JP2024026589A - Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device - Google Patents

Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device Download PDF

Info

Publication number
JP2024026589A
JP2024026589A JP2023221931A JP2023221931A JP2024026589A JP 2024026589 A JP2024026589 A JP 2024026589A JP 2023221931 A JP2023221931 A JP 2023221931A JP 2023221931 A JP2023221931 A JP 2023221931A JP 2024026589 A JP2024026589 A JP 2024026589A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
type epoxy
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023221931A
Other languages
Japanese (ja)
Inventor
格 山浦
実佳 田中
徹 馬場
勇磨 竹内
俊輔 児玉
貴大 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JP2024026589A publication Critical patent/JP2024026589A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Abstract

【課題】成形時の流動性と硬化性とを両立し且つ硬化物の誘電正接が低い封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法を提供する。【解決手段】多官能エポキシ樹脂及び二官能エポキシ樹脂を含むエポキシ樹脂と、活性エステル化合物を含む硬化剤と、を含有する封止用樹脂組成物。【選択図】なし[Problem] An encapsulating resin composition that has both fluidity and curability during molding and has a low dielectric loss tangent of the cured product, an electronic component device encapsulated using the same, and encapsulated using the same. A method for manufacturing an electronic component device is provided. A sealing resin composition containing an epoxy resin including a polyfunctional epoxy resin and a bifunctional epoxy resin, and a curing agent containing an active ester compound. [Selection diagram] None

Description

本発明は、封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法に関する。 The present invention relates to a sealing resin composition, an electronic component device, and a method for manufacturing an electronic component device.

通信のために発信された電波が誘電体において熱変換されることで発生する伝送損失の量は、周波数と比誘電率の平方根と誘電正接との積として表される。つまり伝送信号は周波数に比例して熱に変わりやすいので、伝送損失を抑制するために高周波帯ほど通信部材の材料に低誘電特性が要求される。 The amount of transmission loss that occurs when radio waves transmitted for communication are thermally converted in a dielectric material is expressed as the product of the frequency, the square root of the dielectric constant, and the dielectric loss tangent. In other words, transmission signals are easily converted into heat in proportion to frequency, so in order to suppress transmission loss, the materials of communication members are required to have lower dielectric properties at higher frequencies.

例えば特許文献1~2には、エポキシ樹脂用硬化剤として活性エステル樹脂を含有する熱硬化性樹脂組成物が開示されており、硬化物の誘電正接を低く抑えることができるとされている。 For example, Patent Documents 1 and 2 disclose a thermosetting resin composition containing an active ester resin as a curing agent for epoxy resin, and it is said that the dielectric loss tangent of the cured product can be kept low.

特開2012-246367号公報Japanese Patent Application Publication No. 2012-246367 特開2014-114352号公報Japanese Patent Application Publication No. 2014-114352

エポキシ樹脂の硬化剤として活性エステル化合物は、フェノール硬化剤又はアミン硬化剤に比べて、硬化物の誘電性を低く抑える点では有利である。しかし、エポキシ樹脂の硬化剤として活性エステル化合物を含む封止用樹脂組成物は、成形性に劣る傾向があった。 As a curing agent for an epoxy resin, an active ester compound is advantageous over a phenol curing agent or an amine curing agent in that it keeps the dielectric properties of the cured product low. However, sealing resin compositions containing active ester compounds as curing agents for epoxy resins tend to have poor moldability.

本開示の実施形態は、上記状況のもとになされた。 The embodiments of the present disclosure were made under the above circumstances.

本開示は、成形時の流動性と硬化性とを両立し且つ硬化物の誘電正接が低い封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法を提供することを課題とする。 The present disclosure relates to an encapsulating resin composition that has both fluidity and curability during molding and has a low dielectric loss tangent of the cured product, an electronic component device encapsulated using the same, and an encapsulating resin composition encapsulated using the same. An object of the present invention is to provide a method for manufacturing an electronic component device.

前記課題を解決するための具体的手段には、以下の態様が含まれる。 Specific means for solving the above problem include the following aspects.

[1] 多官能エポキシ樹脂及び二官能エポキシ樹脂を含むエポキシ樹脂と、活性エステル化合物を含む硬化剤と、を含有する封止用樹脂組成物。
[2] 前記多官能エポキシ樹脂が、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選ばれる少なくとも1種を含む、[1]に記載の封止用樹脂組成物。
[3] 前記二官能エポキシ樹脂が、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群から選ばれる少なくとも1種を含む、[1]又は[2]に記載の封止用樹脂組成物。
[4] 前記多官能エポキシ樹脂と前記二官能エポキシ樹脂との総量に占める前記多官能エポキシ樹脂の質量割合が50質量%~95質量%である、[1]~[3]のいずれか1項に記載の封止用樹脂組成物。
[5] 支持部材と、前記支持部材上に配置された素子と、前記素子を封止している[1]~[4]のいずれか1項に記載の封止用樹脂組成物と、を備える電子部品装置。
[6] 素子を支持部材上に配置する工程と、前記素子を[1]~[4]のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。
[1] A sealing resin composition containing an epoxy resin including a polyfunctional epoxy resin and a bifunctional epoxy resin, and a curing agent containing an active ester compound.
[2] The polyfunctional epoxy resin consists of a triphenylmethane type epoxy resin, a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, a naphthalene diol aralkyl type epoxy resin, a naphthol aralkyl type epoxy resin, and a dicyclopentadiene type epoxy resin. The sealing resin composition according to [1], containing at least one member selected from the group.
[3] The bifunctional epoxy resin contains at least one selected from the group consisting of bisphenol F-type epoxy resin, bisphenol A-type epoxy resin, biphenyl-type epoxy resin, biphenylaralkyl-type epoxy resin, and naphthalene-type epoxy resin, [ 1] or the sealing resin composition according to [2].
[4] Any one of [1] to [3], wherein the mass proportion of the polyfunctional epoxy resin to the total amount of the polyfunctional epoxy resin and the bifunctional epoxy resin is 50% by mass to 95% by mass. The sealing resin composition described in .
[5] A support member, an element disposed on the support member, and the sealing resin composition according to any one of [1] to [4], which seals the element. Equipped with an electronic component device.
[6] An electronic component device comprising the steps of arranging an element on a support member, and sealing the element with the sealing resin composition according to any one of [1] to [4]. manufacturing method.

本開示によれば、成形時の流動性と硬化性とを両立し且つ硬化物の誘電正接が低い封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法が提供される。 According to the present disclosure, an encapsulating resin composition that has both fluidity and curability during molding and has a low dielectric loss tangent of the cured product, an electronic component device encapsulated using the same, and an electronic component device encapsulated using the same. A method of manufacturing a sealed electronic component device is provided.

本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. .
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
In the present disclosure, each component may include a plurality of types of particles. When a plurality of types of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.

<封止用樹脂組成物>
本開示の封止用樹脂組成物は、多官能エポキシ樹脂及び二官能エポキシ樹脂を含むエポキシ樹脂と、活性エステル化合物を含む硬化剤と、を含有する。
<Sealing resin composition>
The sealing resin composition of the present disclosure contains an epoxy resin including a polyfunctional epoxy resin and a bifunctional epoxy resin, and a curing agent including an active ester compound.

本開示における活性エステル化合物とは、エポキシ基と反応するエステル基を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有する化合物をいう。 The active ester compound in the present disclosure refers to a compound that has one or more ester groups in one molecule that react with an epoxy group and has an effect of curing an epoxy resin.

従来、エポキシ樹脂の硬化剤としては一般的にフェノール硬化剤、アミン硬化剤等が使用されているが、エポキシ樹脂とフェノール硬化剤又はアミン硬化剤との反応においては2級水酸基が発生する。これに対して、エポキシ樹脂と活性エステル化合物との反応においては2級水酸基のかわりにエステル基が生じる。エステル基は2級水酸基に比べて極性が低い故、本開示の封止用樹脂組成物は、硬化剤として2級水酸基を発生させる硬化剤のみを含有する封止用樹脂組成物に比べて、硬化物の誘電正接を低く抑えることができる。 Conventionally, phenol curing agents, amine curing agents, etc. are generally used as curing agents for epoxy resins, but secondary hydroxyl groups are generated in the reaction between epoxy resins and phenol curing agents or amine curing agents. On the other hand, in the reaction between an epoxy resin and an active ester compound, an ester group is generated instead of a secondary hydroxyl group. Since ester groups have lower polarity than secondary hydroxyl groups, the encapsulating resin composition of the present disclosure has lower polarity than encapsulating resin compositions containing only a curing agent that generates secondary hydroxyl groups as a curing agent. The dielectric loss tangent of the cured product can be kept low.

ただし、エポキシ樹脂の硬化剤として活性エステル化合物を含む封止用樹脂組成物は、成形性に劣る傾向があった。この理由としては、活性エステル化合物とエポキシ樹脂との反応性が、フェノール硬化剤又はアミン硬化剤とエポキシ樹脂との反応性に比べて低い故、熱硬化後の架橋密度及びガラス転移温度が比較的低く、成形時の硬化性が劣ることによるものと推測される。また、エポキシ樹脂の硬化剤として活性エステル化合物を含む封止用樹脂組成物は、他の硬化剤(例えば、フェノール硬化剤)を含む封止用樹脂組成物に比べて、流動性に劣る傾向があることも影響していると推測される。
これに対して、本開示の封止用樹脂組成物は、硬化剤として活性エステル化合物を用いつつも、多官能エポキシ樹脂を含むことによって熱硬化後の架橋密度及びガラス転移温度を向上させることができるので、成形時の硬化性に優れると推測される。そして、本開示の封止用樹脂組成物は、多官能エポキシ樹脂に二官能エポキシ樹脂を併用することによって、成形時の流動性を確保する。
したがって、本開示の封止用樹脂組成物は、成形時の流動性と硬化性とを両立することができ、その結果、成形性に優れる。
ここで、本開示の封止用樹脂組成物の成形時の硬化性は、成形直後の熱時硬度によって評価される性能である。
However, sealing resin compositions containing active ester compounds as curing agents for epoxy resins tend to have poor moldability. The reason for this is that the reactivity between the active ester compound and the epoxy resin is lower than that between the phenol curing agent or the amine curing agent and the epoxy resin, so the crosslinking density and glass transition temperature after thermosetting are relatively low. It is presumed that this is due to poor curing properties during molding. Furthermore, encapsulating resin compositions containing active ester compounds as curing agents for epoxy resins tend to have inferior fluidity compared to encapsulating resin compositions containing other curing agents (e.g., phenol curing agents). It is assumed that certain factors are also influencing this.
On the other hand, the sealing resin composition of the present disclosure uses an active ester compound as a curing agent, but contains a polyfunctional epoxy resin, which makes it possible to improve the crosslink density and glass transition temperature after thermosetting. Therefore, it is presumed that it has excellent curing properties during molding. The sealing resin composition of the present disclosure secures fluidity during molding by using a bifunctional epoxy resin in combination with a polyfunctional epoxy resin.
Therefore, the sealing resin composition of the present disclosure can have both fluidity and curability during molding, and as a result, has excellent moldability.
Here, the curability of the encapsulating resin composition of the present disclosure during molding is a performance evaluated by the hardness under heat immediately after molding.

(エポキシ樹脂)
エポキシ樹脂は、分子中にエポキシ基を有する樹脂であればその種類は特に制限されない。多官能エポキシ樹脂は、分子中にエポキシ基を3個以上有する樹脂であればその種類は特に制限されない。二官能エポキシ樹脂は、分子中にエポキシ基を2個有する樹脂であればその種類は特に制限されない。
(Epoxy resin)
The type of epoxy resin is not particularly limited as long as it has an epoxy group in its molecule. The type of polyfunctional epoxy resin is not particularly limited as long as it has three or more epoxy groups in its molecule. The type of bifunctional epoxy resin is not particularly limited as long as it has two epoxy groups in its molecule.

多官能エポキシ樹脂におけるエポキシ基の個数は、3個~8個が好ましく、3個~5個がより好ましい。 The number of epoxy groups in the polyfunctional epoxy resin is preferably 3 to 8, more preferably 3 to 5.

多官能エポキシ樹脂としては、例えば、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジヒドロキシベンゼンノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等、及びこれらの誘導体が挙げられる。これらの多官能エポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the polyfunctional epoxy resin include triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, phenol novolac type epoxy resin, dihydroxybenzene novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, and naphthalene skeleton. Examples thereof include naphthalene diol-aralkyl-type epoxy resins, naphthalene-aralkyl-type epoxy resins, dicyclopentadiene-type epoxy resins, and derivatives thereof. These polyfunctional epoxy resins may be used alone or in combination of two or more.

多官能エポキシ樹脂としては、架橋密度の観点から、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。 From the viewpoint of crosslinking density, polyfunctional epoxy resins include triphenylmethane epoxy resins, phenol novolac epoxy resins, cresol novolak epoxy resins, naphthalene diol aralkyl epoxy resins, naphthol aralkyl epoxy resins, and dicyclopentadiene epoxy resins. It is preferable that at least one kind selected from the group consisting of resins is included.

トリフェニルメタン型エポキシ樹脂としては、トリフェニルメタン骨格を有する化合物を原料とするエポキシ樹脂であれば特に制限はなく、トリフェニルメタン型フェノール樹脂をグリシジルエーテル化したエポキシ樹脂等が好ましい。 The triphenylmethane type epoxy resin is not particularly limited as long as it is an epoxy resin made from a compound having a triphenylmethane skeleton, and epoxy resins such as glycidyl etherified triphenylmethane type phenol resins are preferred.

二官能エポキシ樹脂としては、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂等、及びこれらの誘導体が挙げられる。これらの二官能エポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the bifunctional epoxy resin include bisphenol F type epoxy resin, bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl type epoxy resin, biphenylaralkyl type epoxy resin, naphthalene type epoxy resin, etc. , and derivatives thereof. These bifunctional epoxy resins may be used alone or in combination of two or more.

二官能エポキシ樹脂としては、流動性の観点から、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。中でも、流動性の観点から、ビフェニル型エポキシ樹脂がより好ましい。 From the viewpoint of fluidity, the bifunctional epoxy resin is at least one selected from the group consisting of bisphenol F epoxy resin, bisphenol A epoxy resin, biphenyl epoxy resin, biphenylaralkyl epoxy resin, and naphthalene epoxy resin. It is preferable to include. Among these, biphenyl-type epoxy resins are more preferred from the viewpoint of fluidity.

多官能エポキシ樹脂及び二官能エポキシ樹脂とともに、単官能エポキシ樹脂を用いてもよい。単官能エポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Monofunctional epoxy resins may be used along with polyfunctional epoxy resins and bifunctional epoxy resins. The monofunctional epoxy resins may be used alone or in combination of two or more.

多官能エポキシ樹脂は、成形時の流動性と硬化性とを両立する観点から、エポキシ樹脂の全質量の50質量%~95質量%を占めることが好ましく、60質量%~93質量%を占めることがより好ましく、70質量%~90質量%を占めることがさらに好ましい。 From the viewpoint of achieving both fluidity and curability during molding, the polyfunctional epoxy resin preferably accounts for 50% to 95% by mass, and preferably 60% to 93% by mass, of the total mass of the epoxy resin. is more preferable, and even more preferably accounts for 70% by mass to 90% by mass.

多官能エポキシ樹脂と二官能エポキシ樹脂との総量に占める多官能エポキシ樹脂の質量割合は、成形時の流動性と硬化性とを両立する観点から、50質量%~95質量%であることが好ましく、60質量%~93質量%であることがより好ましく、70質量%~90質量%であることがさらに好ましい。 The mass proportion of the polyfunctional epoxy resin in the total amount of the polyfunctional epoxy resin and the bifunctional epoxy resin is preferably 50% by mass to 95% by mass from the viewpoint of achieving both fluidity and curability during molding. , more preferably 60% by mass to 93% by mass, even more preferably 70% by mass to 90% by mass.

エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼等の各種特性バランスの観点からは、80g/eq~500g/eqであることが好ましく、90g/eq~200g/eqであることがより好ましい。 The epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably 80 g/eq to 500 g/eq, and more preferably 90 g/eq to 200 g/eq.

エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 The epoxy equivalent of the epoxy resin is a value measured by a method according to JIS K 7236:2009.

エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止用樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 When the epoxy resin is solid, its softening point or melting point is not particularly limited. The temperature is preferably 40°C to 180°C from the viewpoint of moldability and reflow resistance, and more preferably 50°C to 130°C from the viewpoint of handleability during preparation of the sealing resin composition.

エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。 The melting point or softening point of the epoxy resin is a value measured by differential scanning calorimetry (DSC) or a method according to JIS K 7234:1986 (ring and ball method).

封止用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。 The content of the epoxy resin in the sealing resin composition is preferably 0.5% by mass to 50% by mass from the viewpoint of strength, fluidity, heat resistance, moldability, etc., and preferably 2% by mass to 30% by mass. % is more preferable.

(硬化剤)
本開示の封止用樹脂組成物は、硬化剤として少なくとも活性エステル化合物を含む。本開示の封止用樹脂組成物は、活性エステル化合物以外の硬化剤を含んでもよい。
(hardening agent)
The sealing resin composition of the present disclosure contains at least an active ester compound as a curing agent. The sealing resin composition of the present disclosure may contain a curing agent other than the active ester compound.

本開示の封止用樹脂組成物は、先述のとおり、硬化剤として活性エステル化合物を用いることによって、硬化物の誘電正接を低く抑えることができる。
また、硬化物中の極性基は硬化物の吸水性を高めるところ、硬化剤として活性エステル化合物を用いることによって硬化物の極性基濃度を抑えることができ、硬化物の吸水性を抑制することができる。そして、硬化物の吸水性を抑制すること、つまりは極性分子であるHOの含有量を抑制することにより、硬化物の誘電正接をさらに低く抑えることができる。硬化物の吸水率は、0%~0.35%が好ましく、0%~0.30%がより好ましく、0%~0.28%がさらに好ましい。ここで硬化物の吸水率は、プレッシャークッカー試験(121℃、2.1気圧、24時間)によって求める質量増加率である。
As mentioned above, the sealing resin composition of the present disclosure can suppress the dielectric loss tangent of the cured product by using an active ester compound as a curing agent.
In addition, polar groups in the cured product increase the water absorption of the cured product, and by using an active ester compound as a curing agent, the concentration of polar groups in the cured product can be suppressed, and the water absorption of the cured product can be suppressed. can. By suppressing the water absorption of the cured product, that is, by suppressing the content of H 2 O, which is a polar molecule, the dielectric loss tangent of the cured product can be further suppressed. The water absorption rate of the cured product is preferably 0% to 0.35%, more preferably 0% to 0.30%, even more preferably 0% to 0.28%. Here, the water absorption rate of the cured product is the mass increase rate determined by a pressure cooker test (121° C., 2.1 atm, 24 hours).

活性エステル化合物は、エポキシ基と反応するエステル基を分子中に1個以上有する化合物であればその種類は特に制限されない。 The type of active ester compound is not particularly limited as long as it is a compound having one or more ester groups in its molecule that reacts with an epoxy group.

活性エステル化合物としては、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。 Examples of the active ester compound include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esterified products of heterocyclic hydroxy compounds.

活性エステル化合物としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。脂肪族化合物を重縮合の成分とするエステル化合物は、脂肪族鎖を有することによりエポキシ樹脂との相溶性に優れる傾向にある。芳香族化合物を重縮合の成分とするエステル化合物は、芳香環を有することにより耐熱性に優れる傾向にある。 Examples of the active ester compound include ester compounds obtained from at least one of aliphatic carboxylic acids and aromatic carboxylic acids and at least one of aliphatic hydroxy compounds and aromatic hydroxy compounds. Ester compounds containing an aliphatic compound as a component for polycondensation tend to have excellent compatibility with epoxy resins because they have an aliphatic chain. Ester compounds containing an aromatic compound as a component for polycondensation tend to have excellent heat resistance because they have an aromatic ring.

活性エステル化合物の具体例としては、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられる。中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2~4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。 Specific examples of active ester compounds include aromatic esters obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group. Among them, aromatic carboxylic acid components such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, diphenyl sulfonic acid, etc. in which 2 to 4 hydrogen atoms in the aromatic ring are substituted with carboxy groups, and the hydrogen atoms in the aromatic ring described above. Using a mixture of a monohydric phenol in which one of the hydrogen atoms is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 hydrogen atoms of the aromatic ring are substituted with a hydroxyl group as raw materials, aromatic carboxylic acid and phenolic hydroxyl group are combined. Aromatic esters obtained by condensation reactions are preferred. That is, an aromatic ester having a structural unit derived from the aromatic carboxylic acid component, a structural unit derived from the monohydric phenol, and a structural unit derived from the polyhydric phenol is preferable.

活性エステル化合物の具体例としては、特開2012-246367号公報に記載されている、脂肪族環状炭化水素基を介してフェノール化合物が結節された分子構造を有するフェノール樹脂と、芳香族ジカルボン酸又はそのハライドと、芳香族モノヒドロキシ化合物とを反応させて得られる構造を有する活性エステル樹脂が挙げられる。当該活性エステル樹脂としては、下記の構造式(1)で表される化合物が好ましい。 Specific examples of active ester compounds include phenol resins that have a molecular structure in which phenolic compounds are linked via aliphatic cyclic hydrocarbon groups, and aromatic dicarboxylic acids or Examples include active ester resins having a structure obtained by reacting the halide with an aromatic monohydroxy compound. As the active ester resin, a compound represented by the following structural formula (1) is preferable.

構造式(1)中、Rは炭素数1~4のアルキル基であり、Xはベンゼン環、ナフタレン環、炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環、又はビフェニル基であり、Yはベンゼン環、ナフタレン環、又は炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環であり、kは0又は1であり、nは繰り返し数の平均を表し0.25~1.5である。 In structural formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, and X is a benzene ring, a naphthalene ring, a benzene ring or naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a biphenyl group. , Y is a benzene ring, a naphthalene ring, or a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, k is 0 or 1, and n represents the average number of repeats, and 0. 25 to 1.5.

構造式(1)で表される化合物の具体例としては、例えば、下記の例示化合物(1-1)~(1-10)が挙げられる。構造式中のt-Buは、tert-ブチル基である。 Specific examples of the compound represented by structural formula (1) include the following exemplary compounds (1-1) to (1-10). t-Bu in the structural formula is a tert-butyl group.

活性エステル化合物の別の具体例としては、特開2014-114352号公報に記載されている、下記の構造式(2)で表される化合物及び下記の構造式(3)で表される化合物が挙げられる。 Other specific examples of active ester compounds include a compound represented by the following structural formula (2) and a compound represented by the following structural formula (3), which are described in JP-A No. 2014-114352. Can be mentioned.

構造式(2)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In structural formula (2), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, a carbon An ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with a number of 1 to 4 alkyl groups, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2), and Z At least one of them is an ester-forming structural site (z1).

構造式(3)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In structural formula (3), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, a carbon An ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with a number of 1 to 4 alkyl groups, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2), and Z At least one of them is an ester-forming structural site (z1).

構造式(2)で表される化合物の具体例としては、例えば、下記の例示化合物(2-1)~(2-6)が挙げられる。 Specific examples of the compound represented by structural formula (2) include the following exemplary compounds (2-1) to (2-6).

構造式(3)で表される化合物の具体例としては、例えば、下記の例示化合物(3-1)~(3-6)が挙げられる。 Specific examples of the compound represented by structural formula (3) include the following exemplary compounds (3-1) to (3-6).

活性エステル化合物としては、市販品を用いてもよい。活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(DIC株式会社製);芳香族構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8」、「EXB-9425」(DIC株式会社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル株式会社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル株式会社製)等が挙げられる。 As the active ester compound, commercially available products may be used. Commercially available active ester compounds include "EXB9451," "EXB9460," "EXB9460S," and "HPC-8000-65T" (manufactured by DIC Corporation) as active ester compounds containing a dicyclopentadiene diphenol structure; aromatic "EXB9416-70BK", "EXB-8", "EXB-9425" (manufactured by DIC Corporation) as active ester compounds containing the structure; "DC808" (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing an acetylated product of phenol novolak YLH1026 (manufactured by Mitsubishi Chemical Corporation) is an active ester compound containing a benzoylated phenol novolac.

活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The active ester compounds may be used alone or in combination of two or more.

活性エステル化合物のエステル基当量は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、150g/eq~400g/eqが好ましく、170g/eq~300g/eqがより好ましく、200g/eq~250g/eqがさらに好ましい。 The ester group equivalent of the active ester compound is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, 150 g/eq to 400 g/eq is preferable, 170 g/eq to 300 g/eq is more preferable, and 200 g/eq to 250 g/eq is preferable. More preferred.

活性エステル化合物のエステル基当量は、JIS K 0070:1992に準じた方法により測定される値とする。 The ester group equivalent of the active ester compound is a value measured by a method according to JIS K 0070:1992.

エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、硬化物の誘電正接を低く抑える観点からは、0.9以上が好ましく、0.95以上がより好ましく、0.97以上がさらに好ましい。
エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、活性エステル化合物の未反応分を少なく抑える観点からは、1.1以下が好ましく、1.05以下がより好ましく、1.03以下がさらに好ましい。
From the viewpoint of keeping the dielectric loss tangent of the cured product low, the equivalent ratio (ester group/epoxy group) between the epoxy resin and the active ester compound is preferably 0.9 or more, more preferably 0.95 or more, and 0.97 or more. is even more preferable.
The equivalent ratio (ester group/epoxy group) between the epoxy resin and the active ester compound is preferably 1.1 or less, more preferably 1.05 or less, from the viewpoint of suppressing the unreacted portion of the active ester compound. 03 or less is more preferable.

硬化剤は、活性エステル化合物以外のその他の硬化剤を含んでもよい。この場合、その他の硬化剤の種類は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。その他の硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。 The curing agent may include other curing agents other than the active ester compound. In this case, the type of other curing agent is not particularly limited and can be selected depending on the desired characteristics of the encapsulating resin composition. Other curing agents include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.

フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specifically, the phenol curing agent includes polyphenol compounds such as resorcinol, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols; phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, and phenylphenol. , at least one phenolic compound selected from the group consisting of phenolic compounds such as aminophenol, and naphthol compounds such as α-naphthol, β-naphthol, and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde, and propionaldehyde, using an acidic catalyst. Novolac-type phenolic resin obtained by condensation or co-condensation with the above; aralkyl-type phenolic resin such as phenol aralkyl resin and naphthol aralkyl resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc. ; Paraxylylene-modified phenolic resin, metaxylylene-modified phenolic resin; Melamine-modified phenolic resin; Terpene-modified phenolic resin; Dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol synthesized by copolymerization from the above phenolic compound and dicyclopentadiene. Resin; cyclopentadiene-modified phenolic resin; polycyclic aromatic ring-modified phenolic resin; biphenyl-type phenolic resin; obtained by condensing or co-condensing the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst. and triphenylmethane type phenol resins; and phenol resins obtained by copolymerizing two or more of these types. These phenol curing agents may be used alone or in combination of two or more.

その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。 The functional group equivalents (hydroxyl group equivalents in the case of phenol curing agents) of other curing agents are not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably 70 g/eq to 1000 g/eq, more preferably 80 g/eq to 500 g/eq.

その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。 The functional group equivalents (hydroxyl group equivalents in the case of phenol curing agents) of other curing agents are values measured by a method according to JIS K 0070:1992.

硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。 When the curing agent is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40°C to 180°C, and from the viewpoint of handleability during production of the encapsulating resin composition, it is more preferably 50°C to 130°C. .

硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.

エポキシ樹脂とすべての硬化剤(活性エステル化合物及びその他の硬化剤)との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 The equivalent ratio of the epoxy resin to all the curing agents (active ester compounds and other curing agents), i.e. the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent/number of functional groups in the epoxy resin). The number of functional groups) is not particularly limited. From the viewpoint of suppressing each unreacted component, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set it in the range of 0.8 to 1.2.

活性エステル化合物及びその他の硬化剤の全質量に対する活性エステル化合物の含有率は、硬化物の誘電正接を低く抑える観点から、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The content of the active ester compound relative to the total mass of the active ester compound and other curing agents is preferably 80% by mass or more, more preferably 85% by mass or more, from the viewpoint of keeping the dielectric loss tangent of the cured product low. It is preferably 90% by mass or more, and more preferably 90% by mass or more.

エポキシ樹脂、活性エステル化合物及びその他の硬化剤の全質量に対するエポキシ樹脂及び活性エステル化合物の合計含有率は、硬化物の誘電正接を低く抑える観点から、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。 The total content of the epoxy resin and active ester compound based on the total mass of the epoxy resin, active ester compound, and other curing agents is preferably 70% by mass or more, and 80% by mass from the viewpoint of keeping the dielectric loss tangent of the cured product low. % or more, and even more preferably 85% by mass or more.

(硬化促進剤)
封止用樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
(hardening accelerator)
The sealing resin composition may also contain a curing accelerator. The type of curing accelerator is not particularly limited, and can be selected depending on the type of epoxy resin or curing agent, desired characteristics of the sealing resin composition, and the like.

硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物及びイソシアネートを付加してなる化合物;DBUのイソシアネート付加物、DBNのイソシアネート付加物、2-エチル-4-メチルイミダゾールのイソシアネート付加物、N-メチルモルホリンのイソシアネート付加物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ-p-トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩;テトラアルキルホスホニウムと芳香族カルボン酸無水物の部分加水分解物との塩などが挙げられる。 As curing accelerators, diazabicycloalkenes such as 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU); Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-heptadecyl imidazole; derivatives of the cyclic amidine compounds; phenol novolac salts of the cyclic amidine compounds or derivatives thereof; Compounds include maleic anhydride, 1,4-benzoquinone, 2,5-torquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, and other quinone compounds, and diazophenylmethane, which have intramolecular polarization by adding a compound with a π bond, such as diazophenylmethane. Compounds: Addition of cyclic amidinium compounds and isocyanates such as DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholine tetraphenylborate salt, etc. Compounds: DBU isocyanate adduct, DBN isocyanate adduct, 2-ethyl-4-methylimidazole isocyanate adduct, N-methylmorpholine isocyanate adduct; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanol Tertiary amine compounds such as amines, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; derivatives of the above tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, benzoic Ammonium salt compounds such as tetra-n-hexylammonium acid and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxy) phenyl)phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine , tertiary phosphine such as trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine; phosphine compound such as a complex of the tertiary phosphine and organic boron; the tertiary phosphine or the phosphine compound and maleic anhydride, 1,4 -Benzoquinone, 2,5-torquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy -A quinone compound such as 1,4-benzoquinone or phenyl-1,4-benzoquinone, or a compound having intramolecular polarization obtained by adding a compound with a π bond such as diazophenylmethane; the above-mentioned tertiary phosphine or the above-mentioned phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodide phenol, 3-iodide phenol, 2-iodide phenol, 4 -Bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2,6-di-tert - Dehalogenation after reacting halogenated phenol compounds such as butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl, etc. Compounds with intramolecular polarization obtained through the hydrogenation process; tetra-substituted phosphoniums such as tetraphenylphosphonium, tetra-substituted phosphoniums and tetra-substituted borates without a phenyl group bonded to a boron atom such as tetra-p-tolylborate; Examples include salts of tetraphenylphosphonium and a phenol compound; salts of tetraalkylphosphonium and a partial hydrolyzate of aromatic carboxylic acid anhydride; and the like.

封止用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the sealing resin composition contains a curing accelerator, the amount thereof is preferably 0.1 parts by mass to 30 parts by mass based on 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). , more preferably 1 part by mass to 15 parts by mass. When the amount of the curing accelerator is 0.1 part by mass or more based on 100 parts by mass of the resin component, the resin tends to be cured well in a short time. When the amount of the curing accelerator is 30 parts by mass or less per 100 parts by mass of the resin component, the curing speed is not too fast and a good molded product tends to be obtained.

(無機充填材)
封止用樹脂組成物は、無機充填材を含んでもよい。無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
(Inorganic filler)
The sealing resin composition may also contain an inorganic filler. The type of inorganic filler is not particularly limited. Specific examples include inorganic materials such as fused silica, crystalline silica, glass, alumina, talc, clay, and mica. An inorganic filler having a flame retardant effect may also be used. Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxide of magnesium and zinc, zinc borate, and the like.

無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。無機充填材の形態としては粉末、粉末を球形化したビーズ、繊維等が挙げられる。 Among the inorganic fillers, silica such as fused silica is preferred from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferred from the viewpoint of high thermal conductivity. The inorganic fillers may be used alone or in combination of two or more. Examples of the form of the inorganic filler include powder, beads made of spherical powder, fibers, and the like.

無機充填材が粒子状である場合、その平均粒径は、特に制限されない。例えば、平均粒径が0.2μm~100μmであることが好ましく、0.5μm~50μmであることがより好ましい。平均粒径が0.2μm以上であると、封止用樹脂組成物の粘度の上昇がより抑制される傾向にある。平均粒径が100μm以下であると、充填性がより向上する傾向にある。無機充填材の平均粒径は、レーザー散乱回折法粒度分布測定装置により、体積平均粒径(D50)として求める。 When the inorganic filler is particulate, the average particle size is not particularly limited. For example, the average particle size is preferably 0.2 μm to 100 μm, more preferably 0.5 μm to 50 μm. When the average particle size is 0.2 μm or more, the increase in viscosity of the sealing resin composition tends to be further suppressed. When the average particle diameter is 100 μm or less, the filling property tends to be further improved. The average particle size of the inorganic filler is determined as a volume average particle size (D50) using a laser scattering diffraction particle size distribution analyzer.

封止用樹脂組成物に含まれる無機充填材の含有率は特に制限されない。流動性及び強度の観点からは、封止用樹脂組成物全体の30体積%~90体積%であることが好ましく、35体積%~80体積%であることがより好ましく、40体積%~70体積%であることがさらに好ましい。無機充填材の含有率が封止用樹脂組成物全体の30体積%以上であると、硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。無機充填材の含有率が封止用樹脂組成物全体の90体積%以下であると、封止用樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。 The content of the inorganic filler contained in the sealing resin composition is not particularly limited. From the viewpoint of fluidity and strength, it is preferably 30% to 90% by volume of the entire sealing resin composition, more preferably 35% to 80% by volume, and 40% to 70% by volume. % is more preferable. When the content of the inorganic filler is 30% by volume or more of the entire sealing resin composition, the properties such as the coefficient of thermal expansion, thermal conductivity, and modulus of elasticity of the cured product tend to be further improved. When the content of the inorganic filler is 90% by volume or less of the entire encapsulating resin composition, the increase in viscosity of the encapsulating resin composition is suppressed, the fluidity is further improved, and the moldability is better. There is a tendency to

[各種添加剤]
封止用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。
[Various additives]
In addition to the above-mentioned components, the sealing resin composition may also contain various additives such as a coupling agent, an ion exchanger, a mold release agent, a flame retardant, and a coloring agent, as exemplified below. In addition to the additives exemplified below, the sealing resin composition may also contain various additives known in the art as necessary.

(カップリング剤)
封止用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、封止用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(coupling agent)
The sealing resin composition may also contain a coupling agent. From the viewpoint of improving the adhesiveness between the resin component and the inorganic filler, the sealing resin composition preferably contains a coupling agent. As coupling agents, known coupling agents such as silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane, and disilazane, titanium compounds, aluminum chelate compounds, and aluminum/zirconium compounds are used. Can be mentioned.

封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。カップリング剤の量が無機充填材100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the sealing resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass, and 0.1 parts by mass based on 100 parts by mass of the inorganic filler. More preferably, the amount is 2.5 parts by mass. When the amount of the coupling agent is 0.05 parts by mass or more based on 100 parts by mass of the inorganic filler, the adhesiveness with the frame tends to be further improved. When the amount of the coupling agent is 5 parts by mass or less based on 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.

(イオン交換体)
封止用樹脂組成物は、イオン交換体を含んでもよい。封止用樹脂組成物は、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(ion exchanger)
The sealing resin composition may include an ion exchanger. The encapsulating resin composition preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of an electronic component device including an element to be encapsulated. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds, and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, and bismuth. The ion exchangers may be used singly or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferred.

Mg(1-X)Al(OH)(COX/2・mHO ……(A)
(0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X/2・mH 2 O ... (A)
(0<X≦0.5, m is a positive number)

封止用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。 When the sealing resin composition contains an ion exchanger, its content is not particularly limited as long as it is sufficient to trap ions such as halogen ions. For example, it is preferably 0.1 parts by mass to 30 parts by mass, more preferably 1 part by mass to 10 parts by mass, based on 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).

(離型剤)
封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The sealing resin composition may contain a mold release agent from the viewpoint of obtaining good mold release properties from a mold during molding. The mold release agent is not particularly limited, and conventionally known ones can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. The mold release agents may be used alone or in combination of two or more.

封止用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。 When the sealing resin composition contains a mold release agent, the amount thereof is preferably 0.01 parts by mass to 10 parts by mass, and 0.1 parts by mass based on 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). More preferably from 5 parts by weight. When the amount of the mold release agent is 0.01 part by mass or more based on 100 parts by mass of the resin component, sufficient mold release properties tend to be obtained. When the amount is 10 parts by mass or less, better adhesiveness tends to be obtained.

(難燃剤)
封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The sealing resin composition may also contain a flame retardant. The flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specifically, organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom, or a phosphorus atom, metal hydroxides, and the like can be mentioned. The flame retardants may be used alone or in combination of two or more.

封止用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the sealing resin composition contains a flame retardant, the amount thereof is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. For example, it is preferably 1 part by mass to 30 parts by mass, more preferably 2 parts by mass to 20 parts by mass, based on 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).

(着色剤)
封止用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(colorant)
The sealing resin composition may also contain a colorant. Examples of the coloring agent include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron. The content of the colorant can be appropriately selected depending on the purpose and the like. The coloring agents may be used alone or in combination of two or more.

(封止用樹脂組成物の調製方法)
封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Method for preparing sealing resin composition)
The method for preparing the sealing resin composition is not particularly limited. A general method includes a method in which components in a predetermined amount are thoroughly mixed using a mixer or the like, then melt-kneaded using a mixing roll, extruder, etc., cooled, and pulverized. More specifically, for example, a method in which predetermined amounts of the above-mentioned components are uniformly stirred and mixed, kneaded using a kneader, roll, extruder, etc. that has been heated to 70°C to 140°C, cooled, and pulverized. can be mentioned.

封止用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。封止用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。封止用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The sealing resin composition is preferably solid at room temperature and pressure (for example, 25° C. and atmospheric pressure). When the resin composition for sealing is solid, the shape is not particularly limited, and examples thereof include powder, granule, tablet, and the like. In the case where the sealing resin composition is in the form of a tablet, it is preferable from the viewpoint of handleability that the dimensions and mass are such that they match the molding conditions of the package.

<電子部品装置>
本開示の一実施形態である電子部品装置は、支持部材と、前記支持部材上に配置された素子と、前記素子を封止している本開示の封止用樹脂組成物の硬化物と、を備える。
<Electronic component equipment>
An electronic component device that is an embodiment of the present disclosure includes a support member, an element disposed on the support member, and a cured product of the sealing resin composition of the present disclosure that seals the element. Equipped with

電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載して得られた素子部を封止用樹脂組成物で封止したものが挙げられる。
より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、封止用樹脂組成物を用いてトランスファ成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子を封止用樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、封止用樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、封止用樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においても封止用樹脂組成物を好適に使用することができる。
Electronic component devices include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers, organic substrates, and other supporting members, as well as elements (semiconductor chips, active elements such as transistors, diodes, and thyristors, capacitors, and resistors). , a passive element such as a coil, etc.) and the obtained element part is sealed with a sealing resin composition.
More specifically, after fixing the element on a lead frame and connecting the terminal part of the element such as a bonding pad and the lead part with wire bonding, bumps, etc., transfer molding etc. are performed using a sealing resin composition. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline Package), etc. ll Outline J-lead package), TSOP (Thin Small General resin-sealed ICs such as Outline Package) and TQFP (Thin Quad Flat Package); TCP (Tape Carrier Package), which has a structure in which an element is connected to a tape carrier with bumps and sealed with a sealing resin composition. COB (Chip On Board) module, hybrid IC, multi-chip, which has a structure in which an element is connected to wiring formed on a support member by wire bonding, flip chip bonding, soldering, etc. and sealed with a sealing resin composition. Chip module, etc.: After mounting an element on the surface of a support member with terminals for wiring board connection formed on the back side and connecting the element and wiring formed on the support member by bumps or wire bonding, the resin composition for sealing is applied. Examples include BGA (Ball Grid Array), CSP (Chip Size Package), MCP (Multi Chip Package), etc., which have a structure in which elements are sealed with a material. Moreover, the sealing resin composition can also be suitably used in printed wiring boards.

<電子部品装置の製造方法>
本開示の電子部品装置の製造方法は、素子を支持部材上に配置する工程と、前記素子を本開示の封止用樹脂組成物で封止する工程と、を含む。
<Method for manufacturing electronic component devices>
The method for manufacturing an electronic component device of the present disclosure includes the steps of arranging an element on a support member, and sealing the element with the sealing resin composition of the present disclosure.

上記各工程を実施する方法は特に制限されず、一般的な手法により行うことができる。また、電子部品装置の製造に使用する支持部材及び素子の種類は特に制限されず、電子部品装置の製造に一般的に用いられる支持部材及び素子を使用できる。 The method for carrying out each of the above steps is not particularly limited, and can be carried out by a general method. Furthermore, the types of support members and elements used in the manufacture of electronic component devices are not particularly limited, and support members and elements commonly used in the manufacture of electronic component devices can be used.

本開示の封止用樹脂組成物を用いて素子を封止する方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。これらの中では、低圧トランスファ成形法が一般的である。 Examples of the method for sealing an element using the sealing resin composition of the present disclosure include a low-pressure transfer molding method, an injection molding method, a compression molding method, and the like. Among these, low pressure transfer molding is common.

以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the above-mentioned embodiment will be explained in detail using Examples, but the scope of the above-mentioned embodiment is not limited to these Examples.

<封止用樹脂組成物の調製>
下記に示す成分を表1に示す配合割合で混合し、実施例と比較例の封止用樹脂組成物を調製した。この封止用樹脂組成物は、常温常圧下において固体であった。
<Preparation of sealing resin composition>
The components shown below were mixed in the proportions shown in Table 1 to prepare sealing resin compositions of Examples and Comparative Examples. This sealing resin composition was solid at room temperature and pressure.

・エポキシ樹脂1(多官能):トリフェニルメタン型エポキシ樹脂、エポキシ当量167g/eq(三菱ケミカル株式会社、品名「1032H60」)
・エポキシ樹脂2(多官能):クレゾールノボラック型エポキシ樹脂、エポキシ当量264g/eq(DIC株式会社、品名「HP-5600」)
・エポキシ樹脂3(多官能):ナフタレンジオールアラルキル型エポキシ樹脂、エポキシ当量170g/eq(新日鉄住金化学株式会社、品名「ESN-375」)
・エポキシ樹脂4(二官能):ビフェニル型エポキシ樹脂、エポキシ当量192g/eq(三菱ケミカル株式会社、品名「YX-4000」)
・Epoxy resin 1 (polyfunctional): triphenylmethane type epoxy resin, epoxy equivalent weight 167 g/eq (Mitsubishi Chemical Corporation, product name "1032H60")
・Epoxy resin 2 (polyfunctional): Cresol novolak type epoxy resin, epoxy equivalent weight 264 g/eq (DIC Corporation, product name "HP-5600")
・Epoxy resin 3 (polyfunctional): naphthalene diol aralkyl type epoxy resin, epoxy equivalent 170g/eq (Nippon Steel & Sumikin Chemical Co., Ltd., product name "ESN-375")
・Epoxy resin 4 (bifunctional): biphenyl type epoxy resin, epoxy equivalent weight 192 g/eq (Mitsubishi Chemical Corporation, product name "YX-4000")

・活性エステル化合物1:DIC株式会社、品名「EXB-8」
・活性エステル化合物2:DIC株式会社、品名「EXB-9425」
・フェノール硬化剤1:フェノールアラルキル樹脂、水酸基当量175g/eq(明和化成株式会社、品名「MEH7800SS」)
・Active ester compound 1: DIC Corporation, product name “EXB-8”
・Active ester compound 2: DIC Corporation, product name “EXB-9425”
・Phenol curing agent 1: Phenol aralkyl resin, hydroxyl equivalent weight 175 g/eq (Meiwa Kasei Co., Ltd., product name "MEH7800SS")

・硬化促進剤1:トリフェニルホスフィン/1,4-ベンゾキノン付加物
・硬化促進剤2:イミダゾール化合物(四国化成工業株式会社、品名「キュアゾール2MA-OK」)
・Curing accelerator 1: Triphenylphosphine/1,4-benzoquinone adduct ・Curing accelerator 2: Imidazole compound (Shikoku Kasei Kogyo Co., Ltd., product name "Curezol 2MA-OK")

・充填材1:溶融シリカ(DENKA社、品名「FB9454FC」、体積平均粒径10μm)
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社、品名「KBM-573」)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社、品名「KBM-803」)
・離型剤:モンタン酸エステルワックス(クラリアントジャパン株式会社、品名「HW-E」)
・着色剤:カーボンブラック(三菱ケミカル株式会社、品名「MA600」)
・Filler 1: Fused silica (DENKA, product name "FB9454FC", volume average particle size 10 μm)
・Coupling agent 1: N-phenyl-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name "KBM-573")
・Coupling agent 2: 3-mercaptopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name "KBM-803")
・Release agent: Montanic acid ester wax (Clariant Japan Co., Ltd., product name "HW-E")
・Coloring agent: Carbon black (Mitsubishi Chemical Corporation, product name "MA600")

<封止用樹脂組成物の性能評価>
(スパイラルフロー)
EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、封止用樹脂組成物を金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。
<Performance evaluation of sealing resin composition>
(Spiral flow)
Using a spiral flow measurement mold conforming to EMMI-1-66, the sealing resin composition was molded under conditions of a mold temperature of 180°C, a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and the flow distance ( cm) was calculated.

(熱時硬度)
封止用樹脂組成物をトランスファ成形機に仕込み、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、円板状の成形物(直径40mm、厚さ5mm)を得た。この成形物を試験片として、金型解放後10秒以内のショアD硬度を、ショアD硬度計を用いて測定した。
(Hardness when heated)
The sealing resin composition was charged into a transfer molding machine and molded under the conditions of a mold temperature of 180°C, a molding pressure of 6.9 MPa, and a curing time of 90 seconds to form a disc-shaped molded product (diameter 40 mm, thickness 5 mm). Obtained. Using this molded product as a test piece, the Shore D hardness was measured within 10 seconds after the mold was released using a Shore D hardness meter.

(ガラス転移温度)
封止用樹脂組成物をトランスファ成形機に仕込み、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、棒板状の成形物(5mm×5mm×20mm)を得た。この成形物を試験片として、TMA(Thermomechanical Analysis、熱機械分析)を、熱機械分析装置(NETZSCH Japan社、品名「TMA4000SE」)を用いて昇温速度5℃/分の条件にて行い、得られたチャートの変曲点前後における接線の交点をガラス転移温度とした。
(Glass-transition temperature)
The sealing resin composition was charged into a transfer molding machine and molded under the conditions of a mold temperature of 180°C, a molding pressure of 6.9 MPa, and a curing time of 90 seconds to obtain a rod-shaped molded product (5 mm x 5 mm x 20 mm). Ta. Using this molded product as a test piece, TMA (Thermomechanical Analysis) was performed using a thermomechanical analyzer (NETZSCH Japan Co., Ltd., product name "TMA4000SE") at a heating rate of 5°C/min. The intersection of the tangents before and after the inflection point of the chart was taken as the glass transition temperature.

(比誘電率及び誘電正接)
封止用樹脂組成物を真空ハンドプレス機に仕込み、金型温度175℃、成形圧力6.9MPa、硬化時間600秒の条件で成形し、後硬化を180℃で6時間行い、板状の硬化物(縦12.5mm、横25mm、厚さ0.2mm)を得た。この板状の硬化物を試験片として、誘電率測定装置(アジレント・テクノロジー社、品名「ネットワークアナライザN5227A」)を用いて、温度25±3℃下、約60GHzでの比誘電率と誘電正接を測定した。
(Relative permittivity and dielectric loss tangent)
The sealing resin composition was charged into a vacuum hand press machine and molded under the conditions of a mold temperature of 175°C, a molding pressure of 6.9 MPa, and a curing time of 600 seconds. Post-curing was performed at 180°C for 6 hours to harden into a plate shape. A product (12.5 mm long, 25 mm wide, 0.2 mm thick) was obtained. Using this plate-shaped cured product as a test piece, the relative permittivity and dielectric loss tangent at a temperature of 25 ± 3°C and approximately 60 GHz were measured using a dielectric constant measuring device (Agilent Technologies, product name "Network Analyzer N5227A"). It was measured.

(吸水率)
製造直後の上記板状の硬化物を、121℃/2.1気圧のプレッシャークッカー試験機に投入し、24時間後に取り出し、投入直前の質量からの増加率(%)を求めた。
(Water absorption rate)
Immediately after production, the plate-shaped cured product was placed in a pressure cooker tester at 121° C./2.1 atm, taken out after 24 hours, and the increase rate (%) from the mass immediately before being placed was determined.

本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
2018年9月27日に出願された日本国出願番号第2018-182710号の開示は、その全体が参照により本明細書に取り込まれる。
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
The disclosure of Japanese Application No. 2018-182710 filed on September 27, 2018 is incorporated herein by reference in its entirety.

Claims (6)

多官能エポキシ樹脂及び二官能エポキシ樹脂を含むエポキシ樹脂と、
活性エステル化合物を含む硬化剤と、
を含有する封止用樹脂組成物。
Epoxy resins including polyfunctional epoxy resins and bifunctional epoxy resins,
a curing agent containing an active ester compound;
A sealing resin composition containing.
前記多官能エポキシ樹脂が、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選ばれる少なくとも1種を含む、請求項1に記載の封止用樹脂組成物。 The polyfunctional epoxy resin is selected from the group consisting of a triphenylmethane type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a naphthalene diol aralkyl type epoxy resin, a naphthol aralkyl type epoxy resin, and a dicyclopentadiene type epoxy resin. The sealing resin composition according to claim 1, comprising at least one of: 前記二官能エポキシ樹脂が、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群から選ばれる少なくとも1種を含む、請求項1又は請求項2に記載の封止用樹脂組成物。 2. The bifunctional epoxy resin includes at least one selected from the group consisting of bisphenol F-type epoxy resin, bisphenol A-type epoxy resin, biphenyl-type epoxy resin, biphenylaralkyl-type epoxy resin, and naphthalene-type epoxy resin. The sealing resin composition according to claim 2. 前記多官能エポキシ樹脂と前記二官能エポキシ樹脂との総量に占める前記多官能エポキシ樹脂の質量割合が50質量%~95質量%である、請求項1~請求項3のいずれか1項に記載の封止用樹脂組成物。 The mass ratio of the polyfunctional epoxy resin to the total amount of the polyfunctional epoxy resin and the bifunctional epoxy resin is 50% by mass to 95% by mass, according to any one of claims 1 to 3. Sealing resin composition. 支持部材と、
前記支持部材上に配置された素子と、
前記素子を封止している請求項1~請求項4のいずれか1項に記載の封止用樹脂組成物と、
を備える電子部品装置。
a support member;
an element disposed on the support member;
The sealing resin composition according to any one of claims 1 to 4, which seals the element;
An electronic component device comprising:
素子を支持部材上に配置する工程と、
前記素子を請求項1~請求項4のいずれか1項に記載の封止用樹脂組成物で封止する工程と、
を含む電子部品装置の製造方法。
arranging the element on the support member;
a step of sealing the element with the sealing resin composition according to any one of claims 1 to 4;
A method of manufacturing an electronic component device including:
JP2023221931A 2018-09-27 2023-12-27 Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device Pending JP2024026589A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018182710 2018-09-27
JP2018182710 2018-09-27
PCT/JP2019/036837 WO2020066856A1 (en) 2018-09-27 2019-09-19 Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2020549089A JPWO2020066856A1 (en) 2018-09-27 2019-09-19 Manufacturing method of sealing resin composition, electronic component device and electronic component device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020549089A Division JPWO2020066856A1 (en) 2018-09-27 2019-09-19 Manufacturing method of sealing resin composition, electronic component device and electronic component device

Publications (1)

Publication Number Publication Date
JP2024026589A true JP2024026589A (en) 2024-02-28

Family

ID=69952122

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020549089A Pending JPWO2020066856A1 (en) 2018-09-27 2019-09-19 Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2023221931A Pending JP2024026589A (en) 2018-09-27 2023-12-27 Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020549089A Pending JPWO2020066856A1 (en) 2018-09-27 2019-09-19 Manufacturing method of sealing resin composition, electronic component device and electronic component device

Country Status (4)

Country Link
JP (2) JPWO2020066856A1 (en)
CN (1) CN112771094A (en)
TW (1) TW202024166A (en)
WO (1) WO2020066856A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870778B1 (en) * 2020-12-11 2021-05-12 昭和電工マテリアルズ株式会社 Resin composition for molding and electronic component equipment
KR20230118100A (en) * 2020-12-11 2023-08-10 가부시끼가이샤 레조낙 Resin composition for molding and electronic component device
JPWO2022124405A1 (en) * 2020-12-11 2022-06-16
WO2023286728A1 (en) 2021-07-16 2023-01-19 住友ベークライト株式会社 Resin composition for semiconductor sealing, and semiconductor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550923B2 (en) * 1996-12-13 2004-08-04 日立化成工業株式会社 Epoxy resin molding compound for sealing electronic components
JP2002201358A (en) * 2000-12-27 2002-07-19 Hitachi Chem Co Ltd Sealing material for electronic part, method for sealing electronic part, semiconductor package, and method for making semiconductor package
JP5664008B2 (en) * 2010-08-10 2015-02-04 日立化成株式会社 Resin composition, cured resin, wiring board and method for manufacturing wiring board
JP5630652B2 (en) * 2011-01-06 2014-11-26 日立化成株式会社 Epoxy resin molding material for sealing and electronic component device
TWI554541B (en) * 2011-05-10 2016-10-21 Ajinomoto Kk Resin composition
JP2013023666A (en) * 2011-07-25 2013-02-04 Sekisui Chem Co Ltd Epoxy resin material, cured product, and plasma-roughened cured product
JP6007663B2 (en) * 2012-08-10 2016-10-12 味の素株式会社 Resin composition
JP6195219B2 (en) * 2013-06-21 2017-09-13 味の素株式会社 Curable resin composition
US9257621B2 (en) * 2013-09-10 2016-02-09 Lg Innotek Co., Ltd. Epoxy resin composition and light-emitting device package comprising the same
JP2018020040A (en) * 2016-07-21 2018-02-08 株式会社三洋物産 Game machine
JP7091618B2 (en) * 2016-09-27 2022-06-28 住友ベークライト株式会社 Capacitance type sensor encapsulation resin composition and capacitance type sensor

Also Published As

Publication number Publication date
JPWO2020066856A1 (en) 2021-09-02
WO2020066856A1 (en) 2020-04-02
TW202024166A (en) 2020-07-01
CN112771094A (en) 2021-05-07

Similar Documents

Publication Publication Date Title
JP2024026589A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2023100761A (en) Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP7388160B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
WO2020262654A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2023059892A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
JP2020152825A (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP7396290B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2020122071A (en) Sealing resin composition, electronic component device, and method for manufacturing same
JP7443778B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2022021902A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2022021901A (en) Sealing resin composition, electronic component device and method for producing electronic component device
WO2020189309A1 (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP2022011184A (en) Sealing resin composition and electronic component device
WO2023238951A1 (en) Resin composition for molding and electronic component device
WO2023038035A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JPWO2020158851A1 (en) A resin composition for encapsulation, an electronic component device, and a method for manufacturing the electronic component device.
JP2024015914A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
WO2023238950A1 (en) Molding resin composition and electronic component device
JP2023127421A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2020050793A (en) Sealing resin composition, electronic component device and method for producing electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126