JP2024034406A - 荷役車両を制御するためのシステム及び方法 - Google Patents

荷役車両を制御するためのシステム及び方法 Download PDF

Info

Publication number
JP2024034406A
JP2024034406A JP2022138619A JP2022138619A JP2024034406A JP 2024034406 A JP2024034406 A JP 2024034406A JP 2022138619 A JP2022138619 A JP 2022138619A JP 2022138619 A JP2022138619 A JP 2022138619A JP 2024034406 A JP2024034406 A JP 2024034406A
Authority
JP
Japan
Prior art keywords
sensor
work machine
forklift
vehicle body
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022138619A
Other languages
English (en)
Inventor
敬博 野寄
Takahiro Noyori
学 山代
Manabu Yamashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2022138619A priority Critical patent/JP2024034406A/ja
Publication of JP2024034406A publication Critical patent/JP2024034406A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)

Abstract

【課題】荷役作業の対象を検出できる荷役車両を制御するためのシステム及び方法を提供すること。【解決手段】車体と、車体の前方に配置されるように車体に支持され、車体に対して移動可能なフォークを有する作業機と、を備える荷役車両を制御するためのシステムは、フォークとともに移動するように作業機の少なくとも一部に取り付けられ、物体を検出する前方センサと、作業機にかかる負荷を検出する作業機負荷センサと、作業機を制御するコントローラと、作業機の制御を開始させる制御指令を生成する操作装置と、を備える。コントローラは、制御指令を受信し、且つ、作業機負荷センサの検出データに基づいて、作業機に運搬物が支持されていないと判定した場合、作業機を所定の姿勢に調整した後、前方センサの物体検出データに基づいて、作業機を制御する作業機制御部、を有する。【選択図】図13

Description

本開示は、荷役車両を制御するためのシステム及び方法に関する。
荷役車両に係る技術分野において、特許文献1に開示されているようなフォークリフトが知られている。
特開2015-225450号公報
荷役車両を用いて荷役作業を自動的に行う場合、荷役作業の対象を適切に検出できる技術が要望される。
本開示は、荷役作業の対象を検出できる荷役車両を制御するためのシステム及び方法を提供することを目的とする。
本開示に従えば、車体と、車体の前方に配置されるように車体に支持され、車体に対して移動可能なフォークを有する作業機と、を備える荷役車両を制御するためのシステムが提供される。システムは、フォークとともに移動するように作業機の少なくとも一部に取り付けられ、物体を検出する前方センサと、作業機にかかる負荷を検出する作業機負荷センサと、作業機を制御するコントローラと、作業機の制御を開始させる制御指令を生成する操作装置と、を備える。コントローラは、制御指令を受信し、且つ、作業機負荷センサの検出データに基づいて、作業機に運搬物が支持されていないと判定した場合、作業機を所定の姿勢に調整した後、前方センサの物体検出データに基づいて、作業機を制御する作業機制御部、を有する。
本開示によれば、荷役作業の対象を検出できる荷役車両を制御するためのシステム及び方法が提供される。
図1は、実施形態に係る荷役車両を示す前方からの斜視図である。 図2は、実施形態に係る物体センサを模式的に示す図である。 図3は、実施形態に係る荷役車両を上方から見た図である。 図4は、実施形態に係る第1前方センサを模式的に示す図である。 図5は、実施形態に係る第2前方センサが対象を検出している状態を模式的に示す図である。 図6は、実施形態に係る第2前方センサが対象を検出している状態を模式的に示す図である。 図7は、実施形態に係る荷役車両の制御システムの構成を示すブロック図である。 図8は、実施形態に係るコントローラを示すブロック図である。 図9は、実施形態に係る対象を識別する方法の一例を示す概略図である。 図10は、実施形態に係る対象の周囲に存在する荷置きスペースの位置を示す模式図である。 図11は、実施形態に係る荷役作業を模式的に示す図である。 図12は、実施形態に係る荷役車両の制御方法を示すフローチャートである。 図13は、実施形態に係る自動モード許可スイッチが操作されたときに表示装置に表示される表示データの一例を示す図である。 図14は、実施形態に係る自動モード開始スイッチが操作されたときに表示装置に表示される表示データの一例を示す図である。 図15は、実施形態に係る距離と経路データとの関係を模式的に示す図である。 図16は、実施形態に係る作業機を所定の姿勢に調整している状態を模式的に示す図である。 図17は、実施形態に係る生成された経路に基づいて対象に接近するように走行する荷役車両を模式的に示す図である。 図18は、実施形態に係る荷役車両が対象に接近している状態を模式的に示す図である。 図19は、実施形態に係る荷役車両が対象に接近している状態を模式的に示す図である。 図20は、実施形態に係る荷役車両が対象に接近している状態を模式的に示す図である。
以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
実施形態においては、左、右、前、後、上、及び下の用語を用いて各部の位置関係について説明する。これらの用語は、荷役車両に規定された車体座標系の原点を基準とする相対位置又は方向を示す。
[荷役車両]
図1は、実施形態に係る荷役車両1を示す前方からの斜視図である。実施形態においては、荷役車両1を適宜、フォークリフト1、と称する。実施形態において、荷役車両1は、カウンタバランス型フォークリフトである。なお、荷役車両は特に限定されるものではなく、例えば、フォークアタッチメントを取り付け可能なホイールローダであってもよい。
フォークリフト1は、荷役作業を行う。荷役作業は、所定の保管位置に置かれている運搬物を取り上げる荷取り作業と、取り上げた運搬物を所定の目標位置に置く荷置き作業とを含む。フォークリフト1は、荷役作業の少なくとも一部を自動的に行う。実施形態において、フォークリフト1の動作モードは、オペレータの操作に基づいて荷役作業を行う手動モードと、荷役作業の少なくとも一部を自動的に行う自動モードとを含む。実施形態において、運搬物は、荷物を積載する荷役台や容器である。運搬物は、例えば、パレットやスキッド、コンテナである。運搬物は、一対のフォーク挿し込み穴を有する。
フォークリフト1は、車体2と、車体2に支持されるキャブ3と、車体2の前方に配置される作業機4と、車体2を支持する車輪5と、物体を検出する物体センサ7とを備える。
車体2は、カウンタウエイト6と、フェンダ8とを含む。カウンタウエイト6は、車体2の後部に配置される。カウンタウエイト6は、フォークリフト1が運搬物を取り上げた際に、フォークリフト1の前後方向の重量バランスをとるために車体2の後部に取り付けられる。フェンダ8は、車体2の前部に配置される。フェンダ8は、車体2の左側及び右側のそれぞれに配置される。
キャブ3は、運転室を形成する。フォークリフト1のオペレータは、キャブ3に搭乗して、フォークリフト1を操作することができる。
作業機4は、荷役作業の少なくとも一部を行う。作業機4は、車体2の前方に配置される。作業機4は、車体2に支持される。作業機4は、マスト41と、ブラケット42と、フォーク43とを有する。
マスト41は、車体2の前部に傾動可能に支持される。マスト41は、上下方向に長い。ブラケット42は、フォーク43を支持する。ブラケット42は、マスト41に支持される。ブラケット42は、マスト41に沿って上下方向に移動可能である。フォーク43は、運搬物を支持する。フォーク43は、ブラケット42を介してマスト41に支持される。
フォーク43は、一対設けられる。フォーク43は、第1のフォーク43Aと、第1のフォーク43Aよりも右側に配置される第2のフォーク43Bとを含む。ブラケット42は、第1のフォーク43Aと第2のフォーク43Bとを支持する。
車輪5は、車体2を支持する。車輪5の少なくとも一部は、車体2よりも下方に配置される。車輪5は、前輪5Fと後輪5Rとを有する。前輪5Fは、後輪5Rよりも前方に配置される。前輪5Fは、車体2の左側及び右側のそれぞれに配置される。後輪5Rは、車体2の左側及び右側のそれぞれに配置される。前輪5F及び後輪5Rのそれぞれは、回転軸を中心に回転可能である。
実施形態において、左右方向は、フォークリフト1が直進状態で走行するときの前輪5F及び後輪5Rの回転軸に平行な方向である。上下方向は、前輪5F及び後輪5Rの接地面に直交する方向である。前後方向は、左右方向及び上下方向のそれぞれに直交する方向である。
フェンダ8は、前輪5Fの少なくとも一部を覆うように配置される。フェンダ8の少なくとも一部は、前輪5Fよりも上方に配置される。フェンダ8の少なくとも一部は、前輪5Fよりも後方に配置される。フェンダ8は、車体2の左側及び右側のそれぞれに配置される。左側のフェンダ8は、左側の前輪5Fの少なくとも一部を覆うように配置される。右側のフェンダ8は、右側の前輪5Fの少なくとも一部を覆うように配置される。
物体センサ7は、フォークリフト1の周辺の物体を検出する。物体センサ7により検出される物体は、荷役作業を行う際に目標とする対象を含む。実施形態において、対象は、例えば、運搬物、運搬物を載置可能な荷置きスペース、又は、貨物車両の荷台である。物体センサ7は、フォークリフト1に複数取り付けられる。実施形態において、物体センサ7は、側方センサと前方センサとを有する。側方センサは、車体2の左側の側部に取り付けられる左側方センサ7Aと、車体2の右側の側部に取り付けられる右側方センサ7Bとを含む。前方センサは、車体2の前部に取り付けられる第1前方センサ7Cと、作業機4の少なくとも一部に取り付けられる第2前方センサ7Dとを含む。
図2は、実施形態に係る物体センサ7を模式的に示す図である。物体センサ7は、少なくとも3次元センサ72を含む。実施形態において、物体センサ7は、カメラ71と、3次元センサ72とを含む。カメラ71と3次元センサ72とは、上下方向に配置される。カメラ71と3次元センサ72とは、固定される。カメラ71と3次元センサ72との相対位置は、変化しない。
カメラ71は、物体の画像データを取得する。3次元センサ72は、物体の3次元データを取得する。物体の3次元データは、物体の表面に規定される複数の検出点からなる点群を含む。点群は、3次元センサ72と物体の表面に規定される複数の検出点のそれぞれとの相対距離及び相対位置を示す。3次元センサ72として、レーザ光を射出することにより物体を検出するレーザセンサ(LiDAR:Light Detection and Ranging)が例示される。なお、3次元センサ72は、赤外光を射出することにより物体を検出する赤外線センサ又は電波を射出することにより物体を検出するレーダセンサ(RADAR:Radio Detection and Ranging)でもよい。
カメラ71の撮像範囲710と、3次元センサ72の測定範囲720の少なくとも一部とは、重複する。以下の説明において、撮像範囲710と測定範囲720とを適宜、検出範囲70、と総称する。
図3は、実施形態に係るフォークリフト1を上方から見た図である。図1及び図3に示すように、フォークリフト1は、複数の物体センサ7を備える。物体センサ7は、車体2の左側の側部に取り付けられる左側方センサ7Aと、車体2の右側の側部に取り付けられる右側方センサ7Bと、車体2の前部に取り付けられる第1前方センサ7Cと、作業機4の少なくとも一部に取り付けられる第2前方センサ7Dとを含む。
物体センサ7の検出範囲70は、左側方センサ7Aの検出範囲70Aと、右側方センサ7Bの検出範囲70Bと、第1前方センサ7Cの検出範囲70Cと、第2前方センサ7Dの検出範囲70Dとを含む。
左側方センサ7Aの検出範囲70Aは、車体2の左斜め前方に規定される。右側方センサ7Bの検出範囲70Bは、車体2の右斜め前方に規定される。第1前方センサ7Cの検出範囲70Cは、車体2の前方に規定される。第2前方センサ7Dの検出範囲70Dは、車体2の前方に規定される。
前後方向において、左側方センサ7A及び右側方センサ7Bのそれぞれは、作業機4よりも後方に配置される。左側方センサ7A及び右側方センサ7Bのそれぞれは、マスト41よりも後方に配置される。
前後方向において、左側方センサ7A及び右側方センサ7Bのそれぞれは、車体2の中心よりも前方に配置される。
上下方向において、左側方センサ7A及び右側方センサ7Bのそれぞれは、前輪5Fの中心とカウンタウエイト6の上端部との間に配置される。
実施形態において、左側方センサ7Aは、左側のフェンダ8の上面に取り付けられる。右側方センサ7Bは、右側のフェンダ8の上面に取り付けられる。
前後方向において、第1前方センサ7Cは、作業機4よりも後方に配置される。第1前方センサ7Cは、マスト41よりも後方に配置される。第1前方センサ7Cは、作業機4よりも後方に配置されるように、車体2の前部に取り付けられる。
実施形態において、第1前方センサ7Cは、左側のフェンダ8の上面に取り付けられる。なお、第1前方センサ7Cは、右側のフェンダ8の上面に取り付けられてもよい。
第1前方センサ7Cは、地面に近い位置に存在する物体を検出可能である。上下方向において、第1前方センサ7Cの検出範囲70Cの位置は、前輪5Fの少なくとも一部の位置に一致する。上下方向において、第1前方センサ7Cの検出範囲70Cの少なくとも一部の位置は、上下方向におけるフォーク43の可動範囲の下端部の位置に一致する。
第2前方センサ7Dは、フォーク43とともに上下方向に移動するように、作業機4の少なくとも一部に取り付けられる。左右方向において、第2前方センサ7Dは、第1のフォーク43Aと第2のフォーク43Bとの間に配置される。実施形態において、第2前方センサ7Dは、ブラケット42に取り付けられる。左右方向において、第2前方センサ7Dは、第1のフォーク43Aと第2のフォーク43Bとの間に配置されるように、ブラケット42に取り付けられる。
[第1前方センサ]
図4は、実施形態に係る第1前方センサ7Cを模式的に示す図である。図4に示すように、フォーク43が対象50を支持している場合、第2前方センサ7Dは、対象50に遮られて、フォークリフト1の前方の物体を検出できない可能性がある。実施形態において、フォークリフト1は、車体2の前部に取り付けられる第1前方センサ7Cを備える。そのため、第2前方センサ7Dがフォークリフト1の前方の物体を検出できない状況が発生しても、第1前方センサ7Cがフォークリフト1の前方の物体を検出することができる。
上述のように、上下方向において、第1前方センサ7Cの検出範囲70Cの少なくとも一部の位置は、上下方向におけるフォーク43の可動範囲の下端部の位置に一致する。図3に示すように、フォーク43が対象50を支持した状態でフォークリフト1が走行する場合、フォーク43は上昇される。そのため、第1前方センサ7Cは、対象50に遮られること無く、フォークリフト1の前方の物体を検出することができる。
[第2前方センサ]
図5及び図6のそれぞれは、実施形態に係る第2前方センサ7Dが対象50を検出している状態を模式的に示す図である。図5及び図6に示すように、第2前方センサ7Dは、作業機4と対象50とが正対した状態で、対象50を検出することができる。第2前方センサ7Dは、フォーク43とともに上下方向に移動、及び前後方向に傾斜することができる。そのため、図5に示すようにフォーク43で支持する対象50が下方に配置されている場合、及び図6に示すようにフォーク43で支持する対象50が上方に配置されている場合のそれぞれにおいて、フォーク43とともに第2前方センサ7Dが上下方向に移動、又は前後方向に傾斜することにより、第2前方センサ7Dは、対象50に設けられているフォーク挿し込み穴を検出することができる。すなわち、上下方向においてフォーク挿し込み穴がどの位置に存在しても、フォーク43とともに第2前方センサ7Dが上下方向に移動、又は前後方向に傾斜することにより、第2前方センサ7Dは、フォーク挿し込み穴を検出することができる。
[制御システム]
図7は、実施形態に係る荷役車両1の制御システム10の構成を示すブロック図である。図7に示すように、制御システム10は、動力源11と、油圧ポンプ12と、作業機駆動装置45と、走行装置14と、制御弁ユニット13と、操作装置15と、出力装置16と、コントローラ100とを備える。
動力源11は、油圧ポンプ12を駆動する。動力源11は、例えばエンジンである。
油圧ポンプ12は、動力源11によって駆動され、作動油を吐出する。油圧ポンプ12から吐出された作動油は、制御弁ユニット13を介して、リフトシリンダ451、チルトシリンダ452、サイドシフトシリンダ453、走行モータ141、及びステアリングシリンダ142のそれぞれに供給される。
作業機駆動装置45は、作業機4を作動させる。作業機駆動装置45は、リフトシリンダ451と、チルトシリンダ452と、サイドシフトシリンダ453とを有する。
実施形態において、リフトシリンダ451、チルトシリンダ452、及びサイドシフトシリンダ453のそれぞれは、油圧シリンダである。リフトシリンダ451は、車体2に対してフォーク43を上下方向に移動させる。チルトシリンダ452は、車体2に対してフォーク43を前後方向に傾斜させる。サイドシフトシリンダ453は、車体2に対してフォーク43を左右方向に移動させる。
リフトシリンダ451は、マスト41とブラケット42との間に配置される。リフトシリンダ451は、ブラケット42を上下方向に移動することにより、フォーク43を上下方向に移動させる。ブラケット42とフォーク43とは、上下方向に一緒に移動する。ブラケット42とフォーク43とは、マスト41に沿って上下方向に移動する。チルトシリンダ452は、車体2とマスト41との間に配置される。チルトシリンダ452は、マスト41を前後方向に傾斜させることにより、フォーク43を前後方向に傾斜させる。
走行装置14は、フォークリフト1を走行させる。走行装置14は、フォークリフト1の進行、制動、及び操舵を行う。進行とは、フォークリフト1が前進又は後進することをいう。制動とは、フォークリフト1が減速又は停止することをいう。操舵とは、フォークリフト1の走行方向が変更されることをいう。走行装置14は、走行モータ141と、ブレーキ装置(不図示)と、ステアリングシリンダ142とを有する。
走行モータ141は、フォークリフト1を進行させるための駆動力を発生する。走行モータ141は、前輪5Fを回転させることによって、フォークリフト1を前進又は後進させる。走行モータ141は、油圧ポンプ12から吐出される作動油によって駆動する。前輪5Fは、走行モータ141が発生する回転力により回転する駆動輪である。ブレーキ装置は、フォークリフト1を制動させる。ブレーキ装置は、フォークリフト1を減速又は停止させる。
ステアリングシリンダ142は、フォークリフト1を操舵する。ステアリングシリンダ142は、後輪5Rを操舵することによって、フォークリフト1の走行方向を変更させる。後輪5Rは、ステアリングシリンダ142により操舵される操舵輪である。
制御弁ユニット13は、リフトシリンダ451、チルトシリンダ452、サイドシフトシリンダ453、走行モータ141、及びステアリングシリンダ142等の油圧アクチュエータと、油圧ポンプ12との間に配置される。制御弁ユニット13は、走行モータ141に供給される作動油の流量及び方向を制御する走行制御弁131と、ステアリングシリンダ142に供給される作動油の流量及び方向を制御するステアリング制御弁132と、リフトシリンダ451、チルトシリンダ452、及びサイドシフトシリンダ453のそれぞれに供給される作動油の流量及び方向を制御する作業機制御弁133とを有する。制御弁ユニット13は、後述するコントローラ100によって制御される。
操作装置15は、フォークリフト1を操作するための装置である。操作装置15は、キャブ3に配置されている。操作装置15は、作業機駆動装置45及び走行装置14を動作させるためのオペレータによる操作を受け付け、操作に応じた操作信号を出力する。操作装置15は、例えば、ステアリングホイール151と、作業機レバー152と、前後進切換レバー153と、アクセルペダル154と、ブレーキペダル155と、自動モード許可スイッチ156と、自動モード開始スイッチ157とを有する。
手動モードにおいて、ステアリングホイール151がオペレータに操作されることにより、後輪5Rが操舵される。手動モードにおいて、作業機レバー152がオペレータに操作されることにより、フォーク43の位置及び姿勢が調整される。前後進切換レバー153がオペレータに操作されることにより、フォークリフト1の前進と後進とが切り換えられる。アクセルペダル154及びブレーキペダル155の少なくとも一方がオペレータに操作されることにより、フォークリフト1の走行速度が調整される。
自動モード許可スイッチ156は、オペレータに操作されることにより、荷役作業を自動的に行うための対象を識別する処理を開始させる制御指令を生成する。手動モードにおいて、自動モード許可スイッチ156が操作されることにより、コントローラ100は、物体センサ7の物体検出データに基づいて、対象を識別する処理を開始する。
自動モード開始スイッチ157は、オペレータに操作されることにより、走行自動制御又は作業機自動制御を開始させる制御指令を生成する。自動モード許可スイッチ156が操作された後、自動モード開始スイッチ157が操作されることにより、コントローラ100は、フォークリフト1の動作モードを手動モードから自動モードに遷移させる。
出力装置16は、キャブ3に配置されている。出力装置16は、オペレータに出力データを提供する。実施形態において、出力装置16は、表示装置161と、音声出力装置162とを含む。表示装置161は、出力データとしてオペレータに表示データを提供する。表示装置161として、液晶ディスプレイ(LCD:Liquid Crystal Display)又は有機ELディスプレイ(OELD:Organic Electroluminescence Display)のようなフラットパネルディスプレイが例示される。音声出力装置162は、出力データとしてオペレータに音声データを提供する。音声出力装置162として、ブザー又はスピーカが例示される。なお、出力装置16は、ランプを含んでもよい。
コントローラ100は、フォークリフト1を制御する。コントローラ100は、フォークリフト1の走行及び作業機4の少なくとも一方を制御する。上述のように、フォークリフト1の動作モードは、手動モードと、自動モードとを含む。手動モードにおいて、フォークリフト1は、オペレータの運転操作に基づいて荷役作業を行う。自動モードにおいて、フォークリフト1は、物体センサ7の物体検出データに基づいて荷役作業の少なくとも一部を自動的に行う。
自動モードにおいて、走行装置14及び作業機駆動装置45の少なくとも一方がコントローラ100により自動で制御される。自動モードにおいて、コントローラ100は、物体センサ7の物体検出データに基づいて、走行装置14及び作業機駆動装置45の少なくとも一方を制御する。以下の説明において、自動モードにおいて走行装置14が自動制御されることを適宜、走行自動制御、と称し、自動モードにおいて作業機駆動装置45が自動制御されることを適宜、作業機自動制御、と称する。
実施形態において、走行自動制御は、フォークリフト1の操舵を自動制御することを含む。自動モードにおいて、ステアリングシリンダ142がコントローラ100により自動制御される。
実施形態において、作業機自動制御は、フォーク43の位置及び姿勢を自動制御することを含む。自動モードにおいて、リフトシリンダ451、チルトシリンダ452、及びサイドシフトシリンダ453の少なくともいずれか1つがコントローラ100により自動制御される。
制御システム10は、フォークリフト1の走行速度を検出する車速センサ143と、後輪5Rの操舵角を検出するステアリングセンサ144と、車体2に対するフォーク43の上下方向の位置を検出するリフトセンサ46と、車体2に対するフォーク43の前後方向の傾斜を検出するチルトセンサ47と、車体2に対するフォーク43の左右方向の位置を検出するサイドシフトセンサ48と、作業機4にかかる負荷を検出する作業機負荷センサ49とを有する。作業機負荷センサ49は、例えば、作業機4の少なくとも一部に配置された歪ゲージやロードセル等の荷重測定デバイスである。作業機負荷センサ49により検出された負荷データは、コントローラ100へ出力される。なお、作業機4にかかる負荷は、例えば、リフトシリンダ451を駆動させる圧油の圧力を検出する油圧センサを用いて検出してもよい。この場合、運搬物がフォーク43によって支持されている状態と支持されていない状態とで、作業機4に掛かる負荷が変化する。作業機負荷センサ49は、作業機4に掛かる負荷の変化を検出する。
[コントローラ]
図8は、実施形態に係るコントローラ100を示すブロック図である。コントローラ100は、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。コントローラ100の機能は、コンピュータプログラムとしてストレージ1003に記憶されている。プロセッサ1001は、コンピュータプログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、コンピュータプログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
図7に示すように、コントローラ100は、検出データ取得部101と、識別部102と、制御指令受信部103と、決定部104と、位置算出部105と、選択部106と、経路生成部107と、方位角算出部108と、切換部109と、走行制御部110と、作業機制御部111と、出力制御部112と、記憶部113とを有する。
記憶部113は、対象を識別するための対象辞書データ、及び自動モードにおけるフォークリフト1の走行条件を示す経路データを記憶する。記憶部113は、対象と正対するようにフォークリフト1を走行させるための経路データを記憶する。経路データは、予め定められる。実施形態において、記憶部113は、複数の経路データを記憶する。
検出データ取得部101は、物体センサ7、車速センサ143、ステアリングセンサ144、リフトセンサ46、チルトセンサ47、サイドシフトセンサ48、及び作業機負荷センサ49のそれぞれの検出データを取得する。
識別部102は、物体センサ7の物体検出データに基づいて、物体センサ7が検出した物体から荷役作業を行うための対象を識別する。対象を識別する方法については後述する。
制御指令受信部103は、自動モード許可スイッチ156が操作されることにより生成された制御指令を受信する。制御指令受信部103は、対象を識別する処理を開始させる制御指令を自動モード許可スイッチ156から受信する。制御指令受信部103は、自動モード開始スイッチ157が操作されることにより生成された制御指令を受信する。制御指令受信部103は、走行自動制御又は作業機自動制御を開始させる制御指令を自動モード開始スイッチ157から受信する。
決定部104は、自動モード開始スイッチ157からの制御指令に基づいて、識別部102によって識別されている対象を荷役作業を自動的に行う目標として決定する。
位置算出部105は、物体センサ7の物体検出データに基づいて、フォークリフト1と荷役作業を自動的に行うための対象の位置を算出する。
選択部106は、位置算出部105により算出された対象の位置に基づいて、記憶部113に記憶されている複数の経路データから1つの経路データを選択する。
経路生成部107は、選択部106により選択された経路データに基づいて、経路を生成する。
方位角算出部108は、物体センサ7の物体検出データに基づいて、物体センサ7を基準とした、荷役作業を自動的に行うための対象の方位角を算出する。
切換部109は、方位角算出部108により算出された対象の方位角に基づいて、対象の識別に使用される物体センサ7の物体検出データを切り換える。
切換部109は、作業機負荷センサ49の検出データに基づいて、対象の識別に使用される第1前方センサ7Cの物体検出データと第2前方センサ7Dの物体検出データとを切り換える。切換部109は、作業機負荷センサ49の検出データに基づいて、フォーク43が運搬物を支持しているか否かを判定することができる。切換部109は、フォーク43に運搬物が支持されていないとき、フォークリフト1の前方に存在する対象の識別に使用される物体センサ7の物体検出データを、第2前方センサ7Dの物体検出データに決定する。切換部109は、フォーク43に荷物が支持されているとき、フォークリフト1の前方に存在する対象の識別に使用される物体センサ7の物体検出データを、第1前方センサ7Cの物体検出データに決定する。
走行制御部110は、物体センサ7の物体検出データ及び経路データに基づいて、フォークリフト1の走行を制御する。
作業機制御部111は、物体センサ7の物体検出データに基づいて、作業機4を制御する。
出力制御部112は、走行装置14及び作業機4の少なくとも一方の状態が変化した時点において、出力装置16から出力データを出力させる。
[対象の識別]
図9は、実施形態に係る対象を識別する方法の一例を示す概略図である。フォークリフト1は、対象を識別して、フォークリフト1を当該対象に対して自動で正対するように走行制御が行われる。
実施形態において、識別部102は、3次元センサ72の物体検出データに基づいて、フォークリフト1の周囲に存在する物体から対象を識別する。図9に示す例においては、対象50は、運搬物である。図9に示す運搬物は、例えば、箱形状のパレットである。(a1)は、運搬物に3次元センサ72からレーザ光を照射して得られた物体検出データである点群を示す。(a2)は、(a1)の点群から推定した平面を網掛けして示す。平面は、点群が示す、3次元センサ72と物体の表面に規定される複数の検出点のそれぞれとの相対位置に基づいて推定される。推定された平面は、フォークリフト1が運搬物を取り上げる際にフォークリフト1と正対する面である。(a3)は、(a2)を上下方向視(平面視)に視点を変換した図である。(a3)において、(a2)で推定した平面を破線で示す。(a3)では、(a2)で推定した平面より左方に点群が表れている。楕円で囲んだ点群は、(a2)で推定した平面を通過した点群を示す。言い換えると、楕円で囲んだ点群は、運搬物に設けられたフォーク挿し込み穴を通過した点群である。(a4)は、推定した平面と、平面を通過した点群と3次元センサ72の座標系基準とを結ぶ直線との交点を求めた図である。(a5)は、(a4)で求めた交点の位置に点群を補完した図である。(a6)は、推定した平面を正面から見た二値画像に変換した図である。四角で囲んだ部分は、(a5)で補完した点群を示す。識別部102は、記憶部113に記憶された対象辞書データを参照して、補完した点群がフォーク挿し込み穴を示す特徴部であるか否かを判定し、運搬物を識別する。
例えば、運搬物を一時保管しておく施設では、運搬物が隣接して載置されている。このため、3次元センサ72の物体検出データである点群から、各運搬物を独立した物体として識別することが難しい。しかしながら、各運搬物に設けられたフォーク挿し込み穴を識別することにより、隣接した運搬物群から1つの運搬物を識別することが可能である。
次に、識別部102による荷置きスペースの識別について説明する。識別部102は、対象を識別し、識別した対象の周囲に存在する所定の大きさの空間に基づいて、荷置きスペースを識別する。
図10は、実施形態に係る対象53の周囲に存在する荷置きスペース55の位置を示す模式図である。識別部102は、3次元センサ72からの物体検出データから、基準となる対象53を識別する。図10に示す例において、基準となる対象53は、運搬物である。
識別部102は、物体検出データから、基準となる対象53の周囲に存在する所定の大きさの空間を探索する。対象の周囲とは、その対象に隣接する位置のことである。図10に示す例において、対象53の周囲は、対象53の前方、対象53の後方、対象53の右方、及び対象53の上方である。所定の大きさの空間とは、フォークリフト1が取り上げた運搬物を載置可能な空間である。所定の大きさの空間とは、例えば、運搬物の寸法以上の大きさを有する空間である。
識別部102は、探索した運搬物を載置可能な大きさの空間を荷置きスペース55として識別する。
実施形態においては、識別部102は、3次元センサ72からの物体検出データを用いて対象の識別を行うが、これに限られない。例えば、他の実施形態においては、識別部102は、カメラ71が撮像した撮像画像から特徴量を抽出し、抽出した特徴量と対象辞書データとに基づいて、撮像画像から対象を識別してもよい。対象の識別方法は、例えば、パターンマッチング、機械学習に基づく識別処理を行ってもよい。
[制御方法]
図11は、実施形態に係る荷役作業を模式的に示す図である。図12は、実施形態に係るフォークリフト1の制御方法を示すフローチャートである。
図11に示す例において、荷役作業を自動的に行うための対象50は、運搬物である。図11に示すように、荷役現場において、複数の対象50が所定の保管位置に置かれる。複数の対象50は、荷役現場に並ぶように配置される。複数の対象50は、対象50の正面50Fが走行路59を向くように配置される。対象50の正面50Fとは、フォークリフト1が対象50を取り上げる際にフォークリフト1と正対する面である。対象50の正面50Fには、一対のフォーク挿し込み穴が設けられる。図11に示す例において、対象50は、第1の対象51と第2の対象52とを含む。第1の対象51と第2の対象52とは、隣接して配置される。対象50の正面50Fは、対象51の正面51Fと、対象52の正面52Fとを含む。コントローラ100は、隣接して配置された複数の対象50のうち、1つの対象50を作業機4のフォーク43で取り上げるように、走行自動制御及び作業機自動制御を行う。
フォークリフト1は、複数の対象50のうち、1つの対象50をフォーク43で取り上げるために、複数の対象50の正面50F側に存在する走行路59を前進する。フォークリフト1は、複数の対象50の正面50F側を順次通過するように、走行路59を直進する。
左側方センサ7Aの検出範囲70Aは、車体2の左斜め前方に規定される。そのため、フォークリフト1が走行路59を第1方向に前進する場合、左側方センサ7Aは、フォークリフト1の左側に存在する対象50を検出することができる。左側方センサ7Aの物体検出データは、コントローラ100に送信される。検出データ取得部101は、左側方センサ7Aの物体検出データを取得する。
自動モード開始スイッチ157が操作されるまで、フォークリフト1は、手動モードで走行路59を前進する。オペレータは、フォークリフト1が走行路59を前進するように、ステアリングホイール151及びアクセルペダル154を操作する。フォークリフト1の動作モードを手動モードから自動モードに遷移させる場合、オペレータは、自動モード許可スイッチ156を操作した後に、自動モード開始スイッチ157を操作する。
自動モード許可スイッチ156がオペレータに操作されることにより、制御指令受信部103は、自動モード許可スイッチ156からの制御指令を受信する。自動モード許可スイッチ156からの制御指令が制御指令受信部103に受信されると、対象50を探索する処理が開始される。識別部102は、左側方センサ7Aの物体検出データに基づいて、対象50の探索を開始する(ステップS1)。
識別部102は、左側方センサ7Aの物体検出データに基づいて、対象50を1つずつ識別する。識別部102は、複数の対象50のうち、1つの対象50を識別したか否かを判定する(ステップS2)。
図13は、実施形態に係る自動モード許可スイッチ156が操作されたときに表示装置161に表示される表示データの一例を示す図である。表示装置161は、カメラ71が撮像した画像データを表示する。図13に示す例において、表示装置161は、複数の対象50を含む画像データを表示する。図13に示すように、自動モード許可スイッチ156が操作された後、且つ、自動モード開始スイッチ157が操作される前の状態において、複数の対象50のうち、第1の対象51が識別された場合、出力制御部112は、対象51が撮像された画像データとともに、識別された対象51を示すシンボル36を表示装置161に表示させる。シンボル36は、画像データの対象51の位置に重畳するように表示される。実施形態において、シンボル36は、対象51を囲むように表示されるフレーム画像である。オペレータは、シンボル36により、複数の対象50のうち、対象51が識別されたことを認識することができる。複数の対象50のうち、対象52は識別されていないので、対象52を示すシンボル36は表示されない。
ステップS2において、対象50が識別されていないと判定した場合(ステップS2:No)、コントローラ100は、ステップS1の処理に戻る。
ステップS2において、複数の対象50のうち、1つの対象51が識別されたと判定された場合(ステップS2:Yes)、決定部104は、制御指令受信部103が自動モード開始スイッチ157からの制御指令を受信したか否かを判定する(ステップS3)。
上述のように、自動モード許可スイッチ156が操作された後に、自動モード開始スイッチ157が操作されることにより、フォークリフト1の動作モードが手動モードから自動モードに遷移する。オペレータは、対象51の荷取り作業を自動モードで行う場合、識別部102により対象51が識別されている状態で、自動モード開始スイッチ157を操作する。自動モード開始スイッチ157がオペレータに操作されることにより、制御指令受信部103は、自動モード開始スイッチ157からの制御指令を受信する。
ステップS3において、自動モード開始スイッチ157からの制御指令が受信されていないと判定した場合(ステップS3:No)、コントローラ100は、ステップS1の処理に戻る。
ステップS3において、識別部102により対象51が識別されている状態で、自動モード開始スイッチ157からの制御指令が制御指令受信部103に受信されたと判定した場合(ステップS3:Yes)、決定部104は、荷取り作業を自動的に行うための対象50を対象51に決定する(ステップS4)。
自動モード開始スイッチ157からの制御指令が受信され、識別部102によって識別されている対象51が荷取り作業を自動的に行うための目標として決定されることにより、フォークリフト1の動作モードが手動モードから自動モードに遷移する。フォークリフト1の動作モードが手動モードから自動モードに遷移することにより、対象51の荷取り作業を行うための走行自動制御が開始される。
図14は、実施形態に係る自動モード開始スイッチ157が操作されたときに表示装置161に表示される表示データの一例を示す図である。オペレータは、対象51の荷取り作業を自動モードで行う場合、対象51を示すシンボル36が表示された状態で、自動モード開始スイッチ157を操作する。自動モード開始スイッチ157がオペレータに操作されることにより、制御指令受信部103は、自動モード開始スイッチ157からの制御指令を受信する。識別部102により対象51が識別されている状態で、自動モード開始スイッチ157からの制御指令が制御指令受信部103に受信された場合、出力制御部112は、対象51が撮像された画像データとともに、自動モードによる荷取り作業の対象51を示すシンボル37を表示装置161に表示させる。シンボル37は、画像データの対象51の位置に重畳するように表示される。実施形態において、シンボル37は、対象51を囲むように表示されるフレーム画像である。オペレータは、シンボル37により、複数の対象50のうち、対象51が自動モードによる荷取り作業の目標として決定されたことを認識することができる。
出力制御部112は、シンボル36の表示形態とシンボル37の表示形態とが異なるように、シンボル36及びシンボル37のそれぞれを表示装置161に表示させる。異なる表示形態とは、例えば、色、線種、太さの少なくともいずれかであってもよい。一例として、シンボル36は、例えば青色のフレーム画像であり、シンボル37は、例えば赤色のフレーム画像である。
出力制御部112は、制御指令受信部103が自動モード開始スイッチ157からの制御指令を受信した時点において、出力装置16から出力データを出力させる。実施形態において、出力制御部112は、制御指令受信部103が自動モード開始スイッチ157からの制御指令を受信した時点において、音声出力装置162から音声データを出力させる。これにより、オペレータは、フォークリフト1の動作モードが手動モードから自動モードに遷移したことを認識することができる。音声データは、例えばブザー音である。
出力制御部112は、走行自動制御が開始された時点において、出力装置16から出力データを出力させてもよい。これにより、オペレータは、走行装置14の自動制御が開始されたことを認識することができる。
なお、オペレータは、自動モードで対象52の荷取り作業を行う場合、自動モード許可スイッチ156を操作した後、識別部102により対象52が識別されるまで、フォークリフト1を手動モードで走行路59を前進させる。対象52が識別され、画像データの対象52にシンボル36が重畳するように表示された後、オペレータは、自動モード開始スイッチ157を操作する。識別部102により対象52が識別された状態で、自動モード開始スイッチ157が操作されることにより、荷取り作業を自動的に行うための対象50に対象52が決定され、画像データの対象52にシンボル37が重畳するように表示される。自動モードによる荷取り作業の対象52が決定されることにより、自動モードに基づいて対象52の荷取り作業が開始される。
荷取り作業の対象51が決定された後、位置算出部105は、左側方センサ7Aの物体検出データに基づいて、対象51の位置を算出する。対象51の位置は、フォークリフト1と対象51との距離を含む(ステップS5)。
位置算出部105は、フォークリフト1の車体座標系の原点から、識別部102によって推定された対象51の平面までの距離Dを算出する。より詳しくは、位置算出部105は、識別部102によって推定された対象51の正面51Fの平面と直交する方向における、フォークリフト1の車体座標系の原点と対象51の正面51Fの平面までの距離Dを算出する。フォークリフト1の車体座標系の原点は、例えば、前輪5Fの回転軸と車体2の幅方向中心を通る軸の交点である。図11に示す例において、識別部102によって推定された対象51の正面51Fの平面に平行な方向を第1方向、識別部102によって推定された対象51の正面51Fの平面と直交する方向を第2方向とする。すなわち、第2方向は、フォークリフト1が対象51を取り上げるために、フォークリフト1が対象51の正面に正対する方向を示す。
位置算出部105は、フォークリフト1の車体座標系の原点を基準として、対象51の位置を算出する。より詳しくは、位置算出部105は、フォークリフト1の車体座標系の原点を基準として、識別部102によって決定された対象51の基準点51Rの上下方向の位置(高さ)を算出する。実施形態において、対象51の基準点51Rは、対象51の正面51Fに有する一対のフォーク挿し込み穴54の各々を結ぶ線分の中心である。対象51の基準点51Rは、識別部102がフォーク挿し込み穴54を識別した際、識別部102によって物体センサ7の物体検出データに基づいて決定される。
選択部106は、ステップS5において位置算出部105により算出された距離Dに基づいて、記憶部113に記憶されている複数の経路データから1つの経路データを選択する(ステップS6)。
図15は、実施形態に係る距離Dと経路データとの関係を模式的に示す図である。記憶部113は、複数の経路データを記憶する。経路データのそれぞれは、走行自動制御におけるフォークリフト1の目標経路60を含む。経路データは、フォークリフト1を第2方向に向かって走行させる走行条件を規定する。経路データは、対象51の正面に対して直行する方向にフォークリフト1を走行させる走行条件を規定する。図15に示す例において、記憶部113に記憶されている目標経路60は、第1目標経路61と、第2目標経路62とを含む。
目標経路60は、自動モードにおけるフォークリフト1の目標位置の集合体である。フォークリフト1の目標位置を含む目標経路60は、例えば車体座標系において規定される。
目標経路60は、目標経路60が開始する開始点60Sと、目標経路60が終了する終了点60Eと、開始点60Sから延びる第1走行経路60Aと、フォークリフト1を第2方向に向かって走行させるように終了点60Eへ延びる第2走行経路60Bと、第1走行経路60Aと第2走行経路60Bとを繋ぐ曲線経路60Cとを含む。第1走行経路60Aは、開始点60Sからの曲線長に比例して曲率が増加するクロソイド曲線に沿った経路である。第2走行経路60Bは、終了点60Eからの曲線長に比例して曲率が増加するクロソイド曲線に沿った経路である。曲線経路60Cは、第1走行経路60Aの終端部と第2走行経路60Bの前端部とを繋ぐ円弧状の経路である。第1走行経路60Aの曲率は、開始点60Sから第1走行経路60Aの終端部に向かって増加する。第2走行経路60Bの曲率は、終了点60Eから第2走行経路60Bの始端部に向かって増加する。第1走行経路60Aの終端部と曲線経路60Cの始端部とが結ばれる。曲線経路60Cの終端部と第2走行経路60Bの始端部とが結ばれる。曲線経路60Cの曲率と、第1走行経路60Aの終端部における曲率と、第2走行経路60Bの始端部における曲率とは、等しい。目標経路60の曲率は、開始点60Sから第1走行経路61Aの終端部、曲線経路60C、及び第2走行経路61Bの始端部を経て、終了点60Eに至るまで、連続的に変化する。目標経路60は、滑らに曲がる経路を形成する。
複数の目標経路60のそれぞれにおいて、第2方向におけるフォークリフト1と対象51との距離が異なる。複数の目標経路60のそれぞれにおいて、曲線経路60Cの曲率が異なる。図15に示す例において、第2方向における第1目標経路61のフォークリフト1と対象51との距離D1は、第2方向における第2目標経路62のフォークリフト1と対象51との距離D2よりも短い。第1目標経路61の曲線経路60Cの曲率1/r61は、第2目標経路62の曲線経路60Cの曲率1/r62よりも大きい。
選択部106は、ステップS5において位置算出部105により算出された距離Dに基づいて、記憶部113に記憶されている複数の経路データから1つの経路データを選択する。位置算出部105により算出された距離Dが第1目標経路61の開始点60Sと対象51との距離D1に同一又は近似する場合、選択部106は、記憶部113に記憶されている複数の経路データから第1目標経路61を規定する第1の経路データを選択する。位置算出部105により算出された距離Dが第2目標経路62の開始点60Sと対象51との距離D2に同一又は近似する場合、選択部106は、記憶部113に記憶されている複数の経路データから第2目標経路62を規定する第2の経路データを選択する。
なお、図15に示した例において、経路データは2種類であるが、経路データは3種類でもよいし、4種類以上の任意の複数種類でもよい。
経路生成部107は、ステップS6において選択部106により選択された経路データに基づいて、経路を生成する(ステップS7)。
経路生成部107は、フォークリフト1の車体座標系における対象51の基準点51Rの位置を決定する。経路生成部107は、選択部106により選択された目標経路60の終了点60Eと対象51の基準点51Rとの第1方向における位置が一致するように、且つ、選択部106により選択された目標経路60の開始点60Sとフォークリフト1の車体座標系の原点1Gとの第2方向における位置が一致するように目標経路60を配置する。経路生成部107は、目標経路60の終了点60Eと対象51の基準点51Rとを結ぶ直線経路63を生成する。
作業機制御部111は、作業機負荷センサ49の検出データに基づいて、作業機4を所定の姿勢に調整する(ステップS8)。
作業機制御部111は、作業機負荷センサ49の検出データに基づいて、フォークリフト1のフォーク43に運搬物が支持されていないと判定した場合、ステップS5において位置算出部105により算出された対象51の位置に基づいて、作業機4の所定の姿勢を決定する。具体的には、作業機制御部111は、ステップS5において位置算出部105により算出された対象51の基準点51Rの上下方向の位置(高さ)に基づいて、対象51の基準点51Rが第2前方センサ7Dの検出範囲70D内に入るように、作業機4の所定の姿勢を決定する。
第2前方センサ7Dは、作業機4に取り付けられている。そのため、作業機4の姿勢により、第2前方センサ7Dの検出範囲70Dの向きが変化する。例えば、マスト41の傾動角度により、第2前方センサ7Dの検出範囲70Dの指向方向が変化する。そのため、作業機4の姿勢が適切でない場合、第2前方センサ7Dが基準点51Rを検出できない可能性がある。
図16は、実施形態に係る作業機4を所定の姿勢に調整している状態を模式的に示す図である。実施形態においては、自動モード開始スイッチ157からの制御指令が制御指令受信部103により受信され、自動モードが開始された場合、作業機制御部111は、ステップS5において位置算出部105により算出された対象51の基準点51Rの位置H(高さ)に基づいて、識別部102が識別した対象51の基準点51Rが第2前方センサ7Dの検出範囲70D内に入るように、作業機4の姿勢を調整する。
走行制御部110は、ステップS7において経路生成部107により生成された経路に基づいて、走行装置14を制御する(ステップS9)。
図17は、実施形態に係る生成された経路65に基づいて対象51に接近するように走行するフォークリフト1を模式的に示す図である。図17に示すように、走行制御部110は、ステップS7において生成された経路65に基づいて、対象51に正対して接近するように走行装置14を制御する。走行制御部110は、第1方向に進行するフォークリフト1が旋回して、第2方向へ進行しながら対象51に接近するように走行装置14を制御する。
自動モードにおいて、フォークリフト1は、操舵が自動制御される。走行制御部110は、ステアリングセンサ144の検出データに基づいて、経路データにより規定される目標経路60及び経路生成部107により生成された直線経路63に従ってフォークリフト1が走行するように、ステアリングシリンダ142を制御する。自動モードにおいて、フォークリフト1の進行及び制動は、オペレータによるアクセルペダル154及びブレーキペダル155の操作により行われる。すなわち、走行自動制御において、フォークリフト1の操舵は、目標経路60に基づいて自動的に行われ、フォークリフト1の進行及び制動は、オペレータの運転操作に基づいて手動的に行われる。なお、自動モードにおいて、フォークリフト1の進行及び制動も自動的に行われてもよい。
経路データは、第1走行経路60A、曲線経路60C、及び第2走行経路60Bのそれぞれを走行するときのフォークリフト1の制限速度を含む。制限速度は、目標経路60に従って走行するフォークリフト1が目標経路60から逸脱しないように予め定められる。例えば、オペレータがアクセルペダル154を大きく踏み込んでも、走行制御部110は、車速センサ143の検出データに基づいて、フォークリフト1の走行速度が制限速度を上回らないように走行装置14を制御する。
曲線経路60Cの制限速度は、第1走行経路60Aの制限速度よりも低い。第2走行経路60Bの制限速度は、曲線経路60Cの制限速度よりも低い。すなわち、フォークリフト1が対象51に接近するほど制限速度が低くなる。
実施形態において、曲線経路60Cの曲率が大きいほど制限速度は低い。図15に示す例においては、第1目標経路61の曲線経路60Cを走行するときのフォークリフト1の制限速度は、第2目標経路62の曲線経路60Cを走行するときのフォークリフト1の制限速度よりも低い。すなわち、曲線経路60Cの曲がり具合がきついほど、フォークリフト1の走行速度が高くならないように、制限速度が定められる。
フォークリフト1が目標経路60に従って走行するとき、方位角算出部108は、左側方センサ7Aの物体検出データ及び第2前方センサ7Dの物体検出データに基づいて、左側方センサ7Aを基準とした対象51の方位角、及び第2前方センサ7Dを基準とした対象51の方位角を算出する。(ステップS10)。
図18、図19、及び図20のそれぞれは、実施形態に係るフォークリフト1が対象51に接近している状態を模式的に示す図である。図18は、フォークリフト1が第1方向に向かって走行している状態を示す。図19は、フォークリフト1が第1方向から第2方向に向かって旋回している状態を示す。図20は、フォークリフト1が第2方向に向かって走行している状態を示す。
図18、図19、及び図20に示すように、方位角算出部108は、左側方センサ7Aを基準とした対象51の方位角として、左側方センサ7Aの指向方向を示す第1方向線LA1と、左側方センサ7Aと対象51の基準点51Rとを結ぶ第2方向線LA2とがなす第1角度θaを算出する。方位角算出部108は、第2前方センサ7Dを基準とした対象51の方位角として、第2前方センサ7Dの指向方向を示す第3方向線LC1と、第2前方センサ7Dと対象51の基準点51Rとを結ぶ第4方向線LC2とがなす第2角度θcを算出する。
方位角算出部108は、算出した第1角度θaと第2角度θcとを比較して、第2角度θcが第1角度θa以下であるか否かを判定する(ステップS11)。
ステップS11において、第2角度θcが第1角度θaよりも大きいと判定された場合(ステップS11:No)、コントローラ100は、ステップS10の処理に戻る。識別部102は、左側方センサ7Aの物体検出データに基づいて、対象51を識別し続けることができる。
ステップS11において、第2角度θcが第1角度θa以下であると判定された場合(ステップS11:Yes)、切換部109は、対象51の識別に使用される物体センサ7の物体検出データを、左側方センサ7Aの物体検出データから第2前方センサ7Dの物体検出データに切り換える(ステップS12)。
実施形態において、フォークリフト1が走行路59を第1方向に向かって走行しているときのフォークリフト1と対象51との相対角度αは、実質的に90度となる。フォークリフト1が第1方向から第2方向に向かって走行することにより、フォークリフト1と対象51との相対角度αは、90度から徐々に小さくなる。フォークリフト1が対象51の正面に正対するときのフォークリフト1と対象51との相対角度αは、実質的に0度となる。
図18に示すように、フォークリフト1が第1方向に向かって走行しているとき、左側方センサ7Aは、対象51を検出することができる。すなわち、フォークリフト1と対象51との相対角度αが大きいとき、左側方センサ7Aの検出範囲70A内に対象51があるため、左側方センサ7Aは、対象51を検出することができる。
図19に示すように、フォークリフト1が、第1方向から第2方向へ向かって旋回すると、左側方センサ7A及び第2前方センサ7Dの両方が、対象51を検出することができる。すなわち、フォークリフト1と対象51との相対角度αが90度から徐々に小さくなると、左側方センサ7Aの検出範囲70A内、且つ、第2前方センサ7Dの検出範囲70D内に対象51があるため、左側方センサ7A及び第2前方センサ7Dの両方が、対象51を検出することができる。
図20に示すように、フォークリフト1が第2方向へ向かって走行しているとき、左側方センサ7Aは、対象51を検出できない可能性がある。すなわち、フォークリフト1と対象51との相対角度αが0度に近づくと、左側方センサ7Aの検出範囲70Aの外に対象51があるため、左側方センサ7Aは、対象51を検出できない。一方、フォークリフト1と対象51との相対角度αが0度に近づくと、第2前方センサ7Dの検出範囲70D内に対象51があるため、第2前方センサ7Dは、対象51を検出することができる。
このように、フォークリフト1と対象51との相対角度αにより、対象51を検出することができる物体センサ7が変化するため、切換部109は、方位角算出部108の判定に基づいて、対象51の識別に使用される物体センサ7の物体検出データを、左側方センサ7Aの物体検出データから第2前方センサ7Dの物体検出データに切り換える。
識別部102は、第2角度θcが第1角度θaよりも大きい場合、左側方センサ7Aの物体検出データに基づいて対象51を識別する。識別部102は、第2角度θcが第1角度θa以下である場合、第2前方センサ7Dの物体検出データに基づいて対象51を識別する。これにより、フォークリフト1が旋回しても、識別部102は、左側方センサ7Aの物体検出データ及び第2前方センサ7Dの物体検出データのいずれか一方に基づいて、対象51を識別し続けることができる。
識別部102は、第2前方センサ7Dの物体検出データに基づいて、フォークリフト1が対象51の正面に配置されたか否かを判定する。すなわち、識別部102は、第2前方センサ7Dの物体検出データに基づいて、フォークリフト1が対象51の正面51Fに正対したか否かを判定する(ステップS13)。
ステップS13において、フォークリフト1が対象51の正面51Fに配置されていないと判定された場合(ステップS13:No)、コントローラ100は、ステップS8の処理に戻る。
ステップS13において、フォークリフト1が対象51の正面51Fに配置されたと判定された場合(ステップS13:Yes)、走行自動制御が解除される(ステップS14)。
出力制御部112は、フォークリフト1が対象51の正面51Fに配置された時点において、出力装置16から出力データを出力させる。実施形態において、出力制御部112は、第2前方センサ7Dの物体検出データに基づいてフォークリフト1が対象51の正面51Fに配置されたと判定された時点において、音声出力装置162から音声データとしてブザー音を出力させる。これにより、オペレータは、フォークリフト1が対象51の正面51Fに正対したことを認識することができる。
走行自動制御が解除された後、オペレータは、作業機自動制御を開始するために、自動モード開始スイッチ157を操作する。制御指令受信部103は、自動モード開始スイッチ157からの制御指令を受信する(ステップS15)。
制御指令受信部103が自動モード開始スイッチ157からの制御指令を受信することにより、作業機自動制御が開始される。
出力制御部112は、制御指令受信部103が自動モード開始スイッチ157からの制御指令を受信した時点において、出力装置16から出力データを出力させる。実施形態において、出力制御部112は、制御指令受信部103が自動モード開始スイッチ157からの制御指令を受信した時点において、音声出力装置162から音声データとしてブザー音を出力させる。これにより、オペレータは、作業機自動制御が開始されたことを認識することができる。
作業機制御部111は、第2前方センサ7Dの物体検出データに基づいて、フォーク43の先端部の位置と一対のフォーク挿し込み穴54の位置とが一致するように、作業機4を制御する。すなわち、作業機制御部111は、第2前方センサ7Dの物体検出データに基づいて、フォーク43と対象51の一対のフォーク挿し込み穴54との距離が予め定められている所定値以下になるように、フォーク43の位置及び姿勢を制御する。作業機制御部111は、フォーク43の先端部の位置と一対のフォーク挿し込み穴54の位置とが一致するように、リフトシリンダ451、チルトシリンダ452、及びサイドシフトシリンダ453の少なくとも一つを制御する(ステップS16)。
出力制御部112は、第2前方センサ7Dの物体検出データに基づいて、フォーク43の先端部の位置と一対のフォーク挿し込み穴54の位置とが一致したと判定された時点において、出力装置16から出力データを出力させる。実施形態において、フォーク43と対象51の所定部位である一対のフォーク挿し込み穴54との距離が予め定められている所定値以下になった時点において、音声出力装置162から音声データとしてブザー音を出力させる。これにより、オペレータは、フォーク43の先端部の位置と一対のフォーク挿し込み穴54の位置とが一致したことを認識することができる。
[効果]
以上説明したように、車体2と、車体2の前方に配置されるように車体2に支持され、車体2に対して移動可能なフォーク43を有する作業機4と、を備えるフォークリフト1は、フォーク43とともに移動するように作業機4の少なくとも一部に取り付けられ、物体を検出する第2前方センサ7Dと、作業機4にかかる負荷を検出する作業機負荷センサ49と、作業機4を制御するコントローラ100と、作業機4の制御を開始させる制御指令を生成する操作装置である自動モード開始スイッチ157と、を備える。コントローラ100は、自動モード開始スイッチ157からの制御指令を受信し、且つ、作業機負荷センサ49の検出データに基づいて、作業機4に運搬物が支持されていないと判定した場合、作業機4を所定の姿勢に調整した後、第2前方センサ7Dの物体検出データに基づいて、作業機4を制御する作業機制御部111と、を有する。
実施形態によれば、自動モード開始スイッチ157からの制御指令が制御指令受信部103により受信され、自動モードが開始された場合、作業機制御部111は、作業機負荷センサ49の検出データに基づいて、フォークリフト1のフォーク43に運搬物が支持されているか否かを判定する。フォークリフト1のフォーク43に運搬物が支持されていないと判定した場合、作業機制御部111は、作業機4が所定の姿勢に調整する。作業機4が所定の姿勢に調整されることにより、作業機4に取り付けられている第2前方センサ7Dの姿勢が調整される。これにより、切換部109によって、対象51の識別に使用される物体センサ7の物体検出データが左側方センサ7Aの物体検出データから第2前方センサ7Dの物体検出データに切り換えられる前に、作業機制御部111が第2前方センサ7Dの姿勢を調整するので、対象51の識別に使用される物体センサ7の物体検出データが左側方センサ7Aの物体検出データから第2前方センサ7Dの物体検出データに切り換わった後も、第2前方センサ7Dによって荷役作業の対象51を適切に検出することができる。そのため、コントローラ100は、第2前方センサ7Dの物体検出データに基づいて、荷役作業を自動的に行うことができる。
実施形態において、フォークリフト1は、車体2の側部に取り付けられ、物体を検出する左側方センサ7Aを備える。コントローラ100は、左側方センサ7Aの物体検出データに基づいて、検出された物体を対象51として識別する識別部102と、左側方センサ7Aの物体検出データに基づいて、フォークリフト1の車体座標系の原点を基準として、識別部102が識別した対象51の位置を算出する位置算出部105と、を有する。作業機制御部111は、位置算出部105により算出された対象51の位置に基づいて、作業機4の所定の姿勢を決定する、これにより、作業機制御部111は、位置算出部105により算出された対象51の位置(高さ)に基づいて、対象51が第2前方センサ7Dの検出範囲70D内に入るように、作業機4の姿勢を調整することができる。
実施形態において、識別部102は、左側方センサ7Aの物体検出データに基づいて、対象51の基準点51Rを決定する。作業機制御部111は、対象51の基準点51Rの位置に基づいて、識別部102が識別した対象51の基準点51Rが第2前方センサ7Dの検出範囲70D内に入るように、作業機4の所定の姿勢を決定する。これにより、作業機制御部111は、位置算出部105により算出された対象51の位置(高さ)に基づいて、識別部102が決定した対象51の基準点51Rが第2前方センサ7Dの検出範囲70D内に入るように、作業機4の姿勢を調整することができる。作業機制御部111は、第2前方センサ7Dの物体検出データに基づいて、フォーク43の先端部の位置とフォーク挿し込み穴54の位置とが一致するように、作業機4を制御することができる。
[その他の実施形態]
上述の実施形態においては、走行路59を第1方向に走行するフォークリフト1の左側に、荷役作業を自動的に行うための対象が配置され、左側方センサ7Aが対象を検出することとした。走行路59を第1方向に走行するフォークリフト1の右側に、荷役作業を自動的に行うための対象が配置される場合、対象は右側方センサ7Bに検出される。識別部102は、右側方センサ7Bの物体検出データに基づいて、対象を識別する。
上述の実施形態においては、フォークリフト1の動力源11がエンジンであることとしたが、これに限定されない。例えば、フォークリフト1の動力源11は、電力を供給するバッテリであってもよい。この場合、走行モータ141は、電動モータでもよい。また、油圧ポンプ12は、電動モータによって駆動されてもよい。
上述の実施形態においては、自動モード許可スイッチ156と自動モード開始スイッチ157とが別々のスイッチであることとしたが、これに限定されない。例えば、自動モード許可スイッチ156と自動モード開始スイッチ157とが同一のスイッチでもよい。1つのスイッチが操作されることにより、荷役作業を自動的に行うための対象を識別する処理を開始させる制御指令が生成され、更に操作されることにより、走行自動制御又は作業機自動制御を開始させる制御指令が生成されてもよい。
上述の実施形態においては、キャブ3に搭乗したオペレータがフォークリフト1を操作可能であることとしたが、これに限定されない。例えば、フォークリフト1を操作する操作装置がフォークリフト1の遠隔地に配置され、フォークリフト1が遠隔操作されてもよい。
上述の実施形態においては、自動モード開始スイッチ157が操作されるまで、フォークリフト1は、手動モードで前進するとしたが、これに限定されない。例えば、フォークリフト1は、GNSS(Global Navigation Satellite System)などの自車位置を検出するための測位システムを備え、対象の位置情報を含む地図データと自車位置とを参照しながら目的の対象まで自動で走行してもよい。また、決定部104は、目的の対象が識別部102によって識別されたと判定された場合、荷役作業を自動的に行うための対象を決定してもよい。
上述の実施形態においては、走行自動制御の際、フォークリフト1の進行及び制動は、オペレータの運転操作に基づいて手動的に行われるとしたが、これに限定されない。走行制御部110は、フォークリフト1の進行及び制動を制御してもよい。走行制御部110は、経路データに含まれるフォークリフト1の制限速度に基づいて、フォークリフト1の進行及び制動を制御してもよい。
1…フォークリフト(荷役車両)、1G…原点、2…車体、3…キャブ、4…作業機、5…車輪、5F…前輪、5R…後輪、6…カウンタウエイト、7…物体センサ、7A…左側方センサ、7B…右側方センサ、7C…第1前方センサ、7D…第2前方センサ、8…フェンダ、10…制御システム、11…動力源、12…油圧ポンプ、13…制御弁ユニット、14…走行装置、15…操作装置、16…出力装置、36…シンボル、37…シンボル、41…マスト、42…ブラケット、43…フォーク、43A…第1のフォーク、43B…第2のフォーク、45…作業機駆動装置、46…リフトセンサ、47…チルトセンサ、48…サイドシフトセンサ、49…作業機負荷センサ、50…対象、50F…正面、51…対象、51F…正面、51R…基準点、52…対象、52F…正面、53…対象、54…フォーク挿し込み穴、55…荷置きスペース、59…走行路、60…目標経路、60A…第1走行経路、60B…第2走行経路、60C…曲線経路、60E…終了点、60S…開始点、61…第1目標経路、62…第2目標経路、63…直線経路、65…経路、70…検出範囲、70A…検出範囲、70B…検出範囲、70C…検出範囲、70D…検出範囲、71…カメラ、72…3次元センサ、100…コントローラ、101…検出データ取得部、102…識別部、103…制御指令受信部、104…決定部、105…位置算出部、106…選択部、107…経路生成部、108…方位角算出部、109…切換部、110…走行制御部、111…作業機制御部、112…出力制御部、113…記憶部、710…撮像範囲、720…測定範囲、131…走行制御弁、132…ステアリング制御弁、133…作業機制御弁、141…走行モータ、142…ステアリングシリンダ、143…車速センサ、144…ステアリングセンサ、151…ステアリングホイール、152…作業機レバー、153…前後進切換レバー、154…アクセルペダル、155…ブレーキペダル、156…自動モード許可スイッチ、157…自動モード開始スイッチ、161…表示装置、162…音声出力装置、451…リフトシリンダ、452…チルトシリンダ、453…サイドシフトシリンダ、1000…コンピュータシステム、1001…プロセッサ、1002…メインメモリ、1003…ストレージ、1004…インターフェース、LA1…第1方向線、LA2…第2方向線、LC1…第3方向線、LC2…第4方向線、α…相対角度、θa…第1角度、θc…第2角度。

Claims (4)

  1. 車体と、前記車体の前方に配置されるように前記車体に支持され、前記車体に対して移動可能なフォークを有する作業機と、を備える荷役車両を制御するためのシステムであって、
    前記フォークとともに移動するように前記作業機の少なくとも一部に取り付けられ、物体を検出する前方センサと、
    前記作業機にかかる負荷を検出する作業機負荷センサと、
    前記作業機を制御するコントローラと、
    前記作業機の制御を開始させる制御指令を生成する操作装置と、を備え、
    前記コントローラは、
    前記制御指令を受信し、且つ、前記作業機負荷センサの検出データに基づいて、前記作業機に運搬物が支持されていないと判定した場合、前記作業機を所定の姿勢に調整した後、前記前方センサの物体検出データに基づいて、前記作業機を制御する作業機制御部、を有する、
    システム。
  2. 前記車体の側部に取り付けられ、前記物体を検出する側方センサを備え、
    前記コントローラは、
    前記側方センサの物体検出データに基づいて、検出された物体を対象として識別する識別部と、
    前記側方センサの物体検出データに基づいて、前記荷役車両の車体座標系の原点を基準として、前記識別部が識別した対象の位置を算出する位置算出部と、を有し、
    前記作業機制御部は、前記対象の位置に基づいて、前記所定の姿勢を決定する、
    請求項1に記載のシステム。
  3. 前記識別部は、前記側方センサの検出データに基づいて、前記対象の基準点を決定し、
    前記作業機制御部は、前記対象の基準点の位置に基づいて、前記識別部が決定した前記対象の基準点が前方センサの検出範囲内に入るように前記所定の姿勢を決定する、
    請求項2に記載のシステム。
  4. 車体と、前記車体の前方に配置されるように前記車体に支持され、前記車体に対して移動可能なフォークを有する作業機と、を備える荷役車両を制御するための方法であって、
    前記フォークとともに移動するように前記作業機の少なくとも一部に取り付けられた前方センサで物体を検出し、
    前記作業機にかかる負荷を作業機負荷センサで検出し、
    前記作業機の制御を開始させる制御指令を生成し、
    前記制御指令を受信し、且つ、前記作業機負荷センサの検出データに基づいて、前記作業機に運搬物が支持されていないと判定した場合、前記作業機を所定の姿勢に調整した後、前記前方センサの物体検出データに基づいて、前記作業機を制御する、
    方法。
JP2022138619A 2022-08-31 2022-08-31 荷役車両を制御するためのシステム及び方法 Pending JP2024034406A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022138619A JP2024034406A (ja) 2022-08-31 2022-08-31 荷役車両を制御するためのシステム及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022138619A JP2024034406A (ja) 2022-08-31 2022-08-31 荷役車両を制御するためのシステム及び方法

Publications (1)

Publication Number Publication Date
JP2024034406A true JP2024034406A (ja) 2024-03-13

Family

ID=90194521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022138619A Pending JP2024034406A (ja) 2022-08-31 2022-08-31 荷役車両を制御するためのシステム及び方法

Country Status (1)

Country Link
JP (1) JP2024034406A (ja)

Similar Documents

Publication Publication Date Title
US8620530B2 (en) System for controlling a multimachine caravan
US10800406B2 (en) Mining machine, management system of mining machine, and management method of mining machine
CN106029477B (zh) 行走车辆及行走车辆的控制方法
WO2020203253A1 (ja) 重量推定システム
EP1408001A1 (en) Industrial vehicle equipped with material handling work controller
AU2008203191A1 (en) Straddle carrier with automatic steering
KR20180105045A (ko) 작업차
JP2019170312A (ja) 作業車両用の自動走行システム
JP2018116609A (ja) 作業車
JP6171034B2 (ja) 運搬車両及び運搬車両の制御方法
JP2024034406A (ja) 荷役車両を制御するためのシステム及び方法
US20230324913A1 (en) Obstacle detection device and traveling control device
JP2024033377A (ja) 荷役車両を制御するためのシステム及び方法
JP2024033370A (ja) 荷役車両を制御するためのシステム及び方法
JP2024034407A (ja) 荷役車両を制御するためのシステム及び方法
JP2023176620A (ja) 荷役車両
JP2018178878A (ja) 産業車両
JP2024018510A (ja) 荷役車両、荷役車両の制御方法、及び荷役車両の制御システム
JP2024018536A (ja) 荷役車両、荷役車両の制御方法、及び荷役車両の制御システム
JP2024018535A (ja) 荷役車両、荷役車両の制御方法、及び荷役車両の制御システム
JP2020170238A (ja) 有人無人フォークリフトおよび走行制御方法
JP2024033761A (ja) 荷役車両を制御するためのシステム、方法、及び荷役車両
JP7439724B2 (ja) 無人産業車両
JP7491238B2 (ja) 障害物検知システム
WO2024057959A1 (ja) 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法