JP2024007903A - Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part - Google Patents

Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part Download PDF

Info

Publication number
JP2024007903A
JP2024007903A JP2022109296A JP2022109296A JP2024007903A JP 2024007903 A JP2024007903 A JP 2024007903A JP 2022109296 A JP2022109296 A JP 2022109296A JP 2022109296 A JP2022109296 A JP 2022109296A JP 2024007903 A JP2024007903 A JP 2024007903A
Authority
JP
Japan
Prior art keywords
refractory
mass
tuyere
shrinkable
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022109296A
Other languages
Japanese (ja)
Inventor
俊久 佐々木
Toshihisa Sasaki
元邦 板楠
Motokuni Itakusu
陸 古屋
Riku Furuya
剛志 前田
Tsuyoshi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN-NIPPON THERMAL CERAMICS CORP
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
SHIN-NIPPON THERMAL CERAMICS CORP
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN-NIPPON THERMAL CERAMICS CORP, Nippon Steel Corp, Krosaki Harima Corp filed Critical SHIN-NIPPON THERMAL CERAMICS CORP
Priority to JP2022109296A priority Critical patent/JP2024007903A/en
Publication of JP2024007903A publication Critical patent/JP2024007903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shrinkable refractory having strength that can withstand the load of an upper refractory without being deformed even without using a support material at room temperature, and compressible against the load newly applied by thermal expansion (thermal stress load) in a high-temperature state in operation, and to provide a refractory lining structure of a blast furnace tuyere part.
SOLUTION: A compressible refractory contains a refractory material comprising a total of 30-70 mass% of inorganic particles, at least partially containing silicon carbide particles, and a total of 30-70 mass% of alumina-based or silica-based inorganic fibers, and a pasting agent. The compressible refractory is a plate-like molded article having a laminated structure in which inorganic particles 12 are embedded in a void of a mesh-like framework intertwined with inorganic fibers 13, and comprises 30 mass% or more and 65 mass% or less of Al2O3 component, 25 mass% or more and 50 mass% or less of SiC component, and has a room-temperature compressive strength of 0.5 MPa or more.
SELECTED DRAWING: Figure 5
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、高炉羽口部に用いられる可縮性耐火物及びその製造方法、並びにこの可縮性耐火物を含む高炉羽口部の耐火物ライニング構造に関する。 The present invention relates to a shrinkable refractory used in a blast furnace tuyere, a method for manufacturing the same, and a refractory lining structure for a blast furnace tuyere including the shrinkable refractory.

図1に一般的な高炉羽口部の耐火物ライニング構造(以下、単に「羽口部構造」ともいう。)を示す。高炉羽口部は高炉の円周方向の全周(360度)にわたり存在しており、炉体の大きさにより羽口の数は異なるが20~40個の羽口が存在している。図1(a),(b),(c)は、それぞれ羽口部構造を炉内側から見た正面図、A-A’断面図、B-B’断面図を示す。羽口部構造は羽口耐火物1が羽口冷却装置2を覆うように、羽口部上部耐火物又は冷却盤3と羽口部下部耐火物4との間に施工された構造である。羽口耐火物1は一般に羽口を中心に上下段に分割されており、上段の羽口耐火物1.aと下段の羽口耐火物1.bから構成される。 FIG. 1 shows a typical refractory lining structure for a blast furnace tuyere (hereinafter also simply referred to as "tuyere structure"). The blast furnace tuyeres exist over the entire circumference (360 degrees) of the blast furnace, and the number of tuyeres varies depending on the size of the furnace body, but there are 20 to 40 tuyeres. FIGS. 1(a), (b), and (c) respectively show a front view, an A-A' sectional view, and a B-B' sectional view of the tuyere structure as seen from the inside of the furnace. The tuyere structure is constructed between the upper tuyere refractory or cooling plate 3 and the lower tuyere refractory 4 so that the tuyere refractory 1 covers the tuyere cooling device 2 . The tuyere refractory 1 is generally divided into upper and lower stages around the tuyere, with the upper tuyere refractory 1. a and lower tuyere refractories 1. Consists of b.

稼働時の高炉羽口部では羽口部下部耐火物4の熱膨張による突き上げが発生し、従前より突き上げによる冷却盤3の損傷や隙間発生による炉内ガスの流出が問題とされている。特許文献1では突き上げを緩和するために、図1に示すように羽口冷却装置2と羽口耐火物1との間に不定形耐火物である可縮性モルタル5を充填し羽口部下部耐火物4の膨張を吸収する設計がなされている。 During operation, thrusting up occurs in the blast furnace tuyere section due to thermal expansion of the tuyere lower refractory 4, and damage to the cooling plate 3 due to upthrust and outflow of furnace gas due to the creation of gaps have been problems. In Patent Document 1, in order to alleviate upthrust, a compressible mortar 5, which is a monolithic refractory, is filled between the tuyere cooling device 2 and the tuyere refractory 1, as shown in FIG. It is designed to absorb the expansion of the refractory 4.

この可縮性モルタルはクッションモルタルとも呼ばれる。特許文献1では羽口近傍での溶融スラグの浸潤防止として耐スラグ性に優れた炭化珪素粉を配合することで耐スラグ性と可縮性を両立した不定形耐火物が開示されている。可縮性モルタルは溶融金属容器が熱を受けたときの熱膨張吸収を目的とし目地に挿入して施工される。 This compressible mortar is also called cushion mortar. Patent Document 1 discloses a monolithic refractory that has both slag resistance and shrinkability by blending silicon carbide powder with excellent slag resistance to prevent infiltration of molten slag near the tuyere. Shrinkable mortar is inserted into joints for the purpose of absorbing thermal expansion when a molten metal container receives heat.

特許文献1の構造では、羽口耐火物1と羽口冷却装置2との間のみに可縮性モルタル5が施工されている。そのため、羽口耐火物1と羽口冷却装置2の間での突き上げ現象の緩和は期待できるものの、上段の羽口耐火物1.aと下段の羽口耐火物1.bが直接接する部分での膨張を吸収することができない。このように特許文献1の構造は、高炉羽口部全周の膨張を吸収できるような構造ではなく、羽口耐火物1の突き上げを完全に抑えることはできない。したがって、特に高炉羽口部の上部で隙間が生じやすく、高炉の改修工事後の稼働初期に炉内ガスの流出を防ぐために隙間を圧入材などで外部より充填させる必要があり問題とされていた。また、近年の高炉では朝顔部耐火物の消失を防ぐために、羽口部の上方にある朝顔部に冷却盤を導入した構造が一般的である。冷却盤は水冷構造であるため鉄皮に固定されている。そのため従来のクッションモルタルを用いたライニング構造では、羽口部下部耐火物4が熱膨張した際に冷却盤の変形及び破損のリスクがある。したがって、高炉羽口部全体において耐火物の熱膨張を吸収する構造が求められている。 In the structure of Patent Document 1, the compressible mortar 5 is installed only between the tuyere refractory 1 and the tuyere cooling device 2. Therefore, although it is expected that the upthrust phenomenon between the tuyere refractory 1 and the tuyere cooling device 2 will be alleviated, the upper tuyere refractory 1. a and lower tuyere refractories 1. It is not possible to absorb the expansion at the part in direct contact with b. As described above, the structure of Patent Document 1 is not a structure that can absorb the expansion of the entire circumference of the blast furnace tuyere portion, and cannot completely suppress the upthrust of the tuyere refractory 1. Therefore, gaps are likely to form, especially at the upper part of the blast furnace tuyere, and in the early stages of operation after blast furnace renovation work, it is necessary to fill the gaps from the outside with press-in material to prevent gas from flowing out of the furnace, which is a problem. . In addition, in recent years, blast furnaces generally have a structure in which a cooling plate is installed in the morning glory section above the tuyere section in order to prevent the loss of the morning glory refractories. The cooling plate is fixed to the steel shell because it has a water-cooled structure. Therefore, in the conventional lining structure using cushion mortar, there is a risk of deformation and breakage of the cooling plate when the lower tuyere refractory 4 thermally expands. Therefore, there is a need for a structure that absorbs the thermal expansion of the refractory throughout the blast furnace tuyere.

高炉羽口部全体の突き上げを抑制するために特許文献2では、図2及び図3に示すように羽口耐火物1と羽口冷却装置2の接触面だけでなく、高炉羽口部を構成する耐火物の全周にわたり可縮性耐火物9を設置する構造を提案している。すなわち、図2では下段の羽口耐火物1.bと羽口部下部耐火物4の間に、図3では上段の羽口耐火物1.aと下段の羽口耐火物1.bの間に、それぞれ導入され全周にわたって施工された可縮性耐火物9によって高炉羽口部の熱膨張を吸収する。これらの可縮性耐火物9は水と耐火粉を練り混ぜて作られるモルタルとして導入されるので施工時の強度は低い。そのため施工時に上部に築造される耐火物の荷重により変形しないように可縮性耐火物9より上部の耐火物を支持材10によって支持して築造を行っている。 In order to suppress upthrust of the entire blast furnace tuyere part, Patent Document 2 proposes that the blast furnace tuyere part is constructed in addition to the contact surface between the tuyere refractory 1 and the tuyere cooling device 2 as shown in FIGS. 2 and 3. A structure is proposed in which a retractable refractory material 9 is installed all around the refractory material. That is, in FIG. 2, the lower tuyere refractory 1. b and the lower tuyere refractory 4 in FIG. 3, the upper tuyere refractory 1. a and lower tuyere refractories 1. During step b, the thermal expansion of the blast furnace tuyeres is absorbed by the compressible refractories 9 introduced and constructed over the entire circumference. Since these compressible refractories 9 are introduced as mortar made by mixing water and refractory powder, their strength during construction is low. Therefore, during construction, the refractories above the retractable refractories 9 are supported by supporting materials 10 so as not to be deformed by the load of the refractories constructed above.

特開2007-291415号公報Japanese Patent Application Publication No. 2007-291415 特開2019-167599号公報JP 2019-167599 Publication

図4に従来の可縮性耐火物の組織を示す。従来の可縮性耐火物は不定形耐火物であり、無機粒子12及び無機繊維13を液相分14にて混錬し、鋳込むため、図4(a)のように施工時の施工体は液相分14を多く含む。すなわち、従来の可縮性耐火物は施工時に柔らかいため、上部の耐火物の荷重が加わる構造部分への適用には上部の耐火物の受け支持材が必要である。 Figure 4 shows the structure of a conventional refractory material. Conventional shrinkable refractories are monolithic refractories, and inorganic particles 12 and inorganic fibers 13 are kneaded in a liquid phase 14 and cast, so the construction body during construction is as shown in Fig. 4(a). contains a large amount of liquid phase component 14. That is, since conventional retractable refractories are soft during construction, a support material for the upper refractory is required when applied to a structural part where the load of the upper refractory is applied.

しかし、受け支持材の導入は施工時に受け支持材となる金物を溶接するため、施工に時間がかかり施工性に問題がある。また、固定された受け支持材と耐火物の熱膨張挙動の差により膨張吸収が十分に発現できない点、羽口耐火物が損傷し受け支持材が溶融物と接した際に受け支持材が溶融し羽口部構造が維持できなくなる点が問題とされている。そのため、受け支持材を使用せず単独で容易に施工ができる耐火物材質及び構造が望まれる。 However, the introduction of the support support requires welding of the hardware that will become the support support during construction, which takes time and poses a problem in workability. In addition, due to the difference in thermal expansion behavior between the fixed receiver support and the refractory, expansion absorption cannot be achieved sufficiently, and when the tuyere refractory is damaged and the receiver support comes into contact with the molten material, the receiver and support material melts. However, the problem is that the tuyere structure cannot be maintained. Therefore, there is a need for a refractory material and structure that can be easily constructed independently without using support materials.

本発明の目的は、特に高炉稼働初期に発生しやすい耐火物の熱膨張による突き上げ現象などの不具合を緩和する可縮性耐火物において、室温施工時に受け支持材を用いずとも上部の耐火物の荷重に対し変形せず耐えうる強度を有しながら、稼働時の高温状態では熱膨張により新たに加わる荷重(熱応力負荷)に対し可縮性を有する可縮性耐火物、及び高炉羽口部の耐火物ライニング構造を提供することにある。 The purpose of the present invention is to alleviate problems such as the uplift phenomenon caused by thermal expansion of refractories that is particularly likely to occur in the early stages of blast furnace operation. Shrinkable refractories that have the strength to withstand loads without deforming, but can contract under new loads (thermal stress loads) due to thermal expansion during high-temperature operation, and blast furnace tuyeres. refractory lining structure.

本発明の要旨は以下の通りである。
(1)
少なくとも一部に炭化珪素粒子を含む無機粒子を合計で30~70質量%及びアルミナ系又はシリカ系の無機繊維を合計で30~70質量%含有する耐火性材料と、糊剤と、を含み、
前記無機繊維が絡み合う網目状骨格の空隙に前記無機粒子が内在する積層化された組織を有する板状の成形体であり、
前記無機繊維が絡み合う網目状骨格の空隙に前記無機粒子が内在する組織を有し、
Al成分を30質量%以上65質量%以下、SiC成分を25質量%以上50質量%以下含有し、
室温圧縮強度が0.5MPa以上である、可縮性耐火物。
(2)
前記無機繊維が、アルミナ質繊維、ムライト質繊維、ジルコニアアルミナシリケート質繊維、アルミノシリケート質繊維、アルカリ土類ケイ酸塩繊維の群から選択される少なくとも一種を含む、(1)に記載の可縮性耐火物。
(3)
500℃において、無荷重下では収縮せず、1.0MPa荷重下での可縮率が30%以上である、(1)又は(2)に記載の可縮性耐火物。
(4)
上下段に分割された羽口耐火物と、(1)又は(2)に記載の可縮性耐火物とを含む高炉羽口部の耐火物ライニング構造であって、
前記羽口耐火物の上下段は、いずれも鉄皮からの受け支持材によって支持されておらず、
前記可縮性耐火物は、前記羽口耐火物の上下段間、前記羽口耐火物の下部、の少なくとも一方に配置されている、高炉羽口部の耐火物ライニング構造。
(5)
(1)又は(2)に記載の可縮性耐火物の製造方法であって、
前記耐火性材料と糊剤とを溶媒に分散させてスラリーとする工程と、前記スラリーを加圧又は減圧成形して板状の成形体とする工程と、前記成形体を乾燥する工程と含む、可縮性耐火物の製造方法。
The gist of the invention is as follows.
(1)
A fire-resistant material containing a total of 30 to 70% by mass of inorganic particles containing at least a portion of silicon carbide particles and a total of 30 to 70% by mass of alumina-based or silica-based inorganic fibers, and a sizing agent,
A plate-shaped molded body having a laminated structure in which the inorganic particles are embedded in the voids of a network skeleton in which the inorganic fibers are intertwined;
having a structure in which the inorganic particles are present in the voids of the network skeleton in which the inorganic fibers are intertwined;
Contains Al 2 O 3 components from 30% by mass to 65% by mass, and contains a SiC component from 25% by mass to 50% by mass,
A compressible refractory having a room temperature compressive strength of 0.5 MPa or more.
(2)
The shrinkable method according to (1), wherein the inorganic fiber includes at least one selected from the group of alumina fiber, mullite fiber, zirconia alumina silicate fiber, aluminosilicate fiber, and alkaline earth silicate fiber. refractories.
(3)
The shrinkable refractory according to (1) or (2), which does not shrink under no load at 500°C and has a shrinkage ratio of 30% or more under a load of 1.0 MPa.
(4)
A refractory lining structure for a blast furnace tuyere portion comprising a tuyere refractory divided into upper and lower stages and a compressible refractory according to (1) or (2),
None of the upper and lower stages of the tuyere refractory are supported by receiving supports from the iron shell,
The refractory lining structure of a blast furnace tuyere portion, wherein the compressible refractory is disposed between the upper and lower stages of the tuyere refractory and at least one of the lower part of the tuyere refractory.
(5)
The method for producing a shrinkable refractory according to (1) or (2),
A step of dispersing the fire-resistant material and a sizing agent in a solvent to form a slurry, a step of molding the slurry under pressure or reduced pressure to form a plate-shaped molded body, and a step of drying the molded body, Method for manufacturing shrinkable refractories.

本発明によれば、施工時に受け支持材を用いずに上部に耐火物を築造しても変形を起こさず安定した高炉羽口部の耐火物ライニング構造が維持できる。その結果、受け支持材の設置作業を省略することが可能であり、作業時間・負荷・費用の削減が実現でき、かつ稼働時の受け支持材の熱膨張・溶損の懸念を取り除くことができる。このように本発明によれば、従来技術に比べ簡易かつ安価に上部構造への突き上げを防止することができる。 According to the present invention, a stable refractory lining structure of the blast furnace tuyere can be maintained without causing deformation even if the refractory is built on the upper part without using a receiving support during construction. As a result, it is possible to omit the work of installing support materials, reducing work time, load, and costs, and eliminating concerns about thermal expansion and melting of support materials during operation. . As described above, according to the present invention, pushing up to the upper structure can be prevented more easily and inexpensively than in the prior art.

一般的な高炉羽口部のライニング構造を示し、(a)は炉内側から見た正面図、(b)はA-A’断面図、(c)はB-B’断面図。The lining structure of a typical blast furnace tuyere section is shown, with (a) being a front view seen from the inside of the furnace, (b) being a sectional view taken along line A-A', and (c) being being seen along line B-B'. 羽口耐火物の下部に受け支持材を用いて膨張吸収代を設けた羽口部構造を示し、(a)は炉内側から見た正面図(b)はA-A’断面図、(c)はB-B’断面図。The structure of the tuyere section is shown in which an expansion absorption allowance is provided using a support material at the bottom of the tuyere refractory. ) is a BB' cross-sectional view. 羽口耐火物の上下段間に受け支持材を用いて膨張吸収代を設けた羽口部構造を示し、(a)は炉内側から見た正面図(b)はA-A’断面図、(c)B-B’断面図。The structure of the tuyere part is shown in which an expansion absorption allowance is provided between the upper and lower stages of the tuyere refractory using a support material. (c) BB' sectional view. 従来の可縮性耐火物の組織を模式的に示し、(a)は施工時、(b)は乾燥中、(c)は乾燥完了後を示す。The structure of a conventional retractable refractory is schematically shown, with (a) shown during construction, (b) shown during drying, and (c) shown after completion of drying. 本発明の一実施形態である可縮性耐火物の組織を模式的に示し、(a)は成形時、(b)は乾燥中、(c)は乾燥完了後を示す。The structure of a retractable refractory that is an embodiment of the present invention is schematically shown, with (a) shown during molding, (b) shown during drying, and (c) shown after completion of drying. 本発明の一実施形態である可縮性耐火物を用いて羽口耐火物の下部に膨張吸収代を設けた羽口部構造を示し、(a)は炉内側から見た正面図、(b)はA-A’断面図、(c)B-B’断面図。A tuyere structure in which an expansion absorption allowance is provided in the lower part of the tuyere refractory using a retractable refractory according to an embodiment of the present invention is shown; (a) is a front view seen from inside the furnace; (b) ) is an AA' sectional view, and (c) is a BB' sectional view. 本発明の一実施形態である可縮性耐火物を用いて羽口耐火物の上下段間に膨張吸収代を設けた羽口部構造を示し、(a)は炉内側から見た正面図、(b)はA-A’断面図、(c)B-B’断面図。It shows a tuyere structure in which an expansion absorption allowance is provided between the upper and lower stages of the tuyere refractory using a compressible refractory according to an embodiment of the present invention, (a) is a front view seen from inside the furnace; (b) is an AA' cross-sectional view, and (c) is a BB' cross-sectional view. 耐食性試験の試料形状を示す図。The figure which shows the sample shape of a corrosion resistance test.

本発明者らは、受け支持材を用いずに築造時には上部の耐火物の荷重に対し変形せず耐えうる強度を有する一方で、稼働期の高温状態での熱膨張により新たに加わる荷重(熱応力負荷)に対する可縮性を実現するために、可縮性耐火物の定形化を検討した。 The present inventors have discovered that while the structure has the strength to withstand the load of the upper refractory without deformation during construction without using support materials, the new load (heat In order to achieve shrinkability against stress loads, we investigated the formulation of shrinkable refractories.

本発明の可縮性耐火物(以下「本耐火物」という。)は、図5に示すように、無機繊維13が絡み合う網目状骨格の空隙に無機粒子12が内在する積層化された組織を有し、組織中に微細な空隙を多数含んだ構造を有する定形耐火物である。空隙を形成することで、荷重が加わった際には空隙がつぶれ可縮特性を発現する。一方で、空隙が存在することにより耐火物としての強度が低くなるため築造時に上部の耐火物の荷重に耐える強度が不足する懸念がある。そのため、無機粒子を添加して材料の強度を向上させる。すなわち、無機繊維が形成する空隙に優れた強度を有している無機粒子が充填されることで、可縮性耐火物全体の強度が向上する。無機粒子による強度向上と無機繊維による可縮性向上とを両立するために、本耐火物は、耐火性材料として、無機繊維を30~70質量%、無機粒子を30~70質量%含有する。 As shown in FIG. 5, the shrinkable refractory of the present invention (hereinafter referred to as "the present refractory") has a laminated structure in which inorganic particles 12 are present in the voids of a network skeleton in which inorganic fibers 13 are intertwined. It is a shaped refractory with a structure containing many fine voids in its structure. By forming voids, the voids collapse when a load is applied, creating a compressible property. On the other hand, the presence of voids reduces the strength of the refractory, so there is a concern that the strength to withstand the load of the upper refractory during construction may be insufficient. Therefore, inorganic particles are added to improve the strength of the material. That is, the voids formed by the inorganic fibers are filled with inorganic particles having excellent strength, thereby improving the strength of the entire shrinkable refractory. In order to achieve both strength improvement due to inorganic particles and compressibility improvement due to inorganic fibers, the present refractory contains 30 to 70% by mass of inorganic fibers and 30 to 70% by mass of inorganic particles as refractory materials.

また本耐火物は、化学成分として、Al成分を30質量%以上65質量%以下、SiC成分を25質量%以上50質量%以下含有する。すなわち、Al成分とSiC成分の合量は60質量%以上である。本耐火物はスラグとの接触が想定されるため耐食性と耐火性を両立するためにAl成分及びSiC成分を含む。
Al成分は耐火物の耐火度向上には有効であり、含有量が少ないと耐火度が低下し溶融しやすくなる。また、Al成分は代表的な無機繊維の主要構成成分であるため、本発明においては耐火度及び可縮性を有するために30質量%以上とする。一方で本耐火物は高炉羽口部に適用され、炉内のスラグに侵食される可能性があり、耐食性との両立が求められる。そのため、耐火物組織中に耐食性に優れたSiC成分を導入するために、Al成分は65質量%以下とする。
Further, the present refractory contains, as chemical components, an Al 2 O 3 component of 30% by mass or more and 65% by mass or less, and a SiC component of 25% by mass or more and 50% by mass or less. That is, the total amount of the three Al 2 O components and the SiC component is 60% by mass or more. Since this refractory is expected to come into contact with slag, it contains an Al 2 O 3 component and a SiC component in order to achieve both corrosion resistance and fire resistance.
The Al 2 O 3 component is effective in improving the refractoriness of refractories, and if the content is small, the refractoriness decreases and it becomes easy to melt. Further, since the Al 2 O 3 component is a main component of typical inorganic fibers, in the present invention, the content is set to 30% by mass or more in order to have fire resistance and shrinkability. On the other hand, this refractory is applied to the tuyeres of blast furnaces, where it may be corroded by the slag in the furnace, so it is required to be compatible with corrosion resistance. Therefore, in order to introduce a SiC component with excellent corrosion resistance into the refractory structure, the Al 2 O 3 component is set to 65% by mass or less.

本耐火物では、無機粒子の少なくとも一部として炭化珪素粒子を使用する。他にはアルミナ粒子が含まれていてもよい。炭化珪素粒子は、実炉使用時の耐食性向上効果が主たる目的であるが、それ以外に可縮性耐火物の密度を上げ、強度を向上させる填料(てんりょう)としての役割を果たす。耐食性と材料強度担保のためにSiC成分は25質量%以上とする。一方で、本耐火物は無機繊維の絡む組織内の空隙により可縮性を担保するため、炭化珪素粒子を多く添加してしまうと無機繊維の割合が減少し材料の可縮性が低下するためSiC成分は50質量%以下とする。 In this refractory, silicon carbide particles are used as at least some of the inorganic particles. In addition, alumina particles may be included. The main purpose of silicon carbide particles is to improve corrosion resistance during actual furnace use, but they also serve as a filler that increases the density and strength of the shrinkable refractory. In order to ensure corrosion resistance and material strength, the SiC component is set at 25% by mass or more. On the other hand, this refractory guarantees its shrinkability through the voids in the structure in which inorganic fibers are entangled, so if too many silicon carbide particles are added, the proportion of inorganic fibers will decrease and the material's shrinkability will decrease. The SiC component is 50% by mass or less.

本耐火物は、常温では一定強度を有しながら高温環境下(例えば500℃)にて可縮性を付与する。本耐火物の特質は、組織的には常温~高温の状態で微細な空隙を多数有しており、この空隙が荷重下でつぶれ、微細な破壊をすることで圧縮時の圧力を分散させて可縮性を得ることにある。その一方、そうした空隙を多数含んだ組織にも関わらず、常温下では強度があり上部の耐火物の荷重に耐えて変形(可縮)しないことにある。 The present refractory has a certain strength at room temperature, but has shrinkability in a high temperature environment (for example, 500° C.). The special feature of this refractory is that it has many microscopic voids in its structure at room temperature to high temperature, and these voids collapse under load and cause microscopic fractures, dispersing the pressure during compression. It consists in obtaining contractibility. On the other hand, despite the structure containing many such voids, it is strong at room temperature and can withstand the load of the upper refractory without deforming (shrinking).

本耐火物と従来材の組織を比較すると、従来材は不定形耐火物であり施工時には図4(a)に示すように無機粒子12と無機繊維13の組織中に多価アルコールを溶媒とした液分14が存在する。そして乾燥時には図4(b)に示すように液分の蒸発に伴い無機粒子12や無機繊維13が凝集する。そのため乾燥完了後には図4(c)に示すように大きさ1~10mm程度の粗大な空隙が形成される。その結果として強度不足や空隙の大きさのばらつき等により可縮特性にバラツキが生じやすい。 Comparing the structures of this refractory and conventional materials, the conventional materials are monolithic refractories, and during construction, polyhydric alcohol was used as a solvent in the structure of inorganic particles 12 and inorganic fibers 13, as shown in Figure 4(a). A liquid component 14 is present. During drying, the inorganic particles 12 and inorganic fibers 13 aggregate as the liquid content evaporates, as shown in FIG. 4(b). Therefore, after drying is completed, coarse voids with a size of about 1 to 10 mm are formed as shown in FIG. 4(c). As a result, variations in compressibility properties tend to occur due to insufficient strength, variations in the size of voids, etc.

そこで本発明者らは、均一な組織の定形体を実現するために溶媒中への糊剤の添加による無機粒子と無機繊維の均一な分散を試みた。また、糊剤を添加した状態で加圧又は減圧成形を行い、無機繊維の均一な積層化を試みた。具体的には、無機粒子及び無機繊維を含む耐火性材料(原料配合物)と水などの溶媒とともに糊剤を加えスラリーを作製する。このとき、無機粒子12や無機繊維13への糊剤の被覆により、無機粒子12や無機繊維13が均一に分散する。その後、減圧成形あるいはプレス成形などの加圧成形を行う。これらの成形では、加圧又は減圧による内外圧差により圧力を加えることで、組織中の溶媒や大きな空隙の除去効果、及び無機粒子と無機繊維を強固に接着させる効果がある。そのため図5(a)のような無機粒子12を内包し絡み合った無機繊維13が均一に積層した組織が形成される。また糊剤により無機粒子12と無機繊維13が接着しているため、図5(b)に示すように液分14が揮発や蒸発する際にも凝集が発生せず、乾燥完了後には図5(c)に示すような均一な空隙を得ることができ、強度の低下を防止できる。 Therefore, the present inventors attempted to uniformly disperse inorganic particles and inorganic fibers by adding a sizing agent to a solvent in order to realize a regular shaped body with a uniform structure. We also attempted to uniformly laminate the inorganic fibers by performing pressure or vacuum molding with the addition of a sizing agent. Specifically, a slurry is prepared by adding a sizing agent to a fire-resistant material (raw material mixture) containing inorganic particles and inorganic fibers and a solvent such as water. At this time, by coating the inorganic particles 12 and inorganic fibers 13 with the sizing agent, the inorganic particles 12 and inorganic fibers 13 are uniformly dispersed. Thereafter, pressure molding such as vacuum molding or press molding is performed. In these moldings, applying pressure by applying pressure or reducing the internal and external pressure difference has the effect of removing the solvent and large voids in the tissue, and the effect of firmly adhering the inorganic particles and inorganic fibers. Therefore, a structure in which intertwined inorganic fibers 13 containing inorganic particles 12 are uniformly laminated is formed as shown in FIG. 5(a). Furthermore, since the inorganic particles 12 and the inorganic fibers 13 are bonded together by the glue, no aggregation occurs even when the liquid component 14 volatilizes or evaporates, as shown in FIG. 5(b), and after drying is completed, Uniform voids as shown in (c) can be obtained, and a decrease in strength can be prevented.

本耐火物では、バインダーとして耐火物で一般に使用される水硬性バインダーや熱硬化性バインダーではなく、糊剤を用いる点が肝要である。水硬性バインダーとしては、水和反応を起こして硬化させるアルミナセメント、ポルトランドセメント、マグネシアセメント、石膏などが挙げられる。こうした水硬性バインダーを使用して硬化させた耐火物は、常温~高温まで強度が発現するので、高温状態で適度な可縮性を得ることができない。また、熱硬化性バインダーとしては、エポキシ樹脂、フェノール樹脂、水ガラス、リン酸、リン酸塩などが挙げられる。これら熱硬化性バインダーも一般的に、高温環境下で強度が発現するので、高温環境下で適度な可縮性を得ることができない。 It is important that this refractory uses a sizing agent as a binder, rather than a hydraulic binder or thermosetting binder that is generally used in refractories. Examples of hydraulic binders include alumina cement, Portland cement, magnesia cement, and gypsum, which harden by causing a hydration reaction. A refractory cured using such a hydraulic binder exhibits strength from room temperature to high temperature, so it is not possible to obtain appropriate shrinkability at high temperatures. Further, examples of the thermosetting binder include epoxy resin, phenol resin, water glass, phosphoric acid, and phosphate. These thermosetting binders also generally develop their strength in a high temperature environment, so they cannot obtain appropriate shrinkability in a high temperature environment.

本発明に用いる糊剤は、可縮性耐火物に保形性を有するための強度を付与する働きもある。そのため本耐火物は、その施工において羽口耐火物と同様に定形耐火物として取り扱うことが可能となる。本発明に用いる糊剤としては、デキストリン、小麦粉澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉、米澱粉、サゴ澱粉、コーンスターチ、ハイアミロースコーンスターチ等の澱粉類、グァーガム、ローカストビーンガム、サンザンガム、カラヤガム、寒天、アルギン酸ソーダ、ゼラチン、カラギーナン、アラビアガム、マンナン、PVA、CMC、MCが代表的であるが、これらを1種又は2種以上組み合わせて使用できる。 The sizing agent used in the present invention also has the function of imparting strength to the shrinkable refractory so that it has shape retention properties. Therefore, this refractory can be handled as a shaped refractory in the same way as a tuyere refractory during its construction. Thickening agents used in the present invention include starches such as dextrin, wheat starch, potato starch, sweet potato starch, tapioca starch, rice starch, sago starch, corn starch, and high amylose corn starch, guar gum, locust bean gum, sanzan gum, karaya gum, and agar. , sodium alginate, gelatin, carrageenan, gum arabic, mannan, PVA, CMC, and MC are representative, and one or more of these can be used in combination.

本耐火物は、糊剤による耐火性材料(無機粒子及び無機繊維)同士の接着と、加圧又は減圧成形(以下「圧密成形」ともいう。)によって常温~高温の強度を確保している。上部の耐火物による荷重に耐えるために常温での施工時には圧縮強度が少なくとも0.5MPa以上であることが好ましい。更には施工時に加わる衝撃等を考えると5MPa以上あることが望ましく、更に10MPa以上であると望ましい。圧密成形の成形方法としてはCIPやHIP、油圧プレス、フレクションプレスなどの加圧成形や減圧環境下にて鋳込み成形を行い、外気圧との圧力差を利用し組織を緻密化させる減圧成形等が挙げられるが、いずれの方法を用いてもよい。このような無機繊維と無機粒子を組み合わせて複合材にするだけでなく、圧密成形することによって無機繊維の網目構造の間隙へ無機粒子が密に充填し強度を向上させることができる。 This refractory has strength from room temperature to high temperature by adhesion of fire-resistant materials (inorganic particles and inorganic fibers) using glue and pressure or vacuum molding (hereinafter also referred to as "consolidation molding"). In order to withstand the load caused by the upper refractory material, it is preferable that the compressive strength is at least 0.5 MPa or more during construction at room temperature. Furthermore, considering the impact applied during construction, etc., it is desirable that the pressure is 5 MPa or more, and more preferably 10 MPa or more. Consolidation molding methods include pressure molding using CIP, HIP, hydraulic press, flexion press, etc., and casting molding in a reduced pressure environment, which uses the pressure difference with the outside pressure to make the structure denser. However, any method may be used. Not only can such inorganic fibers and inorganic particles be combined to form a composite material, but also by compression molding, the inorganic particles can densely fill the gaps in the network structure of the inorganic fibers, thereby improving the strength.

本耐火物は板(ボード)状の定形耐火物とすることが好ましい。これにより、設置するだけで羽口部下部耐火物の上に受け支持材なく容易に施工でき、更に本耐火物の上にも安定して耐火物の施工が可能である。
本耐火物は羽口部下部耐火物の熱膨張を全周にわたり吸収することを目的の一つとしており、高炉全周の羽口部において、従来の不定形耐火物(モルタル)では受け支持材が必要であった範囲に対しても受け支持材を使用せずに適用することが可能である。
The present refractory is preferably a board-shaped shaped refractory. As a result, the refractory can be easily installed on top of the lower tuyere refractory without the need for supporting materials, and furthermore, the refractory can be stably installed on top of the refractory.
One of the purposes of this refractory is to absorb the thermal expansion of the lower refractory at the tuyere over the entire circumference. It is possible to apply this method without using a support material even in areas where it is necessary.

本発明者らによる稼働高炉の実績から想定した羽口部構造の温度シミュレーションにより、本耐火物が使用される領域は稼働時に最大500℃になることが想定された。したがって本耐火物は、室温から500℃までにおいて羽口耐火物等の熱膨張により生じる熱応力負荷に応じた可縮特性を有することが好ましい。一方で熱応力負荷以外の荷重に対しては、室温から500℃まで収縮をしないことが好ましい。すなわち、500℃において無荷重下では収縮しないことが好ましい。また熱応力負荷に対する可縮性は、500℃、1.0MPa荷重下の可縮率が30%以上であることが好ましい。そのため、本耐火物の骨格を担う繊維は、アルミナ系又はシリカ系の無機繊維であって、具体的にはアルミナ質繊維、ムライト質繊維、ジルコニアアルミナシリケート質繊維、アルミノシリケート質繊維、アルカリ土類ケイ酸塩繊維などのうち少なくとも一つを含むことが好ましい。 A temperature simulation of the tuyere structure based on the experience of operating blast furnaces by the present inventors has shown that the area where this refractory is used is expected to reach a maximum of 500° C. during operation. Therefore, it is preferable that the present refractory has a shrinkage characteristic corresponding to the thermal stress load caused by thermal expansion of the tuyere refractory and the like from room temperature to 500°C. On the other hand, with respect to loads other than thermal stress loads, it is preferable not to shrink from room temperature to 500°C. That is, it is preferable that it does not shrink under no load at 500°C. Regarding the shrinkability against thermal stress loading, it is preferable that the shrinkage ratio under a load of 1.0 MPa at 500° C. is 30% or more. Therefore, the fibers that form the framework of this refractory are alumina-based or silica-based inorganic fibers, specifically alumina fibers, mullite fibers, zirconia alumina silicate fibers, aluminosilicate fibers, and alkaline earth fibers. It is preferable that at least one of silicate fibers and the like is included.

本耐火物を用いた羽口部構造は、図6に示すように上段の羽口耐火物1.a及び下段の羽口耐火物1.aのいずれも、鉄皮7からの受け支持材によって支持されていない。そして本耐火物11は、図6に示すように羽口耐火物1の下部、図7に示すように羽口耐火物の上下段間の少なくとも一方に配置され、それぞれ膨張吸収代となる。 The tuyere structure using this refractory is as shown in FIG. a and lower tuyere refractories 1. None of a is supported by a receiving support from the iron shell 7. The present refractory 11 is disposed below the tuyere refractory 1 as shown in FIG. 6, and at least on one side between the upper and lower stages of the tuyere refractory as shown in FIG. 7, each serving as an expansion absorption allowance.

また本耐火物の製造方法は、上述の耐火性材料と糊剤とを溶媒に分散させてスラリーとする工程と、そのスラリーを加圧又は減圧成形して板状の成形体とする工程と、その成形体を乾燥する工程と含む。
糊剤の添加量は耐火性材料100質量%に対して外掛けで0.1~5質量%程度とすることができる。また、溶媒としては典型的には水又は水とともに有機溶剤を用いることができ、その添加量は後工程である加圧又は減圧成形に適したスラリーの性状となるように適宜調整する。
また乾燥は、大気雰囲気中100~120℃で12~24h程度とすることができる。
The method for producing the refractory also includes a step of dispersing the above-mentioned fireproof material and a sizing agent in a solvent to form a slurry, a step of molding the slurry under pressure or vacuum to form a plate-shaped molded body, It also includes a step of drying the molded body.
The amount of the sizing agent added can be approximately 0.1 to 5% by mass based on 100% by mass of the fire-resistant material. Further, as a solvent, typically water or an organic solvent can be used together with water, and the amount added is appropriately adjusted so that the properties of the slurry are suitable for pressurization or vacuum molding, which is a subsequent step.
Further, drying can be carried out in the air at 100 to 120° C. for about 12 to 24 hours.

表1に、本発明の実施例と比較例の材料構成及び成分構成(化学成分)、並びに耐用性の評価結果を示している。使用する繊維として繊維A~Cの三種を検討した。繊維Aはアルミナ質繊維、繊維Bはアルミノシリケート質繊維とし、繊維A、Bのアルミナ成分はそれぞれ70質量%、50質量%とした。繊維Cはビニロン繊維とした。また、使用する無機粒子として粒子D及び粒子Eの二種を検討した。粒子Dは炭化珪素粒子,粒子Eはアルミナ粒子とした。バインダーとして糊剤を用いる場合は耐火性材料すなわち繊維及び粒子の合量に対し外掛け1~2質量%となるように添加した。成形処理を行う際、減圧成形としては真空引き成形を実施し、加圧成形としては0.5MPaでの一軸プレス成形を実施した。また乾燥は、大気雰囲気中110℃で24h実施し、板状の試料を得た。 Table 1 shows the material composition and composition (chemical composition) of the examples of the present invention and comparative examples, as well as the evaluation results of durability. Three types of fibers A to C were investigated as the fibers to be used. Fiber A was an alumina fiber, fiber B was an aluminosilicate fiber, and the alumina components of the fibers A and B were 70% by mass and 50% by mass, respectively. Fiber C was vinylon fiber. Furthermore, two types of inorganic particles, Particle D and Particle E, were investigated. Particles D were silicon carbide particles, and particles E were alumina particles. When a sizing agent is used as a binder, it is added in an amount of 1 to 2% by mass based on the total amount of fire-resistant material, ie, fibers and particles. When performing the molding treatment, vacuum forming was performed as the reduced pressure molding, and uniaxial press molding at 0.5 MPa was performed as the pressure molding. Further, drying was carried out at 110° C. for 24 hours in the air to obtain a plate-shaped sample.

常温圧縮強度の測定は、加圧面を100mm×100mmとし、厚み40mmで、JIS R2206を参考として行った。
可縮率の測定は、上部が開口した内径φ25mmの有底円筒状の坩堝に試料を切り出して充填し、この段階で試料の高さLを測定する。実施例、比較例ではL=40mmとした。次に、坩堝内の試料を500℃に均一に保った状態で、無荷重下にて試料の高さLを測定する。その後、1MPa(約10kgf/cm)の荷重を試料に静かに加え、20分保持し試料の圧縮量が安定したときの試料の高さLを読み取る。ここに500℃における無荷重下の収縮率は(L-L)/L×100%、500℃における1MPaでの可縮率は、(L-L)/L×100%で算出する。
耐食性(耐スラグ侵食性)は、回転侵食試験機により評価した。ドラムの内張りは炭化珪素質の焼成耐火物で構成し、その内張りに形成した凹溝に図8のような形状の試料を充填した。ドラム内に高炉スラグを装入し、バーナで高炉スラグを溶融させながらドラムを回転させた。その後、各試料の最大溶損部の溶損寸法を測定し、各測定値を実施例1の溶損寸法で割って100倍した相対値(溶損指数)として示した。溶損指数は、値が大きいほど溶損が大きいことを示す。溶損指数が80未満の場合を◎(優良)、80~100の場合を〇(良)、100超の場合を×(不良)とした。図8に回転侵食試験機に供した試料の詳細図を示す。上辺が65mm、下辺が110mm、奥行きが65mmの台形板状に炭化珪素質の焼成耐火物17を切り出す。この炭化珪素質の焼成耐火物17に幅10mm、深さ40mmの凹溝を設け、この凹溝に合致する形状に各例の試料を切り出して充填した。そして、これら10個の試料を用いて試験した。
The room temperature compressive strength was measured using JIS R2206 as a reference, with a pressurized surface of 100 mm x 100 mm and a thickness of 40 mm.
To measure the shrinkability, a sample is cut out and filled into a bottomed cylindrical crucible with an open top and an inner diameter of φ25 mm, and the height L 0 of the sample is measured at this stage. In the examples and comparative examples, L 0 =40 mm. Next, while maintaining the sample in the crucible at a uniform temperature of 500° C., the height L 1 of the sample is measured under no load. Thereafter, a load of 1 MPa (approximately 10 kgf/cm 2 ) is gently applied to the sample, held for 20 minutes, and the height L 2 of the sample is read when the amount of compression of the sample becomes stable. Here, the shrinkage rate under no load at 500°C is (L 0 - L 1 )/L 0 ×100%, and the shrinkage rate at 1 MPa at 500°C is (L 0 - L 2 )/L 0 ×100%. Calculate by.
Corrosion resistance (slag erosion resistance) was evaluated using a rotating erosion tester. The inner lining of the drum was made of a fired silicon carbide refractory, and a groove formed in the inner lining was filled with a sample having a shape as shown in FIG. Blast furnace slag was charged into the drum, and the drum was rotated while melting the blast furnace slag with a burner. Thereafter, the erosion dimension of the maximum erosion portion of each sample was measured, and each measured value was divided by the erosion dimension of Example 1 and multiplied by 100, and the result was expressed as a relative value (erosion index). The higher the value of the erosion index, the greater the erosion loss. When the erosion index was less than 80, it was rated ◎ (excellent), when it was 80 to 100 it was rated ○ (good), and when it was over 100 it was rated × (poor). Figure 8 shows a detailed diagram of the sample subjected to the rotary erosion tester. A fired silicon carbide refractory 17 is cut into a trapezoidal plate shape with an upper side of 65 mm, a lower side of 110 mm, and a depth of 65 mm. A groove with a width of 10 mm and a depth of 40 mm was provided in this silicon carbide fired refractory 17, and samples of each example were cut out to fit the groove and filled. Then, a test was conducted using these 10 samples.

Figure 2024007903000002
Figure 2024007903000002

本耐火物の実施例である実施例1~5は表1に示すように、500℃においても収縮せず、またいずれも優れた耐食性及び可縮率及び室温での圧縮強度を示した。これは無機繊維により組織中に空隙が担保されながらも、炭化珪素粒子を含む無機粒子により材料強度が保持されているためと考えられる。その結果として常温での圧縮強度と500℃での可縮性を両立できている。また、炭化珪素粒子の使用が耐食性に大きく寄与している。更に、糊剤の添加、及び加圧又は減圧成形処理の実施により無機繊維と無機粒子の結合が強固になるため常温での圧縮強度が向上している。 As shown in Table 1, Examples 1 to 5, which are examples of the present refractory, did not shrink even at 500°C, and all exhibited excellent corrosion resistance, shrinkage ratio, and compressive strength at room temperature. This is thought to be because, although the inorganic fibers ensure voids in the structure, the material strength is maintained by the inorganic particles including silicon carbide particles. As a result, it is possible to achieve both compressive strength at room temperature and shrinkability at 500°C. Additionally, the use of silicon carbide particles greatly contributes to corrosion resistance. Furthermore, the addition of a sizing agent and the pressurization or vacuum molding treatment strengthen the bond between the inorganic fibers and the inorganic particles, thereby improving the compressive strength at room temperature.

比較例1は特許文献1,2で適用される従来の可縮性モルタルの代表的な組成であり、無機繊維の配合が多く可縮性に優れている。しかしながら糊剤が添加されていないため無機繊維が均一に分散しておらず、かつ成形を行わず乾燥させたモルタル施工体であるため、乾燥時の繊維や粒子の凝集により不均一な組織である。そのため強度が不足しており不適である。
比較例2は炭化珪素粒子の配合が多く材料全体の強度及び耐食性は優れている一方で、無機繊維が少ないため可縮性に劣り不適である。
比較例3は500℃荷重下にて可縮性を示す一方で、繊維が250℃前後で溶融すビニロン繊維であるため、500℃前後で無荷重下でも25%程度収縮してしまい不適である。また有機繊維であるため耐食性も劣り不適である。
比較例4は優れた可縮性を示す一方で、無機粒子が少ないため常温での圧縮強度が不足し不適である。比較例5は無機粒子の添加量が多くかつ加圧成形を実施しているため常温での強度や耐食性に優れている一方で、無機繊維が不足し可縮性に劣るため不適である。
比較例6,7はバインダーとして、それぞれ水硬性バインダー、熱硬化性バインダーを使用した例で、可縮性に劣り不適である。
Comparative Example 1 has a typical composition of the conventional shrinkable mortar applied in Patent Documents 1 and 2, and has a high blend of inorganic fibers and excellent shrinkability. However, since no sizing agent is added, the inorganic fibers are not uniformly dispersed, and since the mortar construction is dried without being formed, the structure is non-uniform due to agglomeration of fibers and particles during drying. . Therefore, it lacks strength and is unsuitable.
Comparative Example 2 contains a large amount of silicon carbide particles and has excellent strength and corrosion resistance of the material as a whole, but has a small amount of inorganic fibers and is therefore unsuitable due to poor shrinkability.
Comparative Example 3 shows shrinkability under a load of 500°C, but since the fibers are vinylon fibers that melt at around 250°C, it shrinks by about 25% at around 500°C even under no load, making it unsuitable. . Furthermore, since it is an organic fiber, its corrosion resistance is also poor, making it unsuitable.
Although Comparative Example 4 exhibits excellent compressibility, it lacks compressive strength at room temperature due to the small amount of inorganic particles, making it unsuitable. Comparative Example 5 has a large amount of inorganic particles added and pressure molding, so it has excellent strength and corrosion resistance at room temperature, but it is unsuitable because it lacks inorganic fibers and has poor shrinkability.
Comparative Examples 6 and 7 are examples in which a hydraulic binder and a thermosetting binder are used as binders, respectively, and are unsuitable due to poor shrinkability.

1 羽口耐火物
1.a 上段の羽口耐火物上段
1.b 下段の羽口耐火物
2 羽口冷却装置
3 羽口部上部耐火物又は冷却盤
4 羽口部下部耐火物
5 可縮性モルタル
6 ステーブ
7 鉄皮
8 ステーブ前面流し込み耐火物
9 可縮性耐火物層
10 受け支持材
11 本耐火物
12 無機粒子
13 無機繊維
14 液分(水分・有機溶剤)
15 空隙
16 糊剤
17 炭化珪素質の焼成耐火物
18 試料
1 Tuyere refractory 1. a Upper tuyere refractory upper tier 1. b Lower tuyere refractory 2 Tuyere cooling device 3 Upper tuyere refractory or cooling plate 4 Lower tuyere refractory 5 Shrinkable mortar 6 Stave 7 Iron shell 8 Refractory poured in front of stave 9 Shrinkable refractory Physical layer 10 Receiving support material 11 Refractory material 12 Inorganic particles 13 Inorganic fibers 14 Liquid content (moisture/organic solvent)
15 Voids 16 Gluing agent 17 Silicon carbide fired refractory 18 Sample

Claims (5)

少なくとも一部に炭化珪素粒子を含む無機粒子を合計で30~70質量%及びアルミナ系又はシリカ系の無機繊維を合計で30~70質量%含有する耐火性材料と、糊剤と、を含み、
前記無機繊維が絡み合う網目状骨格の空隙に前記無機粒子が内在する積層化された組織を有する板状の成形体であり、
Al成分を30質量%以上65質量%以下、SiC成分を25質量%以上50質量%以下含有し、
室温圧縮強度が0.5MPa以上である、可縮性耐火物。
A fire-resistant material containing a total of 30 to 70% by mass of inorganic particles containing at least a portion of silicon carbide particles and a total of 30 to 70% by mass of alumina-based or silica-based inorganic fibers, and a sizing agent,
A plate-shaped molded body having a laminated structure in which the inorganic particles are present in the voids of a network skeleton in which the inorganic fibers are intertwined;
Contains Al 2 O 3 components from 30% by mass to 65% by mass, and contains a SiC component from 25% by mass to 50% by mass,
A compressible refractory having a room temperature compressive strength of 0.5 MPa or more.
前記無機繊維が、アルミナ質繊維、ムライト質繊維、ジルコニアアルミナシリケート質繊維、アルミノシリケート質繊維、アルカリ土類ケイ酸塩繊維の群から選択される少なくとも一種を含む、請求項1に記載の可縮性耐火物。 The shrinkable fiber according to claim 1, wherein the inorganic fiber includes at least one selected from the group of alumina fiber, mullite fiber, zirconia alumina silicate fiber, aluminosilicate fiber, and alkaline earth silicate fiber. refractories. 500℃において、無荷重下では収縮せず、1.0MPa荷重下での可縮率が30%以上である、請求項1又は2に記載の可縮性耐火物。 The shrinkable refractory according to claim 1 or 2, which does not shrink under no load at 500°C and has a shrinkage rate of 30% or more under a load of 1.0 MPa. 上下段に分割された羽口耐火物と、請求項1又は2に記載の可縮性耐火物とを含む高炉羽口部の耐火物ライニング構造であって、
前記羽口耐火物の上下段は、いずれも鉄皮からの受け支持材によって支持されておらず、
前記可縮性耐火物は、前記羽口耐火物の上下段間、前記羽口耐火物の下部、の少なくとも一方に配置されている、高炉羽口部の耐火物ライニング構造。
A refractory lining structure for a blast furnace tuyere portion comprising a tuyere refractory divided into upper and lower stages and a compressible refractory according to claim 1 or 2,
None of the upper and lower stages of the tuyere refractory are supported by receiving supports from the iron shell,
The refractory lining structure of a blast furnace tuyere portion, wherein the compressible refractory is disposed between the upper and lower stages of the tuyere refractory and at least one of the lower part of the tuyere refractory.
請求項1又は2に記載の可縮性耐火物の製造方法であって、
前記耐火性材料と糊剤とを溶媒に分散させてスラリーとする工程と、前記スラリーを加圧又は減圧成形して板状の成形体とする工程と、前記成形体を乾燥する工程と含む、可縮性耐火物の製造方法。
A method for producing a shrinkable refractory according to claim 1 or 2, comprising:
A step of dispersing the fire-resistant material and a sizing agent in a solvent to form a slurry, a step of molding the slurry under pressure or reduced pressure to form a plate-shaped molded body, and a step of drying the molded body, Method for manufacturing shrinkable refractories.
JP2022109296A 2022-07-06 2022-07-06 Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part Pending JP2024007903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022109296A JP2024007903A (en) 2022-07-06 2022-07-06 Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022109296A JP2024007903A (en) 2022-07-06 2022-07-06 Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part

Publications (1)

Publication Number Publication Date
JP2024007903A true JP2024007903A (en) 2024-01-19

Family

ID=89544599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022109296A Pending JP2024007903A (en) 2022-07-06 2022-07-06 Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part

Country Status (1)

Country Link
JP (1) JP2024007903A (en)

Similar Documents

Publication Publication Date Title
CN107032810B (en) Gunning mix with excellent bonding performance for sintering large flue and preparation method
KR101628672B1 (en) Method for manufacturing ultra high performance concrete for preventing drying of concrete surface using oil-based surface finishing material
CN113087534B (en) High-temperature-resistant alkali-activated aluminosilicate binder and preparation method thereof
CN107500787B (en) Mullite-silicon oxynitride composite refractory material for microwave metallurgical kiln car
JP4480758B2 (en) Refractory mortar cured molding
CN114195529B (en) High-strength magnesia refractory mortar for refining ladle
CN107311634A (en) A kind of nitride bonded sandwich setter plate and preparation method thereof
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN108249922A (en) A kind of metallurgy saggar and preparation method thereof
JP2013032247A (en) Monolithic refractory
JP4828586B2 (en) Refractory construction method
JP2024007903A (en) Shrinkable refractory, production method thereof, and refractory lining structure of blast furnace tuyere part
CN107151134A (en) A kind of industrial kiln high-strength high-alumina fire-resistant slurry
CN107459342B (en) Periclase-silicon oxynitride composite refractory material for microwave metallurgical kiln car
JP7032084B2 (en) Amorphous refractory
JP4132471B2 (en) Non-aqueous press-fit material for blast furnace repair
JPH0143709B2 (en)
JP6468565B2 (en) Mortar and module block
JP3501621B2 (en) Industrial furnace and method for constructing thermal insulation layer of industrial furnace
CN115572134B (en) Light high-temperature-resistant ultra-high-performance concrete and preparation method thereof
JPH0822779B2 (en) Cushioning silica mortar
CN115028455B (en) Baking-free silicon carbide-magnesia alumina spinel refractory material, preparation method and product thereof
JP2002201760A (en) Reinforced concrete column
JP3256397B2 (en) Room temperature curing type fireproof mortar
JPH0158157B2 (en)