JP2024030025A - Removal method of gangue and phosphorus in iron ore and manufacturing method of iron - Google Patents

Removal method of gangue and phosphorus in iron ore and manufacturing method of iron Download PDF

Info

Publication number
JP2024030025A
JP2024030025A JP2022132556A JP2022132556A JP2024030025A JP 2024030025 A JP2024030025 A JP 2024030025A JP 2022132556 A JP2022132556 A JP 2022132556A JP 2022132556 A JP2022132556 A JP 2022132556A JP 2024030025 A JP2024030025 A JP 2024030025A
Authority
JP
Japan
Prior art keywords
phosphorus
iron ore
gangue
mass
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022132556A
Other languages
Japanese (ja)
Inventor
謙一 樋口
Kenichi Higuchi
直人 坪内
Naoto Tsubouchi
友貴 望月
Yuki Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Nippon Steel Corp
Original Assignee
Hokkaido University NUC
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Nippon Steel Corp filed Critical Hokkaido University NUC
Priority to JP2022132556A priority Critical patent/JP2024030025A/en
Publication of JP2024030025A publication Critical patent/JP2024030025A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a novel and improved removal method of gangue and phosphorus in an iron ore, capable of further reducing a gangue and phosphorus concentration in the iron ore.SOLUTION: A removal method of gangue and phosphorus in an iron ore adds a NaOH aqueous solution with a concentration 3 M to 5 M into an iron ore containing phosphorus by 0.10 mass% to 0.25 mass%, and heats in a closed vessel at 200°C to 300°C for 10 mins or longer. Accordingly, a gangue and phosphorus concentration of the iron ore can further be reduced.SELECTED DRAWING: None

Description

本発明は、鉄鉱石中の脈石及びリンの除去方法、及び鉄の製造方法に関する。 The present invention relates to a method for removing gangue and phosphorus from iron ore, and a method for producing iron.

鉄鉱石の品位を高める(脈石を低減する)方法として、選鉱が知られている。選鉱としては、例えば磁力選鉱、浮遊選鉱、及び重力選鉱が知られている。選鉱は山元(資源国)で行われることが多い。 Ore beneficiation is known as a method of increasing the quality of iron ore (reducing gangue). As ore beneficiation, for example, magnetic ore beneficiation, flotation, and gravity beneficiation are known. Ore processing is often carried out in Yamamoto (resource-rich countries).

ところで、近年、脈石のみならず、リンの濃度が高い鉄鉱石が産出されるようになってきており、このような鉄鉱石の脈石及びリン濃度を低減する技術が強く求められてきた。このような課題に対して、比較的低温で反応を進められるアルカリ水熱反応が提案されている(非特許文献1)。アルカリ水熱反応は、概略的には、鉄鉱石にアルカリ水溶液を加え、密閉容器内で加熱するという技術である。 Incidentally, in recent years, not only gangue but also iron ore with a high phosphorus concentration has been produced, and there has been a strong demand for a technology to reduce the gangue and phosphorus concentration of such iron ore. To address these issues, an alkaline hydrothermal reaction that can proceed at a relatively low temperature has been proposed (Non-Patent Document 1). Alkaline hydrothermal reaction is a technique in which an aqueous alkaline solution is added to iron ore and heated in a closed container.

Y.Mochizuki and N.Tsubouchi : Hydrometallurgy 190 (2019) 105159Y. Mochizuki and N. Tsubouchi: Hydrometallurgy 190 (2019) 105159

非特許文献1に開示された技術によれば、鉄鉱石中の脈石及びリン濃度を低減することができる。しかし、本発明者らが非特許文献1に開示された技術についてさらに検討を進めたところ、さらなる改善の余地があることが判明した。 According to the technique disclosed in Non-Patent Document 1, gangue and phosphorus concentration in iron ore can be reduced. However, when the present inventors further investigated the technology disclosed in Non-Patent Document 1, it became clear that there was room for further improvement.

本発明は、上記課題を解決するためになされたものであり、その目的とするところは、鉄鉱石の脈石及びリン濃度をさらに低減することが可能な、新規かつ改良された鉄鉱石中の脈石及びリンの除去方法及び鉄の製造方法を提供することにある。 The present invention has been made to solve the above problems, and its purpose is to provide a new and improved iron ore in which the gangue and phosphorus concentration of iron ore can be further reduced. An object of the present invention is to provide a method for removing gangue and phosphorus, and a method for producing iron.

上記課題を解決するために、本発明のある観点によれば、リンを0.10質量%以上0.25質量%以下で含有する鉄鉱石に、濃度が3M以上5M以下のNaOH水溶液を加えて、密閉容器内において200℃以上300℃以下で10分以上加熱することを特徴とする、鉄鉱石中の脈石及びリンの除去方法が提供される。 In order to solve the above problems, according to one aspect of the present invention, an aqueous NaOH solution having a concentration of 3M or more and 5M or less is added to iron ore containing phosphorus at 0.10% by mass or more and 0.25% by mass or less. Provided is a method for removing gangue and phosphorus from iron ore, which comprises heating at 200° C. or higher and 300° C. or lower for 10 minutes or more in a closed container.

本発明の他の観点によれば、リンを0.10質量%以上0.25質量%以下で含有する鉄鉱石に、濃度が3M以上5M以下のNaOH水溶液とグリセリンを加えて、密閉容器内において200℃以上300℃以下で10分以上加熱することを特徴とする、鉄鉱石中の脈石及びリンの除去方法が提供される。 According to another aspect of the present invention, an aqueous NaOH solution and glycerin having a concentration of 3M to 5M and glycerin are added to iron ore containing phosphorus in an amount of 0.10% by mass to 0.25% by mass, and the mixture is stored in a closed container. Provided is a method for removing gangue and phosphorus from iron ore, which comprises heating at 200° C. or higher and 300° C. or lower for 10 minutes or more.

ここで、鉄鉱石に対して、40質量%以上70質量%以下の含有量となるようにグリセリンを加えてもよい。 Here, glycerin may be added to the iron ore so that the content is 40% by mass or more and 70% by mass or less.

本発明の他の観点によれば、上記の鉄鉱石中の脈石及びリンの除去方法により脈石及びリンを除去した鉄鉱石を還元して鉄を製造することを特徴とする、鉄の製造方法が提供される。 According to another aspect of the present invention, iron production is characterized in that iron is produced by reducing iron ore from which gangue and phosphorus have been removed by the above method for removing gangue and phosphorus from iron ore. A method is provided.

本発明の上記課題によれば、鉄鉱石の脈石及びリン濃度をさらに低減することが可能となる。 According to the above-mentioned problems of the present invention, it becomes possible to further reduce the gangue and phosphorus concentration of iron ore.

各鉄鉱石のリン濃度及び脱リン率の相関を示すグラフである。It is a graph showing the correlation between the phosphorus concentration and the dephosphorization rate of each iron ore.

<1.本発明者らによる検討>
まず、本発明者らが行った検討について説明する。本発明者らは、非特許文献1に開示されたアルカリ水熱反応に着目した。そして、どのような条件下であれば鉄鉱石から多くの脈石及びリンを除去できるかについて検討した。
<1. Investigation by the present inventors>
First, the studies conducted by the present inventors will be explained. The present inventors focused on the alkaline hydrothermal reaction disclosed in Non-Patent Document 1. We then investigated under what conditions a large amount of gangue and phosphorus could be removed from iron ore.

本発明者らは、異なる化学組成を有する複数種類の鉄鉱石を準備した(表1)。粉末X線回析(XRD)分析によれば、ALYとALRはα-FeOOH、WALとA、B、Cはα-FeOOHとFeであった。D、EはFeであった。 The present inventors prepared multiple types of iron ores with different chemical compositions (Table 1). According to powder X-ray diffraction (XRD) analysis, ALY and ALR were α-FeOOH, and WAL and A, B, and C were α-FeOOH and Fe 2 O 3 . D and E were Fe2O3 .

Figure 2024030025000001
Figure 2024030025000001

表1におけるT.Fe、SiO、Al、SiO+Al、Pの濃度(質量%)は化学分析により特定した。T.Feは鉄成分、SiO、Alは脈石成分、Pはリンである。LOIは強熱減量(質量%)であり、鉄鉱石中の結晶水の含有量を示す。吸着P(質量%)はゲーサイトに賦存しているリンであり、本検討では、このようなリンをゲーサイトに化学吸着したリンとした。吸着リンの濃度はMLA(Mineral Liberation Analysis)により定量した。残りのリンはリン酸塩鉱物として存在するか、酸化鉄(ヘマタイト等)に固溶していたりする。アルカリ水熱反応では、主にゲーサイトに化学吸着したリンを除去する。表1に示す質量%は、鉄鉱石の質量に対する質量%を示す。表1によれば、OreA~Dはリンを0.10~0.25質量%と多く含むが、その大半が吸着リンとなっている。つまり、リンを0.10~0.25質量%と多く含む鉄鉱石は、アルカリ水熱反応で除去可能な吸着リンを多く含む傾向にある。このような傾向は特に豪州産の鉄鉱石で顕著である。 T. in Table 1. The concentrations (mass %) of Fe, SiO 2 , Al 2 O 3 , SiO 2 +Al 2 O 3 , and P were determined by chemical analysis. T. Fe is an iron component, SiO 2 and Al 2 O 3 are gangue components, and P is phosphorus. LOI is loss on ignition (mass%) and indicates the content of water of crystallization in iron ore. Adsorbed P (mass%) is phosphorus present in goethite, and in this study, such phosphorus was treated as phosphorus chemically adsorbed to goethite. The concentration of adsorbed phosphorus was determined by MLA (Mineral Liberation Analysis). The remaining phosphorus exists as phosphate minerals or is dissolved in iron oxides (such as hematite). In the alkaline hydrothermal reaction, phosphorus chemically adsorbed on goethite is mainly removed. The mass % shown in Table 1 indicates the mass % based on the mass of iron ore. According to Table 1, Ore A to D contain a large amount of phosphorus at 0.10 to 0.25% by mass, most of which is adsorbed phosphorus. In other words, iron ore containing a large amount of phosphorus (0.10 to 0.25% by mass) tends to contain a large amount of adsorbed phosphorus that can be removed by an alkaline hydrothermal reaction. This trend is particularly noticeable in Australian iron ore.

次に、表1に示す各鉄鉱石を用いてアルカリ水熱反応を行った。具体的には、まず、SUS316製の反応器(外径25mm)に鉄鉱石約4.0gと5MのNaOH水溶液3.5mLを投入し、圧力計やバルブを備え付けた経路に接続した。ここで、鉄鉱石は粒径4.0mm以下に分級したものを用いた。具体的には、鉄鉱石を目開き4mmの篩に掛け、篩から落下した鉄鉱石をアルカリ水熱反応に供した。 Next, an alkaline hydrothermal reaction was performed using each iron ore shown in Table 1. Specifically, first, approximately 4.0 g of iron ore and 3.5 mL of 5M NaOH aqueous solution were charged into a reactor made of SUS316 (outer diameter 25 mm), and the reactor was connected to a path equipped with a pressure gauge and a valve. Here, the iron ore used was classified to a particle size of 4.0 mm or less. Specifically, iron ore was passed through a sieve with an opening of 4 mm, and the iron ore that fell through the sieve was subjected to an alkaline hydrothermal reaction.

その後、バルブを介して反応器内に高純度Heを導入し、加圧状態でリークチェックを行なった。反応器内を充分Heでパージした後、反応器内を常圧のHe雰囲気にしてバルブを閉じた。反応器は250℃または300℃に保持された流動砂浴に入れ、30分以上保持した。この時のゲージ圧の変化は0-4MPaの範囲にあった。保持時間が終了した後、反応器を流動砂浴から取り出し、水で急冷した。反応器内の固体(固相)と液体はろ過により分離回収した。回収した固相は、温水にてろ液がpH6になるまで繰り返し洗浄を行なった。ついで、アルカリ水熱反応後の固相中の各成分(鉄、脈石、リン)の含有量を化学分析により特定し、以下の数式(1)、(2)により鉄回収率(%)、脱脈石率(%)、脱リン率(%)を求めた。 Thereafter, high-purity He was introduced into the reactor via a valve, and a leak check was performed under pressure. After the inside of the reactor was sufficiently purged with He, the inside of the reactor was made into a normal pressure He atmosphere and the valve was closed. The reactor was placed in a fluidized sand bath maintained at 250°C or 300°C for 30 minutes or more. The change in gauge pressure at this time was in the range of 0-4 MPa. After the holding time expired, the reactor was removed from the fluidized sand bath and quenched with water. The solid (solid phase) and liquid in the reactor were separated and recovered by filtration. The recovered solid phase was washed repeatedly with warm water until the pH of the filtrate reached 6. Next, the content of each component (iron, gangue, phosphorus) in the solid phase after the alkaline hydrothermal reaction was determined by chemical analysis, and the iron recovery rate (%) was calculated using the following formulas (1) and (2). The gangue removal rate (%) and phosphor removal rate (%) were determined.

Figure 2024030025000002
Figure 2024030025000002

Figure 2024030025000003
Figure 2024030025000003

数式(1)、(2)において、Waはアルカリ水熱反応後の固相の質量であり、Wbはアルカリ水熱反応前の鉄鉱石の質量であり、Faはアルカリ水熱反応後の固相中の鉄濃度(質量%)であり、Fbはアルカリ水熱反応前の鉄鉱石中の鉄濃度(質量%)である。 In formulas (1) and (2), Wa is the mass of the solid phase after the alkaline hydrothermal reaction, Wb is the mass of the iron ore before the alkaline hydrothermal reaction, and Fa is the mass of the solid phase after the alkaline hydrothermal reaction. Fb is the iron concentration (mass %) in the iron ore before the alkaline hydrothermal reaction.

数式(2)を用いて脱脈石率を求める場合、Paはアルカリ水熱反応後の固相中の全脈石濃度(質量%)であり、Pbはアルカリ水熱反応前の鉄鉱石中の全脈石濃度(質量%)である。数式(2)を用いて脱リン率を求める場合、Paはアルカリ水熱反応後の固相中のリン濃度(質量%)であり、Pbはアルカリ水熱反応前の鉄鉱石中のリン濃度(質量%)である。結果を表2及び図1に示す。図1の横軸はアルカリ水熱反応前の鉄鉱石中のリン濃度(質量%)であり、縦軸は脱リン率(%)である。点P1はALYのリン濃度及び脱リン率の相関を示し、点P2はALRのリン濃度及び脱リン率の相関を示す。点P3~P8はWAL~OreEのリン濃度及び脱リン率の相関を示す。 When determining the gangue removal rate using formula (2), Pa is the total gangue concentration (mass%) in the solid phase after the alkaline hydrothermal reaction, and Pb is the total gangue concentration (mass%) in the iron ore before the alkaline hydrothermal reaction. Total gangue concentration (mass%). When calculating the dephosphorization rate using formula (2), Pa is the phosphorus concentration (mass%) in the solid phase after the alkaline hydrothermal reaction, and Pb is the phosphorus concentration (mass%) in the iron ore before the alkaline hydrothermal reaction. mass%). The results are shown in Table 2 and Figure 1. The horizontal axis of FIG. 1 is the phosphorus concentration (% by mass) in the iron ore before the alkaline hydrothermal reaction, and the vertical axis is the dephosphorization rate (%). Point P1 shows the correlation between the phosphorus concentration and dephosphorization rate of ALY, and point P2 shows the correlation between the phosphorus concentration and dephosphorization rate of ALR. Points P3 to P8 show the correlation between phosphorus concentration and dephosphorization rate from WAL to OreE.

Figure 2024030025000004
Figure 2024030025000004

ALY、ALRはリン濃度の低い高結晶水鉱石であり、これらの脱リン率は高い。しかし、もともとリン濃度が低い(<0.10質量%)ので、コストをかけて脱リン処理をする意味合いが低い。 ALY and ALR are highly crystalline water ores with low phosphorus concentration, and their dephosphorization rates are high. However, since the phosphorus concentration is originally low (<0.10% by mass), there is little significance in dephosphorizing it at high cost.

リン濃度が高い鉄鉱石は埋蔵量も豊富であり、脱リン処理をして有効活用化する意味合いは大きい。表2及び図1によれば、リン濃度が0.1~0.25質量%の鉄鉱石にアルカリ水熱処理をすることで、効率の良い脱リン処理が出来ることが分かった。 Iron ore, which has a high phosphorus concentration, has abundant reserves, and it has great significance to dephosphorize it and make effective use of it. According to Table 2 and FIG. 1, it was found that efficient dephosphorization can be achieved by subjecting iron ore having a phosphorus concentration of 0.1 to 0.25% by mass to alkaline hydrothermal treatment.

リン濃度の高い鉄鉱石の方が、含有脈石量が低く、高い脱脈石率を示す。リン濃度が0.1質量%以上の鉄鉱石にアルカリ水熱処理をすると、60%以上の高い脱脈石率を示した。アルカリ水熱処理による鉄回収率は鉄鉱石の種類に依らず高く、80%以上であった。 Iron ore with a higher phosphorus concentration has a lower gangue content and a higher gangue removal rate. When iron ore with a phosphorus concentration of 0.1% by mass or more was subjected to alkaline hydrothermal treatment, it showed a high gangue removal rate of 60% or more. The iron recovery rate by alkaline hydrothermal treatment was high, regardless of the type of iron ore, and was over 80%.

なお、リン濃度が0.1質量%未満だと、上述した高結晶水鉱石を除き、リンの多くがFeと共存するリン酸塩鉱物として存在することになり、アルカリ水熱反応による脱リン性が劣る。リン濃度が0.1質量%以上の鉄鉱石では、リンの多くがゲーサイトに化学吸着したリンとなる。アルカリ水熱反応では、吸着リンの反応性が高く、したがってリン濃度が0.1質量%以上となる場合に脱リン率が向上する。さらに、脈石成分(SiO、Al)もアルカリ水溶液に溶出し、脱脈石率も向上する。一方、リン濃度が0.25質量%を超えると、アルカリ水熱反応の反応性に対して、初期のリン含有量が過剰となり、脱リン率が低下する。 Note that if the phosphorus concentration is less than 0.1% by mass, most of the phosphorus will exist as phosphate minerals coexisting with Fe 2 O 3 , except for the highly crystalline water ore mentioned above, and the Poor dephosphorization properties. In iron ore with a phosphorus concentration of 0.1% by mass or more, most of the phosphorus becomes phosphorus chemically adsorbed to goethite. In the alkaline hydrothermal reaction, the reactivity of adsorbed phosphorus is high, and therefore the dephosphorization rate is improved when the phosphorus concentration is 0.1% by mass or more. Furthermore, gangue components (SiO 2 , Al 2 O 3 ) are also eluted into the alkaline aqueous solution, and the gangue removal rate is also improved. On the other hand, when the phosphorus concentration exceeds 0.25% by mass, the initial phosphorus content becomes excessive with respect to the reactivity of the alkaline hydrothermal reaction, and the dephosphorization rate decreases.

そこで、本発明者らは、アルカリ水熱反応による脱リン及び脱脈石の対象となる鉄鉱石を、リン含有量0.1~0.25質量%の鉄鉱石とした。また、アルカリ水熱反応の反応温度を200~300℃とし、反応時間を10分以上、好ましくは30分以上とした。反応温度が200℃未満では、アルカリ水熱の反応速度が十分に早くなく、アルカリ水熱処理に多大な時間がかかってしまうので望ましくなく、反応温度が300℃超では、反応速度は十分に早いものの、反応温度200℃の時と大差ないばかりか、加温に多大なエネルギーが必要となるので、望ましくないからである。また、反応時間が10分未満では、アルカリ水熱反応が十分に進行しないからである。反応時間の上限値は特に制限されないが、例えば、工業的には3時間以内であってもよい。 Therefore, the present inventors selected iron ore with a phosphorus content of 0.1 to 0.25% by mass as the target of dephosphorization and gangue removal by an alkaline hydrothermal reaction. Further, the reaction temperature of the alkaline hydrothermal reaction was set to 200 to 300°C, and the reaction time was set to 10 minutes or more, preferably 30 minutes or more. If the reaction temperature is less than 200°C, the reaction rate of alkaline hydrothermal treatment will not be fast enough and the alkaline hydrothermal treatment will take a long time, which is undesirable. If the reaction temperature exceeds 300°C, although the reaction rate is sufficiently fast, This is because not only is there not much difference from the reaction temperature of 200° C., but also a large amount of energy is required for heating, which is not desirable. Further, if the reaction time is less than 10 minutes, the alkaline hydrothermal reaction will not proceed sufficiently. The upper limit of the reaction time is not particularly limited, but may be, for example, within 3 hours industrially.

次に、本発明者らは、NaOH水溶液の濃度について検討した。具体的には、NaOH水溶液の濃度を2~6Mと変動させて上述したアルカリ水熱反応を行った。鉄鉱石はOreAを用いた。その結果を表3に示す。 Next, the present inventors investigated the concentration of the NaOH aqueous solution. Specifically, the above-described alkaline hydrothermal reaction was performed while varying the concentration of the NaOH aqueous solution from 2 to 6M. OreA was used as the iron ore. The results are shown in Table 3.

Figure 2024030025000005
Figure 2024030025000005

表3によれば、NaOH水溶液の濃度が3~5Mとなる場合に、脱脈石率及び脱リン率が60%以上となる。他の鉱石種(B~D)に対しても同様の結果が得られた。なお、NaOH水溶液の濃度が3M未満となる場合、どの鉄鉱石種に対しても十分な(60%以上の)脱脈石率、脱リン率が得られなかった。一方、NaOH水溶液の濃度が5Mを超えると、アルカリ水熱反応後の鉄鉱石(固相)中にNaが0.12%超残留して好ましくない。このような高Naの鉄鉱石を用いて焼結鉱を製造すると、焼結鉱の還元粉化性(RDI)が悪化(40%以上)する。なお、RDIは、JIS M 8720で規定される焼結鉱の還元粉化指数である。焼結鉱500gを、550℃でCO-30%(N-70%)のガスで30分還元し、冷却後に所定の回転粉化処理を行った後の粉率(2.8mm以下)で表される。洗浄を強化して残留Naを低減させる方法もあるが、焼結鉱の生産性が著しく低下するので好ましくない。 According to Table 3, when the concentration of the NaOH aqueous solution is 3 to 5M, the gangue removal rate and dephosphorization rate are 60% or more. Similar results were obtained for other ore types (B to D). Note that when the concentration of the NaOH aqueous solution was less than 3M, a sufficient gangue removal rate (60% or more) and dephosphorization rate could not be obtained for any type of iron ore. On the other hand, if the concentration of the NaOH aqueous solution exceeds 5M, more than 0.12% of Na will remain in the iron ore (solid phase) after the alkaline hydrothermal reaction, which is not preferable. When sintered ore is produced using such high Na iron ore, the reduction pulverizability (RDI) of the sintered ore deteriorates (40% or more). Note that RDI is a reduction pulverization index of sintered ore specified in JIS M 8720. 500 g of sintered ore was reduced with CO-30% (N 2 -70%) gas at 550°C for 30 minutes, and after cooling, the powder ratio (2.8 mm or less) was obtained after performing the specified rotary powdering process. expressed. Although there is a method of reducing residual Na by strengthening cleaning, it is not preferable because the productivity of the sintered ore is significantly reduced.

次に、本発明者らは、アルカリ水熱反応に添加する物質について検討した。この結果、本発明者らは、上述したアルカリ水熱反応において、鉄鉱石にグリセリンを添加することで、高い還元率が得られることを見出した。グリセリンの添加濃度は、内数で40~70質量%が好ましい。この場合、高い還元率に加えて、高い脱リン率、脱脈石率が得られる。グリセリンの添加濃度はグリセリン、鉄鉱石、及びNaOHの合計質量に対する質量割合である。 Next, the present inventors studied substances to be added to an alkaline hydrothermal reaction. As a result, the present inventors discovered that a high reduction rate can be obtained by adding glycerin to iron ore in the above-mentioned alkaline hydrothermal reaction. The concentration of glycerin added is preferably 40 to 70% by mass. In this case, in addition to a high reduction rate, a high dephosphorization rate and a high gangue removal rate can be obtained. The concentration of glycerin added is a mass ratio to the total mass of glycerin, iron ore, and NaOH.

本発明者らは、このような結果が得られた理由を以下の様に考えている。すなわち、まず、グリセリンとNaOHが反応し、HとHOが生成する(化学式1)。さらに、過剰なグリセリンが分解して、Hを発生する(化学式2)。これらの反応で生成したHによって、共存する鉄鉱石が還元される(化学式3)。
(OH)+NaOH=CHCH(OH)COONa+H+HO (化学式1)
(OH)= CHCH(OH)COOH+H (化学式2)
Fe+3H=2Fe+3HO (化学式3)
The present inventors believe that the reason why such results were obtained is as follows. That is, first, glycerin and NaOH react to generate H 2 and H 2 O (chemical formula 1). Furthermore, excess glycerin decomposes to generate H2 (chemical formula 2). The coexisting iron ore is reduced by H 2 generated by these reactions (chemical formula 3).
C3H5 (OH) 3 +NaOH= CH3CH (OH)COONa+ H2 + H2O ( Chemical formula 1)
C3H5 (OH) 3 = CH3CH (OH) COOH + H2 (chemical formula 2)
Fe2O3 + 3H2 =2Fe+ 3H2O (chemical formula 3)

表4は5MのNaOH水溶液に65質量%のグリセリンを添加してアルカリ水熱反応を行った結果を示す。表4において、還元率は、アルカリ水熱反応前試料のT.Fe、M.Fe、FeOの化学分析から求まる被還元酸素量と、アルカリ水熱反応後試料のT.Fe、M.Fe、FeOの化学分析値から求まる残存酸素量を測定して、被還元酸素量に対する除去された酸素量の比率から求めた。 Table 4 shows the results of an alkaline hydrothermal reaction by adding 65% by mass of glycerin to a 5M NaOH aqueous solution. In Table 4, the reduction rate is the T.I. of the sample before alkaline hydrothermal reaction. Fe, M. The amount of reduced oxygen determined from the chemical analysis of Fe and FeO, and the T.I. of the sample after the alkaline hydrothermal reaction. Fe, M. The amount of residual oxygen determined from the chemical analysis values of Fe and FeO was measured and determined from the ratio of the amount of oxygen removed to the amount of oxygen to be reduced.

Figure 2024030025000006
Figure 2024030025000006

表4によれば、リン含有量が0.1質量%未満のWALは低い還元率であった。一方、高結晶水鉱石であるALYとALRは高い還元率を示した。リン含有量が0.1質量%以上の鉄鉱石は高い還元率を示した。これは以下の理由によると考えられる。すなわち、上記のようにリン含有率が高い鉄鉱石中にはゲーサイト吸着リンが多く、アルカリ水熱反応で脱リンされやすいので、脱リンに消費されるNaOH量が少なくてすむ。その分、グリセリンと反応してHを生じやすく還元が進む。このため、リン含有量が0.1質量%以上の鉄鉱石は高い還元率を示すと考えられる。ただし、過度にリン含有量が高い(0.25重量%超)と、NaOHのほとんどが脱リンで消費されてしまい、グリセリンと反応してHを発生する量が限定されてしまうために還元率は80%未満となった。 According to Table 4, WAL with a phosphorus content of less than 0.1% by mass had a low reduction rate. On the other hand, ALY and ALR, which are highly crystalline water ores, showed high reduction rates. Iron ore with a phosphorus content of 0.1% by mass or more showed a high reduction rate. This is considered to be due to the following reasons. That is, as described above, iron ore with a high phosphorus content has a large amount of phosphorus adsorbed on goethite and is easily dephosphorized by an alkaline hydrothermal reaction, so the amount of NaOH consumed for dephosphorization can be reduced. Therefore, it is easier to react with glycerin to generate H 2 and the reduction progresses. Therefore, iron ore with a phosphorus content of 0.1% by mass or more is considered to exhibit a high reduction rate. However, if the phosphorus content is excessively high (more than 0.25% by weight), most of the NaOH will be consumed in dephosphorization, and the amount of H2 generated by reaction with glycerin will be limited, resulting in reduced reduction. The rate was less than 80%.

本発明者らは、グリセリンの好ましい濃度について検討した。具体的には、本発明者らは、グリセリンの添加濃度を35~75質量%として上述したアルカリ水熱反応を行った。鉄鉱石はOreAを使用した。結果を表5に示す。 The present inventors investigated the preferred concentration of glycerin. Specifically, the present inventors conducted the above-mentioned alkaline hydrothermal reaction with the added concentration of glycerin ranging from 35 to 75% by mass. OreA was used as the iron ore. The results are shown in Table 5.

Figure 2024030025000007
Figure 2024030025000007

表5によれば、グリセリンの濃度がいずれの場合であっても、高い還元率が得られた。特に、グリセリンの添加濃度が40~70質量%となる場合に高い脱脈石率、脱リン率、還元率が得られた。他の鉱石種(B~D)でも同様の結果が得られた。グリセリンの濃度が40質量%未満だと、H発生量が不十分となり、還元率が低下して80%以下となる。ただし、70%の還元率は実用上十分な値である。グリセリンの濃度が70質量%を超えると、NaOHを優先的に消費してしまい、脱脈石率、脱リン率が低下して60%未満となる。ただし、還元率は100%と非常に高い値となった。 According to Table 5, a high reduction rate was obtained regardless of the glycerin concentration. In particular, high gangue removal rate, dephosphorization rate, and reduction rate were obtained when the concentration of glycerin added was 40 to 70% by mass. Similar results were obtained for other ore types (B to D). If the concentration of glycerin is less than 40% by mass, the amount of H 2 generated will be insufficient and the reduction rate will decrease to 80% or less. However, a reduction rate of 70% is a practically sufficient value. When the concentration of glycerin exceeds 70% by mass, NaOH is consumed preferentially, and the gangue removal rate and dephosphorization rate decrease to less than 60%. However, the return rate was extremely high at 100%.

以上により、リンを0.10~0.25質量%で含有する鉄鉱石に、濃度が3~5MのNaOH水溶液を加えて、密閉容器内で200~300℃で10分以上、好ましくは加熱することで、鉄鉱石の脈石及びリン濃度をさらに低減することが可能となる。具体的には、脱リン率、脱脈石率ともに60%以上に達する。これに加えて、密閉容器内にNaOH水溶液を添加する際に、更にグリセリンを添加することで、高い還元率の鉄を得ることができる。グリセリンの添加濃度は、好ましくは内数で40~70質量%である。この場合、鉄鉱石の還元率が80%以上に達する。 As described above, an aqueous NaOH solution with a concentration of 3 to 5 M is added to iron ore containing 0.10 to 0.25 mass% of phosphorus, and the mixture is preferably heated in a closed container at 200 to 300°C for 10 minutes or more. This makes it possible to further reduce the gangue and phosphorus concentration of iron ore. Specifically, both the dephosphorization rate and the gangue removal rate reach 60% or more. In addition to this, by further adding glycerin when adding the NaOH aqueous solution into the sealed container, iron with a high reduction rate can be obtained. The concentration of glycerin added is preferably 40 to 70% by mass. In this case, the reduction rate of iron ore reaches 80% or more.

<2.鉄鉱石中の脈石及びリンの除去方法>
次に、鉄鉱石中の脈石及びリンの除去方法について説明する。上述したように、本実施形態に係る鉄鉱石中の脈石及びリンの除去方法は、リンを0.10~0.25質量%で含有する鉄鉱石に、濃度が3~5MのNaOH水溶液を加えて、密閉容器内で200~300℃で10分以上、好ましくは30分以上加熱するというものである。密閉容器内は、不活性ガス(He等)を充填することが好ましい。これにより、鉄鉱石の脈石及びリン濃度をさらに低減することが可能となる。本実施形態では、密閉容器内にNaOH水溶液を添加する際に、更にグリセリンを添加することが好ましい。これにより、高い還元率の鉄を得ることができる。グリセリンの好ましい添加濃度は内数で40~70質量%である。なお、アルカリ水熱反応後の固相を十分に洗浄すれば固相にアルカリ成分が残留せず、その後に高炉に使用しても問題ない。また、本実施形態に係る鉄鉱石中の脈石及びリンの除去方法は、バッチ式で行われてもよいし、NaOH水溶液を循環させるような流通式で行われてもよい。
<2. Method for removing gangue and phosphorus in iron ore>
Next, a method for removing gangue and phosphorus from iron ore will be explained. As described above, the method for removing gangue and phosphorus from iron ore according to the present embodiment involves adding a NaOH aqueous solution with a concentration of 3 to 5M to iron ore containing 0.10 to 0.25% by mass of phosphorus. In addition, it is heated in a closed container at 200 to 300°C for 10 minutes or more, preferably 30 minutes or more. The inside of the closed container is preferably filled with an inert gas (such as He). This makes it possible to further reduce the gangue and phosphorus concentration of iron ore. In this embodiment, when adding the NaOH aqueous solution into the closed container, it is preferable to further add glycerin. Thereby, iron with a high reduction rate can be obtained. The preferred addition concentration of glycerin is 40 to 70% by mass. Note that if the solid phase after the alkaline hydrothermal reaction is sufficiently washed, no alkaline components will remain in the solid phase, and there will be no problem even if it is used in a blast furnace after that. Further, the method for removing gangue and phosphorus from iron ore according to the present embodiment may be performed in a batch method or in a flow method in which an aqueous NaOH solution is circulated.

<3.鉄の製造方法>
本実施形態に係る鉄の製造方法は、上述した鉄鉱石中の脈石及びリンの除去方法により脈石及びリンを除去した鉄鉱石を還元して鉄を製造するというものである。鉄の製造方法は特に制限されないが、例えば鉄鉱石を用いて焼結鉱を製造し、この焼結鉱を高炉に装入することで鉄を製造してもよい。
<3. Iron manufacturing method>
The method for producing iron according to the present embodiment is to produce iron by reducing iron ore from which gangue and phosphorus have been removed by the above-described method for removing gangue and phosphorus from iron ore. Although the method for producing iron is not particularly limited, for example, iron may be produced by producing sintered ore using iron ore and charging the sintered ore into a blast furnace.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

Claims (4)

リンを0.10質量%以上0.25質量%以下で含有する鉄鉱石に、濃度が3M以上5M以下のNaOH水溶液を加えて、密閉容器内において200℃以上300℃以下で10分以上加熱することを特徴とする、鉄鉱石中の脈石及びリンの除去方法。 An aqueous NaOH solution with a concentration of 3M or more and 5M or less is added to iron ore containing phosphorus at 0.10% by mass or more and 0.25% by mass or less, and heated at 200°C or more and 300°C or less in a closed container for 10 minutes or more. A method for removing gangue and phosphorus from iron ore, characterized by: リンを0.10質量%以上0.25質量%以下で含有する鉄鉱石に、濃度が3M以上5M以下のNaOH水溶液とグリセリンを加えて、密閉容器内において200℃以上300℃以下で10分以上加熱することを特徴とする、鉄鉱石中の脈石及びリンの除去方法。 Iron ore containing phosphorus at 0.10% by mass or more and 0.25% by mass or less is added with an aqueous NaOH solution with a concentration of 3M or more and 5M or less and glycerin, and heated at 200°C or more and 300°C or less in a closed container for 10 minutes or more. A method for removing gangue and phosphorus from iron ore, the method comprising heating. 前記鉄鉱石に対して、40質量%以上70質量%以下の含有量となるように前記グリセリンを加えることを特徴とする、請求項2に記載の鉄鉱石中の脈石及びリンの除去方法。 The method for removing gangue and phosphorus from iron ore according to claim 2, characterized in that the glycerin is added to the iron ore so that the content thereof is 40% by mass or more and 70% by mass or less. 請求項1~3の何れか1項に記載の鉄鉱石中の脈石及びリンの除去方法により脈石及びリンを除去した鉄鉱石を還元して鉄を製造することを特徴とする、鉄の製造方法。 A method for producing iron, characterized by producing iron by reducing iron ore from which gangue and phosphorus have been removed by the method for removing gangue and phosphorus from iron ore according to any one of claims 1 to 3. Production method.
JP2022132556A 2022-08-23 2022-08-23 Removal method of gangue and phosphorus in iron ore and manufacturing method of iron Pending JP2024030025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022132556A JP2024030025A (en) 2022-08-23 2022-08-23 Removal method of gangue and phosphorus in iron ore and manufacturing method of iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022132556A JP2024030025A (en) 2022-08-23 2022-08-23 Removal method of gangue and phosphorus in iron ore and manufacturing method of iron

Publications (1)

Publication Number Publication Date
JP2024030025A true JP2024030025A (en) 2024-03-07

Family

ID=90105660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022132556A Pending JP2024030025A (en) 2022-08-23 2022-08-23 Removal method of gangue and phosphorus in iron ore and manufacturing method of iron

Country Status (1)

Country Link
JP (1) JP2024030025A (en)

Similar Documents

Publication Publication Date Title
EP4286325A1 (en) Method for resource recycling of nickel-iron alloy and use thereof
CN100478461C (en) Combined bottom rotating furnace-electric furnace process for treating red mud nickel ore to produce ferronickel
CN104328290B (en) A kind of ion type rareearth concentrate acid leaching process
CN100497670C (en) Process of fast reducing carbon-containing red mud nickel ore pellet to enriching nickel in a bottom rotating furnace
US4289746A (en) Process for preparation of micaceous iron oxide
CN102181627B (en) Method for treating primary low-grade high-phosphorus manganese ore by acid blending curing
CN112662896B (en) Method for preparing titanium-rich material from titanium ore
Sinha et al. Recovery of manganese from ferruginous manganese ore using ascorbic acid as reducing agent
CN107674973B (en) A kind of method that mechanochemistry strengthens Leaching of chalcopyrite
CN109231181B (en) Processing method, ternary precursor, battery-grade iron phosphate and the lithium ion battery of iron vitriol dreg of yellow sodium
Lyman et al. Recycling of neodymium iron boron magnet scrap
CN104762474B (en) Method for preparing ammonium molybdate through molybdenite
CN107082429A (en) A kind of method that utilization Dust of Iron And Steel Works prepares cementite
CN103708557A (en) Method for producing ammonium paratungstate by using tungsten-containing waste material
CN108677022A (en) A kind of method that sintering dust separation ash prepares removing harmful element during cementite
JP5133403B2 (en) Method for producing Fe, Ni-containing raw material, ferronickel mass using the Fe, Ni-containing raw material, and method for producing the same
CN101307462A (en) Deironing method for ferric manganese ore by leaching method
JPS60166231A (en) Manufacture of manganese sulfate solution
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
CN109879323A (en) It is a kind of to prepare ferritic method using electric furnace dust and mill scale
CN110331284A (en) A method of electrolytic manganese is prepared using pyrolusite
JP2024030025A (en) Removal method of gangue and phosphorus in iron ore and manufacturing method of iron
KR101193454B1 (en) Iron powder recovery method from waste permanent magnet
CN115849456B (en) Method for preparing ferric oxide by using pyrite cinder and application thereof
US4562048A (en) Process for the treatment of metal-bearing ores