しつつ重ねて巻回し、
前記第2の磁脚部には、前記第2の一次巻線と前記第2の二次巻線を、前記第2の磁脚部の中心軸線方向に一定の間隔を保持しつつ並べて巻回したことを特徴とする静止電磁機器。
A stationary electromagnetic device in which first and second primary windings and first and second secondary windings are wound around first and second magnetic leg portions of a single-phase iron core formed by molding a magnetic material into an annular shape, the first primary winding and the second primary winding are connected in series, and the first secondary winding and the second secondary winding are connected in series,
The first primary winding and the first secondary winding are wound around the first magnetic leg portion in an overlapping manner while maintaining a constant gap between them;
A stationary electromagnetic device, characterized in that the second primary winding and the second secondary winding are wound on the second magnetic leg portion in a side-by-side arrangement while maintaining a constant interval in a central axial direction of the second magnetic leg portion.
前記第1の一次巻線と前記第2の一次巻線は同一又は異なる巻き数とし、前記第1の二次巻線と前記第2の二次巻線は同一又は異なる巻き数としたことを特徴とする請求項1に記載の静止電磁機器。 The static electromagnetic device according to claim 1, characterized in that the first primary winding and the second primary winding have the same or different number of turns, and the first secondary winding and the second secondary winding have the same or different number of turns. 前記第1の磁脚部において、
前記第1の一次巻線は複数回巻かれた素線を含み、前記素線が絶縁材にて円筒状に封止され、
前記第1の二次巻線は複数回巻かれた素線を含み、絶縁材にて円筒状に封止され、
2つの前記絶縁材の間の間隙部に第1のスペーサを介在させることによって一定の間隔を保持しつつ、前記一次巻線と前記二次巻線を前記第1の磁脚部の中心線に対して同軸に整列させたことを特徴とする請求項2に記載の静止電磁機器。
In the first magnetic leg portion,
the first primary winding includes a wire wound a plurality of times, the wire being cylindrically sealed with an insulating material;
the first secondary winding includes a wire wound a plurality of times and is cylindrically sealed with an insulating material;
3. The stationary electromagnetic device according to claim 2, wherein the primary winding and the secondary winding are aligned coaxially with respect to the center line of the first magnetic leg portion while maintaining a constant distance between them by interposing a first spacer in the gap between the two insulating materials.
前記第2の磁脚部において、
前記一次巻線の前記第1の一次巻線は複数回巻かれた素線を含み、絶縁材にて封止され、
前記二次巻線の前記第1の一次巻線は複数回巻かれた素線を含み、絶縁材にて封止され、
2つの前記絶縁材の間の間隙部に第2のスペーサを介在させることによって一定の間隔を保持し、前記一次巻線と前記二次巻線を前記第2の磁脚部の中心軸線方向に並べて配置したことを特徴とする請求項3に記載の静止電磁機器。
In the second magnetic leg portion,
the first primary winding of the primary winding includes a plurality of turns of wire and is encapsulated with an insulating material;
the first primary winding of the secondary winding includes a plurality of turns of wire and is encapsulated with an insulating material;
4. The static electromagnetic device according to claim 3, characterized in that a constant distance is maintained by interposing a second spacer in the gap between the two insulating materials, and the primary winding and the secondary winding are arranged side by side in the central axial direction of the second magnetic leg portion.
前記第1の磁脚部において、
前記第1の一次巻線と前記第1の二次巻線を構成する素線は、前記第1の磁脚部の中心線方向に対して一定の角度を持たせて整列するように前記絶縁材で封止され、
封止された前記第1の一次巻線の内周面は、前記第1の磁脚部の中心線方向に対して角度θとなるように形成され、
封止された前記第1の二次巻線の外周面は、前記内周面と平行になるように前記第1の磁脚部の中心線方向に対して角度θになるように形成され、
前記第1の一次巻線の内周面と前記第1の二次巻線の外周面の間に前記第1のスペーサを介在させることによって前記第1の一次巻線と前記第1の二次巻線を一定の間隔で保持することを特徴とする請求項4に記載の静止電磁機器。
In the first magnetic leg portion,
the wires constituting the first primary winding and the first secondary winding are sealed with the insulating material so as to be aligned at a certain angle with respect to the center line direction of the first magnetic leg portion;
an inner peripheral surface of the sealed first primary winding is formed to have an angle θ with respect to a center line direction of the first magnetic leg portion;
an outer peripheral surface of the sealed first secondary winding is formed to be parallel to the inner peripheral surface and to be at an angle θ with respect to a center line direction of the first magnetic leg portion;
5. The static electromagnetic device according to claim 4, characterized in that the first primary winding and the first secondary winding are held at a constant distance by interposing the first spacer between an inner peripheral surface of the first primary winding and an outer peripheral surface of the first secondary winding.
前記単相鉄心は、薄板状磁性材料を積層して構成するものであって、前記第1の磁脚部の中心線方向と直交する面、及び、前記第2の磁脚部の中心線方向と直交する面において分割された形状にて構成されることを特徴とする請求項4に記載の静止電磁機器。 The static electromagnetic device according to claim 4, characterized in that the single-phase core is constructed by laminating thin plate-shaped magnetic material and is configured in a shape divided in a plane perpendicular to the center line direction of the first magnetic leg portion and in a plane perpendicular to the center line direction of the second magnetic leg portion. 磁性材料を環状に成形してなり2つの磁脚部を有する単相鉄心を有し、
前記2つの磁脚部の双方に渡るように一次巻線が第1及び第2に分割して巻回され、
前記2つの磁脚部の双方に渡るように二次巻線が第1及び第2に分割して巻回され、
2つの前記磁脚部の一方側においては、前記一次巻線と二次巻線が径方向に一定の間隔を保持する状態にて重ね巻され、
2つの前記磁脚部の他方側においては、前記一次巻線と二次巻線が一定の間隔を隔てて磁脚部の中心線方向に一定の間隔をあけて並ぶように並び巻されることを特徴とする静止電磁機器。
The rotor has a single-phase core having two magnetic legs formed by molding a magnetic material into an annular shape,
a primary winding is wound in a first and a second divided manner so as to extend over both of the two magnetic leg portions;
a secondary winding is wound in a first and second divided portions so as to extend across both of the two magnetic leg portions;
On one side of the two magnetic leg portions, the primary winding and the secondary winding are lap-wound while maintaining a constant radial distance,
A stationary electromagnetic device characterized in that on the other side of the two magnetic leg portions, the primary winding and secondary winding are wound side by side at a constant interval in the center line direction of the magnetic leg portions.
重ね巻される前記一方の磁脚部において、高圧側の前記一次巻線が外周側に配置され、低圧側の前記二次巻線が内周側に配置され、
前記一次巻線のうち前記第1の一次巻線は複数回巻かれた素線を含み、第一の絶縁材にて円筒状に封止され、
前記二次巻線のうち前記第1の二次巻線は複数回巻かれた素線を含み、第二の絶縁材にて円筒状に封止され、
前記第一及び第二の絶縁材の間にスペーサを介在させることによって前記第1の一次巻線と前記第2の二次巻線を一定の間隔にて保持することを特徴とする請求項7に記載の静止電磁機器。
In the one of the magnetic legs that is lap-wound, the primary winding on the high voltage side is arranged on the outer periphery side, and the secondary winding on the low voltage side is arranged on the inner periphery side,
The first primary winding of the primary windings includes a wire wound a plurality of times and is sealed in a cylindrical shape by a first insulating material;
The first secondary winding of the secondary winding includes a wire wound a plurality of times and is sealed in a cylindrical shape by a second insulating material;
8. The static electromagnetic device according to claim 7, wherein the first primary winding and the second secondary winding are held at a constant distance by interposing a spacer between the first and second insulating materials.
重ね巻される前記一方の磁脚部において、高圧側となる前記一次巻線が外周側に配置され、低圧側の一次巻線が内周側に配置されることを特徴とする請求項7に記載の静止電磁機器。 The static electromagnetic device according to claim 7, characterized in that in one of the magnetic legs that is lap-wound, the primary winding on the high voltage side is arranged on the outer periphery, and the primary winding on the low voltage side is arranged on the inner periphery. 前記他方の磁脚部において、並び巻される前記二次巻線の外周側に、前記一次巻線の一部を径方向に一定の間隔を保持する状態にて重ね巻きしたことを特徴とする請求項9に記載の静止電磁機器。 The static electromagnetic device according to claim 9, characterized in that in the other magnetic leg, a portion of the primary winding is wound in a lap manner around the outer periphery of the secondary winding, which is wound in parallel, while maintaining a constant radial distance. 2本の前記磁脚部のうち、一方の磁脚部に前記第1の一次巻線と前記第1の二次巻線が一定の間隔を保持しつつ重ね巻され、他方の磁脚部に前記第2の一次巻線と前記第2の二次巻線が一定の間隔を保持しつつ並び巻され、
他方の磁脚部において、前記第2の二次巻線の外周側に、第3の一次巻線を重ね巻し、
前記第1から第3の一次巻線を直列接続し、前記第1および第2の二次巻線を直列接続したことを特徴とする請求項10に記載の静止電磁機器。
The first primary winding and the first secondary winding are lap-wound around one of the two magnetic leg portions while maintaining a certain interval, and the second primary winding and the second secondary winding are wound side-by-side around the other magnetic leg portion while maintaining a certain interval;
a third primary winding is lap-wound around the outer periphery of the second secondary winding in the other magnetic leg;
11. The static electromagnetic device according to claim 10, wherein the first to third primary windings are connected in series, and the first and second secondary windings are connected in series.
請求項1から11のいずれか一項に記載の前記静止電磁機器と、
前記一次巻線に接続され、複数のスイッチング素子と一つ以上のコンデンサを有する第一のインバータ回路と、
前記二次巻線に接続され、複数のスイッチング素子と一つ以上のコンデンサを有する第二のインバータ回路と、を有し、
前記第一のインバータ回路が入力される直流から交流に変換をする際には、前記静止電磁機器によって電圧変換された交流を前記第二のインバータ回路によって直流に変換をするように制御することによって一次側から二次側へのDC-DC変換を行い、
第二のインバータ回路が入力される直流から交流に変換をする際には、前記静止電磁機器によって電圧変換された交流を前記第一のインバータ回路によって交流から直流変換をするように制御することによって二次側から一次側への逆方向のDC-DC変換を行うことを特徴とする静止電磁機器を用いた双方向DC-DCコンバータ。
The stationary electromagnetic device according to any one of claims 1 to 11;
a first inverter circuit connected to the primary winding and having a plurality of switching elements and one or more capacitors;
a second inverter circuit connected to the secondary winding and having a plurality of switching elements and one or more capacitors;
When the first inverter circuit converts input direct current to alternating current, the second inverter circuit performs DC-DC conversion from the primary side to the secondary side by controlling the second inverter circuit to convert the alternating current whose voltage has been converted by the stationary electromagnetic device into direct current;
A bidirectional DC-DC converter using a stationary electromagnetic device, characterized in that when a second inverter circuit converts input direct current to alternating current, the second inverter circuit performs reverse DC-DC conversion from the secondary side to the primary side by controlling the first inverter circuit to convert the alternating current voltage-converted by the stationary electromagnetic device from alternating current to direct current.
請求項1から請求項11のいずれ一項に記載の前記静止電磁機器を構成する巻線は、表面に絶縁材を塗布した銅、アルミニウム等の複数の細線を撚って構成されるリッツ線、または銅、アルミニウムによる薄板材を鉄心に巻回して構成したこと、を特徴とする静止電磁機器。 A static electromagnetic device according to any one of claims 1 to 11, characterized in that the windings constituting the static electromagnetic device are made of Litz wires made by twisting together multiple thin wires of copper, aluminum, etc., with an insulating material applied to the surface, or by winding a thin sheet material of copper or aluminum around an iron core.
JP2022177230A 2022-11-04 2022-11-04 Static electromagnetic device and bidirectional DC-DC converter using static electromagnetic device Pending JP2024067279A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022177230A JP2024067279A (en) 2022-11-04 2022-11-04 Static electromagnetic device and bidirectional DC-DC converter using static electromagnetic device
PCT/JP2023/013851 WO2024095508A1 (en) 2022-11-04 2023-04-03 Stationary electromagnetic device and bi-directional dc-dc converter using stationary electromagnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022177230A JP2024067279A (en) 2022-11-04 2022-11-04 Static electromagnetic device and bidirectional DC-DC converter using static electromagnetic device

Publications (1)

Publication Number Publication Date
JP2024067279A true JP2024067279A (en) 2024-05-17

Family

ID=90930092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022177230A Pending JP2024067279A (en) 2022-11-04 2022-11-04 Static electromagnetic device and bidirectional DC-DC converter using static electromagnetic device

Country Status (2)

Country Link
JP (1) JP2024067279A (en)
WO (1) WO2024095508A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574638A (en) * 1991-09-13 1993-03-26 Toshiba Corp High frequency heating apparatus
JPH07263262A (en) * 1994-03-25 1995-10-13 Sony Corp Composite ac reactor
JP3789285B2 (en) * 1999-05-21 2006-06-21 東北電力株式会社 Variable transformer
JP2001197744A (en) * 2000-01-13 2001-07-19 Sony Corp Switching power supply circuit
JP2008166624A (en) * 2006-12-29 2008-07-17 Matsushita Electric Works Ltd Transformer and resonance type switching power supply using the same
CN101308723A (en) * 2007-05-17 2008-11-19 台达电子工业股份有限公司 Transformer construction
EP3706150B1 (en) * 2017-11-01 2023-09-20 Mitsubishi Electric Corporation Power converter comprising a transformer
JP2021174830A (en) * 2020-04-22 2021-11-01 スミダコーポレーション株式会社 LLC transformer with built-in resonance coil
JP2022107163A (en) * 2021-01-08 2022-07-21 株式会社日立製作所 Transformer

Also Published As

Publication number Publication date
WO2024095508A1 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
US11482938B2 (en) Isolated resonant converter
US20140268896A1 (en) Reactor Apparatus and Power Converter Using Same
JP5933012B2 (en) Power converter
Yao et al. A novel misalignment tolerant magnetic coupler for electric vehicle wireless charging
US12014864B2 (en) Winding arrangement for use in magnetic devices
KR20140032449A (en) High-frequency transformer
CN103890874A (en) Reactor, transformer, and power conversion apparatus using same
EP2587498A1 (en) Reactor and reactor manufacturing method
US12027986B2 (en) Magnetic integration of three-phase resonant converter and accessory power supply
US20150194256A1 (en) Magnetic coupling inductor and multi-port converter
CN100512573C (en) Boosting transformer for driving magnetron
US11837961B2 (en) Power conversion apparatus
US11587719B2 (en) Magnetic integrated hybrid distribution transformer
CN109617406A (en) A kind of coupling multiphase DC-DC converter
WO2024095508A1 (en) Stationary electromagnetic device and bi-directional dc-dc converter using stationary electromagnetic device
TWM446964U (en) Edge-winding type winding transformer
Zhu et al. Surface spiral parallel and antiparallel winding designs for low spatial voltage stress, high efficiency, inductive wireless power transfer systems
CN113809904A (en) Matrix transformer based on LLC resonant converter topology magnetic integration
EP3477840B1 (en) Welding transformer
EP3373312B1 (en) Transformer and dc-dc converter
US20240203637A1 (en) Winding arrangement for transformer
JP7259631B2 (en) Transformers, power converters and connectors
CN216929879U (en) LLC resonant transformation ware, module and fill electric pile charge of charging
Shao et al. High-Frequency Integrated Magnetics Design for Onboard LLC Converter Utilizing 4-Layer PCB
JP2012209446A (en) Power conversion transformer