JP2024017439A - Heat exchange type ventilating device with dehumidifying function - Google Patents

Heat exchange type ventilating device with dehumidifying function Download PDF

Info

Publication number
JP2024017439A
JP2024017439A JP2022120074A JP2022120074A JP2024017439A JP 2024017439 A JP2024017439 A JP 2024017439A JP 2022120074 A JP2022120074 A JP 2022120074A JP 2022120074 A JP2022120074 A JP 2022120074A JP 2024017439 A JP2024017439 A JP 2024017439A
Authority
JP
Japan
Prior art keywords
air
humidity
temperature
heat exchange
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022120074A
Other languages
Japanese (ja)
Inventor
剛也 重信
Takeya Shigenobu
雅人 平木
Masahito Hiraki
訓央 清本
Kunihisa Kiyomoto
慶伍 永津
Keigo Nagatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022120074A priority Critical patent/JP2024017439A/en
Publication of JP2024017439A publication Critical patent/JP2024017439A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchange type ventilating device with a dehumidifying function that can restrain insufficient dehumidification indoors in the case of a high load outdoors.
SOLUTION: A heat exchange type ventilating device with a dehumidifying function 50 comprises: a heat exchange type ventilating device 10 for exchanging heat between an exhaust air flow 2 passing through an exhaust air passage 4, and a supply air flow 3 passing through a supply air passage 5; and a dehumidifying device 30 for dehumidifying the supply air flow 3. The dehumidifying device 30 includes a refrigeration cycle including a compressor 31, a condenser 32, an expander 33, and an evaporator 34. The heat exchange type ventilating device with the dehumidifying function comprises a first return air passage 62 for returning the exhaust air flow 2 on the upstream side with respect to a heat exchange element 12, to the supply air passage 5, and a first return air passage opening/closing part 63 for opening/closing the first return air passage 62. When the temperature of the exhaust air flow 2 measured by a first temperature sensor 60 is higher than a predetermined temperature, and the humidity of the exhaust air flow 2 measured by a first humidity sensor 61 is higher than a predetermined humidity, the first return air passage opening/closing part 63 is controlled so that the first return air passage 62 is opened.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、居住空間などに用いられる除湿機能付き熱交換形換気装置に関するものである。 The present invention relates to a heat exchange type ventilation device with a dehumidifying function used in living spaces and the like.

従来、冷房あるいは暖房の効果を損なわずに換気できる装置として、換気の際に給気流と排気流との間で熱交換を行う熱交換形換気装置が知られている。 BACKGROUND ART Conventionally, a heat exchange type ventilation device that exchanges heat between a supply air flow and an exhaust air flow during ventilation has been known as a device that can perform ventilation without impairing the effectiveness of cooling or heating.

近年、地球温暖化の影響および住宅の気密性が向上したことにより、特に夏季において、室内の排熱および排湿が不足し、室内が高温多湿になるため、居住者にとって室内の快適性が損なわれることが懸念されている。夏季において室内の快適性を向上させるには、特に室内の湿度低下が重要であることから、室内の湿度を調整しながら熱交換換気を行う除湿機能付き熱交換形換気装置が求められている。このため、我々は、除湿機能付き熱交換形換気装置として、冷凍サイクルと熱交換器とを組み合わせた除湿装置を適用した熱交換形換気装置の開発を進めている。冷凍サイクルと熱交換器とを組み合わせた除湿装置としては、例えば、特許文献1に記載の除湿機能付き熱交換形換気装置が知られている。 In recent years, due to the effects of global warming and improvements in the airtightness of houses, there is insufficient exhaust heat and moisture indoors, making indoors hot and humid, especially in the summer, which reduces indoor comfort for residents. There are concerns that this will occur. In order to improve indoor comfort in the summer, it is especially important to reduce indoor humidity, so there is a need for a heat exchange type ventilation system with a dehumidifying function that performs heat exchange ventilation while adjusting indoor humidity. For this reason, we are developing a heat exchange type ventilation system with a dehumidifying function that uses a dehumidifier that combines a refrigeration cycle and a heat exchanger. As a dehumidifying device that combines a refrigeration cycle and a heat exchanger, for example, a heat exchange type ventilation device with a dehumidifying function described in Patent Document 1 is known.

従来の除湿機能付き熱交換形換気装置100について図10を参照して説明する。 A conventional heat exchange type ventilation device 100 with a dehumidifying function will be described with reference to FIG. 10.

図10に示すように、従来の除湿機能付き熱交換形換気装置100は、室内の空気を室外に排出するための排気風路104を流通する排気流102と、室外の空気を室内へ給気するための給気風路105を流通する給気流103との間で熱交換する熱交換形換気装置110と、給気流103に対して除湿する除湿装置130と、を備える。除湿装置130は、圧縮機131と凝縮器132と膨張器133と蒸発器134とを含んで構成される冷凍サイクルと、蒸発器134と凝縮器132との間に配置され、第一給気流路103aを流れる空気と第二給気流路103bを流れる空気との間で熱交換する熱交換器135と、を含む。除湿装置130は、給気風路105から熱交換後の給気流103が導入されるとともに、排気風路104から排気流102が導入されるように構成される。除湿装置130に導入された給気流103の一部分は、蒸発器134、熱交換器の第一流路136の順に流通した後に、凝縮器132を流通することなく給気風路105に導出され、除湿装置130に導入された給気流103の他の部分は、熱交換器の第二流路137を流通した後に、凝縮器132を流通することなく給気風路105に導出される。除湿装置130に導入された排気流102は、凝縮器132を流通した後に、排気風路104に導出される。 As shown in FIG. 10, a conventional heat exchange type ventilation device 100 with a dehumidifying function has an exhaust air flow 102 flowing through an exhaust air passage 104 for discharging indoor air to the outdoors, and an exhaust flow 102 flowing through an exhaust air passage 104 for discharging indoor air to the outdoors, and an exhaust flow 102 for supplying outdoor air to the indoor room. It includes a heat exchange type ventilation device 110 that exchanges heat with the supply air flow 103 flowing through the supply air path 105 for the purpose of cooling, and a dehumidification device 130 that dehumidifies the supply air flow 103. The dehumidifier 130 is disposed between a refrigeration cycle including a compressor 131, a condenser 132, an expander 133, and an evaporator 134, and an evaporator 134 and a condenser 132, and is located between the evaporator 134 and the condenser 132. It includes a heat exchanger 135 that exchanges heat between the air flowing through the air flow path 103a and the air flowing through the second air supply flow path 103b. The dehumidifier 130 is configured such that the heat-exchanged supply air flow 103 is introduced from the supply air passage 105 and the exhaust air flow 102 is introduced from the exhaust air passage 104. A portion of the air supply flow 103 introduced into the dehumidification device 130 passes through the evaporator 134 and the first flow path 136 of the heat exchanger in this order, and then is led out to the air supply air path 105 without passing through the condenser 132, and is then passed through the dehumidification device. The other part of the supply air flow 103 introduced into the supply air flow 130 flows through the second flow path 137 of the heat exchanger, and then is led out to the supply air flow path 105 without passing through the condenser 132. The exhaust flow 102 introduced into the dehumidifier 130 is led out to the exhaust air passage 104 after passing through the condenser 132 .

これにより、従来の除湿機能付き熱交換形換気装置100では、除湿に伴って生じる温度上昇が抑制された給気流103を送風可能となっている。 As a result, the conventional heat exchange type ventilator 100 with a dehumidifying function can send a supply air flow 103 in which a temperature rise caused by dehumidification is suppressed.

特開2020-118383号公報Japanese Patent Application Publication No. 2020-118383

しかしながら、従来の除湿機能付き熱交換形換気装置100は、室内の空気を室外に排出するための排気風路104を流通する排気流102と、室外の空気を室内へ給気するための給気風路105を流通する給気流103との間で熱交換する熱交換形換気装置110によって除湿された空気を除湿装置130によってさらに除湿して室内へ供給する。熱交換形換気装置110での除湿は、室内空気を排出するための排気風路104を流通する排気流102と、屋外の空気を屋内へ給気するための給気風路105を流通する給気流103との間の熱交換によって行われる。このため、屋外空気が高温高湿の状態になるほど、熱交換後、除湿装置130に導入される空気流の温湿度は高くなり、さらに冷凍サイクルの蒸発器134の温度も高くなる。このため、除湿装置130通過後に給気風路105に導出される空気流の温湿度が高くなり、除湿機能付き熱交換形換気装置100としての除湿量は低くなる。また、この屋外が高温高湿の状態で、屋内に在室者が増加した場合に、在室者からの発熱、発湿により、屋内空気の温度、湿度が急激に上昇してしまうことがある。この際、熱交換素子112において熱交換後の給気流3は、熱交換する相手側の排気流102の温度、湿度が高い状態となるために、給気流103の温度、湿度が高い状態をしばらく維持してしまう。それに伴い、蒸発器134で除湿を行った後の給気流103は、温度、湿度が高い状態をしばらく維持することになる。このため、屋内が不快な状態を長く継続してしまうことになる。 However, the conventional heat exchange type ventilation device 100 with a dehumidifying function has an exhaust air flow 102 flowing through an exhaust air passage 104 for discharging indoor air to the outdoors, and a supply air flow for supplying outdoor air into the indoor room. The air dehumidified by the heat exchange type ventilation device 110 that exchanges heat with the supply air flow 103 flowing through the path 105 is further dehumidified by the dehumidifier 130 and supplied into the room. Dehumidification in the heat exchange type ventilation system 110 is performed by an exhaust air flow 102 flowing through an exhaust air path 104 for discharging indoor air, and an air supply flow flowing through an air supply air path 105 for supplying outdoor air indoors. This is done by heat exchange with 103. Therefore, as the outdoor air becomes hotter and more humid, the temperature and humidity of the air flow introduced into the dehumidifier 130 after heat exchange becomes higher, and the temperature of the evaporator 134 of the refrigeration cycle also becomes higher. For this reason, the temperature and humidity of the air flow led out to the air supply air path 105 after passing through the dehumidifier 130 becomes high, and the amount of dehumidification performed by the heat exchange type ventilation system 100 with a dehumidifying function becomes low. Additionally, if the number of people indoors increases while the outdoors is hot and humid, the temperature and humidity of the indoor air may rise rapidly due to heat generation and humidity generated by the people in the room. . At this time, the supply air flow 3 after heat exchange in the heat exchange element 112 has a high temperature and humidity state of the exhaust flow 102 with which it exchanges heat, so the temperature and humidity of the supply air flow 103 remain high for a while. I'll keep it. Accordingly, the supply air flow 103 after being dehumidified by the evaporator 134 maintains a high temperature and high humidity state for a while. As a result, indoor conditions continue to be uncomfortable for a long time.

この結果、従来の除湿機能付き熱交換形換気装置100では、真夏などの室外空気が高温高湿時に、除湿によって屋内空気を快適な状態に維持することができないことがあるという課題が生じる。本発明は、上記課題を解決するためになされたものであり、室外空気による影響を抑えて室内空気の除湿を行うことが可能な除湿機能付き熱交換形換気装置を提供するものである。 As a result, the conventional heat exchange type ventilation device 100 with a dehumidifying function has a problem in that it may not be possible to maintain indoor air in a comfortable state by dehumidifying when the outdoor air is high in temperature and humidity, such as in midsummer. The present invention has been made to solve the above problems, and provides a heat exchange type ventilation device with a dehumidifying function that can dehumidify indoor air while suppressing the influence of outdoor air.

この目的を達成するために、本発明に係る除湿機能付き熱交換形換気装置は、
屋外から屋内へ搬送される給気流が通る給気風路と、前記屋内から前記屋外へ搬送される排気流が通る排気風路と、前記排気流の温度を測定する第一温度センサと、前記排気流の湿度を測定する第一湿度センサと、前記給気風路の一部と前記排気風路の一部を構成し、前記給気流と前記排気流との間で熱交換する熱交換素子と、前記熱交換素子に対して上流側の前記排気流を前記給気風路へ還気する第一還気風路と、前記第一還気風路を開閉する第一還気風路開閉部と、冷凍サイクルにおける冷媒と前記給気流及び前記第一還気風路を通過して前記給気風路へ還気した前記排気流の少なくとも一方に含まれる空気との間で熱交換することで該空気に含まれる水分を凝縮する蒸発器と、前記第一還気風路開閉部の動作を制御するコントローラと、を備え、前記コントローラは、前記第一温度センサで測定した前記排気流の温度と所定温度とを比較する第一温度比較部と、前記第一湿度センサで測定した前記排気流の湿度と所定湿度とを比較する第一湿度比較部と、前記第一温度比較部による比較結果において前記排気流の温度が前記所定温度より高く且つ前記第一湿度比較部による比較結果において前記排気流の湿度が前記所定湿度より高い場合に前記第一還気風路が開状態となるように前記第一還気風路開閉部の動作を制御する第一還気風路開閉制御部と、を有する。
In order to achieve this objective, the heat exchange type ventilation device with dehumidification function according to the present invention,
a supply air path through which the air supply flow is conveyed from the outdoors to the indoors; an exhaust air path through which the exhaust air flow is conveyed from the indoors to the outdoors; a first temperature sensor that measures the temperature of the exhaust air flow; a first humidity sensor that measures the humidity of the flow; a heat exchange element that constitutes a part of the supply air flow path and a part of the exhaust air flow path and exchanges heat between the supply air flow and the exhaust air flow; a first return air duct that returns the exhaust flow on the upstream side with respect to the heat exchange element to the supply air duct; a first return air duct opening/closing part that opens and closes the first return air duct; Moisture contained in the air is removed by heat exchange between the refrigerant and the air contained in at least one of the supply air flow and the exhaust flow that has passed through the first return air passage and returned to the supply air air passage. an evaporator that condenses, and a controller that controls the operation of the first return air air passage opening/closing section, the controller comprising a first controller that compares the temperature of the exhaust flow measured by the first temperature sensor with a predetermined temperature. a temperature comparison section, a first humidity comparison section that compares the humidity of the exhaust flow measured by the first humidity sensor and a predetermined humidity, and a comparison result by the first temperature comparison section that indicates that the temperature of the exhaust flow is The first return air passage opening/closing unit is configured such that the first return air passage opens when the temperature is higher than a predetermined temperature and the humidity of the exhaust flow is higher than the predetermined humidity according to a comparison result by the first humidity comparison unit. and a first return air passage opening/closing control unit that controls the operation.

本発明によれば、屋外空気による影響を抑えて、屋内空気の除湿を行うことが可能な除湿機能付き熱交換形換気装置を提供することができる。 According to the present invention, it is possible to provide a heat exchange type ventilation device with a dehumidifying function that can dehumidify indoor air while suppressing the influence of outdoor air.

図1は、本発明の前提例に係る熱交換形換気装置の住宅における設置状態を示す模式図である。FIG. 1 is a schematic diagram showing how a heat exchange type ventilation device according to a prerequisite example of the present invention is installed in a house. 図2は、本発明の前提例に係る熱交換形換気装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a heat exchange type ventilation device according to a prerequisite example of the present invention. 図3は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of a heat exchange type ventilation device with a dehumidifying function according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の第一還気風路の第一還気風路の閉状態の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of the first return air passage in a closed state of the heat exchange type ventilation device with a dehumidifying function according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の第一還気風路開閉部の第一還気風路の開状態の構成を示す模式図である。FIG. 5 is a schematic diagram showing the configuration of the first return air passage opening/closing portion of the heat exchange type ventilation device with dehumidification function according to Embodiment 1 of the present invention when the first return air passage is in an open state. 図6は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の第二還気風路開閉部の第二還気風路の閉状態の構成を示す模式図である。FIG. 6 is a schematic diagram showing the configuration of the second return air passage of the second return air passage opening/closing part of the heat exchange type ventilation device with a dehumidifying function according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の第二還気風路開閉部の第二還気風路の開状態の構成を示す模式図である。FIG. 7 is a schematic diagram showing the configuration of the second return air passage of the second return air passage opening/closing part of the heat exchange type ventilation device with a dehumidifying function according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置のコントローラの構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of a controller of a heat exchange type ventilation device with a dehumidifying function according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の動作のフローチャート図である。FIG. 9 is a flowchart of the operation of the heat exchange type ventilation device with dehumidification function according to Embodiment 1 of the present invention. 図10は、従来の除湿装置の構成を示す模式図である。FIG. 10 is a schematic diagram showing the configuration of a conventional dehumidifier.

本発明に係る除湿機能付き熱交換形換気装置は、屋外から屋内へ搬送される給気流が通る給気風路と、前記屋内から前記屋外へ搬送される排気流が通る排気風路と、前記排気流の温度を測定する第一温度センサと、前記排気流の湿度を測定する第一湿度センサと、前記給気風路の一部と前記排気風路の一部を構成し、前記給気流と前記排気流との間で熱交換する熱交換素子と、前記熱交換素子に対して上流側の前記排気流を前記給気風路へ還気する第一還気風路と、前記第一還気風路を開閉する第一還気風路開閉部と、冷凍サイクルにおける冷媒と前記給気流及び前記第一還気風路を通過して前記給気風路へ還気した前記排気流の少なくとも一方に含まれる空気との間で熱交換することで該空気に含まれる水分を凝縮する蒸発器と、前記第一還気風路開閉部の動作を制御するコントローラと、を備え、前記コントローラは、前記第一温度センサで測定した前記排気流の温度と所定温度とを比較する第一温度比較部と、前記第一湿度センサで測定した前記排気流の湿度と所定湿度とを比較する第一湿度比較部と、前記第一温度比較部による比較結果において前記排気流の温度が前記所定温度より高く且つ前記第一湿度比較部による比較結果において前記排気流の湿度が前記所定湿度より高い場合に前記第一還気風路が開状態となるように前記第一還気風路開閉部の動作を制御する第一還気風路開閉制御部と、を有する。 The heat exchange type ventilation device with a dehumidifying function according to the present invention includes: a supply air path through which the air supply flow is conveyed from the outdoors to the indoors; an exhaust air path through which the exhaust air flow is conveyed from the indoors to the outdoors; a first temperature sensor that measures the temperature of the air flow; a first humidity sensor that measures the humidity of the exhaust air flow; a heat exchange element that exchanges heat with the exhaust flow; a first return air passage that returns the exhaust flow on the upstream side with respect to the heat exchange element to the supply air air passage; and a first return air air passage that A first return air passage opening/closing part that opens and closes, and air contained in at least one of the refrigerant in the refrigeration cycle and the supply air flow and the exhaust flow that has passed through the first return air passage and returned to the supply air passage. an evaporator that condenses water contained in the air by exchanging heat between the a first temperature comparison section that compares the temperature of the exhaust flow measured by the first humidity sensor with a predetermined temperature; a first humidity comparison section that compares the humidity of the exhaust flow measured by the first humidity sensor with a predetermined humidity; When the temperature of the exhaust flow is higher than the predetermined temperature in the comparison result by the temperature comparison unit and the humidity of the exhaust flow is higher than the predetermined humidity in the comparison result by the first humidity comparison unit, the first return air path is opened. and a first return air passage opening/closing control unit that controls the operation of the first return air passage opening/closing unit so that the first return air passage opening/closing unit is in the state.

こうした構成によれば、屋内からの搬送される排気流の温度、湿度が所定の値よりも高い場合に、第一還気風路開閉部を開状態とし、屋外空気が高温高湿状態であった場合にも、屋外空気を取り込むことなく、屋内空気を循環させる形で蒸発器での除湿を行うことができるため、屋外空気が高温高湿時にも屋内空気を除湿することが可能な除湿機能付き熱交換形換気装置とすることができる。 According to this configuration, when the temperature and humidity of the exhaust air flow conveyed from indoors are higher than predetermined values, the first return air duct opening/closing section is opened and the outdoor air is in a high temperature and high humidity state. Even when outdoor air is hot and humid, the evaporator can dehumidify indoor air by circulating indoor air without drawing in outdoor air. It can be a heat exchange type ventilation device.

また、第一還気風路は、熱交換素子に対して下流側の前記給気風路と連通する構成とすることが好ましい。 Further, it is preferable that the first return air passage communicates with the supply air passage downstream of the heat exchange element.

こうした構成とすることで、第一還気風路へ搬入した空気は熱交換素子を通過することなく、蒸発器へ導くことができ、素子を通過する際の通気抵抗を受けることなく、屋内空気の除湿を行うことが可能となる。 With this configuration, the air carried into the first return air path can be guided to the evaporator without passing through the heat exchange element, and the indoor air can be guided to the evaporator without passing through the element. It becomes possible to perform dehumidification.

また、第一還気風路開閉部は、第一還気風路を開状態にすると共に第一還気風路より下流側の前記排気風路を閉状態にする構成とすることが好ましい。 Further, it is preferable that the first return air passage opening/closing unit is configured to open the first return air passage and close the exhaust air passage downstream of the first return air passage.

こうした構成とすることで、搬入された屋内空気を第一還気風路へ全量通過させることができるため、屋内をよりスピーディに除湿するこが可能となる。 With this configuration, the entire amount of the indoor air carried in can be passed through the first return air passage, so that the indoor air can be dehumidified more quickly.

また、第一温度センサ及び第一湿度センサは、排気風路を基準として熱交換素子の上流側に配置される構成とすることが好ましい。 Further, it is preferable that the first temperature sensor and the first humidity sensor are arranged upstream of the heat exchange element with respect to the exhaust air path.

こうした構成とすることで、熱交素子で熱交換する前の屋内空気の温度及び湿度をセンシングすることができ、現状の屋内空気の温湿度を正しく把握した状態で、第一還気風路開閉制御部によって第一還気風路開閉部の動作を制御することが可能となる。 With this configuration, it is possible to sense the temperature and humidity of the indoor air before heat exchange with the heat exchange element, and control the opening and closing of the first return air duct while accurately understanding the current temperature and humidity of the indoor air. The operation of the first return air passage opening/closing section can be controlled by the section.

また、熱交換素子に対して上流側の給気流を排気風路へ還気する第二還気風路と、冷凍サイクルにおける冷媒と排気流及び第二還気風路を通過して排気風路へ還気した給気流の少なくとも一方に含まれる空気との間で熱交換することで冷媒の熱を該空気へ放熱する凝縮器と、第二還気風路を開閉する第二還気風路開閉部と、を備え、コントローラは、第一温度比較部による比較結果において排気流の温度が所定温度より高く且つ第一湿度比較部による比較結果において排気流の湿度が所定湿度より高い場合に第二還気風路が開状態となるように第二還気風路開閉部の動作を制御する第二還気風路開閉制御部とを有する構成とすることが好ましい。 In addition, there is a second return air passage that returns the supply air flow on the upstream side of the heat exchange element to the exhaust air passage, and the refrigerant and exhaust flow in the refrigeration cycle pass through the second return air passage and are returned to the exhaust air passage. a condenser that radiates heat of the refrigerant to the air by exchanging heat with air included in at least one of the air-filled supply air flows; a second return air passage opening/closing unit that opens and closes the second return air passage; The controller controls the second return air passage when the temperature of the exhaust air flow is higher than the predetermined temperature in the comparison result by the first temperature comparison part and the humidity of the exhaust flow is higher than the predetermined humidity in the comparison result by the first humidity comparison part. It is preferable to have a configuration including a second return air duct opening/closing control part that controls the operation of the second return air duct opening/closing part so that the second return air duct opening/closing part is in an open state.

こうした構成とすることで、第一還気風路が開状態となった際、第二還気風路を通じて凝縮器を通過する気流を生み出すことが可能となり、凝縮器を通過する排気流が少なくなった場合、あるいは、なくなった場合でも、凝縮器の放熱が可能となり、冷凍サイクルの動作を安定させることができる。 With this configuration, when the first return air duct is open, it is possible to create an airflow that passes through the condenser through the second return air duct, reducing the exhaust flow that passes through the condenser. Even if the refrigeration cycle occurs or disappears, the condenser can dissipate heat, making it possible to stabilize the operation of the refrigeration cycle.

また、第二還気風路は、熱交換素子に対して下流側の排気風路と連通する構成としても良い。 Further, the second return air passage may be configured to communicate with an exhaust air passage on the downstream side with respect to the heat exchange element.

こうした構成とすることで、第二還気風路へ搬入した空気は熱交換素子を通過することなく、排気風路へ排出することができ、素子を通過する際の通気抵抗を受けることなく、排気風路への空気の排出が可能となる。 With this configuration, the air carried into the second return air passage can be discharged to the exhaust air passage without passing through the heat exchange element, and the air can be discharged to the exhaust air passage without passing through the element. Air can be discharged into the air path.

また、第二還気風路開閉部は、第二還気風路を開状態にすると共に第二還気風路より下流側の給気風路を閉状態にする構成とすることが好ましい。 Further, it is preferable that the second return air passage opening/closing unit is configured to open the second return air passage and close the supply air passage downstream of the second return air passage.

こうした構成とすることで、搬入された屋外空気の全量が第二還気風路を通じて凝縮器を通過することができる。そして、搬入された屋外空気全量により凝縮器での放熱をさせることができるため、冷凍サイクルの放熱量を崩すことなく、運転が可能となる。 With this configuration, the entire amount of outdoor air carried in can pass through the condenser through the second return air path. Since heat can be radiated in the condenser using the entire amount of outdoor air brought in, operation is possible without disrupting the amount of heat radiated from the refrigeration cycle.

また、給気流の温度を測定する第二温度センサと、給気流の湿度を測定する第二湿度センサと、を備え、コントローラは、第二温度センサで測定した給気流の温度と他の温度とを比較する第二温度比較部と、第二湿度センサで測定した給気流の湿度と他の湿度とを比較する第二湿度比較部と、を有し、第二温度比較部による比較結果において第二温度センサで測定した給気流の温度が第一温度センサで測定した温度より低く、且つ第二湿度比較部による比較結果において第二湿度センサで測定した給気流の湿度が第一湿度センサで測定した湿度より低い場合に第一還気風路および第二還気風路を閉状態となるように第一還気風路開閉制御部および第二還気風路開閉制御部にて制御する、構成としてもよい。 The controller also includes a second temperature sensor that measures the temperature of the supply air flow and a second humidity sensor that measures the humidity of the supply air flow, and the controller is configured to measure the temperature of the supply air flow measured by the second temperature sensor and the other temperatures. and a second humidity comparison section that compares the humidity of the supply air flow measured by the second humidity sensor with other humidity. The temperature of the supply air flow measured by the second temperature sensor is lower than the temperature measured by the first temperature sensor, and the humidity of the supply air flow measured by the second humidity sensor is measured by the first humidity sensor in the comparison result by the second humidity comparison section. The first return air passage opening/closing control unit and the second return air passage opening/closing control unit may be configured to control the first return air passage and the second return air passage to be closed when the humidity is lower than the humidity. .

こうした構成とすることで、屋外側が屋内側に対して、低温低湿(低負荷)時に、屋内空気を循環させる形での除湿による除湿量よりも、熱交素子による熱交後の給気流を除湿する形での除湿量のほうが大きいと見込める場合に熱交換気状態に戻して除湿を行うことができ、不必要に換気を損なうことなく除湿を行うことができる。 With this configuration, the outdoor side dehumidifies the indoor side by dehumidifying the supply air flow after heat exchange by the heat exchanger element, rather than dehumidifying the indoor air by circulating indoor air at low temperature and low humidity (low load). When the amount of dehumidification is expected to be greater in the form of air exchange, it is possible to perform dehumidification by returning to the heat exchange state, and dehumidification can be performed without unnecessarily impairing ventilation.

以下、本発明を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本発明に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. Note that the following embodiments are examples of embodying the present invention, and do not limit the technical scope of the present invention. In addition, throughout all the drawings, the same parts are given the same reference numerals and their explanations are omitted. Further, in order to avoid duplication of details of each part that is not directly related to the present invention, explanations for each drawing are omitted.

以下、本発明の実施の形態について図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(前提例)
まず、図1、図2を参照して、本発明の実施の形態の前提例となる熱交換形換気装置10について説明する。図1は、本発明の前提例に係る熱交換形換気装置10の住宅における設置状態を示す模式図である。図2は、本発明の前提例に係る熱交換形換気装置10の構成を示す模式図である。
(Prerequisite example)
First, with reference to FIGS. 1 and 2, a heat exchange type ventilation apparatus 10, which is a prerequisite example of an embodiment of the present invention, will be described. FIG. 1 is a schematic diagram showing how a heat exchange type ventilation system 10 according to a prerequisite example of the present invention is installed in a house. FIG. 2 is a schematic diagram showing the configuration of a heat exchange type ventilation device 10 according to a prerequisite example of the present invention.

図1において、家1の屋内に熱交換形換気装置10が設置されている。熱交換形換気装置10は、屋内の空気と屋外の空気とを熱交換しながら換気する装置である。 In FIG. 1, a heat exchange type ventilation device 10 is installed indoors in a house 1. The heat exchange type ventilation device 10 is a device that ventilates indoor air and outdoor air while exchanging heat.

図1に示す通り、排気流2は、黒色矢印のごとく、熱交換形換気装置10を介して屋外に放出される。排気流2は、屋内から屋外に排出される空気の流れである。また、給気流3は、白色矢印のごとく、熱交換形換気装置10を介して室内に取り入れられる。給気流3は、屋外から屋内に取り込まれる空気の流れである。例えば、日本の冬季を挙げると、排気流2は20~25℃であるのに対して、給気流3は氷点下に達することもある。熱交換形換気装置10は、換気を行うとともに、この換気時に、排気流2の熱を給気流3へと伝達し、不用な熱の放出を抑制している。 As shown in FIG. 1, the exhaust stream 2 is discharged outdoors through a heat exchange type ventilation device 10, as indicated by the black arrow. Exhaust flow 2 is a flow of air exhausted from indoors to outdoors. Further, the air supply flow 3 is taken into the room via the heat exchange type ventilation device 10 as indicated by the white arrow. The air supply flow 3 is a flow of air taken indoors from outdoors. For example, in winter in Japan, the temperature of the exhaust air stream 2 is 20 to 25°C, while the temperature of the air supply air stream 3 can reach below freezing. The heat exchange type ventilation device 10 performs ventilation, and during this ventilation, transfers the heat of the exhaust air flow 2 to the supply air flow 3, thereby suppressing the release of unnecessary heat.

熱交換形換気装置10は、図2に示す通り、本体ケース11、熱交換素子12、排気ファン13、内気口14、排気口15、給気ファン16、外気口17、給気口18、排気風路4、給気風路5を備えている。 As shown in FIG. 2, the heat exchange type ventilation device 10 includes a main body case 11, a heat exchange element 12, an exhaust fan 13, an inside air port 14, an exhaust port 15, an air supply fan 16, an outside air port 17, an air supply port 18, and an exhaust air vent. It has an air passage 4 and an air supply air passage 5.

本体ケース11は、熱交換形換気装置10の外枠である。本体ケース11の外周には、内気口14、排気口15、外気口17、給気口18が形成されている。 The main body case 11 is an outer frame of the heat exchange type ventilation device 10. An internal air port 14, an exhaust port 15, an external air port 17, and an air supply port 18 are formed on the outer periphery of the main body case 11.

内気口14は、排気流2を熱交換形換気装置10に吸い込む吸込口である。 The internal air port 14 is a suction port that draws the exhaust stream 2 into the heat exchange type ventilation device 10 .

排気口15は、排気流2を熱交換形換気装置10から屋外に吐き出す吐出口である。 The exhaust port 15 is a discharge port that discharges the exhaust flow 2 from the heat exchange type ventilation device 10 to the outdoors.

外気口17は、給気流3を熱交換形換気装置10に吸い込む吸込口である。 The outside air port 17 is a suction port that draws the supply air flow 3 into the heat exchange type ventilation device 10 .

給気口18は、給気流3を熱交換形換気装置10から屋内に吐き出す吐出口である。 The air supply port 18 is a discharge port that discharges the air supply flow 3 from the heat exchange type ventilation device 10 indoors.

本体ケース11の内部には、熱交換素子12、排気ファン13、給気ファン16が取り付けられている。また、本体ケース11の内部には、排気風路4、給気風路5が構成されている。 Inside the main body case 11, a heat exchange element 12, an exhaust fan 13, and an air supply fan 16 are attached. Further, inside the main body case 11, an exhaust air passage 4 and an air supply air passage 5 are configured.

熱交換素子12は、排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換(顕熱と潜熱)を行うための部材である。 The heat exchange element 12 is a member for performing heat exchange (sensible heat and latent heat) between the exhaust air flow 2 flowing through the exhaust air path 4 and the supply air flow 3 flowing through the air supply air path 5.

排気ファン13は、排気流2を内気口14から吸い込み、排気口15から吐出するための送風機である。排気ファン13により吸い込まれた排気流2は、排気風路4内の熱交換素子12、排気ファン13を経由し、排気口15から屋外へと排出される。 The exhaust fan 13 is a blower that sucks the exhaust flow 2 through the internal air port 14 and discharges it from the exhaust port 15. The exhaust flow 2 sucked in by the exhaust fan 13 passes through the heat exchange element 12 in the exhaust air path 4 and the exhaust fan 13, and is discharged outdoors from the exhaust port 15.

給気ファン16は、給気流3を外気口17から吸い込み、給気口18から吐出するための送風機である。給気ファン16により吸い込まれた給気流3は、給気風路5内の熱交換素子12、給気ファン16を経由し、給気口18から屋内へと供給される。 The air supply fan 16 is a blower that sucks in the air supply flow 3 from the outside air port 17 and discharges it from the air supply port 18 . The air supply flow 3 sucked in by the air supply fan 16 passes through the heat exchange element 12 in the air supply air path 5 and the air supply fan 16, and is supplied indoors from the air supply port 18.

排気風路4は、内気口14と排気口15とを連通する風路である。 The exhaust air passage 4 is an air passage that communicates the inside air port 14 and the exhaust port 15.

給気風路5は、外気口17と給気口18とを連通する風路である。 The air supply air path 5 is an air path that connects the outside air port 17 and the air supply port 18.

熱交換形換気装置10は、熱交換換気を行う場合には、熱交換素子12の排気ファン13および給気ファン16を動作させ、熱交換素子12において排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換を行う。これにより、熱交換形換気装置10は、換気を行う際に、室外に放出する排気流2の熱を室内に取り入れる給気流3へと伝達し、不要な熱の放出を抑制し、室内に熱を回収する。この結果、冬季においては、換気を行う際に、屋外の温度が低い空気によって屋内の温度低下を抑制することができる。一方、夏季においては、換気を行う際に、屋外の温度が高い空気によって屋内の温度上昇を抑制することができる。 When performing heat exchange ventilation, the heat exchange type ventilation device 10 operates the exhaust fan 13 and the air supply fan 16 of the heat exchange element 12, and the exhaust air flow 2 flowing through the exhaust air passage 4 in the heat exchange element 12 and the exhaust air flow 2 are operated. , and the supply air flow 3 flowing through the supply air passage 5 . As a result, when performing ventilation, the heat exchange type ventilation device 10 transfers the heat of the exhaust air flow 2 released outdoors to the air supply flow 3 taken indoors, suppresses unnecessary heat release, and heats the room indoors. Collect. As a result, in the winter, when performing ventilation, it is possible to suppress a decrease in indoor temperature by using the cooler outdoor air. On the other hand, in the summer, when performing ventilation, the increase in indoor temperature can be suppressed by the use of high-temperature outdoor air.

(実施の形態1)
次に、図3を参照して、本実施の形態1に係る除湿機能付き熱交換形換気装置50について説明する。図3は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置50の構成を示す模式図である。なお、図3以降の各模式図では、排気風路4および給気風路5を、熱交換形換気装置10内の排気流2および給気流3の流れ(黒矢印)と兼用して表記している。
(Embodiment 1)
Next, with reference to FIG. 3, a heat exchange type ventilation device 50 with a dehumidifying function according to the first embodiment will be described. FIG. 3 is a schematic diagram showing the configuration of a heat exchange type ventilation device 50 with a dehumidifying function according to Embodiment 1 of the present invention. In addition, in each schematic diagram after FIG. 3, the exhaust air path 4 and the air supply air path 5 are also expressed as the flow of the exhaust air flow 2 and the air supply air flow 3 (black arrows) in the heat exchange type ventilation device 10. There is.

本実施の形態1に係る除湿機能付き熱交換形換気装置50は、図3に示すように、前提例に係る熱交換形換気装置10に対して、除湿機能を付与する手段としての除湿装置30を連結した構成を有している。 As shown in FIG. 3, the heat exchange type ventilation device 50 with a dehumidification function according to the first embodiment is a dehumidification device 30 as a means for imparting a dehumidification function to the heat exchange type ventilation device 10 according to the prerequisite example. It has a configuration in which the two are connected.

除湿装置30は、熱交換形換気装置10での熱交換後の給気流3の除湿を行うためのユニットである。除湿装置30は、圧縮機31と凝縮器32と膨張器33と蒸発器34とを含んで構成される冷凍サイクルを備えている。そして、本実施の形態の冷凍サイクルは、圧縮機31と凝縮器32と膨張器33と蒸発器34とをこの順序で環状に連結して構成されている。冷凍サイクルには、例えば、冷媒として代替フロン(HFC134a)が利用される。また、冷凍サイクルを構成する各機器の連結には、銅管がよく用いられ、溶接方式で連結される。 The dehumidifier 30 is a unit for dehumidifying the air supply flow 3 after heat exchange in the heat exchange type ventilation device 10. The dehumidifier 30 includes a refrigeration cycle including a compressor 31 , a condenser 32 , an expander 33 , and an evaporator 34 . The refrigeration cycle of this embodiment is configured by connecting a compressor 31, a condenser 32, an expander 33, and an evaporator 34 in this order in an annular shape. For example, a fluorocarbon substitute (HFC134a) is used as a refrigerant in the refrigeration cycle. Copper tubes are often used to connect the various devices that make up the refrigeration cycle, and are connected by welding.

圧縮機31は、冷凍サイクルにおける低温・低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する機器である。本実施の形態では、圧縮機31は、冷媒ガスの温度を45℃程度にまで高温化している。 The compressor 31 is a device that compresses low-temperature, low-pressure refrigerant gas (working medium gas) in the refrigeration cycle, increases the pressure, and raises the temperature. In this embodiment, the compressor 31 raises the temperature of the refrigerant gas to about 45°C.

凝縮器32は、圧縮機31によって高温・高圧となった冷媒ガスと空気(排気流2)との間で熱交換することによって、熱を外部(冷凍サイクル外)に放出させる機器である。このとき、冷媒ガスは、高圧下で凝縮されて液化する。凝縮器32では、導入される冷媒ガスの温度(45℃程度)が空気の温度より高いため、熱交換すると、空気は昇温され、冷媒ガスは冷却される。 The condenser 32 is a device that releases heat to the outside (outside the refrigeration cycle) by exchanging heat between the refrigerant gas, which has become high temperature and high pressure by the compressor 31, and air (exhaust flow 2). At this time, the refrigerant gas is condensed and liquefied under high pressure. In the condenser 32, the temperature of the refrigerant gas introduced (approximately 45° C.) is higher than the temperature of the air, so when heat is exchanged, the temperature of the air is raised and the refrigerant gas is cooled.

膨張器33は、凝縮器32によって液化した高圧の冷媒を減圧して元の低温・低圧の液体とする機器である。なお、膨張器33は、膨張弁ともいう。 The expander 33 is a device that reduces the pressure of the high-pressure refrigerant liquefied by the condenser 32 and returns it to the original low-temperature, low-pressure liquid. Note that the expander 33 is also referred to as an expansion valve.

蒸発器34は、膨張器33を流通した冷媒が空気から熱を奪って蒸発し、液状の冷媒を低温・低圧の冷媒ガスとする機器である。蒸発器34では、導入される冷媒の温度が空気の温度より低いため、熱交換すると、空気が冷却され、冷媒が昇温される。 The evaporator 34 is a device in which the refrigerant flowing through the expander 33 removes heat from the air and evaporates, turning the liquid refrigerant into a low-temperature, low-pressure refrigerant gas. In the evaporator 34, the temperature of the refrigerant introduced is lower than the temperature of the air, so when heat is exchanged, the air is cooled and the refrigerant is heated.

本実施の形態1に係る除湿機能付き熱交換形換気装置50は、図3に示すように、排気風路4に排気流2の流れを変更するための手段としての第一還気風路62と、第一還気風路開閉部63と、を備える。 As shown in FIG. 3, the heat exchange type ventilation device 50 with a dehumidifying function according to the first embodiment includes a first return air passage 62 as a means for changing the flow of the exhaust air flow 2 to the exhaust air passage 4. , a first return air passage opening/closing part 63.

第一還気風路62は、排気風路4における熱交換素子12の上流側の空間に位置する空間と、熱交換素子12に対して下流側の給気風路5における熱交換素子12と除湿装置30の蒸発器34との間の空間を連通させる風路である。 The first return air passage 62 includes a space located upstream of the heat exchange element 12 in the exhaust air passage 4, a heat exchange element 12 in the supply air passage 5 downstream of the heat exchange element 12, and a dehumidifier. This is an air path that communicates the space between the evaporator 34 of the evaporator 30 and the evaporator 34 of the evaporator 30.

第一還気風路開閉部63は、排気風路4を流れる排気流2が熱交換素子12を通って、除湿装置30の凝縮器32を通って屋外に導出する状態と、排気風路4を流れる排気流2が第一還気風路62を通って、除湿装置30の蒸発器34を通って屋内に導出する状態とを切り替えるための開閉部である。 The first return air passage opening/closing unit 63 controls the state in which the exhaust air flow 2 flowing through the exhaust air passage 4 passes through the heat exchange element 12, passes through the condenser 32 of the dehumidifier 30, and is led out to the outdoors. This is an opening/closing part for switching between a state in which the flowing exhaust air flow 2 passes through the first return air passage 62, passes through the evaporator 34 of the dehumidifier 30, and is led indoors.

ここで、第一還気風路開閉部63の開閉動作について図面を用いて説明する。図4~5は、第一還気風路開閉部63の開閉動作を示す模式図である。 Here, the opening/closing operation of the first return air passage opening/closing section 63 will be explained using the drawings. 4 and 5 are schematic diagrams showing the opening/closing operation of the first return air passage opening/closing section 63.

第一還気風路開閉部63は、図4に示すように、熱交換素子12に対して上流側の排気風路4内を流れる排気流2が排気風路4を通って熱交換素子12へと導かれる状態と、図5に示すように排気風路4を流れる排気流2が第一還気風路62を通って給気風路へと導かれる状態と、をダンパー66の動作によって切り替える。排気風路4を流れる排気流2は熱交換素子12を通って、除湿装置30の凝縮器32を通って屋外に導出する状態にする場合は、ダンパー66を図4の状態とし、第一還気風路62よりも下流側の排気風路4側を開状態となるようにするとともに、第一還気風路62側を閉状態とするように、ダンパー66を動作させる。こうすることで、排気流2が排気風路4を流れる状態とすることができる。 As shown in FIG. 4, the first return air passage opening/closing part 63 allows the exhaust air flow 2 flowing in the exhaust air passage 4 on the upstream side with respect to the heat exchange element 12 to pass through the exhaust air passage 4 and reach the heat exchange element 12. The operation of the damper 66 switches between a state where the exhaust air flow 2 flowing through the exhaust air passage 4 is guided to the supply air air passage through the first return air air passage 62 as shown in FIG. When the exhaust air flow 2 flowing through the exhaust air path 4 passes through the heat exchange element 12, passes through the condenser 32 of the dehumidifier 30, and is led out to the outdoors, the damper 66 is set to the state shown in FIG. The damper 66 is operated so that the exhaust air passage 4 side downstream of the air passage 62 is opened and the first return air passage 62 side is closed. By doing so, the exhaust flow 2 can be made to flow through the exhaust air path 4.

また、排気風路4を流れる排気流2が第一還気風路62を通って、除湿装置30の蒸発器34を通って屋内に導かれる状態にする場合は、ダンパー66を図5の状態とし、第一還気風路62側を開状態とするとともに、第一還気風路62よりも下流側の排気風路4側を閉状態とするように、ダンパー66を動作させる。こうすることで、排気風路4を流れる排気流2が第一還気風路62に流れる状態とすることができる。 In addition, when the exhaust air flow 2 flowing through the exhaust air passage 4 is to be led indoors through the first return air air passage 62 and the evaporator 34 of the dehumidifier 30, the damper 66 is set to the state shown in FIG. The damper 66 is operated so that the first return air passage 62 side is opened and the exhaust air passage 4 side downstream of the first return air passage 62 is closed. By doing so, the exhaust air flow 2 flowing through the exhaust air passage 4 can be made to flow into the first return air air passage 62.

また、ここでは第一還気風路開閉部63の開閉動作は、ダンパー66にて排気風路4側、第一還気風路62側のどちらか一方を閉じ、その時一方を開く動作について説明したが、これに限られない。例えば、排気風路4を流れる排気流2が第一還気風路62を通って、除湿装置30の蒸発器34を通って屋内に導出する状態にする場合について、第一還気風路62側を半開状態とするとともに、第一還気風路62よりも下流側の排気風路4側を半開状態としてもよい。こうすることで、排気流2に屋内空気を少量混ぜて排出することができ、屋内のCO2濃度の上昇を軽減させることが可能である。(第三種換気状態)
また、本実施の形態1に係る除湿機能付き熱交換形換気装置50は、図3に示すように、給気風路5に給気流3の流れを変更するための手段としての第二還気風路64と、第二還気風路開閉部65と、を備える。
In addition, here, the opening/closing operation of the first return air passage opening/closing section 63 was described as an operation in which either the exhaust air passage 4 side or the first return air passage 62 side is closed by the damper 66, and then one is opened. , but not limited to this. For example, in the case where the exhaust air flow 2 flowing through the exhaust air path 4 passes through the first return air path 62, passes through the evaporator 34 of the dehumidifier 30, and is led indoors, the first return air path 62 side is In addition to the half-open state, the exhaust air passage 4 side downstream of the first return air passage 62 may be half-open. By doing so, a small amount of indoor air can be mixed with the exhaust flow 2 and discharged, and it is possible to reduce the increase in the indoor CO2 concentration. (Third type ventilation condition)
Further, as shown in FIG. 3, the heat exchange type ventilation device 50 with a dehumidifying function according to the first embodiment has a second return air path as a means for changing the flow of the air supply flow 3 to the air supply air path 5. 64, and a second return air passage opening/closing part 65.

第二還気風路64は、給気風路5を流れる給気流3を排気風路4に導く風路である。 The second return air passage 64 is an air passage that guides the supply air flow 3 flowing through the supply air passage 5 to the exhaust air passage 4.

第二還気風路開閉部65は、給気風路5を流れる給気流3が熱交素子を通って、除湿装置30の蒸発器34を通って屋内に導かれる状態と、給気風路5を流れる給気流3が第二還気風路64を通って、除湿装置30の凝縮器32を通って屋外に導かれる状態とを切り替えるための開閉部である。 The second return air passage opening/closing unit 65 allows the supply air flow 3 flowing through the supply air passage 5 to pass through the heat exchanger element, pass through the evaporator 34 of the dehumidification device 30, and be guided indoors, and to flow through the supply air passage 5. This is an opening/closing part for switching between a state in which the supply air flow 3 passes through the second return air passage 64, passes through the condenser 32 of the dehumidifier 30, and is guided outdoors.

ここで、第二還気風路開閉部65の開閉動作について図面を用いて説明する。図6~7は、第二還気風路開閉部65の開閉動作を示す模式図である。 Here, the opening/closing operation of the second return air passage opening/closing section 65 will be explained using the drawings. 6 and 7 are schematic diagrams showing the opening/closing operation of the second return air passage opening/closing section 65.

第二還気風路開閉部65は、図6に示すように、熱交換素子12に対して上流側の給気風路5内を流れる給気流3が、熱交素子を通って、除湿装置30の蒸発器34を通って屋内に導かれる状態と、図7に示すように、給気風路5を流れる給気流3が、第二還気風路64を通って、除湿装置30の凝縮器32を通って屋外に導かれる状態と、をダンパー66の動作によって切り替える。給気風路5内を流れる給気流3が熱交素子を通って、除湿装置30の蒸発器34を通って屋内に導かれる状態にする場合は、ダンパー66を図6の状態とし、第二還気風路64よりも下流側の給気風路5側を開状態となるようにするとともに、第二還気風路64側を閉状態とするように、ダンパー66を動作させる。こうすることで、給気流3が給気風路5を流れる状態とすることができる。 As shown in FIG. 6, the second return air passage opening/closing part 65 allows the supply air flow 3 flowing in the supply air passage 5 on the upstream side with respect to the heat exchange element 12 to pass through the heat exchange element to the dehumidifier 30. As shown in FIG. The operation of the damper 66 switches between a state in which the water is guided outdoors and a state in which the water is guided outdoors. When the supply air flow 3 flowing in the supply air path 5 passes through the heat exchanger element, passes through the evaporator 34 of the dehumidifier 30, and is guided indoors, the damper 66 is set to the state shown in FIG. The damper 66 is operated so that the supply air passage 5 side downstream of the air passage 64 is opened, and the second return air passage 64 side is closed. By doing so, the air supply flow 3 can be made to flow through the air supply air path 5.

また、給気風路5を流れる給気流3が第二還気風路64を通って、除湿装置30の凝縮器32を通って屋外に導かれる状態にする場合は、ダンパー66を図7の状態とし、第二還気風路64側を開状態とするとともに、第二還気風路64よりも下流側の給気風路5側を閉状態とするように、ダンパー66を動作させる。こうすることで、給気風路5を流れる給気流3が第二還気風路64に流れる状態とすることができる。 In addition, when the supply air flow 3 flowing through the supply air passage 5 passes through the second return air passage 64, passes through the condenser 32 of the dehumidifier 30, and is guided outdoors, the damper 66 is set to the state shown in FIG. The damper 66 is operated so that the second return air passage 64 side is opened and the supply air passage 5 side downstream of the second return air passage 64 is closed. By doing so, the supply air flow 3 flowing through the supply air passage 5 can be made to flow into the second return air passage 64.

また、ここでは第二還気風路開閉部65の開閉動作について、ダンパー66にて給気風路5側、第二還気風路64側のどちらか一方を閉じ、その時一方を開く動作を説明したが、これに限られない。例えば、給気風路5を流れる給気流3が第二還気風路64を通って、除湿装置30の凝縮器32を通って屋外に導かれる状態にする場合について、第二還気風路64側を半開状態とするとともに、第二還気風路64よりも下流側の給気風路5側を半開状態としてもよい。こうすることで、給気流3に新鮮な屋外空気を少量混ぜて供給することができ、屋内のCO2濃度の上昇を軽減させることが可能である。(第二種換気状態)
また、さらに上述の第一還気風路開閉部63の、第一還気風路62側を半開状態とするとともに、第一還気風路62よりも下流側の排気風路4側を半開状態とする動作と、第二還気風路開閉部65の、第二還気風路64側を半開状態とするとともに、第二還気風路64よりも下流側の給気風路5側を半開状態とする動作と、を同時に行ってもよい。こうすることで、給気流3に新鮮な屋外空気を少量混ぜて供給することができるとともに、排気流2に屋内空気を少量まぜて排出することができ、屋内のCO2濃度の上昇を軽減させることが可能であり、より換気風量を制御した状態での換気を同時に行うことが可能である。(第一種換気状態)
また、図8に示すように、熱交換形換気装置10は、第一温度センサ60と、第一湿度センサ61と、コントローラと、を備える。
In addition, here, regarding the opening/closing operation of the second return air passage opening/closing part 65, an operation was explained in which one of the supply air passage 5 side and the second return air passage 64 side is closed by the damper 66, and the other is opened at that time. , but not limited to this. For example, in the case where the supply air flow 3 flowing through the supply air passage 5 passes through the second return air passage 64, passes through the condenser 32 of the dehumidifier 30, and is guided outdoors, the second return air passage 64 side is In addition to the half-open state, the supply air passage 5 side downstream of the second return air passage 64 may be half-open. By doing so, it is possible to mix and supply a small amount of fresh outdoor air with the supply air flow 3, and it is possible to reduce the increase in indoor CO2 concentration. (Class 2 ventilation condition)
Furthermore, the first return air passage 62 side of the first return air passage opening/closing part 63 is set in a half-open state, and the exhaust air passage 4 side downstream of the first return air air passage 62 is set in a half-open state. and an operation of half-opening the second return air passage 64 side of the second return air passage opening/closing part 65 and half opening the supply air passage 5 side downstream of the second return air passage 64. , may be performed at the same time. By doing this, it is possible to supply a small amount of fresh outdoor air mixed with the supply air flow 3, and also to mix and discharge a small amount of indoor air with the exhaust air flow 2, thereby reducing the increase in indoor CO2 concentration. It is possible to perform ventilation at the same time while controlling the ventilation air volume. (Class 1 ventilation condition)
Further, as shown in FIG. 8, the heat exchange type ventilation device 10 includes a first temperature sensor 60, a first humidity sensor 61, and a controller.

第一温度センサ60は、排気風路4を基準として前記熱交換素子12の上流側に配置され、排気風路4を流れる排気流2の温度を測定する。 The first temperature sensor 60 is arranged upstream of the heat exchange element 12 with respect to the exhaust air passage 4 and measures the temperature of the exhaust flow 2 flowing through the exhaust air passage 4 .

第一湿度センサ61は、排気風路4を基準として前記熱交換素子12の上流側に配置され、排気風路4を流れる排気流2の湿度を測定する。 The first humidity sensor 61 is arranged upstream of the heat exchange element 12 with respect to the exhaust air passage 4 and measures the humidity of the exhaust flow 2 flowing through the exhaust air passage 4 .

コントローラは、第一温度センサ60および第一湿度センサ61によって、検出した温度および湿度に基づいて、第一還気風路開閉部63と、第二還気風路開閉部65の動作を制御する部分であり、温度比較部と、湿度比較部と、第一還気風路開閉制御部と第二還気風路開閉制御部と、を備える。 The controller is a part that controls the operation of the first return air passage opening/closing part 63 and the second return air passage opening/closing part 65 based on the temperature and humidity detected by the first temperature sensor 60 and the first humidity sensor 61. It includes a temperature comparison section, a humidity comparison section, a first return air duct opening/closing control section, and a second return air duct opening/closing control section.

温度比較部は第一温度比較部と第二温度比較部を含む。 The temperature comparison section includes a first temperature comparison section and a second temperature comparison section.

第一温度比較部は、第一温度センサ60によって測定した排気流2の温度と所定の温度(例えば、27℃)を比較する。 The first temperature comparison unit compares the temperature of the exhaust flow 2 measured by the first temperature sensor 60 with a predetermined temperature (for example, 27° C.).

湿度比較部は第一湿度比較部と第二湿度比較部を含む。 The humidity comparison section includes a first humidity comparison section and a second humidity comparison section.

第一湿度比較部は、第一湿度センサ61によって測定した排気流2の湿度と所定の湿度(例えば、12g/kg)を比較する。 The first humidity comparison section compares the humidity of the exhaust flow 2 measured by the first humidity sensor 61 with a predetermined humidity (for example, 12 g/kg).

第一還気風路制御部は、第一温度比較部による比較結果において排気流2の温度が所定の温度より高く且つ第一湿度比較部による比較結果において排気流2の湿度が所定湿度より高い場合に第一還気風路62が開状態となるように第一還気風路開閉部63の動作を制御する。 If the temperature of the exhaust air flow 2 is higher than the predetermined temperature in the comparison result by the first temperature comparison part and the humidity of the exhaust flow 2 is higher than the predetermined humidity in the comparison result by the first humidity comparison part, the first return air flow path control part The operation of the first return air passage opening/closing unit 63 is controlled so that the first return air passage 62 is in an open state.

第二還気風路制御部は、第一温度比較部による比較結果において排気流2の温度が所定の温度より高く且つ第一湿度比較部による比較結果において排気流2の湿度が所定湿度より高い場合に第二還気風路64が開状態となるように第二還気風路開閉部65の動作を制御する。 If the temperature of the exhaust flow 2 is higher than the predetermined temperature in the comparison result by the first temperature comparison part and the humidity of the exhaust flow 2 is higher than the predetermined humidity in the comparison result by the first humidity comparison part, the second return air flow path control part The operation of the second return air passage opening/closing unit 65 is controlled so that the second return air passage 64 is in the open state.

また、熱交換形換気装置10は、給気流3の温度を測定する第二温度センサ67と、給気流3の湿度を測定する第二湿度センサ68と、を備える。 The heat exchange type ventilation device 10 also includes a second temperature sensor 67 that measures the temperature of the air supply flow 3 and a second humidity sensor 68 that measures the humidity of the air supply flow 3.

第二温度センサ67は、給気風路5を基準として熱交換素子12の上流側に配置され、給気風路5を流れる給気流3の温度を測定する。 The second temperature sensor 67 is arranged upstream of the heat exchange element 12 with respect to the supply air passage 5 and measures the temperature of the supply air flow 3 flowing through the supply air passage 5 .

第二湿度センサ68は、給気風路5を基準として熱交換素子12の上流側に配置され、給気風路5を流れる給気流3の湿度を測定する。 The second humidity sensor 68 is arranged upstream of the heat exchange element 12 with respect to the supply air passage 5 and measures the humidity of the supply air flow 3 flowing through the supply air passage 5 .

第二温度比較部は、第二温度センサ67で測定した給気流3の温度と他の温度とを比較する。 The second temperature comparison section compares the temperature of the supply air flow 3 measured by the second temperature sensor 67 with other temperatures.

第二湿度比較部は、第二湿度センサ68で測定した給気流3の湿度と他の湿度とを比較する。 The second humidity comparison section compares the humidity of the supply air flow 3 measured by the second humidity sensor 68 with other humidity.

コントローラは、第二温度比較部による比較結果において第二温度センサ67で測定した給気流3の温度が第一温度センサ60で測定した温度より低く、且つ第二湿度比較部による比較結果において第二湿度センサ68で測定した給気流3の湿度が第一湿度センサ61で測定した湿度より低い場合に第一還気風路62および第二還気風路64を閉状態となるように第一還気風路開閉制御部および第二還気風路開閉制御部にて制御する。 The controller is configured such that the temperature of the supply air flow 3 measured by the second temperature sensor 67 is lower than the temperature measured by the first temperature sensor 60 in the comparison result by the second temperature comparison part, and the second temperature in the comparison result by the second humidity comparison part is lower than the temperature measured by the first temperature sensor 60. The first return air duct is configured such that the first return air duct 62 and the second return air duct 64 are closed when the humidity of the supply air flow 3 measured by the humidity sensor 68 is lower than the humidity measured by the first humidity sensor 61. Controlled by the opening/closing control section and the second return air passage opening/closing control section.

次に、本実施の形態1に係る除湿機能付き熱交換形換気装置50の除湿運転(通常運転)について詳細に説明する。 Next, the dehumidifying operation (normal operation) of the heat exchange type ventilation device with dehumidifying function 50 according to the first embodiment will be described in detail.

まず、除湿機能付き熱交換形換気装置50を運転することによって、排気ファン13と給気ファン16が駆動し、熱交換形換気装置10の内部には、排気風路4を流通する排気流2と、給気風路5を流通する給気流3とが生じる。 First, by operating the heat exchange type ventilation device 50 with a dehumidifying function, the exhaust fan 13 and the air supply fan 16 are driven, and inside the heat exchange type ventilation device 10, an exhaust flow 2 flowing through the exhaust air path 4 is generated. , and a supply air flow 3 flowing through the supply air path 5 is generated.

例えば、夏季において、排気流2は、エアコンなどによって快適な温度湿度に空調された屋内の空気であり、給気流3は、高温高湿の屋外の空気である。 For example, in summer, the exhaust air flow 2 is indoor air that has been conditioned to a comfortable temperature and humidity by an air conditioner, and the supply air flow 3 is outdoor air that is hot and humid.

排気流2と給気流3とは、熱交換形換気装置10の内部で顕熱と潜熱が交換される。この際、高温高湿の給気流3から排気流2に水分が移動するため、給気流3の水分が除去される。つまり、熱交換形換気装置10の内部での全熱交換によって、給気流3に対する除湿(第一除湿)がなされる。 Sensible heat and latent heat are exchanged between the exhaust air flow 2 and the supply air flow 3 inside the heat exchange type ventilation device 10. At this time, since moisture moves from the high-temperature, high-humidity supply air flow 3 to the exhaust air flow 2, the moisture in the supply air flow 3 is removed. That is, the supply air flow 3 is dehumidified (first dehumidification) by total heat exchange inside the heat exchange type ventilation device 10.

次に、熱交換後の給気流3は、除湿装置30に導入されて除湿される。具体的には、除湿装置30に導入された給気流3は、蒸発器34によって冷却される。これにより、給気流3の温度が露点温度以下となり、給気流3が結露するので、給気流3の水分が除去される。つまり、蒸発器34を流通することによって、給気流3に対する除湿(第二除湿)がなされる。 The supply air stream 3 after heat exchange is then introduced into a dehumidifier 30 to be dehumidified. Specifically, the air supply stream 3 introduced into the dehumidifier 30 is cooled by the evaporator 34 . As a result, the temperature of the supply air flow 3 becomes lower than the dew point temperature, and the supply air flow 3 becomes dew-condensed, so that moisture in the supply air flow 3 is removed. That is, by flowing through the evaporator 34, the supply air flow 3 is dehumidified (second dehumidification).

したがって、除湿機能付き熱交換形換気装置50は、熱交換形換気装置10と蒸発器34との各機器による除湿(第一除湿、第二除湿)によって、屋外の高温多湿の給気流3から水分を除去し、その際、必要な除湿量を確保している。 Therefore, the heat exchange type ventilation device 50 with a dehumidification function removes moisture from the hot and humid outdoor air supply flow 3 by dehumidifying the heat exchange type ventilation device 10 and the evaporator 34 (first dehumidification, second dehumidification). At the same time, the necessary amount of dehumidification is ensured.

さらに、除湿機能付き熱交換形換気装置50における除湿装置30は、熱交換形換気装置10の排気風路4から排気流2を導入し、導入された排気流2が凝縮器32を流通する構成となっている。凝縮器32では、導入された排気流2によって、蒸発器34において吸熱されるエネルギーと、圧縮機31において冷凍サイクル内の冷媒を循環させるためのエネルギーとに相当する熱量が排熱され、凝縮器32から熱を奪った排気流2は排気風路4に導出されてそのまま屋外に排出される。つまり、凝縮器32は、導入された排気流2によって冷却される。そして、給気流3は、凝縮器32を流通することなく給気風路5に導出される。 Furthermore, the dehumidifying device 30 in the heat exchange type ventilation device 50 with a dehumidifying function has a configuration in which the exhaust flow 2 is introduced from the exhaust air passage 4 of the heat exchange type ventilation device 10, and the introduced exhaust flow 2 flows through the condenser 32. It becomes. In the condenser 32, an amount of heat corresponding to the energy absorbed in the evaporator 34 and the energy for circulating the refrigerant in the refrigeration cycle in the compressor 31 is exhausted by the introduced exhaust stream 2, and the amount of heat is exhausted from the condenser 32. The exhaust flow 2 that has taken heat from the exhaust gas flow path 32 is led out to the exhaust air path 4 and is discharged outdoors as it is. That is, the condenser 32 is cooled by the introduced exhaust stream 2. The supply air flow 3 is then led out to the supply air passage 5 without passing through the condenser 32.

以上が、除湿機能付き熱交換形換気装置50の除湿運転の動作である。 The above is the operation of the dehumidifying operation of the heat exchange type ventilation device 50 with a dehumidifying function.

このような除湿機能付き熱交換形換気装置50の通常運転時では、屋外が高温高湿の際、
熱交換素子12において排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換を行った後の給気流3の温度、湿度は、屋外の高温高湿の状態に依存して、温度、湿度が高い状態となる。そして、蒸発器34で除湿を行った後の給気流3は、屋外が低温低湿の状態と比べて、比較的、温度、湿度が高い状態となるため、屋内へ給気流3を供給しても、屋内空気の除湿が不十分となる場合があるという問題が発生する。また、熱交換を行った後の給気流3の温度、湿度は、屋内の温度、湿度の状態にも依存するため、屋内が高温高湿になるほど、熱交換を行った後の給気流3の温度、湿度は高い状態となる。そのため、屋外が高温高湿状態で、屋内に在室する人数が増えて、在室者の発熱、発湿により、屋内の温度、湿度が急激に上昇した場合には、熱交換素子12において熱交換後の給気流3は、熱交換する相手側の排気流2の温度、湿度が高い状態であるがために、温度、湿度が高い状態をしばらく維持してしまい、それに伴い、蒸発器34で除湿を行った後の給気流3は、温度、湿度が高い状態をしばらく維持することになるため、屋内が不快な状態を長く継続してしまうことになる。
During normal operation of such a heat exchange type ventilation device 50 with a dehumidifying function, when the outdoor temperature is high and humid,
After heat exchange is performed between the exhaust air flow 2 flowing through the exhaust air path 4 and the air supply flow 3 flowing through the air supply air path 5 in the heat exchange element 12, the temperature and humidity of the air supply flow 3 are equal to the outdoor high temperature. Depending on the state of high humidity, the temperature and humidity will be high. The supply air flow 3 after dehumidifying in the evaporator 34 has a relatively high temperature and humidity compared to the low temperature and low humidity outdoors, so even if the supply air flow 3 is supplied indoors. , a problem arises in that indoor air may not be sufficiently dehumidified. In addition, the temperature and humidity of the air supply flow 3 after heat exchange depend on the indoor temperature and humidity conditions, so the higher the temperature and humidity indoors, the higher the temperature and humidity of the air supply flow 3 after heat exchange. Temperature and humidity will be high. Therefore, when the outdoors is hot and humid and the number of people indoors increases, and the indoor temperature and humidity rapidly rise due to heat generation and humidity generation by the occupants, the heat exchange element 12 The supply air flow 3 after exchange maintains a high temperature and humidity state for a while because the temperature and humidity of the exhaust flow 2 on the other side with which heat is exchanged are high, and accordingly, the evaporator 34 The air supply flow 3 after dehumidification will maintain a high temperature and high humidity state for a while, resulting in an uncomfortable indoor condition for a long time.

次に、本実施の形態1に係る除湿機能付き熱交換形換気装置50の除湿運転(還気運転)について詳細に説明する。 Next, the dehumidification operation (return air operation) of the heat exchange type ventilation device with dehumidification function 50 according to the first embodiment will be described in detail.

還気運転は、屋外が高温高湿時に、屋内の温度、湿度が所定の値よりも高い場合、発動する運転方法である。 The return air operation is an operation method that is activated when the temperature and humidity indoors are higher than predetermined values while the temperature and humidity outdoors are high and high.

図9に示すように、まず、除湿機能付き熱交換形換気装置50を運転することによって、排気ファン13と給気ファン16が停止し(S1)、第一還気風路開閉部63が第一還気風路62よりも下流側の排気風路4側を開状態となるようにするとともに、第一還気風路62側を閉状態(第一還気風路閉状態)とするとともに、第二還気風路開閉部65が第二還気風路64側を閉状態とするとともに、第二還気風路64よりも下流側の給気風路5側を開状態(第二還気風路閉状態)とする。(S2)
その後、排気ファン13と給気ファン16が駆動し、熱交換形換気装置10の内部には、排気風路4を流通する排気流2と、給気風路5を流通する給気流3とが生じる。(S3)
例えば、夏季において、排気流2は、エアコンなどによって快適な温度湿度に空調された屋内の空気であり、給気流3は、高温多湿の屋外の空気である。
As shown in FIG. 9, first, by operating the heat exchange type ventilation device 50 with a dehumidifying function, the exhaust fan 13 and the supply air fan 16 are stopped (S1), and the first return air passage opening/closing part 63 is turned off. The exhaust air passage 4 side downstream of the return air passage 62 is brought into an open state, the first return air passage 62 side is brought into a closed state (first return air passage closed state), and the second return air passage 4 is brought into an open state. The air passage opening/closing unit 65 closes the second return air passage 64 side and opens the supply air passage 5 side downstream of the second return air passage 64 (second return air passage closed state). . (S2)
Thereafter, the exhaust fan 13 and the air supply fan 16 are driven, and an exhaust air flow 2 that flows through the exhaust air path 4 and an air supply flow 3 that flows through the air supply air path 5 are generated inside the heat exchange type ventilation device 10. . (S3)
For example, in summer, the exhaust air flow 2 is indoor air that has been conditioned to a comfortable temperature and humidity by an air conditioner, and the supply air flow 3 is outdoor air that is hot and humid.

還気運転では、排気風路4を基準として熱交素子の上流側に配置される第一温度センサと第一湿度センサが、所定の温度(例えば、27℃)以上且つ、所定の湿度(例えば、12g/kg)以上であることを検知する。(S4、S5)
そして、給気風路5を基準として熱交素子の上流側に配置される第二温度センサ67と第二湿度センサ68で測定した温度および湿度が、それぞれ、第一温度センサ60で測定の排気流2の温度よりも大きいことと、第一湿度センサ61で測定の排気流の湿度よりも大きいことを確認する。(S6、S7)
その後、最初に排気ファン13と給気ファン16が停止する。(S8)
次に第一還気風路開閉部63が第一還気風路62よりも下流側の排気風路4側を閉状態となるようにするとともに、第一還気風路62側を開状態とする(第一還気風路開状態)ように、ダンパー66を動作させる。次に、第二還気風路開閉部65が第二還気風路64側を開状態とするとともに、第二還気風路64よりも下流側の給気風路5側を閉状態とする(第二還気風路開状態)ように、ダンパー66を動作させる。(S9)
その後、排気ファン13と給気ファン16が運転を再開する。(S10)
この時、給気流3は、第二還気風路64を通って、除湿装置30の凝縮器32を通って屋外に導出する状態となり、凝縮器32の冷却に必要なエネルギーを得ることができる。また、排気流2は、第一還気風路62を通って、除湿装置30の蒸発器34を通って屋内に導出する状態となり、蒸発器34によって除湿された排気流2(屋内空気)を屋内に供給でき、屋内空気を循環させる形で除湿が可能な状態となる。
In the return air operation, a first temperature sensor and a first humidity sensor, which are arranged upstream of the heat exchanger with reference to the exhaust air path 4, detect that the temperature is above a predetermined temperature (for example, 27°C) and the humidity is at a predetermined humidity (for example, , 12g/kg) or more. (S4, S5)
Then, the temperature and humidity measured by the second temperature sensor 67 and the second humidity sensor 68, which are arranged upstream of the heat exchanger element with respect to the air supply air path 5 as a reference, are respectively determined by the exhaust flow measured by the first temperature sensor 60. 2 and the humidity of the exhaust flow measured by the first humidity sensor 61. (S6, S7)
After that, the exhaust fan 13 and the air supply fan 16 stop first. (S8)
Next, the first return air passage opening/closing unit 63 closes the exhaust air passage 4 side downstream of the first return air passage 62, and opens the first return air passage 62 side ( The damper 66 is operated so that the first return air passage is open. Next, the second return air passage opening/closing unit 65 opens the second return air passage 64 side, and closes the supply air passage 5 side downstream of the second return air passage 64 (the second The damper 66 is operated so that the return air passage is open. (S9)
After that, the exhaust fan 13 and the air supply fan 16 resume operation. (S10)
At this time, the supply air flow 3 passes through the second return air passage 64, passes through the condenser 32 of the dehumidifier 30, and is led out to the outdoors, so that the energy necessary for cooling the condenser 32 can be obtained. Further, the exhaust air flow 2 passes through the first return air passage 62, passes through the evaporator 34 of the dehumidifier 30, and is led indoors, and the exhaust air flow 2 (indoor air) dehumidified by the evaporator 34 is brought indoors. This makes it possible to dehumidify indoor air by circulating it.

なお、第一還気風路開状態、第二還気風路開状態は、それぞれ、第一温度センサ60で測定した排気流の温度が所定の値(例えば、27℃)以下になった際、または、第一湿度センサ61で測定した排気流の湿度が所定の値(例えば、12g/kg)以下になった際に解除となり、一度、排気ファン13および、給気ファン16を停止し、第一還気風路閉状態、第二還気風路閉状態に戻る。(S11,S12)
また、給気流3の温度を測定する第二温度センサ67と、給気流3の湿度を測定する第二湿度センサ68にて、温度比較部(第二温度比較部)による比較結果において第二温度センサ67で測定した給気流3の温度が第一温度センサ60で測定した温度より低く、且つ湿度比較部(第二湿度比較部)による比較結果において第二湿度センサ68で測定した給気流3の湿度が第一湿度センサ61で測定した湿度より低い場合には、第一還気風路62および第二還気風路64を開状態としないように第一還気風路開閉制御部および第二還気風路開閉制御部にて制御する。(S6、S7)
これらの動作は、図8に示す第一温度センサ60、第一湿度センサ61で検知した温度、湿度を元に、第一還気風路開閉部63、第二還気風路開閉部65の動作を制御するコントローラによって行われる。コントローラは、第一温度センサ60と第一湿度センサ61が、所定の温度以上且つ、所定の湿度以上であることを温度比較部(第一温度比較部)、湿度比較部(第一湿度比較部)で判断し、その後、第一還気風路開閉制御部と第二還気風路開閉制御部において、第一還気風路開閉部63を第一還気風路開状態にし、第二還気風路開閉部65を第二還気風路開状態となるように制御する。また、温度比較部(第二温度比較部)による比較結果において第二温度センサ67で測定した給気流3の温度が第一温度センサ60で測定した温度より低く、且つ湿度比較部(第二湿度比較部)による比較結果において第二湿度センサ68で測定した給気流3の湿度が第一湿度センサ61で測定した湿度より低いことを判断した場合には、第一還気風路開閉制御部と第二還気風路開閉制御部において、第一還気風路開閉部63を第一還気風路閉状態にし、第二還気風路開閉部65を第二還気風路閉状態となるように制御する。
Note that the first return air duct open state and the second return air duct open state are respectively activated when the temperature of the exhaust flow measured by the first temperature sensor 60 becomes a predetermined value (for example, 27°C) or less, or , when the humidity of the exhaust flow measured by the first humidity sensor 61 becomes less than a predetermined value (for example, 12 g/kg), the exhaust fan 13 and the air supply fan 16 are stopped, and the first Return air path closed state returns to second return air path closed state. (S11, S12)
In addition, the second temperature sensor 67 that measures the temperature of the supply air flow 3 and the second humidity sensor 68 that measures the humidity of the supply air flow 3 determine the second temperature in the comparison result by the temperature comparison section (second temperature comparison section). The temperature of the supply air flow 3 measured by the sensor 67 is lower than the temperature measured by the first temperature sensor 60, and the comparison result by the humidity comparison section (second humidity comparison section) indicates that the temperature of the supply air flow 3 measured by the second humidity sensor 68 is lower than the temperature measured by the first temperature sensor 60. When the humidity is lower than the humidity measured by the first humidity sensor 61, the first return air passage opening/closing control unit and the second return air passage are turned on so as not to open the first return air passage 62 and the second return air passage 64. Controlled by the road opening/closing control section. (S6, S7)
These operations are based on the temperature and humidity detected by the first temperature sensor 60 and first humidity sensor 61 shown in FIG. This is done by the controlling controller. The controller detects that the first temperature sensor 60 and the first humidity sensor 61 are at a predetermined temperature or higher and at a predetermined humidity or higher by a temperature comparison section (first temperature comparison section) and a humidity comparison section (first humidity comparison section). ), and then, in the first return air duct opening/closing control section and the second return air duct opening/closing control section, the first return air duct opening/closing section 63 is set to the first return air duct open state, and the second return air duct opening/closing is performed. The section 65 is controlled to be in the second return air passage open state. In addition, in the comparison result by the temperature comparison section (second temperature comparison section), the temperature of the supply air flow 3 measured by the second temperature sensor 67 is lower than the temperature measured by the first temperature sensor 60, and the humidity comparison section (second humidity comparison section) If it is determined that the humidity of the supply air flow 3 measured by the second humidity sensor 68 is lower than the humidity measured by the first humidity sensor 61 in the comparison result by the comparison section), the first return air passage opening/closing control section The second return air passage opening/closing control section controls the first return air passage opening/closing part 63 to be in the first return air passage closed state and the second return air passage opening/closing part 65 to be in the second return air passage closed state.

以上のように、第一還気風路開閉部63と第二還気風路開閉部65を開状態とし、還気運転を成立させる。これにより、屋外の空気の状態によらず、屋内の除湿が可能となり、屋外が高温高湿の際の屋内の除湿不足の問題を解決できる。 As described above, the first return air passage opening/closing part 63 and the second return air passage opening/closing part 65 are brought into the open state to establish the return air operation. This makes it possible to dehumidify indoors regardless of the outdoor air condition, and solves the problem of insufficient dehumidification indoors when the outdoors is hot and humid.

除湿機能付き熱交換形換気装置50では、第一還気風路開閉部63によって、排気風路4を流れる排気流2が第一還気風路62を通って、除湿装置30の蒸発器34を通って屋内に導かれる状態を作り出すことで、屋内空気を循環させる形で屋内空気の除湿を行うことが可能となる。すなわち、屋外空気による影響を抑えて、屋内空気の除湿を行うことが可能となる。 In the heat exchange type ventilation device 50 with a dehumidifying function, the exhaust air flow 2 flowing through the exhaust air path 4 passes through the first return air path 62 and passes through the evaporator 34 of the dehumidifier 30 by the first return air path opening/closing section 63. By creating a condition where the indoor air is guided indoors, it becomes possible to dehumidify the indoor air by circulating the indoor air. That is, it becomes possible to dehumidify indoor air while suppressing the influence of outdoor air.

この状態では、屋外空気が高温高湿の状態で、熱交換素子12において排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換を行った後の給気流3を蒸発器34で除湿する状態では、屋内空気の除湿が不十分となる場合に、屋内空気を循環させることで屋内空気を除湿することが可能となる。 In this state, outdoor air is hot and humid, and heat exchange is performed between the exhaust air flow 2 flowing through the exhaust air path 4 and the supply air flow 3 flowing through the air supply air path 5 in the heat exchange element 12. If indoor air is insufficiently dehumidified in a state in which the subsequent air supply flow 3 is dehumidified by the evaporator 34, indoor air can be dehumidified by circulating the indoor air.

また、屋外側が屋内側に対して、低温低湿(低負荷)時に、屋内空気を循環させる形での除湿による除湿量よりも、熱交換素子12による熱交後の給気流を除湿する形での除湿量のほうが大きいと見込める場合に熱交換気状態に戻して除湿を行うことができ、不必要に換気を損なうことなく除湿を行うことができる。 Furthermore, when the outdoor side is compared to the indoor side at low temperature and low humidity (low load), the amount of dehumidification achieved by dehumidifying the supply air flow after heat exchange by the heat exchange element 12 is greater than the amount of dehumidification achieved by circulating indoor air. When the amount of dehumidification is expected to be greater, dehumidification can be performed by returning to the heat exchange air state, and dehumidification can be performed without unnecessarily impairing ventilation.

なお、屋内空気の除湿が不十分とならない場合には、第一還気風路開閉部63は、排気風路4を流れる排気流2が熱交換素子12を通って、凝縮器32を通って屋外に導かれる状態となり、熱交換素子12において排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換を行った後の給気流3を蒸発器34で除湿する状態となる。こうすることで、熱交換素子12での熱交換による給気流3の除湿が十分確保できる場合に、冷凍サイクルの負荷を抑えて省エネルギーの運転を実現することができる。 Note that if indoor air dehumidification is not insufficient, the first return air duct opening/closing part 63 allows the exhaust air flow 2 flowing through the exhaust air duct 4 to pass through the heat exchange element 12, through the condenser 32, and then return to the outdoors. The heat exchange element 12 exchanges heat between the exhaust air flow 2 flowing through the exhaust air path 4 and the air supply air flow 3 flowing through the air supply air path 5, and then transfers the air supply flow 3 to the evaporator. At 34, it becomes dehumidified. By doing so, when sufficient dehumidification of the supply air flow 3 through heat exchange in the heat exchange element 12 can be ensured, the load on the refrigeration cycle can be suppressed and energy-saving operation can be realized.

除湿機能付き熱交換形換気装置50では、第一還気風路62が開状態となった際、第二還気風路開閉部65によって、給気風路5を流れる給気流3が第二還気風路64を通って、除湿装置30の凝縮器32を通って屋内に導出する状態を作り出すことで、第二還気風路を通じて凝縮器32を通過する給気流3を生み出すことが可能となり、凝縮器32の放熱が可能となり、冷凍サイクルの動作を安定させることができる。 In the heat exchange type ventilation device 50 with a dehumidification function, when the first return air passage 62 is in the open state, the second return air passage opening/closing part 65 allows the supply air flow 3 flowing through the supply air passage 5 to be transferred to the second return air passage. By creating a condition in which the air is led indoors through the condenser 32 of the dehumidifier 30 through the condenser 64, it becomes possible to generate the supply air flow 3 which passes through the condenser 32 through the second return air path, and the condenser 32 This makes it possible to dissipate heat and stabilize the operation of the refrigeration cycle.

第一温度センサ60、第一湿度センサ61は、排気風路4を基準として熱交換素子12の上流側に配置される構成とすることが好ましい。こうすることで、屋内空気の温度または湿度を測定することができる。 The first temperature sensor 60 and the first humidity sensor 61 are preferably arranged upstream of the heat exchange element 12 with respect to the exhaust air path 4 . In this way, the temperature or humidity of indoor air can be measured.

第二温度センサ67、第二湿度センサ68は、給気風路5を基準として熱交換素子12の上流側に配置される構成とすることが好ましい。こうすることで、屋外空気の温度または湿度を測定することができる。 The second temperature sensor 67 and the second humidity sensor 68 are preferably arranged upstream of the heat exchange element 12 with respect to the air supply path 5. In this way, the temperature or humidity of outdoor air can be measured.

本発明に係る除湿機能付き熱交換形換気装置は、除湿装置を用いた場合でも、室外空気による影響を抑えて、室内空気の除湿を行うことが可能な除湿機能付き熱交換形換気装置を提供するものであるので、屋内と屋外の熱交換を可能とする熱交換形換気装置として有用である。 The heat exchange type ventilation device with a dehumidification function according to the present invention provides a heat exchange type ventilation device with a dehumidification function that can suppress the influence of outdoor air and dehumidify indoor air even when a dehumidification device is used. Therefore, it is useful as a heat exchange type ventilation device that enables heat exchange between indoors and outdoors.

1 家
2 排気流
3 給気流
4 排気風路
5 給気風路
10 熱交換形換気装置
11 本体ケース
12 熱交換素子
13 排気ファン
14 内気口
15 排気口
16 給気ファン
17 外気口
18 給気口
30 除湿装置
31 圧縮機
32 凝縮器
33 膨張器
34 蒸発器
50 除湿機能付き熱交換形換気装置
60 第一温度センサ
61 第一湿度センサ
62 第一還気風路
63 第一還気風路開閉部
64 第二還気風路
65 第二還気風路開閉部
66 ダンパー
67 第二温度センサ
68 第二湿度センサ
100 除湿機能付き熱交換形換気装置
102 排気流
103 給気流
103a 第一給気流路
103b 第二給気流路
104 排気風路
105 給気風路
110 熱交換形換気装置
112 熱交換素子
130 除湿装置
131 圧縮機
132 凝縮器
133 膨張器
134 蒸発器
135 熱交換器
136 第一流路
137 第二流路
1 House 2 Exhaust flow 3 Air supply flow 4 Exhaust air path 5 Air supply air path 10 Heat exchange type ventilation device 11 Main body case 12 Heat exchange element 13 Exhaust fan 14 Inside air vent 15 Exhaust port 16 Air supply fan 17 Outside air port 18 Air supply port 30 Dehumidifier 31 Compressor 32 Condenser 33 Expander 34 Evaporator 50 Heat exchange type ventilation device with dehumidification function 60 First temperature sensor 61 First humidity sensor 62 First return air passage 63 First return air passage opening/closing part 64 Second Return air passage 65 Second return air passage opening/closing part 66 Damper 67 Second temperature sensor 68 Second humidity sensor 100 Heat exchange type ventilation device with dehumidification function 102 Exhaust air flow 103 Air supply flow 103a First air supply flow passage 103b Second air supply flow passage 104 Exhaust air path 105 Air supply air path 110 Heat exchange type ventilation device 112 Heat exchange element 130 Dehumidifier 131 Compressor 132 Condenser 133 Expander 134 Evaporator 135 Heat exchanger 136 First flow path 137 Second flow path

Claims (8)

屋外から屋内へ搬送される給気流が通る給気風路と、
前記屋内から前記屋外へ搬送される排気流が通る排気風路と、
前記排気流の温度を測定する第一温度センサと、
前記排気流の湿度を測定する第一湿度センサと、
前記給気風路の一部と前記排気風路の一部を構成し、前記給気流と前記排気流との間で熱交換する熱交換素子と、
前記熱交換素子に対して上流側の前記排気流を前記給気風路へ還気する第一還気風路と、
前記第一還気風路を開閉する第一還気風路開閉部と、
冷凍サイクルにおける冷媒と前記給気流及び前記第一還気風路を通過して前記給気風路へ還気した前記排気流の少なくとも一方に含まれる空気との間で熱交換することで該空気に含まれる水分を凝縮する蒸発器と、
前記第一還気風路開閉部の動作を制御するコントローラと、を備え、
前記コントローラは、
前記第一温度センサで測定した前記排気流の温度と所定温度とを比較する第一温度比較部と、
前記第一湿度センサで測定した前記排気流の湿度と所定湿度とを比較する第一湿度比較部と、
前記第一温度比較部による比較結果において前記排気流の温度が前記所定温度より高く且つ前記第一湿度比較部による比較結果において前記排気流の湿度が前記所定湿度より高い場合に前記第一還気風路が開状態となるように前記第一還気風路開閉部の動作を制御する第一還気風路開閉制御部と、を有する、除湿機能付き熱交換形換気装置。
an air supply air path through which the air supply flow is conveyed from outdoors to indoors;
an exhaust air path through which an exhaust flow is conveyed from the indoor to the outdoor;
a first temperature sensor that measures the temperature of the exhaust stream;
a first humidity sensor that measures the humidity of the exhaust flow;
a heat exchange element that constitutes a part of the supply air passage and a part of the exhaust air passage, and exchanges heat between the supply air flow and the exhaust air flow;
a first return air duct that returns the exhaust flow on the upstream side with respect to the heat exchange element to the supply air duct;
a first return air passage opening/closing part that opens and closes the first return air passage;
By exchanging heat between the refrigerant in the refrigeration cycle and the air contained in at least one of the supply air flow and the exhaust flow that has passed through the first return air passage and returned to the supply air passage, an evaporator that condenses the moisture that is
A controller that controls the operation of the first return air passage opening/closing section,
The controller includes:
a first temperature comparison unit that compares the temperature of the exhaust flow measured by the first temperature sensor and a predetermined temperature;
a first humidity comparison unit that compares the humidity of the exhaust flow measured by the first humidity sensor and a predetermined humidity;
If the temperature of the exhaust flow is higher than the predetermined temperature in the comparison result by the first temperature comparison section and the humidity of the exhaust flow is higher than the predetermined humidity in the comparison result by the first humidity comparison section, the first return air A heat exchange type ventilation device with a dehumidifying function, comprising: a first return air duct opening/closing control section that controls the operation of the first return air duct opening/closing section so that the first return air duct opening/closing section is in an open state.
前記第一還気風路は、
前記熱交換素子に対して下流側の前記給気風路と連通する、請求項1記載の除湿機能付き熱交換形換気装置。
The first return air passage is
The heat exchange type ventilation device with a dehumidification function according to claim 1, which communicates with the air supply air path on the downstream side with respect to the heat exchange element.
前記第一還気風路開閉部は、
前記第一還気風路を開状態にすると共に前記第一還気風路より下流側の前記排気風路を閉状態にする、請求項1記載の除湿機能付き熱交換形換気装置。
The first return air passage opening/closing part is
The heat exchange type ventilation device with a dehumidifying function according to claim 1, wherein the first return air passage is opened and the exhaust air passage downstream of the first return air passage is closed.
前記第一温度センサ及び前記第一湿度センサは、
前記排気風路を基準として前記熱交換素子の上流側に配置される、請求項1記載の除湿機能付き熱交換形換気装置。
The first temperature sensor and the first humidity sensor are
The heat exchange type ventilation device with a dehumidifying function according to claim 1, which is arranged upstream of the heat exchange element with respect to the exhaust air path.
前記熱交換素子に対して上流側の前記給気流を前記排気風路へ還気する第二還気風路と、
冷凍サイクルにおける前記冷媒と前記排気流及び前記第二還気風路を通過して前記排気風路へ還気した前記給気流の少なくとも一方に含まれる空気との間で熱交換することで前記冷媒の熱を該空気へ放熱する凝縮器と、
前記第二還気風路を開閉する第二還気風路開閉部と、を備え、
前記コントローラは、
前記第一温度比較部による比較結果において前記排気流の温度が前記所定温度より高く且つ前記第一湿度比較部による比較結果において前記排気流の湿度が前記所定湿度より高い場合に前記第二還気風路が開状態となるように前記第二還気風路開閉部の動作を制御する第二還気風路開閉制御部と、を有する、請求項1記載の除湿機能付き熱交換形換気装置。
a second return air duct that returns the supply air flow upstream of the heat exchange element to the exhaust air duct;
By exchanging heat between the refrigerant in the refrigeration cycle and the air contained in at least one of the exhaust air flow and the supply air flow that has passed through the second return air air path and returned to the exhaust air air path, the refrigerant is removed. a condenser that radiates heat to the air;
a second return air passage opening/closing part that opens and closes the second return air passage;
The controller includes:
If the temperature of the exhaust flow is higher than the predetermined temperature in the comparison result by the first temperature comparison section and the humidity of the exhaust flow is higher than the predetermined humidity in the comparison result by the first humidity comparison section, the second return air 2. The heat exchange type ventilation device with a dehumidifying function according to claim 1, further comprising a second return air passage opening/closing control unit that controls the operation of the second return air passage opening/closing unit so that the passage is in an open state.
前記第二還気風路は、
前記熱交換素子に対して下流側の前記排気風路と連通する、請求項5記載の除湿機能付き熱交換形換気装置。
The second return air passage is
The heat exchange type ventilation device with a dehumidifying function according to claim 5, which communicates with the exhaust air path on the downstream side with respect to the heat exchange element.
前記第二還気風路開閉部は、
前記第二還気風路を開状態にすると共に前記第二還気風路より下流側の前記給気風路を閉状態にする、請求項5記載の除湿機能付き熱交換形換気装置。
The second return air passage opening/closing part is
6. The heat exchange type ventilation device with a dehumidifying function according to claim 5, wherein the second return air passage is opened and the supply air passage downstream of the second return air passage is closed.
前記給気流の温度を測定する第二温度センサと、
前記給気流の湿度を測定する第二湿度センサと、を備え、
前記コントローラは、
前記第二温度センサで測定した前記給気流の温度と他の温度とを比較する第二温度比較部と、
前記第二湿度センサで測定した前記給気流の湿度と他の湿度とを比較する第二湿度比較部と、を有し、
前記第二温度比較部による比較結果において前記第二温度センサで測定した前記給気流の温度が前記第一温度センサで測定した温度より低く、且つ前記第二湿度比較部による比較結果において前記第二湿度センサで測定した前記給気流の湿度が前記第一湿度センサで測定した湿度より低い場合に前記第一還気風路および前記第二還気風路を閉状態となるように第一還気風路開閉制御部および第二還気風路開閉制御部にて制御する、請求項5記載の除湿機能付き熱交換形換気装置。
a second temperature sensor that measures the temperature of the supply air stream;
a second humidity sensor that measures the humidity of the air supply flow;
The controller includes:
a second temperature comparison unit that compares the temperature of the supply air flow measured by the second temperature sensor with another temperature;
a second humidity comparison unit that compares the humidity of the supply air flow measured by the second humidity sensor with other humidity;
In the comparison result by the second temperature comparison section, the temperature of the supply air flow measured by the second temperature sensor is lower than the temperature measured by the first temperature sensor, and in the comparison result by the second humidity comparison section, the temperature of the supply air flow measured by the second temperature sensor is lower than the temperature measured by the first temperature sensor. The first return air duct is opened and closed so that the first return air duct and the second return air duct are closed when the humidity of the supply air flow measured by the humidity sensor is lower than the humidity measured by the first humidity sensor. The heat exchange type ventilation device with a dehumidifying function according to claim 5, wherein the heat exchange type ventilation device with a dehumidifying function is controlled by a control unit and a second return air passage opening/closing control unit.
JP2022120074A 2022-07-28 2022-07-28 Heat exchange type ventilating device with dehumidifying function Pending JP2024017439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022120074A JP2024017439A (en) 2022-07-28 2022-07-28 Heat exchange type ventilating device with dehumidifying function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022120074A JP2024017439A (en) 2022-07-28 2022-07-28 Heat exchange type ventilating device with dehumidifying function

Publications (1)

Publication Number Publication Date
JP2024017439A true JP2024017439A (en) 2024-02-08

Family

ID=89806938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022120074A Pending JP2024017439A (en) 2022-07-28 2022-07-28 Heat exchange type ventilating device with dehumidifying function

Country Status (1)

Country Link
JP (1) JP2024017439A (en)

Similar Documents

Publication Publication Date Title
JP5591329B2 (en) Ventilation air conditioner and control method thereof
JP5328951B2 (en) Air conditioning system
WO2018109844A1 (en) Heat-exchange-type ventilating device
JP2006313027A (en) Ventilation air conditioner
JP2001272086A (en) Air conditioner, air conditioning method
KR101919206B1 (en) 100% outdoor air conditioning system and controlling method based on dehumidification/evaporative cooling
WO2020003446A1 (en) Air conditioning device
JP7496489B2 (en) Dehumidifier
WO2019024817A1 (en) Multi-unit air conditioning and laundry drying machine and control method therefor
WO2017193578A1 (en) Temperature and humidity weak-relevance control unit type air conditioning system and use method
JP7194882B2 (en) Heat exchange ventilation system with dehumidification function
JP7285409B2 (en) Heat exchange ventilation system with dehumidification function
JP2024017439A (en) Heat exchange type ventilating device with dehumidifying function
JP6653428B1 (en) Heat exchange ventilator with dehumidification function
JP6653431B1 (en) Heat exchange ventilator with dehumidification function
JP4317792B2 (en) Air conditioner indoor unit
JP2003130382A (en) Air conditioner
CN112555982A (en) Temperature and humidity double-control air conditioning system
JP3820956B2 (en) Air conditioner
JP7129603B2 (en) Heat exchange ventilation system with dehumidification function
JP7291876B2 (en) dehumidifier
JP2020159595A (en) Heat exchange type ventilation device with humidity control function
JP2695603B2 (en) Humidification method of heat pump package
JP2018066542A (en) Air Conditioning System
JP2024092337A (en) Air Conditioning Equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024