JP2024056385A - Insulated Rolling Bearing - Google Patents

Insulated Rolling Bearing Download PDF

Info

Publication number
JP2024056385A
JP2024056385A JP2022163214A JP2022163214A JP2024056385A JP 2024056385 A JP2024056385 A JP 2024056385A JP 2022163214 A JP2022163214 A JP 2022163214A JP 2022163214 A JP2022163214 A JP 2022163214A JP 2024056385 A JP2024056385 A JP 2024056385A
Authority
JP
Japan
Prior art keywords
ring
groove
insulating
rolling bearing
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022163214A
Other languages
Japanese (ja)
Inventor
隼人 川口
Hayato Kawaguchi
泰人 藤掛
Yasuhito Fujikake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2022163214A priority Critical patent/JP2024056385A/en
Publication of JP2024056385A publication Critical patent/JP2024056385A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To make compatible both the low cost and insulation performance of a bearing ring in an insulated rolling bearing in which an insulation layer adheres to a metal surface of a main body ring in the bearing ring.
SOLUTION: A main body ring 11 has a raceway surface 13, both-end side faces 14 for defining a main body ring width, a peripheral face 19 opposing the raceway surface 13 in a radial direction, and continued between the both-end side faces 14, a chamfered face 15 continued to a side near the raceway surface 13 of the side faces 14, a peripheral groove 16 released in the radial direction between the raceway surface 13 and the chamfered face 15, a first groove shoulder 17 for connecting a side near the chamfered face 15 of the peripheral groove 16 and the chamfered face 15, and a second groove shoulder 18 for connecting a side near the raceway surface 13 of the peripheral groove 16 and the raceway surface 13. The second groove shoulder 18 is arranged higher toward a side of the raceway surface 13 in the radial direction than the first groove shoulder 17. The peripheral face 19, the both-end side faces 14 and the chamfered face 15 of the main body ring 11 are coated with an insulation layer 12. An insulation member 40 is pressure-inserted into an entire periphery of the peripheral groove 16. The insulation member 40 has an insulation body 42 covering at least the first groove shoulder 17 of the main body ring 11.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

この発明は、外輪と内輪の一方又は両方が絶縁層を有する絶縁転がり軸受に関する。 This invention relates to an insulated rolling bearing in which one or both of the outer and inner rings have an insulating layer.

電気自動車(EV)、ハイブリッド車(HEV)等に搭載される電動モータの主軸を支持するために深溝玉軸受等の転がり軸受が利用されている。電気自動車等の車載モータは、高効率化のためにインバータ制御の周波数を高くする必要がある。その周波数が高くなると、車載モータの主軸を支持する転がり軸受の内部に電流が流れやすくなり、軸受に電食が発生することがある。 Deep groove ball bearings and other rolling bearings are used to support the main shafts of electric motors installed in electric vehicles (EVs), hybrid vehicles (HEVs), and other vehicles. In-vehicle motors for electric vehicles and other vehicles require high inverter control frequencies to improve efficiency. When the frequency increases, it becomes easier for current to flow inside the rolling bearings that support the main shafts of the in-vehicle motors, which can cause electrolytic corrosion in the bearings.

従来、軌道輪と、これに接触する嵌合相手であるハウジング、軸等の外部部材との間の絶縁を図って転がり軸受の電食を防止するため、軌道輪の表面のうち、外部部材との接触面及びこの近傍を絶縁層で構成した絶縁転がり軸受がある。 Conventionally, there are insulated rolling bearings in which the contact surface of the raceway with the external member and the vicinity thereof are made of an insulating layer to insulate the raceway from the mating housing, shaft, or other external member that comes into contact with the raceway and prevent electrical corrosion of the rolling bearing.

特許文献1においては、金属によって形成された本体輪と、本体輪の金属表面に付着した絶縁層とを有する外輪を備え、その本体輪が、軌道面と、本体輪の幅を規定する両端の側面と、軌道面と径方向に対向しかつ両端の側面間に連続する周面と、側面の前記軌道面に近い側に連続する面取りとを有し、その絶縁層が、本体輪の両端の側面、周面及び面取りを覆っている絶縁転がり軸受が記載されている。 Patent document 1 describes an insulated rolling bearing that includes a main ring made of metal and an outer ring having an insulating layer attached to the metal surface of the main ring, the main ring having a raceway surface, side surfaces at both ends that define the width of the main ring, a peripheral surface that faces the raceway surface in the radial direction and continues between the side surfaces at both ends, and a chamfer that continues on the side of the side closest to the raceway surface, and the insulating layer covers the side surfaces, peripheral surfaces, and chamfers at both ends of the main ring.

また、特許文献1には、本体輪の側面の軌道面側に連続する面取りからさらに軌道面側へ軸方向に開放した環状凹溝を形成し、その環状凹溝をも絶縁層で覆うことにより、面取りまで覆う上述の軌道輪に比して軌道輪の端面における沿面距離を拡大した絶縁転がり軸受も記載されている。その環状凹溝の横断面形状は二つの単一円孤を繋いだ複合円孤状であり、その一つの円孤において側面に滑らかに連続している。その絶縁層は、スプレー等を用いて金属表面にセラミックス等の絶縁材を溶射することにより、本体輪の金属表面に付着させられている。 Patent Document 1 also describes an insulated rolling bearing in which an annular groove is formed that opens axially toward the raceway surface from a chamfer that continues to the raceway surface side of the side of the main ring, and the annular groove is also covered with an insulating layer, thereby increasing the creepage distance at the end face of the raceway ring compared to the above-mentioned raceway ring that covers the chamfer. The cross-sectional shape of the annular groove is a compound arc shape connecting two single arcs, one of which smoothly continues to the side face. The insulating layer is attached to the metal surface of the main ring by spraying an insulating material such as ceramics onto the metal surface using a spray or the like.

特許第6762357号公報Patent No. 6762357

しかしながら、前述の環状凹溝のような特殊な溝を本体輪に成形するのは、製造コストがかかることになる。また、本体輪の面取りから軸方向に凹んだ金属表面に絶縁材を溶射するのは、絶縁材が軸受内部にまで侵入し機能的な影響を及ぼすことなく均一に塗布することができるよう、塗布工程において特殊なマスキング治具やスプレー方向にする必要があるため、コストと絶縁層の品質を両立させることが難しい。 However, forming a special groove such as the aforementioned annular groove in the main ring results in high manufacturing costs. In addition, spraying an insulating material onto the metal surface recessed in the axial direction from the chamfer of the main ring requires special masking tools and spray directions in the application process to ensure that the insulating material can be applied evenly without penetrating into the inside of the bearing and affecting its functionality, making it difficult to balance cost with the quality of the insulating layer.

そこで、この発明が解決しようとする課題は、本体輪の金属表面に絶縁層が付着した軌道輪を備える絶縁転がり軸受において、その軌道輪の低コスト性と絶縁性を両立させることにある。 The problem that this invention aims to solve is to achieve both low cost and insulating properties for an insulated rolling bearing having a raceway with an insulating layer attached to the metal surface of the main ring.

上記の課題を解決するため、この発明は、外輪と、内輪と、前記外輪と前記内輪間に介在する複数の転動体とを備え、前記外輪と前記内輪のうちの一方の軌道輪が、金属によって形成された本体輪と、前記本体輪の金属表面に付着した絶縁層とを有し、前記本体輪が、軌道面と、前記本体輪の幅を規定する両端の側面と、前記軌道面と径方向に対向しかつ前記両端の側面間に連続する周面と、前記側面の前記軌道面に近い側に連続する面取りとを有し、前記絶縁層が、前記本体輪の前記周面、前記両端の側面、及び前記面取りを覆っている絶縁転がり軸受において、前記本体輪が、前記軌道面と前記面取りとの間で径方向に開放した周溝と、当該周溝の当該面取りに近い側と当該面取りとを繋ぐ第一の溝肩と、当該周溝の当該軌道面に近い側と当該軌道面とを繋ぐ第二の溝肩とを有し、前記第二の溝肩が、前記第一の溝肩に比して径方向に前記軌道面の方へ高く設けられており、前記周溝の全周に絶縁部材が圧入されており、前記絶縁部材が、前記本体輪の少なくとも前記第一の溝肩を覆う絶縁体を有することを特徴とする絶縁転がり軸受、という構成1を採用した。 In order to solve the above problems, the present invention provides a bearing comprising an outer ring, an inner ring, and a plurality of rolling elements interposed between the outer ring and the inner ring, one of the outer ring and the inner ring having a main ring formed of metal and an insulating layer attached to the metal surface of the main ring, the main ring having a raceway surface, side surfaces at both ends defining the width of the main ring, a peripheral surface radially opposed to the raceway surface and continuing between the side surfaces at both ends, and a chamfer continuing to the side of the side surface closer to the raceway surface, the insulating layer covering the peripheral surface of the main ring, the side surfaces at both ends, and the chamfer. In the insulated rolling bearing, the main ring has a circumferential groove that is open in the radial direction between the raceway surface and the chamfer, a first groove shoulder that connects the side of the circumferential groove closer to the chamfer with the chamfer, and a second groove shoulder that connects the side of the circumferential groove closer to the raceway surface with the raceway surface, the second groove shoulder is provided radially higher toward the raceway surface than the first groove shoulder, an insulating member is press-fitted around the entire circumference of the circumferential groove, and the insulating member has an insulator that covers at least the first groove shoulder of the main ring.

上記構成1によると、軌道面と面取りとの間で径方向に開放した周溝と、当該周溝の当該面取りに近い側と当該面取りとを繋ぐ第一の溝肩と、当該周溝の当該軌道面に近い側と当該軌道面とを繋ぐ第二の溝肩とを有し、第二の溝肩が、第一の溝肩に比して径方向に軌道面の方へ高く設けられている形状は、標準的なキャップ軸受で採用される軌道輪の形状に対応する。このため、標準的なキャップ軸受で採用される軌道輪と同一構成の本体輪を採用することが可能になり、本体輪に特殊な周溝を成形するコストが不要でありながら、その周溝を絶縁部材の圧入に使用することも可能である。その絶縁部材の絶縁体によって本体輪の少なくとも第一の溝肩を覆えば、本体輪の面取りから軸方向に凹んだ第一の溝肩等を絶縁層で覆わずとも、沿面距離を確保して高い絶縁性を得ることが可能である。したがって、絶縁層を第一の溝肩等に付着させる工程で特殊なマスキング治具や工法を採用するコストも不要にすることが可能である。このように、上記構成1によれば、本体輪の金属表面に絶縁層が付着した軌道輪の低コスト性と絶縁性を両立させることができる。 According to the above configuration 1, the bearing has a circumferential groove that is open in the radial direction between the raceway surface and the chamfer, a first groove shoulder that connects the side of the circumferential groove closer to the chamfer with the chamfer, and a second groove shoulder that connects the side of the circumferential groove closer to the raceway surface with the raceway surface, and the shape in which the second groove shoulder is provided radially higher toward the raceway surface than the first groove shoulder corresponds to the shape of a raceway ring used in a standard cap bearing. Therefore, it is possible to use a main ring with the same configuration as a raceway ring used in a standard cap bearing, and the cost of forming a special circumferential groove in the main ring is not required, and the circumferential groove can also be used to press-fit an insulating member. If at least the first groove shoulder of the main ring is covered with the insulator of the insulating member, it is possible to ensure a creepage distance and obtain high insulation without covering the first groove shoulder, etc., recessed in the axial direction from the chamfer of the main ring with an insulating layer. Therefore, it is possible to eliminate the cost of using a special masking jig or method in the process of attaching the insulating layer to the first groove shoulder, etc. In this way, according to the above configuration 1, it is possible to achieve both low cost and insulation properties for a raceway ring with an insulating layer attached to the metal surface of the main ring.

上記構成1において、前記絶縁体が、前記第一の溝肩と径方向に重なるように突き出た環状突起部を有し、前記環状突起部と前記第一の溝肩間に径方向の締め代が設けられている、という構成2を採用することができる。この構成2によると、絶縁体の環状突起部が本体輪の第一の溝肩に常に接触している状態を保つことができる。 In the above configuration 1, a configuration 2 can be adopted in which the insulator has an annular protrusion that protrudes so as to overlap the first groove shoulder in the radial direction, and a radial tightening margin is provided between the annular protrusion and the first groove shoulder. With this configuration 2, the annular protrusion of the insulator can be kept in constant contact with the first groove shoulder of the main ring.

上記構成2において、前記絶縁部材を前記一方の軌道輪から取り外した状態のとき、前記環状突起部が、当該環状突起部の先端側に向かって前記径方向の締め代を大きくする方へ傾斜した形状を有する、という構成3を採用することができる。この構成3によると、環状突起部の先端付近を本体輪の第一の溝肩に強く接触させて、環状突起部と絶縁層との間に隙間が空かないようにすることができる。 In the above configuration 2, a configuration 3 can be adopted in which, when the insulating member is removed from the one raceway, the annular protrusion has a shape that is inclined toward the tip side of the annular protrusion in a direction that increases the radial tightening margin. According to this configuration 3, the vicinity of the tip of the annular protrusion can be brought into strong contact with the first groove shoulder of the main ring, so that no gap is created between the annular protrusion and the insulating layer.

上記構成1から3のいずれか1つにおいて、前記絶縁部材が、前記絶縁体によって前記本体輪と隔離された芯金を有する、という構成4を採用することができる。この構成4によると、絶縁部材の保形性を芯金で高めつつ、芯金と本体輪を絶縁体で絶縁することができる。 In any one of the above configurations 1 to 3, a configuration 4 can be adopted in which the insulating member has a core bar that is separated from the main ring by the insulator. According to this configuration 4, the core bar can be used to increase the shape retention of the insulating member, while the core bar and the main ring can be insulated by the insulator.

また、上記構成1から3のいずれか1つにおいて、前記絶縁部材の全部が、前記絶縁体からなる、という構成5を採用することができる。この構成5によると、芯金を省いて比較的安価な絶縁部材にすることができる。 In addition, in any one of the above configurations 1 to 3, a configuration 5 can be adopted in which the entire insulating member is made of the insulator. This configuration 5 can eliminate the core metal and make the insulating member relatively inexpensive.

また、上記構成1から5のいずれか1つにおいて、前記絶縁体が、ニトリルゴム、アクリルゴム、フッ素ゴム又はポリアミドによって形成されている、という構成6を採用することができる。 In addition, in any one of the above configurations 1 to 5, configuration 6 can be adopted in which the insulator is made of nitrile rubber, acrylic rubber, fluororubber, or polyamide.

また、上記構成1から6のいずれか1つにおいて、前記絶縁部材が、前記絶縁体によって形成されたシールリップ部を有する、という構成7を採用することができる。この構成7によると、絶縁部材にシール機能をもたせてキャップ軸受にすることができると共に、絶縁体を径方向に長く設けて絶縁性を向上させることができる。 In addition, in any one of the above configurations 1 to 6, a configuration 7 can be adopted in which the insulating member has a seal lip portion formed by the insulator. According to this configuration 7, the insulating member can be given a sealing function to make it into a cap bearing, and the insulator can be provided long in the radial direction to improve insulation.

また、上記構成7において、前記シールリップ部が、前記外輪と前記内輪のうちの前記一方の軌道輪とは逆の他方の軌道輪と当該シールリップ部との間を流体潤滑状態にすることが可能な態様で形成された複数の突起を有する、という構成8を採用することができる。この構成8によると、絶縁部材を接触シールと同様に外輪と内輪間に配置して軸受内部への所定粒径以上の異物侵入を防止しつつ、シールトルクを非接触シールと同程度まで低減することができる。 In addition, in the above configuration 7, a configuration 8 can be adopted in which the seal lip portion has a plurality of protrusions formed in a manner that allows a fluid lubrication state between the seal lip portion and the other raceway opposite to the one of the outer ring and the inner ring. According to this configuration 8, an insulating member is disposed between the outer ring and the inner ring in the same manner as a contact seal to prevent the intrusion of foreign matter of a predetermined particle size or larger into the inside of the bearing, while reducing the seal torque to the same level as a non-contact seal.

上述のように、この発明は、上記構成1の採用により、本体輪の金属表面に絶縁層が付着した軌道輪を備える絶縁転がり軸受において、その軌道輪の低コスト性と絶縁性を両立させることができる。 As described above, by adopting the above configuration 1, the present invention can achieve both low cost and insulation properties for an insulated rolling bearing having a raceway with an insulating layer attached to the metal surface of the main ring.

この発明の第一実施形態に係る絶縁転がり軸受を示す部分断面図FIG. 1 is a partial cross-sectional view showing an insulating rolling bearing according to a first embodiment of the present invention. 図1の絶縁部材を軌道輪から取り外したときの様子を示す部分断面図FIG. 2 is a partial cross-sectional view showing the insulating member of FIG. 1 when it is removed from the raceway; この発明の第二実施形態に係る絶縁転がり軸受を示す部分断面図FIG. 4 is a partial cross-sectional view showing an insulating rolling bearing according to a second embodiment of the present invention. この発明の第三実施形態に係る絶縁転がり軸受を示す部分断面図FIG. 11 is a partial cross-sectional view showing an insulating rolling bearing according to a third embodiment of the present invention. この発明の第四実施形態に係る絶縁転がり軸受を示す部分断面図FIG. 13 is a partial cross-sectional view showing an insulating rolling bearing according to a fourth embodiment of the present invention. この発明の第五実施形態に係る絶縁転がり軸受を示す部分断面図FIG. 13 is a partial cross-sectional view showing an insulating rolling bearing according to a fifth embodiment of the present invention. 図6のVII-VII線の部分拡大断面図FIG. 7 is a partially enlarged cross-sectional view taken along line VII-VII of FIG.

この発明の一例としての第一実施形態に係る絶縁転がり軸受を添付図面の図1及び図2に基づいて説明する。 As an example of the present invention, an insulating rolling bearing according to a first embodiment will be described with reference to the attached drawings, Figs. 1 and 2.

図1、図2に示すこの絶縁転がり軸受は、外輪10と、内輪20と、外輪10と内輪20間に介在する複数の転動体30と、外輪10と内輪20のうちの一方の軌道輪としての外輪10に取り付けられた絶縁部材40とを備える。なお、転動体30を周方向に等配する保持器の図示は省略している。 The insulating rolling bearing shown in Figures 1 and 2 comprises an outer ring 10, an inner ring 20, a number of rolling elements 30 interposed between the outer ring 10 and the inner ring 20, and an insulating member 40 attached to the outer ring 10 as one of the raceways of the outer ring 10 and the inner ring 20. Note that the cage that distributes the rolling elements 30 evenly in the circumferential direction is not shown.

なお、この絶縁転がり軸受は、深溝玉軸受を例示したが、軸受の種類は特に限定されず、アンギュラ玉軸受でもよいし、円筒ころ軸受、球面ころ軸受等のころ軸受でもよいし、スラスト軸受であってもよい。 Note that, although a deep groove ball bearing is exemplified as the insulating rolling bearing, the type of bearing is not particularly limited, and it may be an angular ball bearing, a roller bearing such as a cylindrical roller bearing or a spherical roller bearing, or even a thrust bearing.

ここでは、この絶縁転がり軸受の軸受中心軸(図示省略)を中心とした円周方向のことを「周方向」といい、その回転中心軸に沿った方向のことを「軸方向」といい、その回転中心軸に直角な方向のことを「径方向」という。図1、図2において、外輪10と内輪20は、軸受中心軸と同心に配置している理想的な状態を示す。また、図1、図2は、その軸受中心軸を含む仮想平面で切断した断面を示す。 Here, the circumferential direction centered on the central axis of the insulated rolling bearing (not shown) is referred to as the "circumferential direction", the direction along the central axis of rotation is referred to as the "axial direction", and the direction perpendicular to the central axis of rotation is referred to as the "radial direction". In Figures 1 and 2, the outer ring 10 and the inner ring 20 are shown in an ideal state in which they are arranged concentrically with the central axis of the bearing. Also, Figures 1 and 2 show a cross section cut by an imaginary plane that includes the central axis of the bearing.

外輪10と内輪20のうちの一方の軌道輪としての外輪10が、金属によって形成された本体輪11と、本体輪11の金属表面に付着した絶縁層12とを有する。 The outer ring 10, which is one of the raceways of the outer ring 10 and the inner ring 20, has a main ring 11 made of metal and an insulating layer 12 attached to the metal surface of the main ring 11.

本体輪11の全体は、金属からなり、一般的に、軸受鋼等の鋼材によって形成されている。 The entire main ring 11 is made of metal, typically made of steel such as bearing steel.

本体輪11は、軌道面13と、両端の側面14と、側面14の軌道面13に近い側に連続する面取り15と、軌道面13と面取り15との間で径方向に開放した周溝16と、当該周溝16の当該面取り15に近い側と当該面取り15とを繋ぐ第一の溝肩17と、当該周溝16の当該軌道面13に近い側と当該軌道面13とを繋ぐ第二の溝肩18と、軌道面13と径方向に対向しかつ両端の側面14間に連続する周面19とを有する繋ぎ目のない環状部材からなる。 The main ring 11 is a seamless annular member having a raceway surface 13, side surfaces 14 at both ends, a chamfer 15 that continues to the side surface 14 closer to the raceway surface 13, a circumferential groove 16 that opens radially between the raceway surface 13 and the chamfer 15, a first groove shoulder 17 that connects the side of the circumferential groove 16 closer to the chamfer 15 to the chamfer 15, a second groove shoulder 18 that connects the side of the circumferential groove 16 closer to the raceway surface 13 to the raceway surface 13, and a circumferential surface 19 that faces the raceway surface 13 in the radial direction and continues between the side surfaces 14 at both ends.

軌道面13は、転動体30が転がる走路を成す金属表面部であって、転動体30から負荷される荷重支持部分となる。 The raceway surface 13 is a metal surface portion that forms the path along which the rolling elements 30 roll, and serves as a load-bearing portion that receives the load from the rolling elements 30.

両端の側面14は、本体輪11の幅を規定する面である。本体輪11の幅は本体輪11の軸方向の全長である。すなわち、第一の側面14は、本体輪11の幅の一端に位置する金属表面部であり、第二の側面14は、本体輪11の幅の他端に位置する金属表面部である。両端の側面14は、それぞれ径方向に沿った平坦面状に形成されている。 The side surfaces 14 at both ends are surfaces that define the width of the main ring 11. The width of the main ring 11 is the total length of the main ring 11 in the axial direction. In other words, the first side surface 14 is a metal surface portion located at one end of the width of the main ring 11, and the second side surface 14 is a metal surface portion located at the other end of the width of the main ring 11. The side surfaces 14 at both ends are each formed as a flat surface along the radial direction.

本体輪11の内周のうち、軌道面13と一端の側面14との間の部分は、面取り15、周溝16と、第一の溝肩17と、第二の溝肩18とからなる。 The portion of the inner circumference of the main ring 11 between the raceway surface 13 and the side surface 14 at one end consists of a chamfer 15, a circumferential groove 16, a first groove shoulder 17, and a second groove shoulder 18.

周面19は、本体輪11の外周全部を構成する金属表面部と、本体輪11の内周全部を構成する金属表面部のうち、軌道面13を含まない方の金属表面部からなる。図示例においては、周面19は、本体輪11の外周全部を構成する金属表面部である。 The peripheral surface 19 is made up of a metal surface portion that constitutes the entire outer periphery of the main ring 11 and a metal surface portion that does not include the raceway surface 13, out of the metal surface portions that constitute the entire inner periphery of the main ring 11. In the illustrated example, the peripheral surface 19 is the metal surface portion that constitutes the entire outer periphery of the main ring 11.

面取り15は、側面14と第一の溝肩17とを繋ぐ角部を落とした面である。 The chamfer 15 is a surface where the corner that connects the side surface 14 and the first groove shoulder 17 is removed.

第一の溝肩17は、連続する面取り15の縁と同じ直径をもって当該面取り15と周溝16とを軸方向に繋ぐ金属表面部である。図1の断面において、第一の溝肩17は、面取り15の縁から軸方向に沿って延びる直線状部からなる。 The first groove shoulder 17 is a metal surface portion that connects the chamfer 15 and the circumferential groove 16 in the axial direction and has the same diameter as the edge of the continuous chamfer 15. In the cross section of FIG. 1, the first groove shoulder 17 consists of a linear portion that extends from the edge of the chamfer 15 along the axial direction.

第二の溝肩18は、連続する軌道面13の縁と同じ直径をもって当該軌道面13と当該周溝16とを軸方向に繋ぐ金属表面部である。図1の断面において、第二の溝肩18は、軌道面13の縁から軸方向に沿って延びる直線状部からなる。 The second groove shoulder 18 is a metal surface portion that connects the raceway surface 13 and the circumferential groove 16 in the axial direction and has the same diameter as the edge of the continuous raceway surface 13. In the cross section of FIG. 1, the second groove shoulder 18 consists of a linear portion that extends from the edge of the raceway surface 13 along the axial direction.

第二の溝肩18は、第一の溝肩17に比して径方向に軌道面13の方(図1において径方向内方に対応の下方向)へ高く設けられている。 The second groove shoulder 18 is positioned radially higher toward the raceway surface 13 (in FIG. 1, downward, corresponding to the radially inward direction) than the first groove shoulder 17.

周溝16は、第一の溝肩17に対して径方向に周面19の方へ低くし、かつ第二の溝肩18に対して径方向に周面19の方へ低くし、第一の溝肩17と第二の溝肩18とを繋ぐ全部を径方向に露出させた形状を有する金属表面部である。周溝16は、第一の溝肩17と第二の溝肩18との間に径方向の高低差を設けるため、第二の溝肩18に連続する他の面取り16aと、他の面取り16aから直線状に延びる延長斜面16bとを有する。 The circumferential groove 16 is a metal surface portion having a shape that is lowered radially toward the peripheral surface 19 relative to the first groove shoulder 17 and lowered radially toward the peripheral surface 19 relative to the second groove shoulder 18, and that has an entire portion connecting the first groove shoulder 17 and the second groove shoulder 18 exposed in the radial direction. The circumferential groove 16 has another chamfer 16a that continues to the second groove shoulder 18 and an extended slope 16b that extends linearly from the other chamfer 16a to provide a radial height difference between the first groove shoulder 17 and the second groove shoulder 18.

本体輪11は、図1に示す一定の断面構成をもって周方向全周に連続しており、軸受中心軸を含む任意の仮想平面上において同一に現れる。また、本体輪11の全体は、軸受中心軸に直交しかつ本体輪11の幅の中央を通る仮想平面に関して面対称な形状を有する。 The main ring 11 has a constant cross-sectional configuration as shown in FIG. 1 and is continuous around the entire circumference, and appears identical on any imaginary plane that includes the bearing center axis. In addition, the entire main ring 11 has a shape that is plane-symmetrical with respect to an imaginary plane that is perpendicular to the bearing center axis and passes through the center of the width of the main ring 11.

本体輪11は、標準的なキャップ軸受で採用される軌道輪(キャップ保持用の周溝をもった軌道輪)と同一構成のものである。標準的なキャップ軸受は、JIS規格において規定された主要寸法及び密封形式のキャップ(シール又はシールド)を有するものである。例えば、円すいころ軸受以外のラジアル軸受の主要寸法は、JIS B 1512-1(対応ISO15)で規定されている。特に、深溝玉軸受の場合、JIS B 1521において詳細が規定されているものである。 The main ring 11 has the same structure as the raceway ring (raceway ring with a circumferential groove for retaining the cap) used in standard cap bearings. Standard cap bearings have major dimensions and a sealed cap (seal or shield) that are specified in the JIS standard. For example, the major dimensions of radial bearings other than tapered roller bearings are specified in JIS B 1512-1 (corresponding to ISO 15). In particular, for deep groove ball bearings, details are specified in JIS B 1521.

絶縁層12は、本体輪11のうち、周面19、両端の側面14、及び面取り15を完全に覆っているが、面取り15の第一の溝肩17側の縁までである。絶縁層12は、本体輪11のうち、両端の側面14、周面19及び面取り15を除いた他の部分を実質的に覆っていない。 The insulating layer 12 completely covers the peripheral surface 19, both end side surfaces 14, and the chamfer 15 of the main ring 11, but only up to the edge of the chamfer 15 on the first groove shoulder 17 side. The insulating layer 12 does not substantially cover any other parts of the main ring 11, except for the both end side surfaces 14, the peripheral surface 19, and the chamfer 15.

外輪10は、絶縁層12のみにおいて軸受外部の相手部材Hに接触させられる。相手部材Hは、例えば、車載モータ等のハウジング、ハウジング蓋等である。相手部材Hには高電圧が印加される。 The outer ring 10 is in contact with the mating member H outside the bearing only at the insulating layer 12. The mating member H is, for example, a housing or a housing cover of an in-vehicle motor. A high voltage is applied to the mating member H.

絶縁部材40は、周溝16に圧入されている。周溝16は、絶縁部材40の被圧入部分を保持すると共に、延長斜面16bにおいて絶縁部材40を軌道面13側へ倒れないように支持する。 The insulating member 40 is press-fitted into the circumferential groove 16. The circumferential groove 16 holds the press-fit portion of the insulating member 40 and supports the insulating member 40 at the extended inclined surface 16b so that it does not fall toward the track surface 13.

絶縁部材40は、芯金41と、芯金41に接着された絶縁体42とで構成されている。絶縁部材40は、図1に示す一定の断面構成をもって周方向全周に連続しており、軸受中心軸を含む任意の仮想平面上において同一に現れる。 The insulating member 40 is composed of a core metal 41 and an insulator 42 bonded to the core metal 41. The insulating member 40 is continuous around the entire circumference with a constant cross-sectional configuration as shown in Figure 1, and appears the same on any imaginary plane that includes the bearing center axis.

芯金41は、環状の金属板によって形成されている。絶縁体42は、ゴム材によって形成されている。そのゴム材として、例えば、ニトリルゴム、アクリルゴム、フッ素ゴムが挙げられる。ゴム材を採用する場合、絶縁体42は、例えば、芯金41に加硫接着することができる。また、絶縁体42は、ゴム材に代えてポリアミド樹脂等の他の樹脂によって形成することも可能である。 The core metal 41 is formed from a ring-shaped metal plate. The insulator 42 is formed from a rubber material. Examples of the rubber material include nitrile rubber, acrylic rubber, and fluororubber. When a rubber material is used, the insulator 42 can be vulcanization bonded to the core metal 41. The insulator 42 can also be formed from other resins, such as polyamide resin, instead of rubber.

周溝16に対する絶縁部材40の被圧入部分は、絶縁体42のうち、周溝16との間に径方向の締め代をもった全周部からなる。 The portion of the insulating member 40 that is pressed into the circumferential groove 16 consists of the entire periphery of the insulator 42 that has a radial tightening margin with the circumferential groove 16.

芯金41は、絶縁体42によって本体輪11と隔離されている。この隔離は完全になっており、芯金41と本体輪11との間に直通の導電路は存在しない。 The core metal 41 is isolated from the main ring 11 by the insulator 42. This isolation is complete, and there is no direct conductive path between the core metal 41 and the main ring 11.

絶縁部材40は、第二の溝肩18に比して径方向に軌道面13の方(図1において径方向内方に対応の下方向)へ高く設けられている。絶縁部材40の内周に露出する絶縁体42の内径dは、第二の溝肩18の内径dよりも小さい。 The insulating member 40 is provided radially higher toward the raceway surface 13 (in FIG. 1 , in a downward direction corresponding to the radially inward direction) than the second groove shoulder 18. The inner diameter d1 of the insulator 42 exposed to the inner periphery of the insulating member 40 is smaller than the inner diameter d2 of the second groove shoulder 18.

絶縁体42は、第一の溝肩17と径方向に重なるように突き出た環状突起部43を有する。環状突起部43は、周溝16に対する絶縁部材40(絶縁体42)の被圧入部分から当該周溝16に連続する第一の溝肩17の方に向かって片持ち梁状に延びている。絶縁体42の環状突起部43が第一の溝肩17を径方向から覆うことにより、その分、絶縁層12から絶縁部材40に連続して設けられる沿面距離が大きくなっている。 The insulator 42 has an annular protrusion 43 that protrudes so as to overlap the first groove shoulder 17 in the radial direction. The annular protrusion 43 extends in a cantilever shape from the portion of the insulating member 40 (insulator 42) that is pressed into the circumferential groove 16 toward the first groove shoulder 17 that is continuous with the circumferential groove 16. The annular protrusion 43 of the insulator 42 covers the first groove shoulder 17 from the radial direction, and the creepage distance that is provided continuously from the insulating layer 12 to the insulating member 40 is accordingly increased.

図2に示すように、環状突起部43と第一の溝肩17間に径方向の締め代δが設けられている。図2例において、径方向の締め代δは、同図に示すように絶縁部材40を外輪10から取り外した状態のとき、環状突起部43に外接する仮想円筒面の直径である外径Dと、第一の溝肩17に内接する仮想円筒面の直径である内径dとの差の半分である。締め代δに基づく環状突起部43の弾性復元力により、図1に示す環状突起部43が第一の溝肩17に常に接触している状態に保たれる。 As shown in Fig. 2, a radial interference δ is provided between the annular protrusion 43 and the first groove shoulder 17. In the example of Fig. 2, the radial interference δ is half the difference between an outer diameter D1, which is the diameter of an imaginary cylindrical surface circumscribing the annular protrusion 43, and an inner diameter d3, which is the diameter of an imaginary cylindrical surface inscribing the first groove shoulder 17, when the insulating member 40 is removed from the outer ring 10 as shown in the figure. The annular protrusion 43 shown in Fig. 1 is constantly kept in contact with the first groove shoulder 17 by the elastic restoring force of the annular protrusion 43 based on the interference δ.

図2に示すように、絶縁部材40を外輪10から取り外した状態のとき、環状突起部43は、当該環状突起部43の先端側に向かって径方向の締め代δを大きくする方へ傾斜した形状を有する。環状突起部43の先端は、環状突起部43の中で軸方向に最も第一の溝肩の方へ寄った部位である。環状突起部43の先端は、図1に示すように、絶縁層12の面取り15を覆う部分と径方向に重なる。図2に示すように、第一の溝肩17と環状突起部43間の径方向の締め代が環状突起部43の先端に向かう程に次第に大きくなるので、図1に示す環状突起部43の先端付近が第一の溝肩17に強く接触させられる。これにより、環状突起部43と絶縁層12との間に隙間が空かない状態に保たれる。 As shown in FIG. 2, when the insulating member 40 is removed from the outer ring 10, the annular protrusion 43 has a shape that is inclined toward the tip side of the annular protrusion 43 so that the radial tightening margin δ is increased. The tip of the annular protrusion 43 is the part of the annular protrusion 43 that is closest to the first groove shoulder in the axial direction. As shown in FIG. 1, the tip of the annular protrusion 43 radially overlaps with the part that covers the chamfer 15 of the insulating layer 12. As shown in FIG. 2, the radial tightening margin between the first groove shoulder 17 and the annular protrusion 43 gradually increases toward the tip of the annular protrusion 43, so that the tip of the annular protrusion 43 shown in FIG. 1 is strongly contacted with the first groove shoulder 17. This keeps a gap between the annular protrusion 43 and the insulating layer 12.

環状突起部43の前述の傾斜形状は、第一の溝肩17に対する接触性を高めるためのものであるから、環状突起部43の内外の周面のうち、第一の溝肩17に接する方の周面における傾斜形状を意味する。その傾斜形状の傾斜角度αは、図2例の場合、環状突起部43の外周面が軸方向に対して成す角度である。傾斜角度αは、例えば、0°よりも大きく45°よりも小さく設定することができる。 The aforementioned inclined shape of the annular protrusion 43 is intended to increase contact with the first groove shoulder 17, and therefore refers to the inclined shape of the inner or outer peripheral surface of the annular protrusion 43 that contacts the first groove shoulder 17. The inclination angle α of the inclined shape is the angle that the outer peripheral surface of the annular protrusion 43 makes with the axial direction in the example of Figure 2. The inclination angle α can be set, for example, to be greater than 0° and less than 45°.

また、絶縁体42は、図1に示すように、絶縁部材40の被圧入部分から第一の溝肩17と第二の溝肩18との間を通って第二の溝肩18と軸方向に対向する位置へ延びている。絶縁体42は、図2に示すように、環状突起部43から径方向に軌道面13の方へ延びる端面部44と、絶縁部材40の被圧入部分から径方向に軌道面13の方へ延びる端面部45とを有する。これら端面部44,45は、芯金41を軸方向両側から覆って本体輪11から隔離すると共に、図1の状態において第二の溝肩18と軸方向に対向しかつ第二の溝肩18に比して径方向に軌道面13の方へ高い絶縁体部分を設けるための部位である。絶縁体42が、周溝16の溝底部を径方向から覆い、周溝16の第一の溝肩17と第二の溝肩18の高低差を成す金属表面部(他の面取り16a、延長斜面16b)を軸方向から覆っていることにより、絶縁層12から絶縁部材40に連続して設けられる沿面距離(すなわち電極となる相手部材H及び本体輪11の第二の溝肩18間で絶縁部材40の表面に沿った沿面距離)がさらに大きくなっている。絶縁体42を第二の溝肩18に比して径方向に軌道面13の方(図1において径方向内方に対応の下方向)へ高く設けることにより、その沿面距離をより拡大することができる。 As shown in Fig. 1, the insulator 42 extends from the press-fitted portion of the insulating member 40 between the first groove shoulder 17 and the second groove shoulder 18 to a position axially opposite the second groove shoulder 18. As shown in Fig. 2, the insulator 42 has an end surface portion 44 extending radially from the annular protrusion portion 43 toward the raceway surface 13, and an end surface portion 45 extending radially from the press-fitted portion of the insulating member 40 toward the raceway surface 13. These end surface portions 44, 45 cover the core bar 41 from both axial sides to isolate it from the main ring 11, and are portions that face the second groove shoulder 18 in the axial direction in the state shown in Fig. 1 and provide an insulator portion that is higher radially toward the raceway surface 13 than the second groove shoulder 18. The insulator 42 radially covers the bottom of the circumferential groove 16 and axially covers the metal surface portion (other chamfer 16a, extended slope 16b) that defines the height difference between the first groove shoulder 17 and the second groove shoulder 18 of the circumferential groove 16, so that the creepage distance (i.e., the creepage distance along the surface of the insulating member 40 between the mating member H that serves as the electrode and the second groove shoulder 18 of the main ring 11) that continues from the insulating layer 12 to the insulating member 40 is further increased. By locating the insulator 42 radially higher toward the raceway surface 13 (in FIG. 1, in the downward direction corresponding to the radially inward direction) than the second groove shoulder 18, the creepage distance can be further increased.

図1、図2に示すこの絶縁転がり軸受は、上述のように、外輪10と、内輪20と、外輪10と内輪20間に介在する複数の転動体30とを備え、外輪10と内輪20のうちの一方の軌道輪としての外輪10が、金属によって形成された本体輪11と、本体輪11の金属表面に付着した絶縁層12とを有し、本体輪11が、軌道面13と、本体輪11の幅を規定する両端の側面14と、軌道面13と径方向に対向しかつ両端の側面14間に連続する周面19と、側面14の軌道面13に近い側に連続する面取り15とを有し、絶縁層12が、本体輪11の周面19、両端の側面14、及び面取り15を覆っているものである。 As described above, the insulating rolling bearing shown in Figures 1 and 2 comprises an outer ring 10, an inner ring 20, and a number of rolling elements 30 interposed between the outer ring 10 and the inner ring 20. The outer ring 10, which is one of the raceways of the outer ring 10 and the inner ring 20, has a main ring 11 made of metal and an insulating layer 12 attached to the metal surface of the main ring 11. The main ring 11 has a raceway surface 13, side surfaces 14 at both ends that define the width of the main ring 11, a peripheral surface 19 that faces the raceway surface 13 in the radial direction and continues between the side surfaces 14 at both ends, and a chamfer 15 that continues to the side of the side surface 14 close to the raceway surface 13. The insulating layer 12 covers the peripheral surface 19, side surfaces 14 at both ends, and chamfer 15 of the main ring 11.

この絶縁転がり軸受は、特に、本体輪11が、軌道面13と面取り15との間で径方向に開放した周溝16と、当該周溝16の当該面取り15に近い側と当該面取り15とを繋ぐ第一の溝肩17と、当該周溝16の当該軌道面13に近い側と当該軌道面13とを繋ぐ第二の溝肩18とを有し、第二の溝肩18が、第一の溝肩17に比して径方向に軌道面13の方へ高く設けられているものであるので、標準的なキャップ軸受で採用される軌道輪の形状に対応するものである。これにより、標準的なキャップ軸受で採用される軌道輪と同一構成の本体輪11を採用することが可能になり、本体輪11に特殊な周溝16を成形するコストが不要でありながら、その周溝16を絶縁部材40の圧入に使用することも可能である。 In particular, this insulating rolling bearing has a main ring 11 having a circumferential groove 16 that is open in the radial direction between the raceway surface 13 and the chamfer 15, a first groove shoulder 17 that connects the side of the circumferential groove 16 closer to the chamfer 15 with the chamfer 15, and a second groove shoulder 18 that connects the side of the circumferential groove 16 closer to the raceway surface 13 with the raceway surface 13, and the second groove shoulder 18 is provided radially higher toward the raceway surface 13 than the first groove shoulder 17, so that it corresponds to the shape of the raceway ring used in a standard cap bearing. This makes it possible to use a main ring 11 with the same configuration as a raceway ring used in a standard cap bearing, and while it is not necessary to incur the cost of forming a special circumferential groove 16 in the main ring 11, it is also possible to use the circumferential groove 16 to press in the insulating member 40.

さらに、この絶縁転がり軸受は、周溝16の全周に絶縁部材40が圧入されており、絶縁部材40が、本体輪11の少なくとも第一の溝肩17を覆う絶縁体42を有することにより、本体輪11の面取り15から軸方向に凹んだ第一の溝肩17等を絶縁層12で覆わずとも、絶縁部材40で沿面距離を確保して高い絶縁性を得ることが可能である。したがって、絶縁層12を第一の溝肩17等に付着させる工程で特殊なマスキング治具や工法を採用するコストも不要にすることが可能である。 Furthermore, in this insulated rolling bearing, an insulating member 40 is press-fitted around the entire circumference of the circumferential groove 16, and the insulating member 40 has an insulator 42 that covers at least the first groove shoulder 17 of the main ring 11. This makes it possible to ensure a creepage distance with the insulating member 40 and obtain high insulation without covering the first groove shoulder 17, etc., which is recessed in the axial direction from the chamfer 15 of the main ring 11, with the insulating layer 12. Therefore, it is also possible to eliminate the cost of using special masking tools or construction methods in the process of attaching the insulating layer 12 to the first groove shoulder 17, etc.

このように、この絶縁転がり軸受は、本体輪11の金属表面に絶縁層12が付着した軌道輪(外輪10)の低コスト性と絶縁性を両立させることができる。 In this way, this insulating rolling bearing can achieve both low cost and insulating properties in the raceway (outer ring 10) in which an insulating layer 12 is attached to the metal surface of the main ring 11.

また、この絶縁転がり軸受は、絶縁体42が、第一の溝肩17と径方向に重なるように突き出た環状突起部43を有し、環状突起部43と第一の溝肩17間に径方向の締め代δが設けられていることにより、絶縁体42の環状突起部43が本体輪11の第一の溝肩17に常に接触している状態を保つことができる。 In addition, this insulated rolling bearing has an annular protrusion 43 that protrudes so as to overlap radially with the first groove shoulder 17, and a radial interference δ is provided between the annular protrusion 43 and the first groove shoulder 17, so that the annular protrusion 43 of the insulator 42 can be kept in constant contact with the first groove shoulder 17 of the main ring 11.

また、この絶縁転がり軸受は、絶縁部材40を一方の軌道輪としての外輪10から取り外した状態のとき、環状突起部43が、当該環状突起部43の先端側に向かって径方向の締め代δを大きくする方へ傾斜した形状を有することにより、環状突起部43の先端付近を本体輪11の第一の溝肩17に強く接触させて、環状突起部43と絶縁層12との間に隙間が空かないようにすることができる。 In addition, when the insulating member 40 is removed from the outer ring 10, which serves as one of the raceways, the annular protrusion 43 has a shape that is inclined toward the tip of the annular protrusion 43 in a direction that increases the radial interference δ, so that the tip of the annular protrusion 43 comes into strong contact with the first groove shoulder 17 of the main ring 11, preventing a gap from being generated between the annular protrusion 43 and the insulating layer 12.

また、この絶縁転がり軸受は、絶縁部材40が、絶縁体42によって本体輪11と隔離された芯金41を有することにより、絶縁部材40の保形性を芯金41で高めつつ、芯金41と本体輪11を絶縁体42で絶縁することができる。 In addition, this insulating rolling bearing has an insulating member 40 with a core metal 41 that is isolated from the main ring 11 by an insulator 42, so that the core metal 41 can increase the shape retention of the insulating member 40 while insulating the core metal 41 from the main ring 11 with the insulator 42.

第一実施形態では、絶縁部材に芯金を含めたが、絶縁部材を一種の材料で形成してもよい。その一例としての第二実施形態を図3に示す。なお、以下では、第一実施形態との相違点を述べるに留める。 In the first embodiment, the insulating member includes a core metal, but the insulating member may be formed from a single type of material. As an example, a second embodiment is shown in FIG. 3. The following will only describe the differences from the first embodiment.

図3に示す絶縁部材50は、その全部を絶縁体によって形成したものである。絶縁部材50を形成する材料は、第一実施形態と同様であり、例えば、一種のゴム材によって絶縁部材50の全部が繋ぎ目なく形成される。図3に示すこの絶縁転がり軸受は、絶縁部材50の全部が絶縁体からなることにより、芯金を省いて比較的安価な絶縁部材にすることができる。 The insulating member 50 shown in FIG. 3 is made entirely of an insulator. The material from which the insulating member 50 is made is the same as in the first embodiment, and for example, the insulating member 50 is made seamlessly from a type of rubber material. In the insulating rolling bearing shown in FIG. 3, the insulating member 50 is made entirely of an insulator, so that a core metal can be omitted, making it a relatively inexpensive insulating member.

また、絶縁部材をシール部材と兼用することも可能である。その一例としての第三実施形態を図4に示す。 It is also possible to use the insulating material as a sealing material. An example of this is shown in the third embodiment in Figure 4.

第三実施形態に係る絶縁部材60は、芯金61に接着された絶縁体62がシールリップ部63を有する。シールリップ部63は、内輪70の外周に全周で接触し、内輪70のシール溝71との間にラビリンスを形成する。絶縁体62は、芯金61を軸受外部に露出させないように覆っており、このため、芯金61の軸受外部側を覆う端面部において径方向に延長されている。シールリップ部63は、芯金61よりも径方向に内輪70の方へ突き出ている。このように、図4に示すこの絶縁転がり軸受は、絶縁部材60が絶縁体62によって形成されたシールリップ部63を有することにより、絶縁部材60にシール機能をもたせてキャップ軸受にすることができると共に、絶縁体62を径方向に長く設けて絶縁性を向上させることができる。 In the insulating member 60 according to the third embodiment, the insulator 62 bonded to the core metal 61 has a seal lip portion 63. The seal lip portion 63 contacts the outer periphery of the inner ring 70 all around and forms a labyrinth between the seal groove 71 of the inner ring 70 and the insulator 62. The insulator 62 covers the core metal 61 so that it is not exposed to the outside of the bearing, and therefore extends radially at the end face portion covering the outside side of the core metal 61. The seal lip portion 63 protrudes radially toward the inner ring 70 beyond the core metal 61. In this way, in the insulating rolling bearing shown in FIG. 4, the insulating member 60 has a seal lip portion 63 formed by the insulator 62, so that the insulating member 60 can be made into a cap bearing by providing a sealing function, and the insulator 62 can be provided long in the radial direction to improve insulation.

絶縁部材をシール部材と兼用する他例としての第四実施形態を図5に示す。 Figure 5 shows a fourth embodiment, which is another example in which the insulating member also serves as the sealing member.

第四実施形態に係る絶縁部材80は、芯金81から内輪70側へ延びる絶縁体82のシールリップ部83の形状を第三実施形態から変更し、内輪70とシールリップ部83を非接触に配置したものである。図5に示すこの絶縁転がり軸受は、絶縁部材80を非接触式シールとしたものなので、接触式シールとした第三実施形態に比してシールトルクを抑えることができる。 The insulating member 80 according to the fourth embodiment has a different shape from that of the third embodiment, that of the seal lip portion 83 of the insulator 82 extending from the core metal 81 toward the inner ring 70, and the inner ring 70 and the seal lip portion 83 are arranged in a non-contact manner. This insulating rolling bearing shown in FIG. 5 has an insulating member 80 that is a non-contact seal, so that the seal torque can be reduced compared to the third embodiment, which is a contact seal.

絶縁部材をシール部材と兼用する更なる他例としての第五実施形態を図6、図7に示す。 Figures 6 and 7 show a fifth embodiment as yet another example in which the insulating member also serves as the sealing member.

第五実施形態に係る絶縁部材100は、内輪90の形状と、芯金101から内輪90の方へ突き出た絶縁体102のシールリップ部103の形状とを第三実施形態から変更したものである。 The insulating member 100 according to the fifth embodiment is different from that of the third embodiment in the shape of the inner ring 90 and the shape of the seal lip portion 103 of the insulator 102 that protrudes from the core metal 101 toward the inner ring 90.

内輪90は、周方向に沿って全周に連続する円筒面状のシール摺動面91を有する。 The inner ring 90 has a cylindrical seal sliding surface 91 that is continuous around the entire circumference.

シールリップ部103は、シール摺動面91とシールリップ部103との間を流体潤滑状態にすることが可能な態様で形成された複数の突起104を有する。周方向に隣り合う突起104間は、軸受内部空間及び外部間に亘って連通する油通路105になる。周方向に沿いかつシール摺動面91に直交する図7の切断面において、突起104の断面は、シール摺動面91に向かって凸の半円状の中実部を成している。このため、突起104の表面と、シール摺動面91との間の隙間は、油通路105側で大、突起104側で小のくさび状に形成されている。外輪10に対して内輪90が相対回転する軸受回転に伴って油通路105内から突起104とシール摺動面91間に引き摺り込まれる潤滑油の油膜によって当該シールリップ部103及びシール摺動面91間を流体潤滑状態にすることができる。このようなシールリップ部は、例えば、特開2017-155929号公報、特開2017-161069号公報、特開2017-219058号公報、特開2021-11896号公報に開示しているので、その詳細説明を省略する。 The seal lip portion 103 has a plurality of protrusions 104 formed in such a manner that the seal sliding surface 91 and the seal lip portion 103 can be in a fluid lubricated state. Between the protrusions 104 adjacent in the circumferential direction, an oil passage 105 is formed that communicates between the bearing internal space and the outside. In the cross section of FIG. 7 along the circumferential direction and perpendicular to the seal sliding surface 91, the cross section of the protrusion 104 forms a semicircular solid portion that is convex toward the seal sliding surface 91. For this reason, the gap between the surface of the protrusion 104 and the seal sliding surface 91 is formed in a wedge shape that is large on the oil passage 105 side and small on the protrusion 104 side. The seal lip portion 103 and the seal sliding surface 91 can be in a fluid lubricated state by the oil film of lubricating oil that is dragged between the protrusions 104 and the seal sliding surface 91 from within the oil passage 105 as the bearing rotates relative to the outer ring 10. Such seal lip portions are disclosed, for example, in JP 2017-155929 A, JP 2017-161069 A, JP 2017-219058 A, and JP 2021-11896 A, so detailed explanations will be omitted.

図6、図7に示すこの絶縁転がり軸受は、シールリップ部103が、外輪10と内輪90のうちの一方の軌道輪としての外輪10とは逆の他方の軌道輪としての内輪90と当該シールリップ部103との間を流体潤滑状態にすることが可能な態様で形成された複数の突起104を有することにより、絶縁部材100を接触シールと同様に外輪10と内輪90間に配置して軸受内部への所定粒径以上の異物侵入を防止しつつ、全周接触式シールとした第三実施形態に比してシールトルクを非接触シールと同程度まで抑えることができる。 In the insulating rolling bearing shown in Figures 6 and 7, the seal lip portion 103 has multiple protrusions 104 formed in a manner that allows a fluid lubrication state between the seal lip portion 103 and the inner ring 90, which is the opposite raceway of the outer ring 10 as one of the raceways of the outer ring 10 and the inner ring 90, and the insulating member 100 is disposed between the outer ring 10 and the inner ring 90 in the same manner as a contact seal to prevent the intrusion of foreign matter of a predetermined particle size or larger into the inside of the bearing, while reducing the seal torque to the same level as a non-contact seal compared to the third embodiment, which is a full-circumference contact seal.

なお、上述の各実施形態では、外輪だけに絶縁層を設けて絶縁部材を取り付けた絶縁転がり軸受を例示したが、内輪でも同様にこの発明を適用することが可能である。図示説明は省略するが、キャプ軸受の内輪と同一構成の本体輪を採用し、本体輪の内周及び両端の側面、面取りを絶縁層で覆い、本体輪の外周の周溝に絶縁部材を取り付ければよいだけのことである。 In the above-mentioned embodiments, an insulating rolling bearing in which an insulating layer is provided only on the outer ring and an insulating member is attached is exemplified, but the invention can also be applied to the inner ring. Although illustrations and explanations are omitted, all that is required is to adopt a main ring having the same configuration as the inner ring of a cap bearing, cover the inner circumference and both end side surfaces and chamfers of the main ring with an insulating layer, and attach an insulating member to the circumferential groove on the outer circumference of the main ring.

また、この発明の技術的範囲には、外輪と内輪の一方の軌道輪だけに絶縁層、絶縁部材をそれぞれ配置した絶縁転がり軸受と、外輪と内輪の両方の軌道輪に絶縁層、絶縁部材をそれぞれ配置した絶縁転がり軸受との両方が含まれる。 The technical scope of this invention also includes both an insulated rolling bearing in which an insulating layer and insulating member are arranged on only one of the raceways, the outer ring and the inner ring, and an insulated rolling bearing in which an insulating layer and insulating member are arranged on both the outer ring and the inner ring.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is indicated by the claims, not by the above description, and is intended to include all modifications within the meaning and scope of the claims.

10 外輪
11 本体輪
12 絶縁層
13 軌道面
14 側面
15 面取り
16 周溝
17 第一の溝肩
18 第二の溝肩
19 周面
20,70,90 内輪
30 転動体
40,50,60,80,100 絶縁部材
41,61,81,101 芯金
42,62,82,102 絶縁体
43 環状突起部
63,83,103 シールリップ部
104 突起
REFERENCE SIGNS LIST 10 outer ring 11 main ring 12 insulating layer 13 raceway surface 14 side surface 15 chamfer 16 circumferential groove 17 first groove shoulder 18 second groove shoulder 19 peripheral surface 20, 70, 90 inner ring 30 rolling element 40, 50, 60, 80, 100 insulating member 41, 61, 81, 101 core metal 42, 62, 82, 102 insulator 43 annular protrusion portion 63, 83, 103 seal lip portion 104 protrusion

Claims (8)

外輪と、内輪と、前記外輪と前記内輪間に介在する複数の転動体とを備え、
前記外輪と前記内輪のうちの一方の軌道輪が、金属によって形成された本体輪と、前記本体輪の金属表面に付着した絶縁層とを有し、
前記本体輪が、軌道面と、前記本体輪の幅を規定する両端の側面と、前記軌道面と径方向に対向しかつ前記両端の側面間に連続する周面と、前記側面の前記軌道面に近い側に連続する面取りとを有し、
前記絶縁層が、前記本体輪の前記周面、前記両端の側面、及び前記面取りを覆っている絶縁転がり軸受において、
前記本体輪が、前記軌道面と前記面取りとの間で径方向に開放した周溝と、当該周溝の当該面取りに近い側と当該面取りとを繋ぐ第一の溝肩と、当該周溝の当該軌道面に近い側と当該軌道面とを繋ぐ第二の溝肩とを有し、
前記第二の溝肩が、前記第一の溝肩に比して径方向に前記軌道面の方へ高く設けられており、
前記周溝の全周に絶縁部材が圧入されており、
前記絶縁部材が、前記本体輪の少なくとも前記第一の溝肩を覆う絶縁体を有することを特徴とする絶縁転がり軸受。
The bearing comprises an outer ring, an inner ring, and a plurality of rolling elements interposed between the outer ring and the inner ring,
One of the outer ring and the inner ring has a main ring formed of a metal and an insulating layer attached to a metal surface of the main ring,
the main ring has a raceway surface, side surfaces at both ends defining a width of the main ring, a circumferential surface radially opposed to the raceway surface and continuing between the side surfaces at both ends, and a chamfer continuing to a side of the side surface close to the raceway surface,
In the insulating rolling bearing, the insulating layer covers the circumferential surface, the side surfaces at both ends, and the chamfer of the main ring,
the main ring has a circumferential groove that is open in the radial direction between the raceway surface and the chamfer, a first groove shoulder that connects the chamfer to a side of the circumferential groove that is closer to the chamfer, and a second groove shoulder that connects the raceway surface to a side of the circumferential groove that is closer to the raceway surface,
The second groove shoulder is provided radially higher toward the raceway surface than the first groove shoulder,
An insulating member is press-fitted around the entire circumference of the circumferential groove,
13. An insulating rolling bearing, comprising: an insulating member having an insulator covering at least the first groove shoulder of the main ring.
前記絶縁体が、前記第一の溝肩と径方向に重なるように突き出た環状突起部を有し、前記環状突起部と前記第一の溝肩間に径方向の締め代が設けられている請求項1に記載の絶縁転がり軸受。 The insulated rolling bearing according to claim 1, wherein the insulator has an annular protrusion that protrudes so as to overlap the first groove shoulder in the radial direction, and a radial interference is provided between the annular protrusion and the first groove shoulder. 前記絶縁部材を前記一方の軌道輪から取り外した状態のとき、前記環状突起部が、当該環状突起部の先端側に向かって前記径方向の締め代を大きくする方へ傾斜した形状を有する請求項2に記載の絶縁転がり軸受。 The insulated rolling bearing according to claim 2, wherein when the insulating member is removed from the one raceway, the annular protrusion has a shape that is inclined toward the tip of the annular protrusion in a direction that increases the radial interference. 前記絶縁部材が、前記絶縁体によって前記本体輪と隔離された芯金を有する請求項1から3のいずれか1項に記載の絶縁転がり軸受。 An insulated rolling bearing according to any one of claims 1 to 3, wherein the insulating member has a core metal separated from the main ring by the insulator. 前記絶縁部材の全部が、前記絶縁体からなる請求項1から3のいずれか1項に記載の絶縁転がり軸受。 An insulating rolling bearing according to any one of claims 1 to 3, in which the entire insulating member is made of the insulating material. 前記絶縁体が、ニトリルゴム、アクリルゴム、フッ素ゴム又はポリアミド樹脂によって形成されている請求項1から3のいずれか1項に記載の絶縁転がり軸受。 An insulating rolling bearing according to any one of claims 1 to 3, wherein the insulator is made of nitrile rubber, acrylic rubber, fluororubber or polyamide resin. 前記絶縁部材が、前記絶縁体によって形成されたシールリップ部を有する請求項1から3のいずれか1項に記載の絶縁転がり軸受。 An insulating rolling bearing according to any one of claims 1 to 3, wherein the insulating member has a seal lip portion formed by the insulator. 前記シールリップ部が、前記外輪と前記内輪のうちの前記一方の軌道輪とは逆の他方の軌道輪と当該シールリップ部との間を流体潤滑状態にすることが可能な態様で形成された複数の突起を有する請求項7に記載の絶縁転がり軸受。 An insulated rolling bearing as claimed in claim 7, in which the seal lip portion has a plurality of protrusions formed in such a manner that it is possible to create a fluid lubrication state between the seal lip portion and the other raceway opposite to the one of the outer ring and the inner ring.
JP2022163214A 2022-10-11 2022-10-11 Insulated Rolling Bearing Pending JP2024056385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022163214A JP2024056385A (en) 2022-10-11 2022-10-11 Insulated Rolling Bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022163214A JP2024056385A (en) 2022-10-11 2022-10-11 Insulated Rolling Bearing

Publications (1)

Publication Number Publication Date
JP2024056385A true JP2024056385A (en) 2024-04-23

Family

ID=90749286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022163214A Pending JP2024056385A (en) 2022-10-11 2022-10-11 Insulated Rolling Bearing

Country Status (1)

Country Link
JP (1) JP2024056385A (en)

Similar Documents

Publication Publication Date Title
US11002315B2 (en) Rolling bearing having electrical insulating material, and manufacturing process of such rolling bearing
EP3048340B1 (en) Sealing arrangement
CN109154326B (en) Bearing sealing device
KR20180103802A (en) Charging electricity through seal for bearing and Bearing having the same
JP7151533B2 (en) hub unit bearing
JP2009287658A (en) Electrolytic corrosion preventive insulating rolling bearing
JP2019094976A (en) Electric corrosion prevention bearing
JP2024056385A (en) Insulated Rolling Bearing
JP7495277B2 (en) Wheel support rolling bearing unit
JPH04210124A (en) Electrically insulated bearing
CN111828485A (en) Sealing device and bearing assembly
KR102075472B1 (en) A Cartridge Seal For Rolling Bearing
JP2021134800A (en) Rolling bearing
JP2000145799A (en) Sealing device for rolling bearing and highly sludgeresistant rolling bearing
US20230220882A1 (en) Bearing device with integrated electrical insulation, in particular for an electric motor or machine
CN214500040U (en) Conductive sealing ring and bearing assembly
US20240200609A1 (en) Insulated bearing
JP4466139B2 (en) Rolling bearing sealing structure
US20230220874A1 (en) Bearing device with integrated electrical insulation, in particular for an electric motor or machine
US20230223813A1 (en) Bearing device with integrated electrical insulation, in particular for an electric motor or machine
JP7523787B2 (en) Sealing device
JP2019173878A (en) Wheel bearing device
WO2023026978A1 (en) Bearing device
KR102580857B1 (en) Rolling bearing having improved sealing function
CN110905915B (en) Self-aligning roller bearing