JP2024011414A - 補正システム、端末装置、プログラム - Google Patents

補正システム、端末装置、プログラム Download PDF

Info

Publication number
JP2024011414A
JP2024011414A JP2022113368A JP2022113368A JP2024011414A JP 2024011414 A JP2024011414 A JP 2024011414A JP 2022113368 A JP2022113368 A JP 2022113368A JP 2022113368 A JP2022113368 A JP 2022113368A JP 2024011414 A JP2024011414 A JP 2024011414A
Authority
JP
Japan
Prior art keywords
initial
initial value
angular velocity
tolerance range
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022113368A
Other languages
English (en)
Inventor
高広 近藤
Takahiro Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2022113368A priority Critical patent/JP2024011414A/ja
Priority to PCT/JP2023/024245 priority patent/WO2024014306A1/ja
Publication of JP2024011414A publication Critical patent/JP2024011414A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/06Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving measuring of drift angle; involving correction for drift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Abstract

【課題】角速度を効率的に導出する技術を提供する。【解決手段】サーバ300は、3軸角速度センサ110のオフセットの第1初期値、3軸角速度センサ110の感度係数の第2初期値、3軸加速度センサ112のオフセットの第3初期値、3軸加速度センサ112の感度係数の第4初期値を探索する。端末装置100は、第1初期値をもとに3軸角速度センサ110のオフセットを探索し、第2初期値をもとに3軸角速度センサ110の感度係数を探索し、第3初期値をもとに3軸加速度センサ112のオフセットを探索し、第4初期値をもとに3軸加速度センサ112の感度係数を探索する。端末装置100は、3軸角速度センサ110のオフセット、3軸角速度センサ110の感度係数、3軸加速度センサ112のオフセット、3軸加速度センサ112をもとに、角速度を導出する。【選択図】図1

Description

本発明は、補正技術に関し、特に3軸の角速度センサ、加速度センサの出力を補正する補正システム、端末装置、プログラムに関する。
角速度センサに測位誤差が生じる原因の1つが角速度センサのオフセットの存在である。角速度センサのオフセットの影響を低減するために、角速度センサにはキャリブレーションすることが必要とされるが、キャリブレーションの処理は角速度センサにとって一般的に煩雑である。そのため、キャリブレーションを容易に実行することが困難である。キャリブレーションを容易に実行するために、移動端末とサーバからなるシステムにおいて、移動端末に搭載された角速度センサのオフセットがサーバによって補正される。このような構成では、移動端末での処理量は増加しないが、サーバでの処理量が増加する。サーバでの処理量の増加を抑制するために、移動体が所定の移動量と角度以上に変化した場合にのみキャリブレーションが実行される(例えば、特許文献1参照)。
特開2012-215547号公報
システム全体としての効率を考慮すると、端末側でも演算を実行するが好ましい。
本発明はこうした状況に鑑みてなされたものであり、その目的は、角速度を効率的に導出する技術を提供することにある。
上記課題を解決するために、本発明のある態様の補正システムは、3軸角速度センサと3軸加速度センサとGNSS(Global Navigation Satellite System)測位部とを備える端末装置と、端末装置と通信可能なサーバとを備える。端末装置は、3軸角速度センサの第1出力値と3軸加速度センサの第2出力値とGNSS測位部での測位結果とをサーバに送信し、サーバは、第1出力値と第2出力値と測位結果を使用して、第1初期許容範囲内において3軸角速度センサのオフセットの第1初期値を探索し、第2初期許容範囲内において3軸角速度センサの感度係数の第2初期値を探索し、第3初期許容範囲内において3軸加速度センサのオフセットの第3初期値を探索し、第4初期許容範囲内において3軸加速度センサの感度係数の第4初期値を探索し、サーバは、第1初期値、第2初期値、第3初期値、第4初期値、第1初期許容範囲、第2初期許容範囲、第3初期許容範囲、第4初期許容範囲を端末装置に送信し、端末装置は、新たな第1出力値、新たな第2出力値、新たな測位結果を使用して、第1初期許容範囲よりも狭い第1許容範囲の中で第1初期値をもとに3軸角速度センサのオフセットを探索し、第2初期許容範囲よりも狭い第2許容範囲の中で第2初期値をもとに3軸角速度センサの感度係数を探索し、第3初期許容範囲よりも狭い第3許容範囲の中で第3初期値をもとに3軸加速度センサのオフセットを探索し、第4初期許容範囲よりも狭い第4許容範囲の中で第4初期値をもとに3軸加速度センサの感度係数を探索し、端末装置は、3軸角速度センサのオフセット、3軸角速度センサの感度係数、3軸加速度センサのオフセット、3軸加速度センサの感度係数をもとに、角速度を導出する。
本発明の別の態様は、端末装置である。この装置は、3軸角速度センサと、3軸加速度センサと、GNSS(Global Navigation Satellite System)測位部と、3軸角速度センサの第1出力値と3軸加速度センサの第2出力値とGNSS測位部での測位結果とをサーバに送信するとともに、第1出力値と第2出力値と測位結果を使用して、第1初期許容範囲内において探索された3軸角速度センサのオフセットの第1初期値、第2初期許容範囲内において探索された3軸角速度センサの感度係数の第2初期値、第3初期許容範囲内において探索された3軸加速度センサのオフセットの第3初期値、第4初期許容範囲内において探索された3軸加速度センサの感度係数の第4初期値とをサーバから受信する通信部と、新たな第1出力値、新たな第2出力値、新たな測位結果を使用して、第1初期許容範囲よりも狭い第1許容範囲の中で第1初期値をもとに3軸角速度センサのオフセットを探索し、第2初期許容範囲よりも狭い第2許容範囲の中で第2初期値をもとに3軸角速度センサの感度係数を探索し、第3初期許容範囲よりも狭い第3許容範囲の中で第3初期値をもとに3軸加速度センサのオフセットを探索し、第4初期許容範囲よりも狭い第4許容範囲の中で第4初期値をもとに3軸加速度センサの感度係数を探索するとともに、3軸角速度センサのオフセット、3軸角速度センサの感度係数、3軸加速度センサのオフセット、3軸加速度センサの感度係数をもとに、角速度を導出する処理部とを備える。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、角速度を効率的に導出できる。
実施例に係る補正システムの構成を示す図である。 実施例に係る座標系を示す図である。 図3(a)-(b)は、図1の処理部における処理の概要を示す図である。 図1の統計処理部において生成されるデータベースのデータ構造を示す図である。 図1の統計処理部において生成される別のデータベースのデータ構造を示す図である。 図1の記憶部に記憶されるデータベースのデータ構造を示す図である。 図1の補正システムによる角速度の導出手順を示すシーケンス図である。 図1のサーバによるオフセットおよび感度係数の導出手順を示すフローチャートである。 図1のサーバによる第3初期値の導出手順を示すフローチャートである。
本発明を具体的に説明する前に、まず概要を述べる。本実施例は、車両等に搭載され、かつ角速度センサと加速度センサを搭載する端末装置と、端末装置から両センサのデータを受信するサーバとを含む補正システムに関する。補正システムでは、角速度センサのオフセットおよび感度と、加速度センサのオフセットおよび感度とをサーバと端末装置で分担して決定する。例えば、サーバが処理量の多い処理を実行し、端末装置は、サーバよりも処理量の少ない処理を実行する。
図1は、補正システム1000の構成を示す。補正システム1000は、端末装置100、サーバ300を含む。ここで、サーバ300と端末装置100は同一事業者によって提供されるものに限定されない。端末装置100は、3軸角速度センサ110、3軸加速度センサ112、GNSS(Global Navigation Satellite System)測位部114、温度センサ116、記憶部120、通信部130、処理部140を含む。サーバ300は、記憶部320、通信部330、処理部340、統計処理部350を含む。端末装置100は、図示しない車両に搭載可能である。
3軸角速度センサ110は、3軸のそれぞれに対応した角速度を測定し、測定した各速度を出力値(以下、「第1出力値」という)として記憶部120に順次出力する。ここでは、3軸を説明するために図2を使用する。図2は、実施例に係る座標系を示す。3軸として、x軸、y軸、z軸からなる直交座標系が規定される。x軸は車両200の進行方向を向き、z軸は車両200の床面から下方への法線方向を向き、y軸はx軸およびz軸に垂直方向を向く。角速度ベクトルωは[p q r]と示され、pはx軸まわりの角速度であり、qはy軸まわりの角速度であり、rはz軸まわりの角速度である。図1に戻る。
3軸加速度センサ112は、3軸のそれぞれに対応した加速度を測定し、測定した加速度を出力値(以下、「第2出力値」という)として記憶部120に順次出力する。加速度は、x軸方向の加速度a、y軸方向の加速度a、z軸方向の加速度aを含む。
GNSS測位部114は、GNSS衛星からの信号を受信し、衛星航法により衛星航法データを取得する。衛星航法データには緯度、経度、速度、方位が含まれる。GNSS測位部114は、衛星航法データ(以下、「測位結果」という)を記憶部120に順次出力する。温度センサ116は、温度を計測し、計測した温度を出力値(以下、「第3出力値」という)として記憶部120に順次出する。
記憶部120は、第1出力値、第2出力値、測位結果、第3出力値を対応づけて記憶する。通信部130は、無線通信を実行可能であり、第1出力値、第2出力値、測位結果、第3出力値を測定データとしてサーバ300に順次送信する。
サーバ300の通信部330は、端末装置100と通信可能であり、測定データを端末装置100から順次受信する。記憶部320は、通信部330において受信した測定データ、つまり第1出力値、第2出力値、測位結果、第3出力値を対応づけて順次記憶する。
処理部340は、記憶部320に記憶された第1出力値、第2出力値、測位結果を使用して、3軸角速度センサ110のオフセットの初期値(以下、「第1初期値」という)、3軸角速度センサ110の感度係数の初期値(以下、「第2初期値」という)、3軸加速度センサ112のオフセットの初期値(以下、「第3初期値」という)、3軸加速度センサ112の感度係数の初期値(以下、「第4初期値」という)を決定する。ここでは、処理部340における処理を、(1)角速度を導出するための基本的な処理、(2)オフセットと感度係数との初期値を決定する処理の順に説明する。
(1)角速度を導出するための基本的な処理
初期姿勢は、3軸加速度センサ112の出力値とオフセットとをもとにオイラー角表現で導出される。オイラー角表現では、x軸まわりの回転角をロール角φと呼び、y軸まわりの回転角をピッチ角θ、z軸まわりの回転角をヨー角ψと呼ぶ。初期姿勢のφとθは次のように示される。
Figure 2024011414000002
ここで、a、a、aはそれぞれx軸、y軸、z軸方向の加速度であり、次のように示される。
Figure 2024011414000003
AcclX_sns、AcclY_sns、AcclZ_snsは、3軸加速度センサ112のx軸方向の感度係数、3軸加速度センサ112のy軸方向の感度係数、3軸加速度センサ112のz軸方向の感度係数である。AcclX_out、AcclY_out、AcclZ_outは、3軸加速度センサ112のx軸方向の出力値、3軸加速度センサ112のy軸方向の出力値、3軸加速度センサ112のz軸方向の出力値である。AcclX_out、AcclY_out、AcclZ_outが前述の第2出力値に相当する。AcclX_ofs、AcclY_ofs、AcclZ_ofsは、3軸加速度センサ112のx軸方向のオフセット、3軸加速度センサ112のy軸方向のオフセット、3軸加速度センサ112のz軸方向のオフセットである。なお、ψの初期値は、任意の値でよく、例えば、「0」に設定される。
オイラー角表現の初期姿勢は、方向余弦行列による初期姿勢に変換されてから、方向余弦行列による初期姿勢がクォータニオンによる初期姿勢に変換される。オイラー角表現の初期姿勢は、方向余弦行列Eを用いて次のように変換される。
Figure 2024011414000004
また、方向余弦行列Eの各成分は次のように示される。
Figure 2024011414000005
クォータニオンは、回転方向の単位ベクトルと回転角の4成分で定義される。方向余弦行列Eによる初期姿勢は、クォータニオンによる初期姿勢q、q、q、qに次のように変換される。
Figure 2024011414000006
次に、クォータニオンによる初期姿勢q1、q2、q3、q4が角速度ベクトルωで更新される。前述のごとく、角速度ベクトルω=[p q r]である。各成分p、q、rは図2の通りであるが、次のように示される。
Figure 2024011414000007
GyroX_sns、GyroY_sns、GyroZ_snsは、3軸角速度センサ110のx軸方向の感度係数、3軸角速度センサ110のy軸方向の感度係数、3軸角速度センサ110のz軸方向の感度係数である。GyroX_out、GyroY_out、GyroZ_outは、3軸角速度センサ110のx軸方向の出力値、3軸角速度センサ110のy軸方向の出力値、3軸角速度センサ110のz軸方向の出力値である。GyroX_out、GyroY_out、GyroZ_outが前述の第1出力値に相当する。GyroX_ofs、GyroY_ofs、GyroZ_ofsは、3軸角速度センサ110のx軸方向のオフセット、3軸角速度センサ110のy軸方向のオフセット、3軸角速度センサ110のz軸方向のオフセットである。
次に示すクォータニオンによる姿勢の微分方程式が解かれる。
Figure 2024011414000008
初期の段階において、クォータニオンによる初期姿勢q、q、q、qが初期値として微分方程式の右辺に代入され、そのタイミングにおける角速度ベクトルの各成分p、q、rも微分方程式の右辺に代入される。微分方程式を解くことによって、クォータニオンによる姿勢q、q、q、qが更新される。
これに続いて、導出したクォータニオンによる姿勢q1、q2、q3、q4が微分方程式の右辺に代入され、新たな角速度ベクトルの各成分p、q、rも微分方程式の右辺に代入される。微分方程式を解くことによって、クォータニオンによる姿勢q、q、q、qが再度更新される。つまり、3軸角速度センサ110の出力値を順次代入しながら、クォータニオンによる姿勢の微分方程式を繰り返し解くことによって、クォータニオンによる姿勢q、q、q、qが順次更新される。
更新されたクォータニオンによる姿勢q、q、q、qが方向余弦行列Eによる姿勢に変換されてから、方向余弦行列Eによる姿勢がオイラー角表現の姿勢に変換される。更新したクォータニオンによる姿勢q、q、q、qは、方向余弦行列Eによる姿勢に次のように変換される。
Figure 2024011414000009
方向余弦行列Eは、オイラー角表現の姿勢に次のように変換される。
Figure 2024011414000010
オイラー角表現の姿勢のうち、ヨー角ψの時間変化t[sec]をもとに角速度が導出される。例えば、着目する時刻nのヨー角をψと示し、時刻n-1のヨー角をψn-1と示す場合、角速度は、(ψ-ψn-1)/tによって導出される。
(2)オフセットと感度係数との初期値を決定する処理
前述のように角速度を導出する場合、3軸角速度センサ110のオフセット(GyroX_ofs、GyroY_ofs、GyroZ_ofs)、3軸角速度センサ110の感度係数(GyroX_sns、GyroY_sns、GyroZ_sns)、3軸加速度センサ112のオフセット(AcclX_ofs、AcclY_ofs、AcclZ_ofs)、3軸加速度センサ112の感度係数(AcclX_sns、AcclY_sns、AcclZ_sns)等のパラメータが必要になる。処理部340は、これらのパラメータの初期値を決定し、決定した初期値を端末装置100に出力する。端末装置100は、初期値を更新することによってパラメータを決定する。3軸角速度センサ110のオフセットの初期値、3軸角速度センサ110の感度係数の初期値、3軸加速度センサ112のオフセットの初期値、3軸加速度センサ112の感度係数の初期値が前述の第1初期値から第4初期値にそれぞれ対応する。第1初期値から第4初期値は初期値と総称される。
以下では、パラメータの初期値を決定するための処理を、(2-1)概要、(2-2)探索処理の順に説明する。
(2-1)概要
処理部340は、第1初期値から第4初期値を同時に導出するのではなく、これらを逐次的に導出する。例えば、(i)3軸角速度センサ110のオフセットのための処理、(ii)3軸加速度センサ112のオフセットのための処理、(iii)3軸角速度センサ110の感度係数のための処理、(iv)3軸加速度センサ112の感度係数のための処理が順に実行される。これらにおいて、(i)では第1初期値が求められ、(ii)では第3初期値が求められ、(iii)では第2初期値が求められ、(iv)では第4初期値が求められる。また、処理部340は、(i)から(iv)を1周として、これを複数周繰り返し実行する。それにより、各初期値が更新される。
(2-2)探索処理
以下では、(2-2-1)1周目の処理、(2-2-2)2周目以降の処理の順に説明する。
(2-2-1)1周目の処理
(2-2-1-1)3軸角速度センサ110のオフセットのための処理
角速度ベクトルω=[p q r]は式(6)のように示される。車両200が静止している場合、ω、つまりp、q、rのそれぞれは「0」になる。これより、次の関係が成立する。
GyroX_out=GyroX_ofs
GyroY_out=GyroY_ofs
GyroZ_out=GyroZ_ofs
3軸角速度センサ110のx軸方向の出力値は、3軸角速度センサ110のx軸方向のオフセットと等しくなる。そのため、処理部340は、車両200が停止している場合に、3軸角速度センサ110のx軸方向の出力値を平均することによって、3軸角速度センサ110のx軸方向のオフセットの初期値を導出する。車両200の停止は、GNSS測位部114が出力する速度により検出されてもよく、速度センサ(図示せず)によって検出されてもよい。処理部340は、他の成分に対しても同様の処理を実行することによって、3軸角速度センサ110のy軸方向のオフセットの初期値、3軸角速度センサ110のz軸方向のオフセットの初期値も導出する。導出されたこれらの初期値が前述の第1初期値である。
(2-2-1-2)3軸加速度センサ112のオフセットのための処理
ここでは、式(2)におけるAcclX_ofs、AcclY_ofs、AcclZ_ofsが求める対象である。処理部340は、AcclX_ofsが取りうる範囲として初期許容範囲を設定し、その中に複数の3軸加速度センサ112のオフセットの候補値を配置する。図3(a)-(b)は、処理部340における処理の概要を示す。図3(a)において初期許容範囲は「A1」と示され、初期許容範囲の中に9つの候補値「a1」から「a9」が等間隔に配置される。候補値の数は「9」に限定されない。AcclY_ofs、AcclZ_ofsに対しても同様である。図3(b)は後述し、図1に戻る。
処理部340は、式(2)におけるAcclX_sns、AcclY_sns、AcclZ_snsが等しいと仮定する。この仮定により、式(1)では、AcclX_sns、AcclY_sns、AcclZ_snsが相殺される。また、AcclX_out、AcclY_out、AcclZ_outは第2出力値である。その結果、3軸加速度センサ112のオフセットの候補値毎の式(1)が作成される。ここでは、1つの軸に対して9通りの候補値が使用されるので、3つの軸では9通りの組合せがある。それより、9通りの式(1)が作成される。処理部340は、9通りの式(1)のそれぞれに対して式(3)から式(5)の計算を実行する。
処理部340は、式(6)のGyroX_sns、GyroY_sns、GyroZ_snsに予め定めた値を入力し、式(6)のGyroX_ofs、GyroY_ofs、GyroZ_ofsに、(2-2-1-1)において導出した値を入力する。GyroX_out、GyroY_out、GyroZ_outは第1出力値である。また、処理部340は、処理部340は、9通りの式(5)のそれぞれに対して式(7)から式(9)の計算を実行することによって、9通りのヨー角ψを導出する。処理部340は、ヨー角ψから角速度を導出し、角速度の積分値を方位変化(以下、「自律航法方位変化」という)として導出する。自律航法方位変化は9通り求められる。
一方、処理部340は、記憶部320に記憶した測位結果のうちのGNSSの方位を使用して、自律航法計算した期間における方位変化(以下、「衛星航法方位変化」という)を導出する。衛星航法方位変化の導出には公知の技術が使用されればよいので、ここでは説明を省略する。自律航法方位変化を「第1方位変化」と呼ぶ場合、衛星航法方位変化は「第2方位変化」と呼ばれる。処理部340は、自律航法方位変化毎に、自律航法方位変化と衛星航法方位変化の差分の絶対値(以下、「差分絶対値」という)を導出する。処理部340は、それらの差分絶対値の大きさを比較し、最小の差分絶対値において使用された3軸加速度センサ112のオフセットの候補値を第3初期値に設定する。例えば、図3(a)における候補値「a5」が第3初期値に設定される。
次に、処理部340は、第3初期値を中央値として初期許容範囲を再度設定する。その際、初期許容範囲はそれまでよりも狭くされる。図3(b)は、新たに設定した初期許容範囲「A2」を示す。初期許容範囲「A2」は第3初期値である「a5」を中央値として設定される。また、初期許容範囲「A2」は、「a4」から「a6」の幅を有しているので、初期許容範囲「A1」よりも狭くされる。処理部340は、初期許容範囲「A2」の中に9つの候補値を等間隔に配置する。これに続く処理は、これまでと同様であり、衛星航法方位変化に最も近い自律航法方位変化に使用された3軸加速度センサ112のオフセットの候補値により、第3初期値を更新する。
処理部340は、このような処理を収束条件を満たすまで繰り返し、収束条件を満たしたときの第3初期値を特定する。その際、処理部340は、処理を繰り返す毎に初期許容範囲をさらに狭くする。収束条件は、更新した第3初期値に対する差分絶対値が、更新前の第3初期値に対する差分絶対値よりも大きくなることである。このように処理部340は、初期許容範囲を段階的に狭くしながら第3初期値を探索する。
ここで、初期値の探索において探索を行う範囲(初期許容範囲)を狭くすることによって、精度が向上し、差分絶対値(候補値の中の最小値)は小さくなる。一方、探索が収束した状態では探索範囲を狭くし精度を上げても差分絶対値は変化しない。これらより、差分絶対値が大きくなるのは演算誤差によるものであるため、更新後の差分絶対値が大きくなることを収束条件とする。収束条件は上記に限らず、各候補値における差分絶対値の分散が所定値以下であること、異なる測定データサンプル(第1出力値、第2出力値)によって候補値が異なることであってもよい。
(2-2-1-3)3軸角速度センサ110の感度係数のための処理
ここでは、式(6)におけるGyroX_sns、GyroY_sns、GyroZ_snsが求める対象である。処理部340は、式(2)におけるAcclX_sns、AcclY_sns、AcclZ_snsが等しいと仮定する。また、AcclX_ofs、AcclY_ofs、AcclZ_ofsには、(2-2-1-2)で求めた値が入力される。さらに、AcclX_out、AcclY_out、AcclZ_outは第2出力値である。処理部340は、このような式(2)をもとに、式(1)、式(3)から式(5)の計算を実行する。
処理部340は、式(6)のGyroX_ofs、GyroY_ofs、GyroZ_ofsに、(2-2-1-1)において導出した値を入力する。GyroX_out、GyroY_out、GyroZ_outは第1出力値である。処理部340は、AcclX_ofs等を求めるときと同様に、GyroX_sns、GyroY_sns、GyroZ_snsのそれぞれに対して初期許容範囲を設定し、その中に複数、例えば「9」つの3軸角速度センサ110の感度係数の候補値を配置する。初期許容範囲の値は、AcclX_ofs等に対する初期許容範囲の値と異なっていてもよい。また、候補値の数は「9」に限定されない。その結果、9通りの式(6)が作成される。
処理部340は、9通りの式(6)を使用して式(7)から式(9)の計算を実行することによって、9通りのヨー角ψを導出する。処理部340は、これまでと同様に9通りの自律航法方位変化と、衛星航法方位変化とを導出する。処理部340は、自律航法方位変化毎に差分絶対値を導出する。処理部340は、それらの差分絶対値の大きさを比較し、最小の差分絶対値において使用された3軸角速度センサ110の感度係数の候補値を第2初期値に設定する。
次に、処理部340は、第2初期値を中央値として初期許容範囲を再度設定する。その際、初期許容範囲はそれまでよりも狭くされる。これに続く処理は、これまでと同様であり、衛星航法方位変化に最も近い自律航法方位変化に使用された3軸角速度センサ110の感度係数の候補値により、第2初期値を更新する。処理部340は、このような処理を収束条件を満たすまで繰り返し、収束条件を満たしたときの第2初期値を特定する。
(2-2-1-4)3軸加速度センサ112の感度係数のための処理
ここでは、式(2)におけるAcclX_sns、AcclY_sns、AcclZ_snsが求める対象である。処理部340は、AcclX_ofs等を求めるときと同様に、AcclX_sns、AcclY_sns、AcclZ_snsのそれぞれに対して初期許容範囲を設定し、その中に複数、例えば「9」つの3軸加速度センサ112の感度係数の候補値を配置する。また、AcclX_out、AcclY_out、AcclZ_outは第2出力値である。さらに、AcclX_ofs、AcclY_ofs、AcclZ_ofsには、(2-2-1-2)で求めた値が入力される。それより、9通りの式(1)が作成される。処理部340は、9通りの式(1)のそれぞれに対して式(3)から式(5)の計算を実行する。
処理部340は、式(6)のGyroX_sns、GyroY_sns、GyroZ_snsに、(2-2-1-3)において導出した値を入力する。また、処理部340は、式(6)のGyroX_ofs、GyroY_ofs、GyroZ_ofsに、(2-2-1-1)において導出した値を入力する。さらに、GyroX_out、GyroY_out、GyroZ_outは第1出力値である。
処理部340は、9通りの式(6)を使用して式(7)から式(9)の計算を実行することによって、9通りのヨー角ψを導出する。処理部340は、これまでと同様に9通りの自律航法方位変化と、衛星航法方位変化とを導出する。処理部340は、自律航法方位変化毎に差分絶対値を導出する。処理部340は、それらの差分絶対値の大きさを比較し、最小の差分絶対値において使用された3軸加速度センサ112の感度係数の候補値を第4初期値に設定する。
次に、処理部340は、第4初期値を中央値として初期許容範囲を再度設定する。その際、初期許容範囲はそれまでよりも狭くされる。これに続く処理は、これまでと同様であり、衛星航法方位変化に最も近い自律航法方位変化に使用された3軸加速度センサ112の感度係数の候補値により、第4初期値を更新する。処理部340は、このような処理を収束条件を満たすまで繰り返し、収束条件を満たしたときの第4初期値を特定する。
(2-2-2)2周目以降の処理
(2-2-2-1)3軸角速度センサ110のオフセットのための処理
ここでは、式(6)におけるGyroX_ofs、GyroY_ofs、GyroZ_ofsが求める対象である。式(2)におけるAcclX_sns、AcclY_sns、AcclZ_snsには、(2-2-1-4)で求めた値が入力される。また、AcclX_out、AcclY_out、AcclZ_outは第2出力値である。さらに、AcclX_ofs、AcclY_ofs、AcclZ_ofsには、(2-2-1-2)で求めた値が入力される。処理部340は、このような式(2)をもとに、式(1)、式(3)から式(5)の計算を実行する。
式(6)におけるGyroX_sns、GyroY_sns、GyroZ_snsには、(2-2-1-3)で求めた値が入力される。また、GyroX_out、GyroY_out、GyroZ_outは第1出力値である。さらに、処理部340は、AcclX_ofs等を求めるときと同様に、GyroX_ofs、GyroY_ofs、GyroZ_ofsのそれぞれに対して初期許容範囲を設定し、その中に複数、例えば「9」つの3軸角速度センサ110のオフセットの候補値を配置する。初期許容範囲の値は、AcclX_ofs等に対する初期許容範囲の値と異なっていてもよい。また、候補値の数は「9」に限定されない。その結果、9通りの式(6)が作成される。
処理部340は、9通りの式(6)を使用して式(7)から式(9)の計算を実行することによって、9通りのヨー角ψを導出する。処理部340は、これまでと同様に9通りの自律航法方位変化と、衛星航法方位変化とを導出する。処理部340は、自律航法方位変化毎に差分絶対値を導出する。処理部340は、それらの差分絶対値の大きさを比較し、最小の差分絶対値において使用された3軸角速度センサ110のオフセットの候補値を第1初期値に設定する。
次に、処理部340は、第1初期値を中央値として初期許容範囲を再度設定する。その際、初期許容範囲はそれまでよりも狭くされる。これに続く処理は、これまでと同様であり、衛星航法方位変化に最も近い自律航法方位変化に使用された3軸角速度センサ110のオフセットの候補値により、第1初期値を更新する。処理部340は、このような処理を収束条件を満たすまで繰り返し、収束条件を満たしたときの第1初期値を特定する。
ここで、第1初期値を求める場合に使用する初期許容範囲を「第1初期許容範囲」と呼ぶ場合、第2初期値から第4初期値のそれぞれを求める場合に使用される初期許容範囲は「第2初期許容範囲」、「第3初期許容範囲」、「第4初期許容範囲」と呼ばれる。また、第1初期許容範囲、第2初期許容範囲、第3初期許容範囲、第4初期許容範囲は初期許容範囲と総称される。
(2-2-2-2)3軸加速度センサ112のオフセットのための処理
(2-2-2-3)3軸角速度センサ110の感度係数のための処理
(2-2-2-4)3軸加速度センサ112の感度係数のための処理
1周目と同様の処理を実行する。その際、最初の初期許容範囲は1周目の最後の初期許容範囲よりも狭くしてもよい。処理部340は、このような処理を予め定めた周数だけ実行する。
このように、処理部340は、第1出力値と第2出力値と測位結果を使用して、第1初期許容範囲内において3軸角速度センサ110のオフセットの第1初期値を探索し、第2初期許容範囲内において3軸角速度センサ110の感度係数の第2初期値を探索する。また、処理部340は、第1出力値と第2出力値と測位結果を使用して、第3初期許容範囲内において3軸加速度センサ112のオフセットの第3初期値を探索し、第4初期許容範囲内において3軸加速度センサ112の感度係数の第4初期値を探索する。
以上説明した探索処理によって第1初期値から第4初期値が求められると、通信部330は、第1初期値、第2初期値、第3初期値、第4初期値、第1初期許容範囲、第2初期許容範囲、第3初期許容範囲、第4初期許容範囲を端末装置100に送信する。
統計処理部350は、処理部340において導出した第1初期値から第4初期値をもとに、統計処理を実行することによって統計情報を生成する。例えば、統計処理部350は、複数の端末装置100のそれぞれに対して第1初期値から第4初期値が求められる毎に統計情報を生成する。図4は、統計処理部350において生成されるデータベースのデータ構造を示す。ここでは、3軸角速度センサ110のオフセットの統計情報と3軸加速度センサ112のオフセットの統計情報が、第3出力値である温度毎に示される。3軸角速度センサ110の感度係数の統計情報と3軸加速度センサ112の感度係数の統計情報も同様に示されてもよい。図5は、統計処理部350において生成される別のデータベースのデータ構造を示す。差分絶対値平均等が温度毎に示される。図1に戻る。
ここで、初期状態における初期許容範囲はデバイス特性をもとに定められている。統計処理部350において統計情報が生成されると、初期許容範囲と中央値は統計情報をもとに決定される。例えば、分散の3倍が初期許容範囲とされ、平均値が中央値とされる。
端末装置100の通信部130は、第1初期値、第2初期値、第3初期値、第4初期値、第1初期許容範囲、第2初期許容範囲、第3初期許容範囲、第4初期許容範囲をサーバ300から受信する。記憶部120は、通信部130において受信した第1初期値、第2初期値、第3初期値、第4初期値、第1初期許容範囲、第2初期許容範囲、第3初期許容範囲、第4初期許容範囲を記憶する。
処理部140は、新たな第1出力値、新たな第2出力値、新たな測位結果を使用して処理部340と同様の処理を実行する。つまり、処理部140は、第1初期許容範囲よりも狭い第1許容範囲の中で第1初期値をもとに3軸角速度センサ110のオフセットを探索し、第2初期許容範囲よりも狭い第2許容範囲の中で第2初期値をもとに3軸角速度センサ110の感度係数を探索する。また、処理部140は、第3初期許容範囲よりも狭い第3許容範囲の中で第3初期値をもとに3軸加速度センサ112のオフセットを探索し、第4初期許容範囲よりも狭い第4許容範囲の中で第4初期値をもとに3軸加速度センサ112の感度係数を探索する。第1許容範囲、第2許容範囲、第3許容範囲、第4許容範囲は許容範囲と総称される。
これは、サーバ300から受信した第1初期値から第4初期値をもとに温度ドリフトに追従したオフセット、感度係数を導出することに相当する。その際、各許容範囲において設定される候補値の数は、処理部340において設定される候補値の数、例えば「9」よりも少なくされる。一例として、各許容範囲において設定される候補値の数は「3」に設定される。また、通信部130は統計情報をサーバ300から受信してもよい。その際、処理部140は、統計情報をもとに許容範囲と中央値とを設定する。
処理部140は、3軸角速度センサ110のオフセット、3軸角速度センサ110の感度係数、3軸加速度センサ112のオフセット、3軸加速度センサ112の感度係数をもとに、角速度を導出する。角速度の導出は前述の通りになされればよいので、ここでは説明を省略する。
処理部140は、角速度の積分値を自律航法方位変化として導出するとともに、測位結果をもとに衛星航法方位変化を導出する。自律航法方位変化と衛星航法方位変化との差異がしきい値よりも大きくなった場合に、通信部130は、第1初期値から第4初期値の再探索を要求するための要求信号をサーバ300に送信する。また、処理部140は、第1出力値と第2出力値と測位結果とを取得したときに温度センサ116において測定した第1温度と、温度センサ116において測定した現在の第2温度との差異を導出してもよい。差異がしきい値よりも大きくなった場合に、通信部130は、第1初期値から第4初期値の再探索を要求するための要求信号をサーバ300に送信する。このような要求信号に誤差の情報が含まれてもよい。これらは、処理部140において追従から外れた状態が検出された場合に、第1初期値から第4初期値の再探索をサーバ300に要求することに相当する。
処理部140は、端末装置100の温度変化が所定値以上となった場合に温度フラグを「1」とする。また、処理部140は、端末装置100における自律航法方位変化と衛星航法方位変化との差異が所定値よりも大きくなった場合に誤差フラグを「1」とする。所定値はサーバ300から取得する統計値によって設定される。端末装置100の記憶部120に、各温度においてサーバ300によって導出された初期値が記憶され、変化後の温度(第2温度)における初期値が記憶部120に記憶されていない場合(サーバ300によって未導出の場合)に温度フラグが「1」にされてもよい。
各端末装置100はサーバ300から過去に取得した第1初期値から第4初期値を温度(第1温度)ととも記憶部120に記憶しており、温度変化が生じた場合に、変化後の温度(第2温度)における第1初期値等が記憶されていなければ、記憶された初期値をもとに第1初期値等を導出してもよい。その際、端末装置100は、サーバ300に再探索を要求しない。温度変化と誤差変化との組合せで再探索の要求が判断されてよい。
サーバ300の通信部330が要求信号を端末装置100から受信すると、処理部340は、これまでと同様の処理を実行することによって、第1初期値から第4初期値を再探索する。これに続いて、サーバ300の通信部330は、再探索された第1初期値から第4初期値を端末装置100に送信する。端末装置100の通信部130は、再探索された第1初期値から第4初期値をサーバ300から受信し、処理部140は、再探索された第1初期値から第4初期値に対してこれまでと同様の処理を実行する。
通信部330は、複数の端末装置100と通信可能であってもよい。記憶部320は、各端末装置100における状態を管理する。図6は、記憶部320に記憶されるデータベースのデータ構造を示す。データベースには、各端末装置100に対する補正状態、温度変化フラグ、誤差フラグが示される。補正状態はサーバ300における各端末装置100に対する補正状態を示し、温度フラグは端末装置100における温度変化を示す情報、誤差フラグは端末装置100における誤差の状態を示す情報である。端末IDのTerminalID_1、TerminalID_3、TerminalID_5に対する補正状態は、探索処理によって第1初期値から第4初期値が導出されて端末装置100に送信された状態を示す。また、端末IDのTerminalID_2、TerminalID_5に対する補正状態は、初期値を導出中の状態を示し、TerminalID_500、TerminalID_1000、TerminalID_10000に対する補正状態は、初期値を未導出である状態を示す。図1に戻る。
処理部340は、このようなテーブルにおける補正状態、誤差フラグ、温度フラグに基づいて探索処理を行う端末装置100の優先度を決定する。例えば、処理部340は、温度フラグが「1」、誤差フラグが「0」の端末装置100よりも、誤差フラグが「1」の端末装置100の初期値導出を優先させる。また、処理部340は、補正状態が初期である端末装置100を優先させてもよい。
処理部340は、各端末装置100の各温度における補正状態、温度フラグ、誤差フラグによって優先度を決定してもよい。例えば、処理部340は、温度フラグが「1」であっても補正状態が「収束済」である場合、端末装置100に当該温度の初期値データが記憶されているので、優先度を低く設定する。また、処理部340は、温度フラグ、誤差フラグが「1」で補正状態が「初期」である場合、端末装置100は当該温度における初期値を記憶しておらず、温度変化による誤差も大きくなったので、優先度を高く設定する。つまり、処理部340は、複数の端末装置100のうち、第1初期値から第4初期値、第1初期許容範囲から第4初期許容範囲を送信していない端末装置100に対して第1初期値から第4初期値を優先的に探索する。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
以上の構成による補正システム1000の動作を説明する。図7は、補正システム1000による角速度の導出手順を示すシーケンス図である。端末装置100は、3軸角速度センサ110、3軸加速度センサ112、GNSS測位部114、温度センサ116による測定を実行する(S10)。端末装置100は、測定データをサーバ300に送信する(S12)。サーバ300は、初期値を探索する(S14)。サーバ300は、初期値と初期許容範囲を端末装置100に送信する(S16)。端末装置100は追従処理を実行する(S18)。端末装置100は、追従外れを検出する(S20)と、要求信号をサーバ300に送信する(S22)。サーバ300は初期値を再探索する(S24)。サーバ300は、初期値と初期許容範囲を端末装置100に送信する(S26)。端末装置100は追従処理を実行する(S28)。
図8は、サーバ300によるオフセットおよび感度係数の導出手順を示すフローチャートである。1周目の処理である場合(S50のY)、処理部340は3軸角速度センサ110のオフセットを決定する(S52)。処理部340は3軸加速度センサ112のオフセットを探索し(S54)、3軸角速度センサ110の感度係数を探索し(S56)、3軸加速度センサ112の感度係数を探索する(S58)。処理が終了でなければ(S60のN)、ステップ50に戻る。1周目の処理でない場合(S50のN)、処理部340は3軸角速度センサ110のオフセットを探索する(S62)。処理部340はステップ54からステップ58を順に実行する。処理が終了であれば(S60のY)、処理が終了される。
図9は、サーバ300による第3初期値の導出手順を示すフローチャートである。これは、図8のステップ54の処理に相当する。処理部340は衛星航法方位変化を算出する(S100)。処理部340は、第3初期許容範囲を設定し(S102)、自律航法方位変化を算出する(S104)。処理部340は、(衛星航法方位変化-自律航法方位変化)の絶対値を算出する(S106)。今回の絶対値が前回の絶対値よりも小さければ(S108のY)、処理部340は第3初期値を更新する(S110)。今回の絶対値が前回の絶対値よりも小さくなければ(S108のN)、ステップ110はスキップされる。収束してなければ(S112のN)、ステップ102に戻る。収束すれば(S112のY)、処理部340は第3初期値を記憶する(S114)。
本発明の実施例によれば、サーバにおいて3軸角速度センサと3軸加速度センサとにおけるオフセットの初期値と感度係数の初期値を決定し、端末装置において初期値をもとに3軸角速度センサと3軸加速度センサとにおけるオフセットと感度係数とを決定するので、サーバと端末装置において処理を分担できる。また、サーバと端末装置において処理を分担するので、サーバの負荷を軽減しつつオフセットと感度係数とを決定できる。また、処理量の多いオフセットの初期値と感度係数の初期値の決定をサーバにおいて実行し、処理量の少ないオフセットと感度係数の決定を端末装置において実行するので、角速度を効率的に導出できる。また、処理量の多い初期値の決定をサーバにおいて実行するので、端末装置のみでオフセットと感度係数とを決定する場合よりも決定精度を向上できる。
また、初期値を探索するための処理を繰り返す毎に初期許容範囲を狭くするので、探索精度を向上できる。また、オフセットと感度係数を探索するための処理を繰り返す毎に初期許容範囲を狭くするので、探索精度を向上できる。また、統計情報に基づいて初期許容範囲を狭めるので、角速度を効率的に導出できる。
また、端末装置は、自律航法方位変化と衛星航法方位変化との差異がしきい値よりも大きくなった場合に、第1初期値から第4初期値の再探索をサーバに要求するので、角速度の導出精度の悪化を抑制できる。また、端末装置は、温度変化が大きい場合に、第1初期値から第4初期値の再探索をサーバに要求するので、角速度の導出精度の悪化を抑制できる。また、サーバは、複数の端末装置のうち、第1初期値から第4初期値を送信していない端末装置に対する処理を優先するので、補正システムとしての精度を向上できる。
以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本実施例における処理部340と処理部140は、自律航法方位変化と衛星航法方位変化の差分絶対値により収束を判定している。しかしながらこれに限らず例えば、処理部340と処理部140は、自律航法速度変化と衛星航法速度変化の差分絶対値を導出し、当該差分絶対値により収束を判定してもよい。本変形例によれば構成の自由度を向上できる。
本実施例における端末装置100は、処理部140で導出された3軸角速度センサ110のオフセット・感度係数、3軸加速度センサ112のオフセット・感度係数のパラメータをもとに、角速度、加速度、姿勢角、速度を導出してもよい。具体的に説明すると、端末装置100に備えられる出力部は、処理部140からの3軸角速度センサ110のオフセット(GyroX_ofs、GyroY_ofs、GyroZ_ofs)、3軸角速度センサ110の感度係数(GyroX_sns、GyroY_sns、GyroZ_sns)、3軸加速度センサ112のオフセット(AcclX_ofs、AcclY_ofs、AcclZ_ofs)、3軸加速度センサ112の感度係数(AcclX_sns、AcclY_sns、AcclZ_sns)等のパラメータを使用して、姿勢角、角速度、速度を逐次導出する。
姿勢角及び角速度は、(1)角速度を導出するための基本的な処理で記述した方法により計算される。また、速度はaとピッチ角θから計算される。加速度センサx軸は移動体の加速度と重力加速度のピッチ角成分が重畳されているので、移動体の座標系における加速度をaとすると、次のように示される。
=a-g/sinθ
これは、次のように変形される。
a=a+g・sinθ
=AcclX_sns・(AcclX_out - AcclX_ofs)+g・sinθ
速度は、停止状態の初速を「0」として、加速度を積分して得られる。
さらに、地表水平面を基準とした座標系での加速度をa’として、
a’=a・cosθ
= (AcclX_sns・(AcclX_out - AcclX_ofs)+g・sinθ)・cosθ
の積分値として計算される。本変形例によれば構成の自由度を向上できる。
100 端末装置、 110 3軸角速度センサ、 112 3軸加速度センサ、 114 GNSS測位部、 116 温度センサ、 120 記憶部、 130 通信部、 140 処理部、 200 車両、 300 サーバ、 320 記憶部、 330 通信部、 340 処理部、 350 統計処理部、 1000 補正システム。

Claims (6)

  1. 3軸角速度センサと3軸加速度センサとGNSS(Global Navigation Satellite System)測位部とを備える端末装置と、
    前記端末装置と通信可能なサーバとを備え、
    前記端末装置は、前記3軸角速度センサの第1出力値と前記3軸加速度センサの第2出力値と前記GNSS測位部での測位結果とを前記サーバに送信し、
    前記サーバは、前記第1出力値と前記第2出力値と前記測位結果を使用して、第1初期許容範囲内において前記3軸角速度センサのオフセットの第1初期値を探索し、第2初期許容範囲内において前記3軸角速度センサの感度係数の第2初期値を探索し、第3初期許容範囲内において前記3軸加速度センサのオフセットの第3初期値を探索し、第4初期許容範囲内において前記3軸加速度センサの感度係数の第4初期値を探索し、
    前記サーバは、前記第1初期値、前記第2初期値、前記第3初期値、前記第4初期値、前記第1初期許容範囲、前記第2初期許容範囲、前記第3初期許容範囲、前記第4初期許容範囲を前記端末装置に送信し、
    前記端末装置は、新たな第1出力値、新たな第2出力値、新たな測位結果を使用して、前記第1初期許容範囲よりも狭い第1許容範囲の中で前記第1初期値をもとに前記3軸角速度センサのオフセットを探索し、前記第2初期許容範囲よりも狭い第2許容範囲の中で前記第2初期値をもとに前記3軸角速度センサの感度係数を探索し、前記第3初期許容範囲よりも狭い第3許容範囲の中で前記第3初期値をもとに前記3軸加速度センサのオフセットを探索し、前記第4初期許容範囲よりも狭い第4許容範囲の中で前記第4初期値をもとに前記3軸加速度センサの感度係数を探索し、
    前記端末装置は、前記3軸角速度センサのオフセット、前記3軸角速度センサの感度係数、前記3軸加速度センサのオフセット、前記3軸加速度センサの感度係数をもとに、角速度を導出する補正システム。
  2. 前記端末装置は、前記角速度の積分値を第1方位変化として導出するとともに、前記測位結果をもとに第2方位変化を導出し、前記第1方位変化と前記第2方位変化との差異がしきい値よりも大きくなった場合に、前記第1初期値、前記第2初期値、前記第3初期値、前記第4初期値の再探索を要求するための要求信号を前記サーバに送信する請求項1に記載の補正システム。
  3. 前記端末装置は、温度センサをさらに備え、
    前記端末装置は、前記第1出力値と前記第2出力値と前記測位結果とを取得したときに前記温度センサにおいて測定した第1温度と、前記温度センサにおいて測定した現在の第2温度との差異がしきい値よりも大きくなった場合に、前記第1初期値、前記第2初期値、前記第3初期値、前記第4初期値の再探索を要求するための要求信号を前記サーバに送信する請求項1に記載の補正システム。
  4. 前記サーバは、複数の前記端末装置と通信可能であり、
    前記サーバは、複数の前記端末装置のうち、前記第1初期値、前記第2初期値、前記第3初期値、前記第4初期値、前記第1初期許容範囲、前記第2初期許容範囲、前記第3初期許容範囲、前記第4初期許容範囲を送信していない前記端末装置に対して前記第1初期値、前記第2初期値、前記第3初期値、前記第4初期値を優先的に探索する請求項1から3のいずれかに記載の補正システム。
  5. 3軸角速度センサと、
    3軸加速度センサと、
    GNSS(Global Navigation Satellite System)測位部と、
    前記3軸角速度センサの第1出力値と前記3軸加速度センサの第2出力値と前記GNSS測位部での測位結果とをサーバに送信するとともに、前記第1出力値と前記第2出力値と前記測位結果を使用して、第1初期許容範囲内において探索された前記3軸角速度センサのオフセットの第1初期値、第2初期許容範囲内において探索された前記3軸角速度センサの感度係数の第2初期値、第3初期許容範囲内において探索された前記3軸加速度センサのオフセットの第3初期値、第4初期許容範囲内において探索された前記3軸加速度センサの感度係数の第4初期値とを前記サーバから受信する通信部と、
    新たな第1出力値、新たな第2出力値、新たな測位結果を使用して、前記第1初期許容範囲よりも狭い第1許容範囲の中で前記第1初期値をもとに前記3軸角速度センサのオフセットを探索し、前記第2初期許容範囲よりも狭い第2許容範囲の中で前記第2初期値をもとに前記3軸角速度センサの感度係数を探索し、前記第3初期許容範囲よりも狭い第3許容範囲の中で前記第3初期値をもとに前記3軸加速度センサのオフセットを探索し、前記第4初期許容範囲よりも狭い第4許容範囲の中で前記第4初期値をもとに前記3軸加速度センサの感度係数を探索するとともに、前記3軸角速度センサのオフセット、前記3軸角速度センサの感度係数、前記3軸加速度センサのオフセット、前記3軸加速度センサの感度係数をもとに、角速度を導出する処理部と、
    を備える端末装置。
  6. 3軸角速度センサと、3軸加速度センサと、GNSS(Global Navigation Satellite System)測位部とを備える端末装置におけるプログラムであって、
    前記3軸角速度センサの第1出力値と前記3軸加速度センサの第2出力値と前記GNSS測位部での測位結果とをサーバに送信するとともに、前記第1出力値と前記第2出力値と前記測位結果を使用して、第1初期許容範囲内において探索された前記3軸角速度センサのオフセットの第1初期値、第2初期許容範囲内において探索された前記3軸角速度センサの感度係数の第2初期値、第3初期許容範囲内において探索された前記3軸加速度センサのオフセットの第3初期値、第4初期許容範囲内において探索された前記3軸加速度センサの感度係数の第4初期値とを前記サーバから受信するステップと、
    新たな第1出力値、新たな第2出力値、新たな測位結果を使用して、前記第1初期許容範囲よりも狭い第1許容範囲の中で前記第1初期値をもとに前記3軸角速度センサのオフセットを探索し、前記第2初期許容範囲よりも狭い第2許容範囲の中で前記第2初期値をもとに前記3軸角速度センサの感度係数を探索し、前記第3初期許容範囲よりも狭い第3許容範囲の中で前記第3初期値をもとに前記3軸加速度センサのオフセットを探索し、前記第4初期許容範囲よりも狭い第4許容範囲の中で前記第4初期値をもとに前記3軸加速度センサの感度係数を探索するとともに、前記3軸角速度センサのオフセット、前記3軸角速度センサの感度係数、前記3軸加速度センサのオフセット、前記3軸加速度センサの感度係数をもとに、角速度を導出するステップとをコンピュータに実行させるプログラム。
JP2022113368A 2022-07-14 2022-07-14 補正システム、端末装置、プログラム Pending JP2024011414A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022113368A JP2024011414A (ja) 2022-07-14 2022-07-14 補正システム、端末装置、プログラム
PCT/JP2023/024245 WO2024014306A1 (ja) 2022-07-14 2023-06-29 補正システム、端末装置、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022113368A JP2024011414A (ja) 2022-07-14 2022-07-14 補正システム、端末装置、プログラム

Publications (1)

Publication Number Publication Date
JP2024011414A true JP2024011414A (ja) 2024-01-25

Family

ID=89536526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022113368A Pending JP2024011414A (ja) 2022-07-14 2022-07-14 補正システム、端末装置、プログラム

Country Status (2)

Country Link
JP (1) JP2024011414A (ja)
WO (1) WO2024014306A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838758B2 (ja) * 2011-03-31 2016-01-06 富士通株式会社 キャリブレーション方法、情報処理装置及びキャリブレーションプログラム
JP5849319B2 (ja) * 2011-12-05 2016-01-27 株式会社日立製作所 移動経路推定システム、移動経路推定装置及び移動経路推定方法
JP5956914B2 (ja) * 2012-11-14 2016-07-27 Kddi株式会社 ジャイロセンサの較正機能を備えた角速度測定装置、較正プログラム及び方法
JP7025215B2 (ja) * 2018-01-05 2022-02-24 ローム株式会社 測位システム及び測位方法

Also Published As

Publication number Publication date
WO2024014306A1 (ja) 2024-01-18

Similar Documents

Publication Publication Date Title
CN109001787B (zh) 一种姿态角解算与定位的方法及其融合传感器
US9031805B2 (en) Geomagnetic field measurement device, offset determination method, and computer readable recording medium therefor
US9091552B2 (en) Combined location and attitude determination system and methods
CN110887481B (zh) 基于mems惯性传感器的载体动态姿态估计方法
US20060038718A1 (en) Azimuth/attitude detecting sensor
JP4793223B2 (ja) 歩行ナビゲーション方法、システムおよびプログラム
CN114858189B (zh) 捷联惯导***陀螺漂移等效补偿方法
CN110440830B (zh) 动基座下车载捷联惯导***自对准方法
US20110209544A1 (en) Sensor cluster navigation device and method
CN114485641B (zh) 一种基于惯导卫导方位融合的姿态解算方法及装置
JP2008216062A (ja) 移動体姿勢計測装置
CN107765244B (zh) 基于机载双天线InSAR基线测量方法和装置
CN114076610B (zh) Gnss/mems车载组合导航***的误差标定、导航方法及其装置
JP2012173190A (ja) 測位システム、測位方法
CN111238469B (zh) 一种基于惯性/数据链的无人机编队相对导航方法
CN112946681B (zh) 融合组合导航信息的激光雷达定位方法
Goppert et al. Invariant Kalman filter application to optical flow based visual odometry for UAVs
CN116007620A (zh) 一种组合导航滤波方法、***、电子设备及存储介质
JP2014240266A (ja) センサドリフト量推定装置及びプログラム
CN113009816B (zh) 时间同步误差的确定方法及装置、存储介质及电子装置
CN114323007A (zh) 一种载体运动状态估计方法及装置
WO2024014306A1 (ja) 補正システム、端末装置、プログラム
CN110375773B (zh) Mems惯导***姿态初始化方法
Allotta et al. Underwater vehicles attitude estimation in presence of magnetic disturbances
CN111141285B (zh) 一种航空重力测量装置