JP2024042266A - Bearing device and spindle device - Google Patents

Bearing device and spindle device Download PDF

Info

Publication number
JP2024042266A
JP2024042266A JP2022146862A JP2022146862A JP2024042266A JP 2024042266 A JP2024042266 A JP 2024042266A JP 2022146862 A JP2022146862 A JP 2022146862A JP 2022146862 A JP2022146862 A JP 2022146862A JP 2024042266 A JP2024042266 A JP 2024042266A
Authority
JP
Japan
Prior art keywords
tapered surface
bearing device
spacer
ring
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022146862A
Other languages
Japanese (ja)
Inventor
勇介 澁谷
Yusuke Shibuya
智昭 牧野
Tomoaki Makino
靖之 福島
Yasuyuki Fukushima
孝誌 小池
Takashi Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2022146862A priority Critical patent/JP2024042266A/en
Publication of JP2024042266A publication Critical patent/JP2024042266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To provide a bearing device and a spindle device capable of stably holding a member locking to a spacer when the temperature of a bearing changes.SOLUTION: A spacer 8 has an outer ring spacer 9 disposed between outer rings 6a and 7a that is a fixing side of a plurality of bearings 6 and 7, and an inner ring spacer 10 disposed between inner rings 6b and 7b that is a rotating side of the plurality of bearings 6 and 7. The outer ring space 9 has a cylindrical first member 13, and a cylindrical second member 14 provided on an inner diameter side of the first member 13. On an inner periphery of the first member 13, a first tapered surface 15 decreasing an inner diameter toward one end side in an axial direction is formed, and on the other hand, on an outer periphery of the second member 14, a second tapered surface 22 decreasing an outer diameter toward the one end side and capable of surface-contacting with the first tapered surface 15 is formed. The second member 14 is energized toward the one end side so as to contact the first tapered surface 15 and the second tapered surface 22 by the energizing force of an energizing member 23 provided in the spacer 8.SELECTED DRAWING: Figure 1

Description

この発明は、工作機械などの産業機械に用いられる軸受装置、および、この軸受装置を採用したスピンドル装置に関する。 The present invention relates to a bearing device used in an industrial machine such as a machine tool, and a spindle device employing this bearing device.

工作機械などの産業機械(例えばスピンドル装置)においては、加工精度や生産効率などの向上のため、主軸の回転速度の高速化が求められている。主軸の回転速度の高速化に伴い軸受の発熱量も増大しており、冷却効率の高いオイル潤滑方式を採用した軸受装置が提案されている。 In industrial machines such as machine tools (e.g. spindle devices), there is a demand for faster spindle rotation speeds to improve machining precision and production efficiency. As the spindle rotation speed increases, the amount of heat generated by the bearings also increases, and so bearing devices that use an oil lubrication method with high cooling efficiency have been proposed.

例えば下記特許文献1に示す軸受装置は、軸受に潤滑油を供給するための潤滑油供給ユニットを備えている。この潤滑油供給ユニットを構成する潤滑油タンク、ノズル、制御回路などの部品一式は、中空円環状のハウジングの中に収容されている。このハウジングは、軸受の外輪に隣り合って設けられた外輪間座に接着剤で固定されている(特許文献1の段落0026~0050、図7などを参照)。 For example, a bearing device disclosed in Patent Document 1 below includes a lubricating oil supply unit for supplying lubricating oil to a bearing. A set of parts constituting this lubricating oil supply unit, such as a lubricating oil tank, a nozzle, and a control circuit, is housed in a hollow annular housing. This housing is fixed with an adhesive to an outer ring spacer provided adjacent to the outer ring of the bearing (see paragraphs 0026 to 0050 of Patent Document 1, FIG. 7, etc.).

特許第6486642号公報Patent No. 6486642

特許文献1の構成においては、高い剛性が要求される外輪間座の素材として金属が用いられ、剛性がそれほど要求されないハウジングの素材として加工性が高い樹脂が用いられることが多い。金属と樹脂は線膨張係数がかなり異なるため、軸受装置の温度変化に伴って接着剤が剥離して外輪間座とハウジングとの間に隙間が生じたり、ハウジングに過度な圧縮応力が作用して亀裂が発生したりするおそれがある。 In the configuration of Patent Document 1, metal is often used as the material for the outer ring spacer, which requires high rigidity, and resin, which has high workability, is often used as the material for the housing, which does not require high rigidity. Metals and resins have significantly different coefficients of linear expansion, so changes in the temperature of the bearing device can cause the adhesive to peel off, creating a gap between the outer ring spacer and the housing, or causing excessive compressive stress to be applied to the housing. There is a risk that cracks may occur.

この発明が解決しようとする課題は、軸受の温度変化が生じた際に間座に係る部材を安定的に保持可能な軸受装置、および、この軸受装置を採用したスピンドル装置を提供することである。 The problem to be solved by this invention is to provide a bearing device that can stably hold a member related to a spacer when a temperature change occurs in the bearing, and a spindle device that employs this bearing device. .

上記の課題を解決するため、この発明では、
外輪、前記外輪の内径側に設けられる内輪、および、前記外輪と前記内輪の間に設けられる転動体を備えた複数の軸受と、前記複数の軸受の間に配置された間座と、を有し、前記間座を介して前記複数の軸受に予圧を与える軸受装置において、
前記間座が、前記複数の軸受の固定側となる外輪の間に配置される外輪間座と、前記複数の軸受の回転側となる内輪の間に配置される内輪間座とを有し、
前記外輪間座が、円筒状の第一部材と、前記第一部材の内径側に設けられる円筒状の第二部材と、を有し、
前記第一部材の内周には、軸方向の一端側に向かうにつれてその内径が縮径する第一テーパ面が形成されている一方で、前記第二部材の外周には、前記一端側に向かうにつれてその外径が縮径し、前記第一テーパ面と面接触可能な第二テーパ面が形成されており、前記間座に設けられた付勢部材の付勢力によって、前記第一テーパ面と前記第二テーパ面が接触するように、前記第二部材が前記一端側に向かって付勢されていることを特徴とする軸受装置を構成した。
In order to solve the above problems, in this invention,
A plurality of bearings including an outer ring, an inner ring provided on the inner diameter side of the outer ring, and rolling elements provided between the outer ring and the inner ring, and a spacer disposed between the plurality of bearings. and a bearing device that applies preload to the plurality of bearings via the spacer,
The spacer has an outer ring spacer arranged between outer rings on the fixed side of the plurality of bearings, and an inner ring spacer arranged between inner rings on the rotating side of the plurality of bearings,
The outer ring spacer has a cylindrical first member and a cylindrical second member provided on the inner diameter side of the first member,
A first tapered surface is formed on the inner periphery of the first member, and the inner diameter thereof decreases toward the one end in the axial direction, while a first tapered surface is formed on the outer periphery of the second member. As the outer diameter decreases, a second tapered surface is formed which can make surface contact with the first tapered surface, and the urging force of the urging member provided on the spacer causes the second tapered surface to contact the first tapered surface. The bearing device is characterized in that the second member is biased toward the one end so that the second tapered surface comes into contact with the second member.

このようにすると、第一部材と第二部材の線膨張係数の差に起因する熱膨張の差が、第一テーパ面と第二テーパ面との間のスライドによって吸収されるため、第一部材と第二部材との間に隙間が生じたり、一方の部材に過度な圧縮応力が作用して亀裂が発生したりするトラブルを防止することができる。 In this way, the difference in thermal expansion caused by the difference in linear expansion coefficient between the first member and the second member is absorbed by the slide between the first tapered surface and the second tapered surface, so that the first member It is possible to prevent troubles such as a gap forming between the first member and the second member, or cracks occurring due to excessive compressive stress acting on one member.

上記の構成においては、
前記付勢部材が、前記第一部材の内周面に形成された周溝に設けられた、周方向の一部に切れ目を有する弾性リングであって、前記周溝の前記一端側の反対側となる他端側に前記一端側に向かうにつれてその内径が拡径する溝テーパ面が形成されている一方で、前記弾性リングの前記他端側の外周端部に前記一端側に向かうにつれてその外径が拡径するリングテーパ面が形成されており、前記溝テーパ面と前記リングテーパ面が前記弾性リングの弾性によって接触するとその面圧によって前記弾性リングが前記一端側に向かって変位して前記第二部材を前記一端側に向かって付勢する構成とするのが好ましい。
In the above configuration,
The biasing member is an elastic ring provided in a circumferential groove formed on the inner circumferential surface of the first member and having a cut in a part of the circumferential direction, the side opposite to the one end side of the circumferential groove. A groove tapered surface is formed on the other end side of the elastic ring, the inner diameter of which increases as the inner diameter increases toward the one end side. A ring taper surface whose diameter increases is formed, and when the groove taper surface and the ring taper surface contact each other due to the elasticity of the elastic ring, the elastic ring is displaced toward the one end due to the surface pressure, and the ring taper surface is disposed toward the one end. Preferably, the second member is biased toward the one end.

このようにすると、簡便な構成で第二部材を一端側に向かって付勢して第一テーパ面と第二テーパ面を確実に接触させることができるとともに、両テーパ面間の当接力が増大した際に弾性リングが他端側に向かって変位して両テーパ面間の面圧を緩和することができる。 In this way, the second member can be biased toward one end with a simple configuration to ensure that the first tapered surface and the second tapered surface are in contact with each other, and the contact force between both tapered surfaces is increased. When this occurs, the elastic ring is displaced toward the other end, thereby relieving the surface pressure between both tapered surfaces.

上記のすべての構成においては、
前記第一部材と前記第二部材は前記第一テーパ面と前記第二テーパ面のみで互いに接触している構成とするのが好ましい。
In all configurations above,
It is preferable that the first member and the second member are in contact with each other only at the first tapered surface and the second tapered surface.

このようにすると、第一部材と第二部材との間のスライド抵抗が小さくなるため、付勢部材による第二部材の軸方向への押圧、および、第一部材と第二部材の熱膨張の差に起因するスライドをスムーズに行うことができる。 This reduces the sliding resistance between the first and second members, allowing the second member to be pressed in the axial direction by the biasing member and for sliding caused by the difference in thermal expansion between the first and second members to occur smoothly.

上記のすべての構成においては、
前記第一テーパ面および前記第二テーパ面のテーパ角の大きさをα、前記第一部材に対する前記第二部材の静止摩擦係数の大きさをμとしたときに、tan-1μ≦αの関係が成立する構成とするのが好ましい。
In all configurations above,
When the magnitude of the taper angle of the first tapered surface and the second tapered surface is α, and the magnitude of the static friction coefficient of the second member with respect to the first member is μ, tan −1 μ≦α. It is preferable to adopt a configuration in which a relationship is established.

このようにすると、付勢部材の付勢力によって第二部材が第一部材に対して際限なく軸方向に挿入されるのを防止しつつ、第一部材と第二部材の熱膨張の差に起因する第一テーパ面と第二テーパ面との間のスライドをスムーズに行うことができる。 In this way, the second member is prevented from being endlessly inserted into the first member in the axial direction due to the biasing force of the biasing member. It is possible to smoothly slide between the first tapered surface and the second tapered surface.

上記のすべての構成においては、
前記第二部材が樹脂で構成されているのが好ましい。
In all configurations above,
Preferably, the second member is made of resin.

このようにすると、複雑な形状となりやすい潤滑油供給ユニットなどを加工性が高い樹脂からなる第二部材に簡便に形成することができる。 In this way, lubricant supply units, which tend to have complex shapes, can be easily formed in the second member, which is made of a resin that is highly processable.

上記のすべての構成においては、
前記第二部材の内部に空洞部が形成されており、前記空洞部内に軸受装置の駆動や状態検出に係る部品が実装されている構成とするのが好ましい。
In all configurations above,
Preferably, a cavity is formed inside the second member, and parts related to driving and state detection of the bearing device are mounted in the cavity.

このようにすると、軸受装置に必要な部品を外部環境の影響(潤滑油や塵埃など)を受けることなく効率よく収容することができる。 In this way, the parts necessary for the bearing device can be efficiently housed without being affected by the external environment (lubricating oil, dust, etc.).

また、上記の課題を解決するため、この発明では、
外筒と、前記外筒内に収納される上記のすべての構成のうちのいずれかに記載の軸受装置と、前記軸受装置によって回転支持される主軸と、を有するスピンドル装置を構成した。
In addition, in order to solve the above problems, in this invention,
A spindle device was constructed that includes an outer cylinder, a bearing device according to any one of the above-mentioned configurations housed in the outer cylinder, and a main shaft rotatably supported by the bearing device.

このようにすると、スピンドル装置の高速回転に伴って軸受周辺が発熱しても、その発熱に伴う部材の熱膨張によるトラブルを回避することができ、安定した動作状態を確保することができる。 In this way, even if the area around the bearing generates heat due to high-speed rotation of the spindle device, troubles due to thermal expansion of the members due to the heat generation can be avoided, and a stable operating state can be ensured.

この発明の軸受装置およびスピンドル装置は、上記の構成を採用したことにより、軸受の温度変化が生じた際に間座に係る部材を安定的に保持することができ、軸受装置およびこの軸受装置を採用したスピンドル装置の安定した動作状態を確保することができる。 By adopting the above configuration, the bearing device and spindle device of the present invention can stably hold the member related to the spacer when the temperature of the bearing changes, and the bearing device and the spindle device can A stable operating state of the adopted spindle device can be ensured.

この発明に係るスピンドル装置の一実施形態を示す断面図A sectional view showing an embodiment of a spindle device according to the present invention 図1に示すスピンドル装置に採用される軸受装置の断面図A cross-sectional view of the bearing device used in the spindle device shown in Figure 1. 図2に示す軸受装置の要部の断面図A sectional view of the main parts of the bearing device shown in Figure 2 第一部材と第二部材の接触関係を示す断面図FIG. 1 is a cross-sectional view showing a contact relationship between a first member and a second member; 図2に示す軸受装置の変形例の要部の断面図A sectional view of the main parts of the modified example of the bearing device shown in FIG. 2

この発明に係るスピンドル装置1の一実施形態を図1から図4に基づいて説明する。このスピンドル装置1は、ビルトインモータ式の工作機械用スピンドル装置1である。このスピンドル装置1は、筒状の外筒2の内部に、軸受装置3と、ビルトインモータ4と、主軸5とを備えている。以下においては、主軸5の長さ方向に沿う方向を軸方向といい、図1などにおいて右側を一端側、左側を他端側という。また、主軸5の軸心に対し直交する方向を径方向、主軸5の軸周りに周回する方向を周方向という。 An embodiment of a spindle device 1 according to the present invention will be described based on FIGS. 1 to 4. This spindle device 1 is a built-in motor type spindle device 1 for a machine tool. This spindle device 1 includes a bearing device 3, a built-in motor 4, and a main shaft 5 inside a cylindrical outer cylinder 2. Hereinafter, the direction along the length of the main shaft 5 will be referred to as the axial direction, and in FIG. 1 and the like, the right side will be referred to as one end side, and the left side will be referred to as the other end side. Further, the direction perpendicular to the axis of the main shaft 5 is called the radial direction, and the direction of rotation around the axis of the main shaft 5 is called the circumferential direction.

図2に詳細に示すように、軸受装置3は、軸方向に所定間隔だけ離間して設けられた一対の軸受6、7と、一対の軸受6、7の間に挟み込まれるように配置された間座8と、を有している。この一対の軸受6、7は背面組み合わせされたアンギュラ玉軸受であって、間座8を介して軸方向の予圧が与えられるよう構成されている。軸受6、7は、それぞれ、外輪6a、7aと、外輪6a、7aの内径側に設けられる内輪6b、7bと、外輪6a、7aと内輪6b、7b、の間に設けられる転動体6c、7cとしての複数の玉と、複数の転動体6c、7cを所定間隔に離間させる保持器6d、7dと、を有している。 As shown in detail in FIG. 2, the bearing device 3 is arranged so as to be sandwiched between a pair of bearings 6 and 7 that are spaced apart from each other by a predetermined distance in the axial direction. It has a spacer 8. The pair of bearings 6 and 7 are back-to-back angular ball bearings, and are configured to be preloaded in the axial direction via a spacer 8. The bearings 6 and 7 include outer rings 6a and 7a, inner rings 6b and 7b provided on the inner diameter side of the outer rings 6a and 7a, and rolling elements 6c and 7c provided between the outer rings 6a and 7a and the inner rings 6b and 7b, respectively. It has a plurality of balls and retainers 6d and 7d that space the plurality of rolling elements 6c and 7c at predetermined intervals.

間座8は、一対の軸受6、7の外輪6a、7aの間に配置される外輪間座9と、一対の軸受6、7の内輪6b、7bの間に配置される内輪間座10とを有している。この実施形態においては、外輪6a、7aは外筒2に対してハウジング11を介して固定される固定側、内輪6b、7bは主軸5とともに軸周りに回転する回転側となっている。ハウジング11の外周には冷却媒体流路12が形成されている。この冷却媒体流路12に冷却媒体(水やオイル)を流すことによって軸受装置3を構成する一対の軸受6、7を冷却している。 The spacer 8 includes an outer ring spacer 9 disposed between the outer rings 6a and 7a of the pair of bearings 6 and 7, and an inner ring spacer 10 arranged between the inner rings 6b and 7b of the pair of bearings 6 and 7. have. In this embodiment, the outer rings 6a and 7a are fixed sides that are fixed to the outer cylinder 2 via the housing 11, and the inner rings 6b and 7b are rotating sides that rotate together with the main shaft 5 around the axis. A coolant flow path 12 is formed on the outer periphery of the housing 11 . A pair of bearings 6 and 7 forming the bearing device 3 are cooled by flowing a cooling medium (water or oil) through the cooling medium flow path 12.

外輪間座9は、円筒状の第一部材13と、第一部材13の内径側に設けられる円筒状の第二部材14から構成されている。 The outer ring spacer 9 is composed of a cylindrical first member 13 and a cylindrical second member 14 provided on the inner diameter side of the first member 13.

第一部材13は、主軸5に印加された荷重を支持する役目を有しているため、剛性が高い金属(この実施形態では鋼)で構成されている。図3に詳細に示すように、第一部材13の軸方向中心よりも他端側の内周には、軸方向の一端側に向かうにつれてその内径が縮径する第一テーパ面15(テーパ角α(図4を参照)は約6度)が形成されている。第一部材13の軸方向の全長に対する第一テーパ面15の形成範囲は約20%である。第一部材13の内周に形成された第一テーパ面15の他端側には周溝16が形成されている。この周溝16の他端側の内壁には、一端側に向かうにつれて内径が拡径する溝テーパ面17が形成されている。 Since the first member 13 has the role of supporting the load applied to the main shaft 5, it is made of a highly rigid metal (steel in this embodiment). As shown in detail in FIG. 3, on the inner periphery of the first member 13 on the other end side from the axial center, there is a first tapered surface 15 (taper angle α (see FIG. 4) is approximately 6 degrees). The formation range of the first tapered surface 15 with respect to the total length of the first member 13 in the axial direction is about 20%. A circumferential groove 16 is formed on the other end side of the first tapered surface 15 formed on the inner circumference of the first member 13 . A groove tapered surface 17 whose inner diameter increases toward the one end is formed on the inner wall of the other end of the circumferential groove 16 .

第二部材14は、第一部材13と異なり主軸5からの荷重は直接作用しないため、軽量かつ加工性が高い樹脂(この実施形態ではポリフェニレンサルファイド(PPS))で構成されている。第二部材14は、周方向断面がU字形をなし他端側に向かって開口する本体部18と、本体部18の開口に設けられる蓋体19と、を有している。第二部材14の内部には空洞部20が形成されており、この空洞部20内に軸受装置の駆動や状態検出に係る部品21(給油機構などの機械部品、センサ、処理回路や信号を送信する無線回路を実装したプリント基板、電源(発電機、電池)など)が配置される。空洞部20内には、必要に応じて樹脂などの封止材が充填される。あるいは、本体部18の開口と蓋体19の間に液状ガスケットを塗布することで空洞部20を封止することもできる。第二部材14の軸方向長さは、第一部材13の軸方向長さよりやや短く、この実施形態では第一部材13の軸方向長さの約80%である。 Unlike the first member 13, the second member 14 is not directly subjected to the load from the main shaft 5, and therefore is made of lightweight and highly workable resin (polyphenylene sulfide (PPS) in this embodiment). The second member 14 includes a main body 18 having a U-shaped circumferential cross section and opening toward the other end, and a lid 19 provided at the opening of the main body 18 . A cavity 20 is formed inside the second member 14, and parts 21 (mechanical parts such as an oil supply mechanism, sensors, processing circuits, and signal transmission A printed circuit board with a wireless circuit mounted on it, a power source (generator, battery, etc.) will be installed. The cavity 20 is filled with a sealing material such as resin as necessary. Alternatively, the cavity 20 can be sealed by applying a liquid gasket between the opening of the main body 18 and the lid 19. The axial length of the second member 14 is slightly shorter than the axial length of the first member 13, and in this embodiment is approximately 80% of the axial length of the first member 13.

第二部材14の本体部18の軸方向中心よりも他端側の外周には、一端側に向かうにつれてその外径が縮径し、第一部材13に形成された第一テーパ面15と面接触可能な第二テーパ面22が形成されている。第二テーパ面22のテーパ角αは第一テーパ面15のテーパ角αと同じ(約6度)である。第二部材14の軸方向の全長に対する第二テーパ面22の形成範囲は約20%である。図3に示すように、第一部材13と第二部材14は第一テーパ面15と第二テーパ面22のみで互いに接触しており、この接触領域以外においては第一部材13と第二部材14との間に径方向隙間が生じている。 The outer periphery of the second member 14 on the other end side than the axial center of the main body part 18 has an outer diameter that decreases toward the one end side, and is in contact with the first tapered surface 15 formed on the first member 13. A contactable second tapered surface 22 is formed. The taper angle α of the second tapered surface 22 is the same as the taper angle α of the first tapered surface 15 (approximately 6 degrees). The formation range of the second tapered surface 22 with respect to the entire length of the second member 14 in the axial direction is approximately 20%. As shown in FIG. 3, the first member 13 and the second member 14 are in contact with each other only at the first tapered surface 15 and the second tapered surface 22, and other than this contact area, the first member 13 and the second member 14, a radial gap is created between the two.

第一テーパ面15および第二テーパ面22のテーパ角αの大きさは適宜決めることもできるが、以下のように決定するのがより好ましい。ここでは、図4に示すように、線膨張係数が異なる第一部材13と第二部材14が第一テーパ面15と第二テーパ面22を介して嵌合固定された状態において、両部材13、14間に熱膨張差に伴う当接力Fが生じた場合を考える。各テーパ面15、22のテーパ角をα、第一部材13に対する第二部材14の静止摩擦係数をμとしたときに、両部材13、14間での摺動が可能となるためには、F・sinα>μF・cosαを満たす必要がある。この式を整理すると、tanα>μ、つまり、α>tan-1μとなる。この実施形態のように、第一部材13に鋼材、第二部材14にPPSを採用したときの静止摩擦係数μは例えば0.1であり、このときテーパ角αは5.7度よりも大きくすることが推奨される。その一方で、テーパ角αの大きさが過大となると、第一部材13と第二部材14との間にわずかな熱膨張差が生じただけで両部材13、14が不用意に摺動するおそれがあるため、α<4tan-1μの範囲とするのが好ましく、より好ましくは、α<2tan-1μの範囲とする。 Although the magnitudes of the taper angles α of the first tapered surface 15 and the second tapered surface 22 can be determined as appropriate, it is more preferable to determine them as follows. As shown in FIG. , 14 is generated due to the difference in thermal expansion. When the taper angle of each tapered surface 15, 22 is α, and the coefficient of static friction of the second member 14 with respect to the first member 13 is μ, in order to enable sliding between the two members 13, 14, It is necessary to satisfy F·sin α>μF·cos α. Rearranging this equation, tanα>μ, that is, α>tan −1 μ. As in this embodiment, when the first member 13 is made of steel and the second member 14 is made of PPS, the static friction coefficient μ is, for example, 0.1, and the taper angle α is larger than 5.7 degrees. It is recommended that you do so. On the other hand, if the taper angle α becomes too large, even a slight difference in thermal expansion between the first member 13 and the second member 14 causes both members 13 and 14 to slide carelessly. Therefore, the range is preferably α<4tan −1 μ, and more preferably the range α<2tan −1 μ.

また、第一テーパ面15および第二テーパ面22の形成範囲も適宜決めることができるが、第一部材13および第二部材14の軸方向の全長の10%以上50%以下の範囲内とするのが好ましく、15%以上30%以下の範囲内とするのがより好ましい。10%よりも小さいと第一テーパ面15と第二テーパ面22との間の十分な接触面積が確保できず第二部材14の支持状態が不安定になるとともに、熱膨張差が生じたときの第一部材13と第二部材14との間のスムーズな摺動が困難となるおそれがある。また、50%よりも大きいと第二部材14の内部(特にその一端側)に十分な大きさの空洞部20が確保できず、この空洞部20への部品21の実装が困難となるおそれがある。 Furthermore, the formation range of the first tapered surface 15 and the second tapered surface 22 can be determined as appropriate, but it should be within the range of 10% or more and 50% or less of the total length of the first member 13 and the second member 14 in the axial direction. It is preferably within the range of 15% or more and 30% or less. If it is smaller than 10%, a sufficient contact area between the first tapered surface 15 and the second tapered surface 22 cannot be secured, and the supporting state of the second member 14 becomes unstable, and a difference in thermal expansion occurs. There is a possibility that smooth sliding between the first member 13 and the second member 14 may become difficult. Moreover, if it is larger than 50%, a sufficiently large cavity 20 cannot be secured inside the second member 14 (particularly on one end thereof), and there is a risk that mounting the component 21 into this cavity 20 will be difficult. be.

また、第一部材13と第二部材14の軸方向長さの関係も適宜決めることができるが、第一部材13の軸方長さよりも第二部材14の軸方向長さが短いのが好ましく、第二部材14の軸方向長さが第一部材13の軸方向長さの60%以上98%以下の範囲内とするのが特に好ましい。 Although the relationship between the axial lengths of the first member 13 and the second member 14 can be determined as appropriate, it is preferable that the axial length of the second member 14 is shorter than the axial length of the first member 13. It is particularly preferable that the axial length of the second member 14 is within the range of 60% or more and 98% or less of the axial length of the first member 13.

第一部材13に形成された周溝16には、付勢部材23としての弾性リング(以下、付勢部材23と同じ符号を付する。)が設けられている。この弾性リング23は、周方向の一部に切れ目を有しており、その素材の有する弾性によって外力の作用時に拡縮径可能となっている。弾性リング23の他端側の外周端部には、一端側に向かうにつれてその外径が拡径するリングテーパ面24が形成されている。溝テーパ面17とリングテーパ面24が弾性リング23の弾性によって接触すると、その面圧によって弾性リング23が一端側に向かって変位する。そして、この弾性リング23が第二部材14の他端側端部と当接して、この第二部材14を一端側に向かって付勢する。弾性リング23の軸方向位置は、第一テーパ面15と第二テーパ面22との接触に伴って第二部材14に対して作用する他端側に向かう反力と、弾性リング23の弾性力によって生じる溝テーパ面17とリングテーパ面24との接触に伴って弾性リング23に作用する一端側に向かう力が釣り合う位置によって決まる。 The circumferential groove 16 formed in the first member 13 is provided with an elastic ring (hereinafter, given the same reference numeral as the urging member 23) as the urging member 23. This elastic ring 23 has a cut in a part of its circumferential direction, and the elasticity of its material allows it to expand and contract in diameter when an external force is applied. A ring tapered surface 24 whose outer diameter increases toward the one end is formed at the outer peripheral end of the other end of the elastic ring 23 . When the groove tapered surface 17 and the ring tapered surface 24 come into contact due to the elasticity of the elastic ring 23, the elastic ring 23 is displaced toward one end due to the surface pressure. The elastic ring 23 then comes into contact with the other end of the second member 14 and urges the second member 14 toward the one end. The axial position of the elastic ring 23 is determined by the reaction force directed toward the other end that acts on the second member 14 due to the contact between the first tapered surface 15 and the second tapered surface 22, and the elastic force of the elastic ring 23. It is determined by the position where the forces acting on the elastic ring 23 toward the one end side due to the contact between the groove tapered surface 17 and the ring tapered surface 24 are balanced.

図1に示すように、ビルトインモータ4は、軸受装置3と軸方向に隣り合うように外筒2内に設けられている。このビルトインモータ4のステータ25は外筒2の内周に固定されており、ロータ26は主軸5の外周に嵌合した筒状部材27に固定されている。ロータ26は、ステータ25に対し軸周りに相対回転する。 As shown in FIG. 1, the built-in motor 4 is provided in the outer cylinder 2 so as to be adjacent to the bearing device 3 in the axial direction. A stator 25 of this built-in motor 4 is fixed to the inner periphery of the outer cylinder 2, and a rotor 26 is fixed to a cylindrical member 27 fitted to the outer periphery of the main shaft 5. The rotor 26 rotates relative to the stator 25 around an axis.

主軸5は、一端側が円筒ころ軸受28、他端側が軸受装置3によって軸周りに回転自在に支持されている。この主軸5の他端側には、エンドミルなどの切削工具(図示せず)が接続される。 The main shaft 5 is rotatably supported around the shaft by a cylindrical roller bearing 28 at one end and a bearing device 3 at the other end. A cutting tool (not shown) such as an end mill is connected to the other end of the main shaft 5.

このスピンドル装置1の組み立てにおいては、まず主軸5に対して一対の軸受6、7のうちの一方の軸受6、間座8、一対の軸受6、7のうちの他方の軸受7が順に挿入され、さらに間座29が挿入される。そして、主軸5に設けられたナット30を締めて間座29を軸方向の他端側に押圧することで軸受装置3に予圧が与えられる。軸受装置3の組み立て後に前蓋31を外筒2およびハウジング11に対しボルト32で固定して、一方の軸受6の外輪6aを一端側に向かって押すことで主軸5がハウジング11に固定される。 When assembling this spindle device 1, first one of the pair of bearings 6, 7, the spacer 8, and the other of the pair of bearings 6, 7 are inserted in order onto the main shaft 5, and then the spacer 29 is inserted. A preload is then applied to the bearing device 3 by tightening the nut 30 on the main shaft 5 to press the spacer 29 toward the other end in the axial direction. After assembling the bearing device 3, the front cover 31 is fixed to the outer tube 2 and housing 11 with bolts 32, and the outer ring 6a of one of the bearings 6 is pressed toward one end to fix the main shaft 5 to the housing 11.

主軸5の一端側に設けられた円筒ころ軸受28の内輪は、主軸5の外周に嵌合する筒状部材27および内輪押さえ33によって位置決めされている。内輪押さえ33は、主軸5に設けられたナット34を締めることで主軸5から抜け止めされる。円筒ころ軸受28の外輪は、端部材35に固定された位置決め部材36、37に挟まれている。端部材35はボルト38によって外筒2の一端側に固定されている。 The inner ring of the cylindrical roller bearing 28 provided on one end of the main shaft 5 is positioned by a tubular member 27 that fits onto the outer periphery of the main shaft 5 and an inner ring retainer 33. The inner ring retainer 33 is prevented from coming off the main shaft 5 by tightening a nut 34 provided on the main shaft 5. The outer ring of the cylindrical roller bearing 28 is sandwiched between positioning members 36, 37 fixed to an end member 35. The end member 35 is fixed to one end of the outer cylinder 2 by a bolt 38.

上記実施形態に係る軸受装置3の作用について説明する。第一部材13の熱膨張に伴って第一部材13の第一テーパ面15と第二部材14の第二テーパ面22との間の面圧が高まると、弾性リング23の一端側に向かう付勢力に抗して、第二部材14が第一部材13に対し他端側に向かってスライドする。これにより、第一部材13の熱膨張に伴って第二部材14に作用する外力が軽減され、第二部材14の破損が防止される。このとき、周溝16に形成された溝テーパ面17と弾性リング23に形成されたリングテーパ面24との間の面圧が高まり、この面圧によって弾性リング23はやや縮径した状態となっている。 The operation of the bearing device 3 according to the above embodiment will be explained. When the contact pressure between the first tapered surface 15 of the first member 13 and the second tapered surface 22 of the second member 14 increases due to thermal expansion of the first member 13, the elastic ring 23 is attached toward one end side. The second member 14 slides toward the other end of the first member 13 against the force. Thereby, the external force acting on the second member 14 due to the thermal expansion of the first member 13 is reduced, and damage to the second member 14 is prevented. At this time, the contact pressure between the groove tapered surface 17 formed in the circumferential groove 16 and the ring tapered surface 24 formed in the elastic ring 23 increases, and this contact pressure causes the elastic ring 23 to become slightly reduced in diameter. ing.

その一方で、第一部材13の熱膨張が解消すると、溝テーパ面17とリングテーパ面24との間の面圧によって弾性リング23が一端側に向かって変位する。そして、この弾性リング23が第二部材14の他端側端部と当接して、この第二部材14を一端側に向かって付勢する。これにより、第一テーパ面15と第二テーパ面22との間の所定の面圧が確保され、第一部材13と第二部材14との間に隙間が生じる不具合を防止することができる。 On the other hand, when the thermal expansion of the first member 13 is eliminated, the elastic ring 23 is displaced toward one end due to the surface pressure between the groove tapered surface 17 and the ring tapered surface 24. The elastic ring 23 then comes into contact with the other end of the second member 14 and urges the second member 14 toward the one end. Thereby, a predetermined surface pressure between the first tapered surface 15 and the second tapered surface 22 is ensured, and a problem in which a gap occurs between the first member 13 and the second member 14 can be prevented.

上記の軸受装置3の変形例の要部を図5に示す。この変形例に係る軸受装置3の基本構成は図2に示した軸受装置3と共通するが、第一部材13と第二部材14との間に、回り止め機構39を設けた点、および、蓋体19の外周面を一端側に向かうにつれて外径が縮径するテーパ面とするとともに、本体部18の他端側の内周面を一端側に向かうにつれて内径が縮径するテーパ面とし、蓋体19と本体部18をテーパ面同士で嵌合させた点で相違する。 A main part of a modification of the bearing device 3 described above is shown in FIG. The basic configuration of the bearing device 3 according to this modification is the same as the bearing device 3 shown in FIG. 2, except that a detent mechanism 39 is provided between the first member 13 and the second member 14, and The outer circumferential surface of the lid body 19 is a tapered surface whose outer diameter decreases toward one end, and the inner circumferential surface of the other end of the main body 18 is a tapered surface whose inner diameter decreases toward the one end. The difference is that the lid body 19 and the main body part 18 are fitted with each other with their tapered surfaces.

この回り止め機構39は、第一部材13と第二部材14の本体部18のそれぞれに形成されたキー溝に跨るように軸方向から挿入されたキー部材である。このように回り止め機構39を設けることにより、外筒2に固定された第一部材13に対する第二部材14の相対回転が防止されるため、この第二部材14の内部に収容された部品21を所定の周方向位置に保持することができる。 This rotation prevention mechanism 39 is a key member inserted from the axial direction so as to straddle key grooves formed in each of the main body portions 18 of the first member 13 and the second member 14 . By providing the rotation prevention mechanism 39 in this manner, relative rotation of the second member 14 with respect to the first member 13 fixed to the outer cylinder 2 is prevented, so that the component 21 housed inside the second member 14 can be prevented from rotating relative to the first member 13 fixed to the outer cylinder 2. can be held at a predetermined circumferential position.

また、蓋体19と本体部18をテーパ面同士で嵌合させることで、空洞部20の密閉性を向上させることができる。また、第二テーパ面22と本体部18の内周面に形成されたテーパ面のテーパ角を同じ大きさとすることで、第二テーパ面22を形成した部分の肉厚が均一となり、熱膨張に伴う変形が均一化される。このため、第一部材13と第二部材14との間の摺動性を向上することができる。 Moreover, by fitting the lid body 19 and the main body part 18 with their tapered surfaces, the sealing performance of the cavity part 20 can be improved. Furthermore, by making the taper angles of the second tapered surface 22 and the tapered surface formed on the inner circumferential surface of the main body part 18 the same, the thickness of the portion where the second tapered surface 22 is formed becomes uniform, and thermal expansion The deformation caused by this is made uniform. Therefore, the slidability between the first member 13 and the second member 14 can be improved.

上記の軸受装置3においては、外輪間座9を第一部材13と第二部材14で構成し、第一部材13に第一テーパ面15、第二部材14に第二テーパ面22をそれぞれ形成して、第一テーパ面15と第二テーパ面22を面接触させる構成としたので、第一部材13と第二部材14の線膨張係数の差に起因する熱膨張の差が、第一テーパ面15と第二テーパ面22との間のスライドによって吸収される。このため、第一部材13と第二部材14との間に隙間が生じたり、一方の部材13、14に過度な圧縮応力が作用して亀裂が発生したりするトラブルを防止することができる。しかも、第一部材13と第二部材14が接着剤などの固定手段によって固定されていないため、第一部材13と第二部材14の組み立てや分解が容易であり、部品交換や部品の再利用が可能となる。 In the bearing device 3 described above, the outer ring spacer 9 is composed of a first member 13 and a second member 14, and the first member 13 has a first tapered surface 15 and the second member 14 has a second tapered surface 22. Since the first tapered surface 15 and the second tapered surface 22 are configured to be in surface contact with each other, the difference in thermal expansion due to the difference in linear expansion coefficient between the first member 13 and the second member 14 is It is absorbed by the sliding between the surface 15 and the second tapered surface 22. Therefore, it is possible to prevent troubles such as a gap occurring between the first member 13 and the second member 14 or cracks occurring due to excessive compressive stress acting on one of the members 13 and 14. Moreover, since the first member 13 and the second member 14 are not fixed by adhesive or other fixing means, it is easy to assemble and disassemble the first member 13 and the second member 14, allowing parts to be replaced or reused. becomes possible.

上記の軸受装置3においては、第二部材14を付勢する付勢部材23として、周溝16に形成された溝テーパ面17と当接するリングテーパ面24が形成された弾性リング23を用いたので、簡便な構成で第二部材14を一端側に向かって付勢して第一テーパ面15と第二テーパ面22を確実に当接させることができるとともに、両テーパ面15、22間の当接力が増大した際に弾性リング23が他端側に向かって変位してその面圧を緩和することができる。 In the bearing device 3 described above, the elastic ring 23 on which the ring tapered surface 24 that contacts the groove tapered surface 17 formed in the circumferential groove 16 is formed is used as the urging member 23 that urges the second member 14. Therefore, with a simple configuration, the second member 14 can be urged toward one end side to ensure that the first tapered surface 15 and the second tapered surface 22 are in contact with each other. When the contact force increases, the elastic ring 23 can be displaced toward the other end to relieve the surface pressure.

上記の軸受装置3においては、第一部材13と第二部材14が第一テーパ面15と第二テーパ面22のみで互いに接触しているため、第一部材13と第二部材14との間のスライド抵抗が小さく、付勢部材23による第二部材14の軸方向への押圧、および、第一部材13と第二部材14の熱膨張の差に起因するスライドをスムーズに行うことができる。 In the bearing device 3 described above, since the first member 13 and the second member 14 are in contact with each other only at the first tapered surface 15 and the second tapered surface 22, there is a gap between the first member 13 and the second member 14. The sliding resistance is small, and the pressing of the second member 14 in the axial direction by the biasing member 23 and the sliding caused by the difference in thermal expansion between the first member 13 and the second member 14 can be performed smoothly.

上記の軸受装置3においては、第一テーパ面15および第二テーパ面22のテーパ角の大きさをα、第一部材13に対する第二部材14の静止摩擦係数の大きさをμとしたときに、テーパ角αの範囲がtan-1μ<αの範囲内となるようにしたので、付勢部材23の付勢力によって第二部材14が第一部材13に対して際限なく軸方向に挿入されるのを防止しつつ、第一部材13と第二部材14の熱膨張の差に起因する第一テーパ面15と第二テーパ面22との間のスライドをスムーズに行うことができる。 In the bearing device 3 described above, when α is the magnitude of the taper angle of the first tapered surface 15 and the second tapered surface 22, and μ is the magnitude of the static friction coefficient of the second member 14 with respect to the first member 13. Since the range of the taper angle α is set within the range of tan −1 μ<α, the second member 14 is inserted into the first member 13 in the axial direction without limit due to the urging force of the urging member 23. It is possible to smoothly slide between the first tapered surface 15 and the second tapered surface 22 due to the difference in thermal expansion between the first member 13 and the second member 14 while preventing the sliding from occurring.

上記の軸受装置3においては、主軸5に印加された荷重を支持する第一部材13を金属で構成し、主軸5からの荷重が直接作用しない第二部材14を樹脂で構成したので、第一部材13の剛性によって主軸5を安定的に支持しつつ、複雑な形状となりやすい潤滑油供給ユニットなどを加工性が高い樹脂からなる第二部材14に簡便に形成することができる。 In the bearing device 3 described above, the first member 13 that supports the load applied to the main shaft 5 is made of metal, and the second member 14, on which the load from the main shaft 5 does not directly act, is made of resin. While stably supporting the main shaft 5 due to the rigidity of the member 13, it is possible to easily form a lubricating oil supply unit and the like, which tend to have a complicated shape, on the second member 14 made of resin with high workability.

上記の軸受装置3においては、第二部材14の内部に空洞部20を形成し、その空洞部20内に軸受装置3の駆動に係る部品21が実装されている構成としたので、軸受装置3に必要な部品21を外部環境の影響(潤滑油や塵埃など)を受けることなく効率よく収容することができる。 In the bearing device 3 described above, the cavity 20 is formed inside the second member 14, and the components 21 related to the drive of the bearing device 3 are mounted in the cavity 20. The parts 21 necessary for this can be efficiently housed without being affected by the external environment (lubricating oil, dust, etc.).

上記のスピンドル装置1は、上記の軸受装置3を採用したことにより、スピンドル装置1の高速回転に伴って軸受6、7の周辺が発熱しても、その発熱に伴う各部材13、14の熱膨張によるトラブルを回避することができ、安定した動作状態を確保することができる。 The spindle device 1 described above employs the bearing device 3 described above, so that even if the surroundings of the bearings 6 and 7 generate heat due to high-speed rotation of the spindle device 1, the members 13 and 14 generate heat due to the heat generation. Trouble caused by expansion can be avoided and stable operating conditions can be ensured.

上記の軸受装置3においては、軸受6、7としてアンギュラ玉軸受を採用したが、深溝玉軸受やテーパころ軸受などのアキシアル方向に荷重を受けることができる軸受を採用することもできる。また、軸受6、7の数は2個に限定されず、さらに多くの軸受6、7で主軸5を支持する構成とすることもできる。 In the bearing device 3 described above, angular contact ball bearings are used as the bearings 6 and 7, but bearings that can receive loads in the axial direction, such as deep groove ball bearings or tapered roller bearings, may also be used. Further, the number of bearings 6 and 7 is not limited to two, and a configuration in which the main shaft 5 is supported by even more bearings 6 and 7 is also possible.

上記の軸受装置3においては、付勢部材23として弾性リング23を採用したが、第二部材14を一端側に向かって付勢できる部材であればこれに限定されず、例えば、コイルばね、皿ばねなどを採用できる可能性がある。 In the bearing device 3 described above, the elastic ring 23 is used as the biasing member 23, but it is not limited to this as long as it is a member that can bias the second member 14 toward one end. It is possible to use springs, etc.

上記の軸受装置3においては、第一部材13を金属(鋼)で、第二部材14をPPSで構成したが、例えば、第一部材13をジルコニアなどのセラミックで、第二部材14をポリエーテルエーテルケトン(PEEK)、ポリアミド(PA)などの他の種類の樹脂で構成することもできる。 In the above bearing device 3, the first member 13 is made of metal (steel) and the second member 14 is made of PPS, but for example, the first member 13 is made of ceramic such as zirconia, and the second member 14 is made of polyether. It can also be composed of other types of resins such as ether ketone (PEEK), polyamide (PA), etc.

このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Thus, the embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.

2 外筒
3 軸受装置
5 主軸
6、7 軸受
6a、7a 外輪
6b、7b 内輪
6c、7c 転動体
8 間座
9 外輪間座
10 内輪間座
13 第一部材
14 第二部材
15 第一テーパ面
16 周溝
17 溝テーパ面
20 空洞部
21 部品
22 第二テーパ面
23 付勢部材(弾性リング)
24 リングテーパ面
2 Outer cylinder 3 Bearing device 5 Main shafts 6, 7 Bearings 6a, 7a Outer rings 6b, 7b Inner rings 6c, 7c Rolling elements 8 Spacer 9 Outer ring spacer 10 Inner ring spacer 13 First member 14 Second member 15 First tapered surface 16 Circumferential groove 17 Groove tapered surface 20 Cavity portion 21 Part 22 Second tapered surface 23 Biasing member (elastic ring)
24 Ring tapered surface

Claims (7)

外輪(6a、7a)、前記外輪(6a、7a)の内径側に設けられる内輪(6b、7b)、および、前記外輪(6a、7a)と前記内輪(6b、7b)の間に設けられる転動体(6c、7c)を備えた複数の軸受(6、7)と、前記複数の軸受(6、7)の間に配置された間座(8)と、を有し、前記間座(8)を介して前記複数の軸受(6、7)に予圧を与える軸受装置において、
前記間座(8)が、前記複数の軸受(6、7)の固定側となる外輪(6a、7a)の間に配置される外輪間座(9)と、前記複数の軸受(6、7)の回転側となる内輪(6b、7b)の間に配置される内輪間座(10)とを有し、
前記外輪間座(9)が、円筒状の第一部材(13)と、前記第一部材(13)の内径側に設けられる円筒状の第二部材(14)と、を有し、
前記第一部材(13)の内周には、軸方向の一端側に向かうにつれてその内径が縮径する第一テーパ面(15)が形成されている一方で、前記第二部材(14)の外周には、前記一端側に向かうにつれてその外径が縮径し、前記第一テーパ面(15)と面接触可能な第二テーパ面(22)が形成されており、前記間座(8)に設けられた付勢部材(23)の付勢力によって、前記第一テーパ面(15)と前記第二テーパ面(22)が接触するように、前記第二部材(14)が前記一端側に向かって付勢されていることを特徴とする軸受装置。
A bearing device comprising: a plurality of bearings (6, 7) each including an outer ring (6a, 7a), an inner ring (6b, 7b) provided on the inner diameter side of the outer ring (6a, 7a), and rolling elements (6c, 7c) provided between the outer ring (6a, 7a) and the inner ring (6b, 7b); and a spacer (8) disposed between the plurality of bearings (6, 7), wherein a preload is applied to the plurality of bearings (6, 7) via the spacer (8),
The spacer (8) includes an outer ring spacer (9) arranged between outer rings (6a, 7a) which are fixed sides of the plurality of bearings (6, 7), and an inner ring spacer (10) arranged between inner rings (6b, 7b) which are rotating sides of the plurality of bearings (6, 7),
The outer ring spacer (9) has a cylindrical first member (13) and a cylindrical second member (14) provided on the inner diameter side of the first member (13),
The bearing device is characterized in that a first tapered surface (15) whose inner diameter decreases toward one end in the axial direction is formed on the inner circumference of the first member (13), while a second tapered surface (22) whose outer diameter decreases toward the one end is formed on the outer circumference of the second member (14) and which can come into surface contact with the first tapered surface (15), and the second member (14) is biased toward the one end by the biasing force of a biasing member (23) provided on the spacer (8) so that the first tapered surface (15) and the second tapered surface (22) come into contact with each other.
前記付勢部材(23)が、前記第一部材(13)の内周面に形成された周溝(16)に設けられた、周方向の一部に切れ目を有する弾性リング(23)であって、前記周溝(16)の前記一端側の反対側となる他端側に前記一端側に向かうにつれてその内径が拡径する溝テーパ面(17)が形成されている一方で、前記弾性リング(23)の前記他端側の外周端部に前記一端側に向かうにつれてその外径が拡径するリングテーパ面(24)が形成されており、前記溝テーパ面(17)と前記リングテーパ面(24)が前記弾性リング(23)の弾性によって接触するとその面圧によって前記弾性リング(23)が前記一端側に向かって変位して前記第二部材(14)を前記一端側に向かって付勢する請求項1に記載の軸受装置。 The biasing member (23) is an elastic ring (23) provided in a circumferential groove (16) formed in the inner circumferential surface of the first member (13) and having a cut in a part in the circumferential direction. A groove tapered surface (17) whose inner diameter increases toward the one end is formed at the other end of the circumferential groove (16) opposite to the one end, while the elastic ring A ring tapered surface (24) whose outer diameter increases toward the one end is formed at the outer peripheral end of the other end of (23), and the groove tapered surface (17) and the ring tapered surface (24) comes into contact with the elastic ring (23) due to its elasticity, the elastic ring (23) is displaced toward the one end due to the surface pressure, and the second member (14) is attached toward the one end. 2. The bearing device according to claim 1, wherein the bearing device 前記第一部材(13)と前記第二部材(14)は前記第一テーパ面(15)と前記第二テーパ面(22)のみで互いに接触している請求項1または2に記載の軸受装置。 The bearing device according to claim 1 or 2, wherein the first member (13) and the second member (14) are in contact with each other only at the first tapered surface (15) and the second tapered surface (22). . 前記第一テーパ面(15)および前記第二テーパ面(22)のテーパ角の大きさをα、前記第一部材(13)に対する前記第二部材(14)の静止摩擦係数の大きさをμとしたときに、tan-1μ<αの関係が成立する請求項1または2に記載の軸受装置。 The magnitude of the taper angle of the first tapered surface (15) and the second tapered surface (22) is α, and the magnitude of the static friction coefficient of the second member (14) with respect to the first member (13) is μ. The bearing device according to claim 1 or 2, wherein the relationship tan −1 μ<α holds true. 前記第二部材(14)が樹脂で構成されている請求項1または2に記載の軸受装置。 The bearing device according to claim 1 or 2, wherein the second member (14) is made of resin. 前記第二部材(14)の内部に空洞部(20)が形成されており、前記空洞部(20)内に軸受装置の駆動に係る部品(21)が実装されている請求項1または2に記載の軸受装置。 According to claim 1 or 2, a cavity (20) is formed inside the second member (14), and a component (21) related to driving a bearing device is mounted in the cavity (20). Bearing device as described. 外筒(2)と、前記外筒(2)内に収納される請求項1または2に記載の軸受装置(3)と、前記軸受装置(3)によって回転支持される主軸(5)と、を有するスピンドル装置。 A spindle device having an outer cylinder (2), a bearing device (3) according to claim 1 or 2 housed in the outer cylinder (2), and a main shaft (5) rotatably supported by the bearing device (3).
JP2022146862A 2022-09-15 2022-09-15 Bearing device and spindle device Pending JP2024042266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022146862A JP2024042266A (en) 2022-09-15 2022-09-15 Bearing device and spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022146862A JP2024042266A (en) 2022-09-15 2022-09-15 Bearing device and spindle device

Publications (1)

Publication Number Publication Date
JP2024042266A true JP2024042266A (en) 2024-03-28

Family

ID=90417944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022146862A Pending JP2024042266A (en) 2022-09-15 2022-09-15 Bearing device and spindle device

Country Status (1)

Country Link
JP (1) JP2024042266A (en)

Similar Documents

Publication Publication Date Title
JP4703565B2 (en) Bearing support structure of turbo molecular pump
JP2009264526A (en) Bearing arrangement of supercharger
WO2014013754A1 (en) Angular contact ball bearing and duplex bearing
TW201708725A (en) Combined ball bearing, main spindle device, and machine tool
JP2024042266A (en) Bearing device and spindle device
JP6729304B2 (en) Spindle device
EP1167787B1 (en) Bearing apparatus
JP2009203846A (en) Ball bearing arrangement for turbocharger
JP2007315588A (en) Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same
JP2008110426A (en) Spindle device
JP5744645B2 (en) Hydrostatic gas bearing spindle
US20050058378A1 (en) Bearing cup rotational lock assembly
JP2011106493A (en) Rolling bearing device
JP2008169998A (en) Duplex ball bearing and double-row ball bearing
JP2007309351A (en) Rolling bearing
WO2024080215A1 (en) Bearing device and spindle device with bearing device
JP4529129B2 (en) Hydrostatic air bearing spindle
JP2009008211A (en) Roller bearing-bearing housing assembling body
JP2010156376A (en) Rolling bearing device
JP2007051706A (en) Rolling bearing device
JP6403020B2 (en) Touchdown bearing and rotating machine
JP2024067926A (en) Bearing device
JP2019173917A (en) Composite bearing
JP2005061434A (en) Multi-point contacting ball bearing
JP3222158U (en) Gear shaft bearing device