JP2023512541A - Fine crystal, high coercive force neodymium iron boron sintered magnet and its production method - Google Patents

Fine crystal, high coercive force neodymium iron boron sintered magnet and its production method Download PDF

Info

Publication number
JP2023512541A
JP2023512541A JP2022547759A JP2022547759A JP2023512541A JP 2023512541 A JP2023512541 A JP 2023512541A JP 2022547759 A JP2022547759 A JP 2022547759A JP 2022547759 A JP2022547759 A JP 2022547759A JP 2023512541 A JP2023512541 A JP 2023512541A
Authority
JP
Japan
Prior art keywords
content
iron
magnet
neodymium
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022547759A
Other languages
Japanese (ja)
Inventor
于永江
張玉孟
王鵬飛
Original Assignee
烟台正海磁性材料股▲フン▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台正海磁性材料股▲フン▼有限公司 filed Critical 烟台正海磁性材料股▲フン▼有限公司
Publication of JP2023512541A publication Critical patent/JP2023512541A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

微細結晶、高保磁力のネオジム鉄ボロン系焼結磁石及びその製造方法である。前記ネオジム鉄ボロン磁石は、化学式がRFeBMであり、そのうち、Rが希土類元素、Feが鉄、Bがボロンであり、Rの含有量が26~35 wt%、Bの含有量が0.8~1.3 wt%であり、MがCo、Ga、Cu、Al、Zr、Tiのうちの複数種であり、前記ネオジム鉄ボロン系焼結磁石は結晶粒度が小さく、また、結晶粒度が低減されると共に、磁石中の元素C、O、Nの含有量が制御され、それにより、磁石の保磁力を大幅に向上させる。前記方法により製造された磁石は、より低い不純物C、O、Nの含有量を有し、このような製品に対して拡散処理を行うことにより、より良い粒界、より良い拡散経路を提供することができる。従って、微細結晶製品を再拡散すると、性能がより高い磁石を生産することができる。A neodymium-iron-boron sintered magnet with fine crystals and high coercive force and a method for producing the same. The neodymium iron boron magnet has a chemical formula of RFeBM, in which R is a rare earth element, Fe is iron, B is boron, the content of R is 26-35 wt%, and the content of B is 0.8-1.3 wt. %, and M is a plurality of kinds of Co, Ga, Cu, Al, Zr, and Ti, and the neodymium-iron-boron-based sintered magnet has a small crystal grain size and a reduced crystal grain size. The content of elements C, O, N in it is controlled, thereby greatly improving the coercive force of the magnet. The magnets produced by said method have lower content of impurities C, O, N, and the diffusion treatment on such products provides better grain boundaries, better diffusion paths. be able to. Therefore, rediffusion of the microcrystalline product can produce magnets with higher performance.

Description

発明の詳細な説明Detailed description of the invention

本願は、2020年4月30日に中国国家知識産権局に提出した特許出願番号が202010367655.8で、発明名称が「微細結晶、高保磁力のネオジム鉄ボロン系焼結磁石及びその製造方法」である先行出願の優先権を主張し、当該先行出願の全文は、引用により本願に組み込まれる。 This application is filed with the State Intellectual Property Office of China on April 30, 2020, with the patent application number 202010367655.8 and the invention title being "Microcrystalline, High Coercivity Neodymium Iron Boron Sintered Magnet and Manufacturing Method Therefor". Priority is claimed to an earlier application, the entire text of which is incorporated herein by reference.

〔技術分野〕
本発明は、ネオジム鉄ボロン系焼結磁石の分野に関し、特に、微細結晶、高保磁力のネオジム鉄ボロン系焼結磁石及びその製造方法に関する。
〔Technical field〕
The present invention relates to the field of neodymium-iron-boron-based sintered magnets, and more particularly to a fine-crystalline, high-coercivity neodymium-iron-boron-based sintered magnet and a method for producing the same.

〔背景技術〕
ネオジム鉄ボロン永久磁石材料はその発見以来、その優れた磁気特性と高い費用効果をもって通信、医療、自動車、電子の分野で広く適用されているが、その比較的低い保磁力及び比較的悪い温度安定性と耐食性のため、その適用範囲の拡大が深刻に制限されている。
[Background technology]
Since its discovery, Neodymium Iron Boron permanent magnet material has been widely applied in the fields of communication, medical, automobile and electronics due to its excellent magnetic properties and high cost-effectiveness, but its relatively low coercivity and relatively poor temperature stability. Its toughness and corrosion resistance severely limit the expansion of its application range.

現在、従来技術には、一般的に、下記の4つの方法でネオジム鉄ボロン永久磁石材料の保磁力を向上させる:(1)原料合金に重希土類を添加し、主相の結晶磁気異方性を向上させること、(2)保磁力が異なる2種の合金粉末を混合して焼結する二合金法、(3)結晶粒を微細化する方法であって、結晶粒度が小さくなるにつれて、結晶粒の有効な散乱磁場因子が小さくなり、磁石の保磁力が増加すること、及び(4)粒界拡散法であって、この技術により、重希土類が粒界相に沿って拡散し、粒界での異方性定数を著しく向上させ、重希土類が少量に使用される場合に磁石保磁力を明らかに向上させることが達成されることである。これらの方法の中に、方法(3)は比較的優れている。この方法は、方法(1)及び(2)と比べ、重希土類を使用せずに、又は少量の重希土類を使用することで、磁石保磁力を大幅に向上させると共に残留磁気が変わらないことを保証することができる。方法(4)と比べ、製品のサイズの影響を受けずに磁石の性能を向上させると共に、磁石の内部と外部で均一な性能を保証する。 At present, the prior art generally uses the following four methods to improve the coercive force of neodymium iron boron permanent magnet materials: (1) adding heavy rare earth elements to the raw material alloy to increase the magnetocrystalline anisotropy of the main phase; (2) a two-alloy method in which two alloy powders with different coercive forces are mixed and sintered; (4) the grain boundary diffusion method, which allows the heavy rare earths to diffuse along the grain boundary phase and A significant improvement in the anisotropy constant at is achieved, and a distinct improvement in magnet coercivity when heavy rare earths are used in small amounts. Among these methods, method (3) is relatively superior. Compared to methods (1) and (2), this method does not use heavy rare earths or uses a small amount of heavy rare earths to significantly improve the magnet coercive force and retain the residual magnetism. can be guaranteed. Compared to method (4), it improves the performance of the magnet without being affected by the size of the product, and ensures uniform performance inside and outside the magnet.

従来の文献には、高圧アルゴンによる熱間静水圧焼結方法により磁石の結晶粒度を制御する方法が更に開示されている。まずは、平均粒度が3 μmの磁性粉末を製造し、この方法により結晶粒度が5.2 μm、緻密度が99.5%の焼結磁石を最終的に製造した。従来の文献には、平均粒径が2~5 μmの磁性粉末を利用して焼結磁石を製造し、そのうち重希土類の含有量が0.2%よりも低く、製品の直角度が0.95以上であることが更に開示されている。従来の文献には、磁性粉末の平均粒度を2.4 μmに制御し、低温焼結により、結晶粒度が5 μm程度の47 Hの磁石を得て、磁石の保磁力が重希土類のない場合に17 kOeに達することが更に開示されている。 The prior literature further discloses a method of controlling the grain size of a magnet by a hot isostatic sintering method with high pressure argon. First, a magnetic powder with an average grain size of 3 μm was produced, and by this method, a sintered magnet with a grain size of 5.2 μm and a density of 99.5% was finally produced. The prior literature describes the use of magnetic powder with an average particle size of 2-5 μm to produce sintered magnets, in which the content of heavy rare earth is less than 0.2% and the squareness of the product is greater than or equal to 0.95. is further disclosed. In the prior literature, the average grain size of the magnetic powder was controlled to 2.4 μm, and by low-temperature sintering, a 47 H magnet with a crystal grain size of about 5 μm was obtained, and the coercive force of the magnet was 17 in the absence of heavy rare earths. It is further disclosed to reach kOe.

以上、種々の方法により結晶粒度が5~6 μmの磁石が製造され、結晶粒の微細化により磁石の保磁力を向上させることを開示した。重希土類のない場合に、製品性能は、47 Hに達することができる。重希土類のない条件下で、製品性能を更に向上させるには、結晶粒を5 μm以下に低減する必要がある。 As described above, magnets having a crystal grain size of 5 to 6 μm are manufactured by various methods, and it is disclosed that the coercive force of the magnet is improved by refining the crystal grains. Product performance can reach 47 H in the absence of heavy rare earths. In order to further improve product performance under heavy rare earth-free conditions, it is necessary to reduce the grain size to 5 μm or less.

従来の文献には、c軸に垂直な断面における結晶粒の粒径中央値が4.5 μm以下である微細結晶のネオジム鉄ボロン磁石が更に開示されている。磁石の結晶粒度を低減することにより、磁石の保磁力を向上させる。従来の文献には、鱗片状の柱状結晶を微細化することにより、結晶粒度が0.5~5.0 μmの磁石を製造し、それにより、重希土類の使用量を低減させることが更に開示されている。 Conventional literature further discloses microcrystalline neodymium iron boron magnets having a median grain size of 4.5 μm or less in a cross section perpendicular to the c-axis. Reducing the grain size of the magnet improves the coercive force of the magnet. Prior literature further discloses that by refining the scale-like columnar crystals, magnets with a grain size of 0.5-5.0 μm are produced, thereby reducing the amount of heavy rare earth used.

以上、鱗片状の柱状結晶の大きさを制御することにより、磁性粉末の粒度を微細化し、最後に、磁石の結晶粒が5 μmよりも小さいネオジム鉄ボロン磁石を製造し、それにより、製品の保磁力を更に向上させることを開示したが、その中で言及された性能の向上には限度がある。これは、主に、結晶粒が5 μmよりも小さくなるにつれて、対応する粉末の活性が強くなり、最終的な磁石中の元素C、O、Nの含有量が次第に高くなるためである。元素C、O、Nは、不純物として粒界中の希土類元素を消費すると共に、逆磁化ドメインの核形成サイトとして、粒界の構造に影響を与え、磁石の保磁力を低下させてしまう。 As described above, by controlling the size of the scale-like columnar crystals, the particle size of the magnetic powder is refined, and finally, a neodymium iron boron magnet with magnet crystal grains smaller than 5 μm is produced, thereby improving the quality of the product. Further improvements in coercivity have been disclosed, but the performance improvements mentioned therein are limited. This is mainly because as the grain size becomes smaller than 5 μm, the activity of the corresponding powder becomes stronger and the content of elements C, O, N in the final magnet becomes higher and higher. The elements C, O, and N consume the rare earth elements in the grain boundaries as impurities, and affect the structure of the grain boundaries as nucleation sites of reverse magnetization domains, thereby reducing the coercive force of the magnet.

従って、磁石中のC、O、Nという不純物元素を制御しなければ、磁性粉末の粒度が減少するにつれて、磁石の結晶粒は小さくなり、磁石の保磁力は上昇してから下降する傾向が現れるようになる。従来の文献にも、磁石の結晶粒が小さくなり、特に5 μmよりも小さくなる場合における製品中の元素C、O、Nへの制御及び制御方法は言及されていない。 Therefore, unless the impurity elements such as C, O, and N in the magnet are controlled, as the grain size of the magnetic powder decreases, the grain size of the magnet becomes smaller, and the coercive force of the magnet tends to increase and then decrease. become. The prior literature also does not mention the control and control method for the elements C, O, N in the product when the grain size of the magnet becomes smaller, especially smaller than 5 μm.

〔発明の概要〕
従来技術の不足を改善するために、本発明は、微細結晶、高保磁力のネオジム鉄ボロン系焼結磁石及びその製造方法を提供する。前記ネオジム鉄ボロン系焼結磁石は結晶粒度が5 μm以下であり、また、結晶粒度を低減すると共に、ネオジム鉄ボロン系焼結磁石中の元素C、O、Nの含有量を良く制御することができ、それにより、ネオジム鉄ボロン系焼結磁石の保磁力を大幅に向上させる。
[Outline of the invention]
In order to remedy the deficiencies of the prior art, the present invention provides a fine crystalline, high coercivity neodymium iron boron based sintered magnet and its manufacturing method. The neodymium-iron-boron-based sintered magnet has a crystal grain size of 5 μm or less, and the crystal grain size is reduced and the contents of the elements C, O, and N in the neodymium-iron-boron-based sintered magnet are well controlled. This greatly improves the coercive force of neodymium-iron-boron sintered magnets.

本発明の目的は下記の技術案によって実現される。 The object of the present invention is achieved by the following technical solutions.

化学式がRFeBMであり、そのうち、Rが希土類元素、Feが鉄、Bがボロンであり、Rの含有量が26~35 wt%、Bの含有量が0.8~1.3 wt%であり、MがCo、Ga、Cu、Al、Zr、Tiのうちの複数種であり、そのうち、Coの含有量が0.5~3.0 wt%、Gaの含有量が0.05~0.4 wt%、Cuの含有量が0.05~0.5 wt%、Alの含有量が0~1.5 wt%、Zr又はTiの含有量が0~0.3 wt%であり、残りが鉄と不可避的不純物で、且つ、磁石中の元素C、O、Nの含有量がC+O+N(ppm)≦[1500+(5.0-結晶粒度(μm))×600](ppm)を満たすネオジム鉄ボロン磁石である。 The chemical formula is RFeBM, in which R is a rare earth element, Fe is iron, B is boron, the content of R is 26-35 wt%, the content of B is 0.8-1.3 wt%, and M is Co , Ga, Cu, Al, Zr, and Ti, of which the Co content is 0.5-3.0 wt%, the Ga content is 0.05-0.4 wt%, and the Cu content is 0.05-0.5 wt%. wt%, the content of Al is 0-1.5 wt%, the content of Zr or Ti is 0-0.3 wt%, the remainder is iron and unavoidable impurities, and the elements C, O, and N in the magnet A neodymium iron boron magnet whose content satisfies C + O + N (ppm) ≤ [1500 + (5.0 - crystal grain size (μm)) x 600] (ppm).

本発明によれば、前記Rの含有量は、例えば、26 wt%、27 wt%、28 wt%、29 wt%、30 wt%、31 wt%、32 wt%、33 wt%、34 wt%又は35 wt%である。 According to the present invention, the R content is, for example, 26 wt%, 27 wt%, 28 wt%, 29 wt%, 30 wt%, 31 wt%, 32 wt%, 33 wt%, 34 wt% or 35 wt%.

本発明によれば、前記Bの含有量は、例えば、0.8 wt%、0.9 wt%、1 wt%、1.1 wt%、1.2 wt%又は1.3 wt%である。 According to the invention, the B content is for example 0.8 wt%, 0.9 wt%, 1 wt%, 1.1 wt%, 1.2 wt% or 1.3 wt%.

本発明によれば、前記Coの含有量は、例えば、0.5 wt%、0.8 wt%、1 wt%、1.2 wt%、1.5 wt%、2 wt%、2.5 wt%又は3.0 wt%である。 According to the invention, the Co content is for example 0.5 wt%, 0.8 wt%, 1 wt%, 1.2 wt%, 1.5 wt%, 2 wt%, 2.5 wt% or 3.0 wt%.

本発明によれば、前記Gaの含有量は、例えば、0.05 wt%、0.1 wt%、0.2 wt%、0.3 wt%又は0.4 wt%である。 According to the invention, the Ga content is for example 0.05 wt%, 0.1 wt%, 0.2 wt%, 0.3 wt% or 0.4 wt%.

本発明によれば、前記Cuの含有量は、例えば、0.05 wt%、0.1 wt%、0.2 wt%、0.3 wt%、0.4 wt%又は0.5 wt%である。 According to the invention, the Cu content is for example 0.05 wt%, 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt% or 0.5 wt%.

本発明によれば、前記Alの含有量は、例えば、0.01 wt%、0.05 wt%、0.1 wt%、0.2 wt%、0.5 wt%、1 wt%、1.2 wt%又は1.5 wt%である。 According to the invention, the Al content is for example 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.2 wt%, 0.5 wt%, 1 wt%, 1.2 wt% or 1.5 wt%.

本発明によれば、前記Zr又はTiの含有量は、例えば、0.01 wt%、0.05 wt%、0.1 wt%、0.2 wt%又は0.3 wt%である。 According to the invention, said Zr or Ti content is for example 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.2 wt% or 0.3 wt%.

本発明によれば、前記希土類元素は、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、イットリウム(Y)とスカンジウム(Sc)から選ばれる。 According to the invention, said rare earth elements are Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd) , terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), yttrium (Y) and scandium (Sc).

本発明によれば、前記ネオジム鉄ボロン磁石の結晶粒度が5 μm以下であり、例えば、4.8 μm、4.5 μm、4.3 μm、4 μm、3.8 μm、3 μm、2 μm又は1 μmである。 According to the present invention, the crystal grain size of the neodymium iron boron magnet is 5 μm or less, for example 4.8 μm, 4.5 μm, 4.3 μm, 4 μm, 3.8 μm, 3 μm, 2 μm, or 1 μm.

本発明は、前記ネオジム鉄ボロン系焼結磁石の製造方法を更に提供し、前記方法は、
1)ストリッピング-水素爆発の方法によりR-Fe-B-M合金微粉末を得るステップと、
2)ステップ1)の合金微粉末をジェットミルで研磨して粒度D50が4.0 μm以下の磁性粉末を得て、前記磁性粉末と潤滑剤を混合した後、磁性粉末を圧粉体に加圧成形するステップと、
3)ステップ2)の圧粉体を500~900℃で低温焼結し、低温焼結時に10 kPa以下のアルゴンと水素の混合ガスを注入し、0.1~2 h保温した後、100 Pa以下になるように真空引きし、循環処理を少なくとも1回行い、その後、980~1040℃で高温焼結し、3~8 h保温し、冷却後に焼き戻し処理を行い、前記ネオジム鉄ボロン系焼結磁石を製造するステップと、を含む。
The present invention further provides a method for producing the neodymium-iron-boron sintered magnet, the method comprising:
1) obtaining R-Fe-B-M alloy fine powder by stripping-hydrogen explosion method;
2) Grinding the alloy fine powder of step 1) with a jet mill to obtain a magnetic powder with a particle size D50 of 4.0 μm or less, mixing the magnetic powder with a lubricant, and then pressing the magnetic powder into a compact. and
3) Low-temperature sintering the green compact from step 2) at 500-900°C, injecting a mixed gas of argon and hydrogen at 10 kPa or less during low-temperature sintering, keeping it warm for 0.1-2 hours, and reducing it to 100 Pa or less. After that, it is sintered at a high temperature of 980 to 1040°C, kept warm for 3 to 8 hours, cooled and then tempered, and the neodymium iron boron sintered magnet and manufacturing.

本発明によれば、ステップ1)において、前記ストリッピング-水素爆発の方法は、例えば、下記のステップを含む:
R-Fe-B-M合金を真空又は不活性ガスの雰囲気で、温度が1200~1600℃の条件下で溶融し、溶融体を回転速度が0.3~4 m/sの急冷ロールに注入してR-Fe-B-M合金ストリップを作製し、その後、合金ストリップに対してHD水素爆発炉で水素爆発処理を行い、処理前に100 Paよりも低くなるように真空引きする必要がある。
According to the present invention, in step 1), said stripping-hydrogen explosion method comprises, for example, the following steps:
The R-Fe-B-M alloy is melted in a vacuum or inert gas atmosphere at a temperature of 1200-1600°C, and the melt is poured into a quench roll with a rotation speed of 0.3-4 m/s. R--Fe--B--M alloy strips are made, and then the alloy strips need to be subjected to hydrogen explosion treatment in HD hydrogen explosion furnace, and evacuated to lower than 100 Pa before treatment.

そのうち、前記合金ストリップの厚さが0.1~0.5 mmである。 Wherein, the alloy strip has a thickness of 0.1-0.5 mm.

本発明によれば、ステップ2)において、具体的には下記のステップを含む:
ステップ1)の合金微粉末をジェットミルで研磨し、そのうち、ジェットミルプロセスにおける酸素含有量は50 ppmよりも小さい。
According to the present invention, step 2) specifically includes the following steps:
The alloy fine powder of step 1) is ground by jet mill, wherein the oxygen content in the jet mill process is less than 50 ppm.

本発明によれば、ステップ2)において、前記潤滑剤の添加量は、前記磁性粉末の質量の0.1~0.5 wt%である。 According to the present invention, in step 2), the amount of the lubricant added is 0.1-0.5 wt% of the mass of the magnetic powder.

本発明によれば、ステップ2)において、前記混合の時間は0.1~3 hである。前記混合の温度は室温である。 According to the invention, in step 2), the time of said mixing is 0.1-3 h. The temperature of said mixing is room temperature.

本発明によれば、ステップ2)において、磁性粉末を酸素含有量が500 ppmよりも小さく、配向磁場強度が1~2 Tの磁気配向成形装置で圧粉体に加圧成形する。圧粉体の大きさとサイズについては特に定義されておらず、最終的な製品の必要量によって調整することができる。 According to the present invention, in step 2), the magnetic powder is pressed into a green compact in a magnetic orientation molding apparatus having an oxygen content of less than 500 ppm and an orientation magnetic field strength of 1-2 T. The size and size of the green compact are not specifically defined and can be adjusted according to the final product requirements.

本発明によれば、ステップ3)において、前記低温焼結はアルゴンと水素の混合雰囲気下で行われ、前記混合雰囲気には、アルゴンが混合雰囲気の総体積の95~99 vol%を占め、水素が混合雰囲気の総体積の1~5 vol%を占める。低温焼結プロセスにアルゴンと水素の混合雰囲気を注入し、特定の温度範囲で保温処理を行うことにより、水素を磁石の隙間を通じて磁石中の潤滑剤及び磁性粉末の表面に吸着した酸素、窒素と反応させ、最終反応物が排出され、磁石中の炭素、酸素、窒素不純物の含有量を低減させ、製品性能を向上させる。 According to the present invention, in step 3), said low temperature sintering is carried out under a mixed atmosphere of argon and hydrogen, said mixed atmosphere comprising argon accounting for 95-99 vol% of the total volume of the mixed atmosphere and hydrogen accounts for 1-5 vol% of the total volume of the mixed atmosphere. By injecting a mixed atmosphere of argon and hydrogen into the low-temperature sintering process and performing heat retention in a specific temperature range, the hydrogen is absorbed through the gaps between the magnets and the oxygen and nitrogen adsorbed on the surface of the lubricant and magnetic powder in the magnets. After reacting, the final reactant is discharged, reducing the content of carbon, oxygen and nitrogen impurities in the magnet and improving product performance.

本発明によれば、ステップ3)において、前記低温焼結の温度は500℃、600℃、700℃、800℃又は900℃である。前記高温焼結の温度は、980℃、990℃、1000℃、1010℃、1020℃、1030℃又は1040℃である。 According to the invention, in step 3), the temperature of said low temperature sintering is 500°C, 600°C, 700°C, 800°C or 900°C. The temperature of the high temperature sintering is 980°C, 990°C, 1000°C, 1010°C, 1020°C, 1030°C or 1040°C.

本発明によれば、前記焼き戻し処理は、一次焼き戻し処理と二次焼き戻し処理を含む。 According to the invention, said tempering treatment comprises a primary tempering treatment and a secondary tempering treatment.

そのうち、前記一次焼き戻し処理の温度は700~900℃(例えば、700℃、750℃、800℃、850℃、900℃)で、前記一次焼き戻し処理の時間は3~7 hである。前記二次焼き戻し処理の温度は450~600℃(例えば、450℃、480℃、500℃、520℃、550℃、580℃、600℃)で、前記二次焼き戻し処理の時間は3~7 hである。 The temperature of the first tempering treatment is 700-900°C (eg, 700°C, 750°C, 800°C, 850°C, 900°C), and the time of the first tempering treatment is 3-7 hours. The temperature of the secondary tempering treatment is 450 to 600°C (eg, 450°C, 480°C, 500°C, 520°C, 550°C, 580°C, 600°C), and the time of the secondary tempering treatment is 3 to 600°C. 7 h.

本発明によれば、前記方法を採用すると、結晶粒度が5.0 μm以下のネオジム鉄ボロン系焼結磁石を得ることができると共に、前記ネオジム鉄ボロン磁石中のC+O+Nの含有量(ppm)≦[1500+(5.0-結晶粒度(μm))×600](ppm)である。 According to the present invention, by employing the above method, a neodymium iron boron sintered magnet having a grain size of 5.0 μm or less can be obtained, and the content (ppm) of C + O + N in the neodymium iron boron magnet ≤ [1500 + (5.0 - crystal grain size (μm)) x 600] (ppm).

〔図面の簡単な説明〕
〔図1〕実施例1における磁性粉末の粒度の測定結果である。
[Brief description of the drawing]
1 is a measurement result of the particle size of the magnetic powder in Example 1. FIG.

〔図2〕実施例1における磁石の走査型電子顕微鏡により走査された破面写真である。 2 is a photograph of a fractured surface of the magnet in Example 1, scanned by a scanning electron microscope. FIG.

〔発明を実施するための形態〕
以下、具体的な実施例に合わせて、本発明を更に詳しく説明する。下記の実施例は、単に本発明を例示的に説明し解釈するものであり、本発明の請求範囲を限定するものではないと理解すべきである。本発明の上記内容に基づいて実現される技術は、何れも本発明により請求される請求範囲内に含まれる。
[Mode for carrying out the invention]
The present invention will be described in more detail below in conjunction with specific examples. It should be understood that the following examples merely illustrate and interpret the present invention and are not intended to limit the scope of the invention. Any technique implemented based on the above content of the present invention is included in the scope of claims claimed by the present invention.

下記実施例に使用される実験方法は特別な説明がなければ、何れも従来の方法であり、下記実施例に使用される試薬、材料などは、特別な説明がなければ、何れも商業的に入手することができる。 Unless otherwise specified, the experimental methods used in the following examples are all conventional methods, and the reagents, materials, etc. used in the following examples are commercially available unless specified otherwise. can be obtained.

器具と機器
本発明における結晶粒度の算出方法は下記の通りである:走査型電子顕微鏡により走査された圧粉体の破面図を利用し、破面図において結晶粒の個数を算出し、その後、これらの結晶粒の個数の金属組織図の面積下での平均等面積を算出し、等面積によって結晶粒度を算出する。
Apparatus and Equipment The method for calculating the grain size in the present invention is as follows: using the fracture surface of the green compact scanned by a scanning electron microscope, calculate the number of crystal grains in the fracture surface, and then , the average equal area of the number of these grains under the area of the metallographic structure is calculated, and the grain size is calculated from the equal area.

本発明における磁性粉末の粒径D50は、レーザー回折式粒度分布計により測定される。 The particle size D50 of the magnetic powder in the present invention is measured with a laser diffraction particle size distribution analyzer.

実施例1
(1)少なくとも99%重量純度のNdPr、Co、Al、Fe、Cu、Ga、Zrとフェロボロンを利用してアルゴン雰囲気において高周波溶融し、溶融体を急冷ロールに注入することにより、質量百分率が31%のNdPr、0.8%のCo、0.5%のAl、0.2%のCu、0.15%のGa、0.10%のZr、0.96%のBで、残りが鉄と不可避的不純物である合金を作製する。当該合金を水素化して粗粉末に粉砕し、その後、粗粉末をジェットミルで研磨し、得られた磁性粉末の粒度D50は3.5 μmである。上記ジェットミル粉末に0.2 wt%の潤滑剤を添加した後、材料を2 h混合し、常温と磁場強度が2 Tの配向場の環境下で成形する。
Example 1
(1) NdPr, Co, Al, Fe, Cu, Ga, Zr with a purity of at least 99% by weight and ferroboron are melted by high frequency in an argon atmosphere, and the melt is injected into a quench roll to obtain a mass percentage of 31 % NdPr, 0.8% Co, 0.5% Al, 0.2% Cu, 0.15% Ga, 0.10% Zr, 0.96% B, balance iron and incidental impurities. The alloy is hydrogenated and pulverized into a coarse powder, after which the coarse powder is ground with a jet mill, and the particle size D50 of the resulting magnetic powder is 3.5 μm. After adding 0.2 wt% lubricant to the above jet mill powder, the materials are mixed for 2 h and compacted under normal temperature and an orientation field environment with a magnetic field strength of 2 T.

(2)圧粉体を真空焼結炉に入れ、600℃で体積比が98:2のアルゴンと水素の混合ガスを10 kPa充填し、0.5 h保温する。保温終了後、0.1 kPaに真空引きして昇温し続け、1030℃で6 h焼結する。保温終了後に冷却処理し、900℃で一次焼き戻し処理を行い、時間が3 hである。520℃で二次焼き戻し処理を行い、時間が5 hである。冷却して炉から取り出した後、微細結晶のネオジム鉄ボロン磁石を得る。この磁石はA1と称され、A1磁石にD10~10 mmのサンプルカラム(直径10 mm、長さ10 mm)を加工し、性能試験を行う。 (2) Place the powder compact in a vacuum sintering furnace, fill with a mixed gas of argon and hydrogen at a volume ratio of 98:2 at 600°C at 10 kPa, and keep it warm for 0.5 h. After the end of the heat retention, the sample is evacuated to 0.1 kPa, the temperature is continued to rise, and the sample is sintered at 1030°C for 6 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 900°C for 3 hours. Secondary tempering treatment at 520°C for 5 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet is obtained. This magnet is called A1, and a D10-10 mm sample column (diameter 10 mm, length 10 mm) is processed on the A1 magnet to perform a performance test.

比較例1
他のステップは実施例1と同じであるが、ステップ(2)だけにおいて異なっている:
圧粉体を真空焼結炉に入れ、1030℃で6 h焼結する。保温終了後に冷却処理し、900℃で一次焼き戻し処理を行い、時間が3 hである。520℃で二次焼き戻し処理を行い、時間が5 hである。冷却して炉から取り出した後、微細結晶のネオジム鉄ボロン磁石を得る。この磁石はB1と称され、B1磁石にD10~10 mmのサンプルカラムを加工し、性能試験を行う。
Comparative example 1
Other steps are the same as in Example 1, but differ only in step (2):
The green compact is placed in a vacuum sintering furnace and sintered at 1030°C for 6 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 900°C for 3 hours. Secondary tempering treatment at 520°C for 5 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet is obtained. This magnet is called B1, and a D10-10 mm sample column is processed on the B1 magnet to perform a performance test.

Figure 2023512541000002
Figure 2023512541000002

表1から見られるように、本発明の方法によれば、重希土類がなく、結晶粒度が4.5 μmの条件下で、実施例1の磁石A1は高保磁力の46 Hレベルに達している。実施例1は比較例1と比べてBrが相当し、Hcjがより高く、これは主に、実施例1の方法により不純物含有量(C+O+N)が比較的に良く制御されているためである。実施例1と比較例1の不純物含有量を比較してみると、実施例1<1500+(5.0-結晶粒度)×600<比較例1である。 As can be seen from Table 1, according to the method of the present invention, the magnet A1 of Example 1 reaches a high coercive force level of 46 H under the conditions of no heavy rare earth and a grain size of 4.5 μm. Example 1 has comparable Br and higher Hcj compared to Comparative Example 1, mainly because the impurity content (C+O+N) is better controlled by the method of Example 1. Comparing the impurity contents of Example 1 and Comparative Example 1, Example 1<1500+(5.0−grain size)×600<Comparative Example 1.

実施例2
(1)少なくとも99%重量純度のNdPr、Dy、Co、Al、Fe、Cu、Ga、Tiとフェロボロンを利用してアルゴン雰囲気において高周波溶融し、溶融体を急冷ロールに注入することにより、質量百分率が32%のNdPr、0.3%のDy、1.0%のCo、0.8%のAl、0.15%のCu、0.15%のGa、0.15%のTi、0.98%のBで、残りが鉄と不可避的不純物である合金を作製する。当該合金を水素化して粗粉末に粉砕し、その後、粗粉末をジェットミルで研磨し、得られた磁性粉末の粒度D50は3.2 μmである。上記ジェットミル粉末に0.3 wt%の潤滑剤を添加した後、材料を2 h混合し、常温と磁場強度が2 Tの配向場の環境下で成形する。
Example 2
(1) NdPr, Dy, Co, Al, Fe, Cu, Ga, Ti with a purity of at least 99% by weight and ferroboron are melted by high frequency in an argon atmosphere, and the melt is injected into a quench roll to is 32% NdPr, 0.3% Dy, 1.0% Co, 0.8% Al, 0.15% Cu, 0.15% Ga, 0.15% Ti, 0.98% B, and the balance is iron and unavoidable impurities. Create an alloy. The alloy is hydrogenated and pulverized into a coarse powder, after which the coarse powder is ground with a jet mill, and the particle size D50 of the resulting magnetic powder is 3.2 μm. After adding 0.3 wt% lubricant to the jet mill powder, the materials are mixed for 2 h and compacted under normal temperature and an orientation field with a magnetic field strength of 2 T.

(2)圧粉体を真空焼結炉に入れ、650℃で体積比が99:1のアルゴンと水素の混合ガスを8 kPa充填し、1 h保温する。保温終了後、100 Paよりも低くなるように真空引きして700℃に昇温し続け、体積比が99:1のアルゴンと水素の混合ガスを5 kPa充填し、0.5 h保温する。保温終了後、0.1 kPaに真空引きして昇温し続け、1020℃で5.5 h焼結する。保温終了後に冷却処理し、850℃で一次焼き戻し処理を行い、時間が4 hである。550℃で二次焼き戻し処理を行い、時間が5 hである。冷却して炉から取り出した後、微細結晶のネオジム鉄ボロン磁石を得る。この磁石はA2と称され、A2磁石にD10~10 mmのサンプルカラムを加工し、性能試験を行う。 (2) Place the powder compact in a vacuum sintering furnace, fill with a mixed gas of argon and hydrogen at a volume ratio of 99:1 at 650°C at 8 kPa, and keep warm for 1 h. After the end of the heat retention, the chamber is evacuated to a temperature lower than 100 Pa, and the temperature is continued to rise to 700°C. After the end of the heat retention, the sample is evacuated to 0.1 kPa, the temperature is continued to rise, and the sample is sintered at 1020°C for 5.5 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 850°C for 4 hours. Secondary tempering treatment at 550°C for 5 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet is obtained. This magnet is called A2, and a D10-10 mm sample column is processed into the A2 magnet to perform performance tests.

比較例2
他のステップは実施例2と同じであるが、ステップ(2)だけにおいて異なっている:
圧粉体を真空焼結炉に入れ、1020℃で5.5 h焼結する。保温終了後に冷却処理し、850℃で一次焼き戻し処理を行い、時間が4 hである。550℃で二次焼き戻し処理を行い、時間が5 hである。冷却して炉から取り出した後、微細結晶のネオジム鉄ボロン磁石を得る。この磁石はB2と称され、B2磁石にD10~10 mmのサンプルカラムを加工し、性能試験を行う。
Comparative example 2
The other steps are the same as in Example 2, but differ only in step (2):
The green compact is placed in a vacuum sintering furnace and sintered at 1020°C for 5.5 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 850°C for 4 hours. Secondary tempering treatment at 550°C for 5 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet is obtained. This magnet is called B2, and a D10-10 mm sample column is processed on the B2 magnet for performance testing.

Figure 2023512541000003
Figure 2023512541000003

表2から見られるように、本発明の方法によれば、重希土類が低い条件下で、実施例2の磁石A2は高保磁力の42 SHレベルに達している。実施例2は比較例2と比べてBrが相当し、Hcjがより高く、これは主に、実施例2の方法により不純物含有量(C+O+N)が比較的に良く制御されているためである。実施例2と比較例2の不純物含有量を比較してみると、実施例2<1500+(5.0-結晶粒度)×600<比較例2である。 As can be seen from Table 2, according to the method of the present invention, magnet A2 of Example 2 reaches a high coercivity level of 42 SH under low heavy rare earth conditions. Example 2 has comparable Br and higher Hcj compared to Comparative Example 2, mainly because the impurity content (C+O+N) is better controlled by the method of Example 2. Comparing the impurity contents of Example 2 and Comparative Example 2, Example 2<1500+(5.0−grain size)×600<Comparative Example 2.

実施例3
(1)少なくとも99%重量純度のNdPr、Dy、Co、Al、Fe、Cu、Ga、Tiとフェロボロンを利用してアルゴン雰囲気において高周波溶融し、溶融体を急冷ロールに注入することにより、質量百分率が31.5%のNdPr、0.5%のDy、1.0%のCo、0.6%のAl、0.2%のCu、0.10%のGa、0.2%のTi、0.98%のBで、残りが鉄と不可避的不純物である合金を作製する。当該合金を水素化して粗粉末に粉砕し、その後、粗粉末をジェットミルで研磨し、得られた磁性粉末の粒度D50は2.6 μmである。上記ジェットミル粉末に0.15 wt%の潤滑剤を添加した後、材料を2 h混合し、常温と磁場強度が2 Tの配向場の環境下で成形する。
Example 3
(1) NdPr, Dy, Co, Al, Fe, Cu, Ga, Ti with a purity of at least 99% by weight and ferroboron are melted by high frequency in an argon atmosphere, and the melt is injected into a quench roll to is 31.5% NdPr, 0.5% Dy, 1.0% Co, 0.6% Al, 0.2% Cu, 0.10% Ga, 0.2% Ti, 0.98% B, and the balance is iron and unavoidable impurities. Create an alloy. The alloy is hydrogenated and pulverized into a coarse powder, after which the coarse powder is ground with a jet mill, and the resulting magnetic powder has a particle size D50 of 2.6 μm. After adding 0.15 wt% lubricant to the above jet mill powder, the materials are mixed for 2 h and compacted under normal temperature and an orientation field environment with a magnetic field strength of 2 T.

(2)圧粉体を真空焼結炉に入れ、800℃で体積比が96:4のアルゴンと水素の混合ガスを6 kPa充填し、1 h保温する。保温終了後、100 Paよりも低くなるように真空引きし、引き続き800℃で体積比が96:4のアルゴンと水素の混合ガスを6 kPa充填し、1 h保温する。保温終了後、0.1 kPaに真空引きして昇温し続け、1000℃で7 h焼結する。保温終了後に冷却処理し、850℃で一次焼き戻し処理を行い、時間が4 hである。500℃で二次焼き戻し処理を行い、時間が6 hである。冷却して炉から取り出した後、微細結晶のネオジム鉄ボロン磁石を得る。この磁石はA3と称され、A3磁石にD10~10 mmのサンプルカラムを加工し、性能試験を行う。 (2) Place the powder compact in a vacuum sintering furnace, fill it with a mixed gas of argon and hydrogen at a volume ratio of 96:4 at 800°C at 6 kPa, and keep it warm for 1 h. After the end of the heat retention, the chamber is evacuated to less than 100 Pa, then filled with a mixed gas of argon and hydrogen at a volume ratio of 96:4 at 800°C at 6 kPa and kept at heat for 1 h. After the end of the heat retention, the sample is evacuated to 0.1 kPa, the temperature is continued to rise, and the sample is sintered at 1000°C for 7 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 850°C for 4 hours. Secondary tempering treatment at 500°C for 6 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet is obtained. This magnet is called A3, and a D10-10 mm sample column is processed into the A3 magnet for performance testing.

比較例3
他のステップは実施例3と同じであるが、ステップ(2)だけにおいて異なっている:
圧粉体を真空焼結炉に入れ、1000℃で7 h焼結する。保温終了後に冷却処理し、850℃で一次焼き戻し処理を行い、時間が4 hである。500℃で二次焼き戻し処理を行い、時間が6 hである。冷却して炉から取り出した後、微細結晶のネオジム鉄ボロン磁石を得る。この磁石はB3と称され、B3磁石にD10~10 mmのサンプルカラムを加工し、性能試験を行う。
Comparative example 3
Other steps are the same as in Example 3, but differ only in step (2):
The green compact is placed in a vacuum sintering furnace and sintered at 1000°C for 7 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 850°C for 4 hours. Secondary tempering treatment at 500°C for 6 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet is obtained. This magnet is called B3, and a D10-10 mm sample column is processed on the B3 magnet to perform performance tests.

Figure 2023512541000004
Figure 2023512541000004

表3から見られるように、実施例3は比較例3と比べてBrが相当し、Hcjがより高く、これは主に、実施例3の方法により不純物含有量(C+O+N)が比較的に良く制御されているためである。磁性粉末の粒度が小さくなるにつれて、理論的に、比較例3は磁石の保磁力が増加するが、不純物含有量も急激に増加するので、最終的な製品の性能が低くなる。実施例3と比較例3の不純物含有量を比較してみると、実施例3<1500+(5.0-結晶粒度)×600<比較例3である。 As can be seen from Table 3, Example 3 has comparable Br and higher Hcj compared to Comparative Example 3, mainly because the impurity content (C + O + N) is relatively better by the method of Example 3. This is because it is controlled. Theoretically, as the particle size of the magnetic powder decreases, the coercive force of the magnet in Comparative Example 3 increases, but the impurity content also increases sharply, resulting in poor performance of the final product. Comparing the impurity contents of Example 3 and Comparative Example 3, Example 3<1500+(5.0−grain size)×600<Comparative Example 3.

実施例4
(1)少なくとも99%重量純度のNd、Co、Al、Fe、Cu、Gaとフェロボロンを利用してアルゴン雰囲気において高周波溶融し、溶融体を急冷ロールに注入することにより、質量百分率が31%のNd、0.8%のCo、0.3%のAl、0.2%のCu、0.1%のGa、1%のBで、残りが鉄と不可避的不純物である合金を作製する。当該合金を水素化して粗粉末に粉砕し、その後、粗粉末をジェットミルで研磨し、得られた磁性粉末の粒度D50は3.5 μmである。上記ジェットミル粉末に0.1 wt%の潤滑剤を添加した後、材料を2 h混合し、常温と磁場強度が2 Tの配向場の環境下で成形する。
Example 4
(1) Nd, Co, Al, Fe, Cu, Ga with a purity of at least 99% by weight and ferroboron are melted by high frequency in an argon atmosphere, and the melt is injected into a quench roll to obtain a mass percentage of 31%. An alloy is made of Nd, 0.8% Co, 0.3% Al, 0.2% Cu, 0.1% Ga, 1% B, balance iron and incidental impurities. The alloy is hydrogenated and pulverized into a coarse powder, after which the coarse powder is ground with a jet mill, and the particle size D50 of the resulting magnetic powder is 3.5 μm. After adding 0.1 wt% lubricant to the jet mill powder, the materials are mixed for 2 h and compacted under normal temperature and an orientation field environment with a magnetic field strength of 2 T.

(2)圧粉体を真空焼結炉に入れ、600℃で体積比が99:1のアルゴンと水素の混合ガスを10 kPa充填し、0.5 h保温する。保温終了後、0 Paに真空引きして昇温し続け、1030℃で6 h焼結する。保温終了後に冷却処理し、900℃で一次焼き戻し処理を行い、時間が3 hである。510℃で二次焼き戻し処理を行い、時間が5 hである。冷却して炉から取り出した後、基材A4とマークされる微細結晶のネオジム鉄ボロン磁石を得る。 (2) Place the powder compact in a vacuum sintering furnace, fill with a mixed gas of argon and hydrogen at a volume ratio of 99:1 at 600°C at 10 kPa, and keep the temperature for 0.5 h. After the end of the heat retention, the sample is evacuated to 0 Pa, the temperature is continued to rise, and the sample is sintered at 1030°C for 6 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 900°C for 3 hours. Secondary tempering treatment at 510°C for 5 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet marked as substrate A4 is obtained.

磁石をサイズが20-10-5 mmの四角片に加工し、脱脂・酸洗い後に四角片にTb粒界拡散処理を行い、Tbの拡散量が0.4 wt%であり、この実施例の粒界拡散は溶射法を選択して処理され、拡散処理後の当該製品はA5と称される。 The magnet was processed into a square piece with a size of 20-10-5 mm. After degreasing and pickling, the square piece was subjected to Tb grain boundary diffusion treatment. Diffusion is treated by selecting the thermal spraying method, and the product after diffusion treatment is called A5.

比較例4
他のステップは実施例4と同じであるが、ステップ(2)だけにおいて異なっている:
圧粉体を真空焼結炉に入れ、1030℃で6 h焼結する。保温終了後に冷却処理し、900℃で一次焼き戻し処理を行い、時間が3 hである。510℃で二次焼き戻し処理を行い、時間が5 hである。冷却して炉から取り出した後、基材B4とマークされる微細結晶のネオジム鉄ボロン磁石を得る。
Comparative example 4
Other steps are the same as in Example 4, but differ only in step (2):
The green compact is placed in a vacuum sintering furnace and sintered at 1030°C for 6 hours. After the end of heat retention, cooling treatment is performed, and primary tempering treatment is performed at 900°C for 3 hours. Secondary tempering treatment at 510°C for 5 hours. After cooling and removing from the furnace, a fine-crystalline neodymium-iron-boron magnet marked as substrate B4 is obtained.

磁石をサイズが20-10-5 mmの四角片に加工し、脱脂・酸洗い後に四角片にTb粒界拡散処理を行い、Tbの拡散量が0.4 wt%であり、この比較例の粒界拡散は溶射法を選択して処理され、拡散処理後の当該製品はB5と称される。 The magnet was processed into a square piece with a size of 20-10-5 mm. After degreasing and pickling, the square piece was subjected to Tb grain boundary diffusion treatment, and the amount of Tb diffused was 0.4 wt%. Diffusion is treated by selecting the thermal spraying method, and the product after diffusion treatment is called B5.

Figure 2023512541000005
Figure 2023512541000005

表4から見られるように、A4はB4と比べてBrが相当し、Hcjがより高く、これは主に、実施例4の方法により不純物含有量(C+O+N)が比較的に良く制御されているためである。A4とB4の不純物含有量を比較してみると、A4<1500+(5.0-結晶粒度)×600<B4である。更に、A4とA5の保磁力から見ると、A5の保磁力は798 kA/m増加する。B4とB5の保磁力から見ると、B5の保磁力は721 kA/m増加する。A4の磁石は、より低い不純物C、O、Nの含有量を有するため、重希土類の拡散により有利であるが、A5の磁石は保磁力がより高い。 As can be seen from Table 4, A4 has comparable Br and higher Hcj compared to B4, mainly because the impurity content (C+O+N) is relatively well controlled by the method of Example 4. It's for. Comparing the impurity contents of A4 and B4, A4 < 1500 + (5.0 - grain size) x 600 < B4. Furthermore, looking at the coercivity of A4 and A5, the coercivity of A5 increases by 798 kA/m. From the coercivity of B4 and B5, the coercivity of B5 increases by 721 kA/m. The A4 magnet has a lower content of impurities C, O, N and is therefore more favorable to heavy rare earth diffusion, while the A5 magnet has a higher coercivity.

以上、本発明の実施形態について説明した。しかし、本発明は上記の実施形態に限定されない。本発明の精神と原則内で行われた修正、等価置換、改良などは、何れも本発明の請求範囲に含まれるべきである。 The embodiments of the present invention have been described above. However, the invention is not limited to the above embodiments. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the scope of the present invention.

実施例1における磁性粉末の粒度の測定結果である。4 shows the measurement results of the particle size of the magnetic powder in Example 1. FIG. 実施例1における磁石の走査型電子顕微鏡により走査された破面写真である。1 is a photograph of a fracture surface scanned by a scanning electron microscope of a magnet in Example 1. FIG.

Claims (10)

ネオジム鉄ボロン磁石であって、化学式がRFeBMであり、そのうち、Rが希土類元素、Feが鉄、Bがボロンであり、Rの含有量が26~35wt%、Bの含有量が0.8~1.3wt%であり、MがCo、Ga、Cu、Al、Zr、Tiのうちの複数種であり、そのうち、Coの含有量が0.5~3.0wt%、Gaの含有量が0.05~0.4wt%、Cuの含有量が0.05~0.5wt%、Alの含有量が0~1.5wt%、Zr又はTiの含有量が0~0.3wt%であり、残りが鉄と不可避的不純物で、且つ、磁石中の元素C、O、Nの含有量がC+O+N(ppm)≦[1500+(5.0-結晶粒度(μm))×600](ppm)を満たす、ネオジム鉄ボロン磁石。 Neodymium-iron-boron magnet with chemical formula RFeBM, where R is rare earth element, Fe is iron, B is boron, R content is 26~35wt%, B content is 0.8~1.3wt %, and M is a plurality of types of Co, Ga, Cu, Al, Zr, and Ti, in which the Co content is 0.5 to 3.0 wt%, the Ga content is 0.05 to 0.4 wt%, and the Cu The content of is 0.05 to 0.5 wt%, the content of Al is 0 to 1.5 wt%, the content of Zr or Ti is 0 to 0.3 wt%, and the remainder is iron and unavoidable impurities, and A neodymium-iron-boron magnet in which the content of elements C, O, and N satisfies C+O+N (ppm)≦[1500+(5.0−crystal grain size (μm))×600] (ppm). 前記ネオジム鉄ボロン磁石の結晶粒度は5μm以下である、請求項1に記載のネオジム鉄ボロン磁石。 The neodymium-iron-boron magnet according to claim 1, wherein the neodymium-iron-boron magnet has a crystal grain size of 5 µm or less. 請求項1又は2に記載のネオジム鉄ボロン系焼結磁石の製造方法であって、
1)ストリッピング-水素爆発の方法によりR-Fe-B-M合金微粉末を得るステップと、
2)ステップ1)の合金微粉末をジェットミルで研磨して粒度D50が4.0μm以下の磁性粉末を得て、前記磁性粉末と潤滑剤を混合した後、磁性粉末を圧粉体に加圧成形するステップと、
3)ステップ2)の圧粉体を500~900℃で低温焼結し、低温焼結時に10kPa以下のアルゴンと水素の混合ガスを注入し、0.1~2h保温した後、100Pa以下になるように真空引きし、循環処理を少なくとも1回行い、その後、980~1040℃で高温焼結し、3~8h保温し、冷却後に焼き戻し処理を行い、前記ネオジム鉄ボロン系焼結磁石を製造するステップと、
を含む請求項1又は2に記載のネオジム鉄ボロン系焼結磁石の製造方法。
A method for producing a neodymium iron boron sintered magnet according to claim 1 or 2,
1) obtaining R-Fe-B-M alloy fine powder by stripping-hydrogen explosion method;
2) Grind the alloy fine powder of step 1) with a jet mill to obtain a magnetic powder with a particle size D50 of 4.0 μm or less, mix the magnetic powder with a lubricant, and press the magnetic powder into a compact. and
3) Low-temperature sintering the green compact from step 2) at 500-900°C, injecting a mixed gas of argon and hydrogen at a temperature of 10 kPa or less during low-temperature sintering, keeping it warm for 0.1-2 hours, and then reducing it to 100 Pa or less. Evacuate and circulate at least once, then sinter at a high temperature of 980 to 1040°C, keep warm for 3 to 8 hours, cool and then temper, to produce the neodymium iron boron sintered magnet. and,
The method for producing a neodymium-iron-boron-based sintered magnet according to claim 1 or 2.
ステップ1)において、前記ストリッピング-水素爆発の方法は、例えば、
R-Fe-B-M合金を真空又は不活性ガスの雰囲気で、温度が1200~1600℃の条件下で溶融し、溶融体を回転速度が0.3~4m/sの急冷ロールに注入してR-Fe-B-M合金ストリップを作製し、その後、合金ストリップに対してHD水素爆発炉で水素爆発処理を行い、処理前に100Paよりも低くなるように真空引きする必要がある、というステップを含む、
請求項3に記載の製造方法。
In step 1), the stripping-hydrogen explosion method is, for example,
The R-Fe-B-M alloy is melted in a vacuum or inert gas atmosphere at a temperature of 1200 to 1600°C, and the melt is poured into a quench roll with a rotation speed of 0.3 to 4 m/s. - The step of making a Fe-B-M alloy strip, then subjecting the alloy strip to a hydrogen explosion treatment in a HD hydrogen explosion furnace, which needs to be evacuated to less than 100Pa before treatment. include,
The manufacturing method according to claim 3.
ステップ2)において、具体的には、
ステップ1)の合金微粉末をジェットミルで研磨し、そのうち、ジェットミルプロセスにおける酸素含有量は50ppmよりも小さい、というステップを含む、
請求項3~4の何れか1項に記載の製造方法。
In step 2), specifically:
Step 1) polishing the fine alloy powder with a jet mill, wherein the oxygen content in the jet mill process is less than 50ppm,
The manufacturing method according to any one of claims 3 and 4.
ステップ2)において、前記潤滑剤の添加量は前記磁性粉末の質量の0.1~0.5wt%である、請求項3~5の何れか1項に記載の製造方法。 The manufacturing method according to any one of claims 3 to 5, wherein in step 2), the amount of the lubricant added is 0.1 to 0.5 wt% of the mass of the magnetic powder. ステップ2)において、磁性粉末を酸素含有量が500ppmよりも小さく、配向磁場強度が1~2Tの磁気配向成形装置で圧粉体に加圧成形する、請求項3~6の何れか1項に記載の製造方法。 7. The method according to any one of claims 3 to 6, wherein in step 2), the magnetic powder is pressure-molded into a compact by a magnetic orientation molding apparatus having an oxygen content of less than 500 ppm and an orientation magnetic field strength of 1 to 2 T. Method of manufacture as described. ステップ3)において、前記低温焼結はアルゴンと水素の混合雰囲気下で行われ、前記混合雰囲気には、アルゴンが混合雰囲気の総体積の95~99vol%を占め、水素が混合雰囲気の総体積の1~5vol%を占める、請求項3~7の何れか1項に記載の製造方法。 In step 3), the low-temperature sintering is carried out under a mixed atmosphere of argon and hydrogen, wherein the mixed atmosphere includes argon accounting for 95-99 vol% of the total volume of the mixed atmosphere, and hydrogen accounting for the total volume of the mixed atmosphere. The production method according to any one of claims 3 to 7, which accounts for 1 to 5 vol%. 前記焼き戻し処理は、一次焼き戻し処理と二次焼き戻し処理を含む、請求項3~8の何れか1項に記載の製造方法。 The manufacturing method according to any one of claims 3 to 8, wherein the tempering treatment includes a primary tempering treatment and a secondary tempering treatment. 前記一次焼き戻し処理の温度は700~900℃で、前記一次焼き戻し処理の時間は3~7hであり、前記二次焼き戻し処理の温度は450~600℃で、前記二次焼き戻し処理の時間は3~7hである、請求項9に記載の製造方法。 The temperature of the primary tempering treatment is 700-900°C, the time of the primary tempering treatment is 3-7 hours, the temperature of the secondary tempering treatment is 450-600°C, and the time of the secondary tempering treatment is 450-600°C. The manufacturing method according to claim 9, wherein the time is 3-7 hours.
JP2022547759A 2020-04-30 2021-04-29 Fine crystal, high coercive force neodymium iron boron sintered magnet and its production method Pending JP2023512541A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010367655.8A CN113593799B (en) 2020-04-30 2020-04-30 Fine-grain high-coercivity sintered NdFeB magnet and preparation method thereof
CN202010367655.8 2020-04-30
PCT/CN2021/090874 WO2021219063A1 (en) 2020-04-30 2021-04-29 Fine-grain high-coercivity sintered neodymium iron boron magnet and preparation method therefor

Publications (1)

Publication Number Publication Date
JP2023512541A true JP2023512541A (en) 2023-03-27

Family

ID=78237007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022547759A Pending JP2023512541A (en) 2020-04-30 2021-04-29 Fine crystal, high coercive force neodymium iron boron sintered magnet and its production method

Country Status (4)

Country Link
JP (1) JP2023512541A (en)
KR (1) KR102652710B1 (en)
CN (1) CN113593799B (en)
WO (1) WO2021219063A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896315A (en) * 2021-11-11 2022-01-07 山东大学 Application of FePC strip in degradation of methylene blue dye wastewater
CN114373593B (en) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 R-T-B magnet and preparation method thereof
CN114686746A (en) * 2022-04-27 2022-07-01 江苏晨朗电子集团有限公司 Recycling method of nickel-plated sintered neodymium iron boron waste material
CN115240944B (en) * 2022-09-19 2022-12-30 南通正海磁材有限公司 Sintered neodymium-iron-boron permanent magnet and preparation method and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197223A (en) * 1997-09-17 1999-04-09 Hitachi Metals Ltd R-fe-b sintered permanent magnet
JPH11273922A (en) * 1999-02-01 1999-10-08 Hitachi Metals Ltd Sintered permanent magnet
JP2009260338A (en) * 2008-03-28 2009-11-05 Tdk Corp Rare earth magnet
JP2010150604A (en) * 2008-12-25 2010-07-08 Tdk Corp Method for producing rare earth sintered magnet
WO2010082492A1 (en) * 2009-01-16 2010-07-22 日立金属株式会社 Method for producing r-t-b sintered magnet
WO2013054845A1 (en) * 2011-10-13 2013-04-18 Tdk株式会社 Thin r-t-b alloy, r-t-b based sintered magnet, and production method for same
WO2013191276A1 (en) * 2012-06-22 2013-12-27 Tdk株式会社 Sintered magnet
JP2017128793A (en) * 2016-01-21 2017-07-27 煙台首鋼磁性材料株式有限公司 MANUFACTURING METHOD OF SINTERED Nd-Fe-B MAGNETIC SUBSTRATE CONTAINING NO HEAVY RARE EARTH ELEMENT
JP2019036707A (en) * 2017-08-10 2019-03-07 煙台首鋼磁性材料株式有限公司 R-t-b system permanent magnet
JP2019102708A (en) * 2017-12-05 2019-06-24 Tdk株式会社 R-t-b based permanent magnet
JP2019169698A (en) * 2018-03-23 2019-10-03 日立金属株式会社 Production method of r-t-b based sintered magnet
JP2019199644A (en) * 2018-05-17 2019-11-21 Tdk株式会社 Cast alloy flake for r-t-b-based rare earth sintered magnet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949775B2 (en) * 1977-05-24 1984-12-05 富士電機株式会社 Stabilizer for power transmission system
JPH0645832B2 (en) * 1985-05-29 1994-06-15 大同特殊鋼株式会社 Rare earth magnet manufacturing method
JPS6452005A (en) * 1987-08-20 1989-02-28 Canon Denshi Kk Production of magnetized compact
JPH06151137A (en) * 1992-11-13 1994-05-31 Mitsubishi Materials Corp Powder of rare earth magnet material with excellent anisotropy
CN102568809B (en) * 2012-03-01 2013-10-23 烟台正海磁性材料股份有限公司 Method for preparing corrosion-resistant high-performance sintered neodymium iron boron magnets
CN104252937B (en) * 2014-09-12 2016-10-05 沈阳中北通磁科技股份有限公司 A kind of regulate and control the sintered NdFeB permanent magnet ferrum of particulate combinations and manufacture method
JP6614647B2 (en) * 2015-09-11 2019-12-04 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet
CN105551790B (en) * 2016-02-18 2018-08-24 廊坊京磁精密材料有限公司 A kind of sintering method of neodymium iron boron magnetic body
CN105655077B (en) * 2016-04-13 2017-10-17 烟台正海磁性材料股份有限公司 A kind of manufacture method of high-coercive force neodymium iron boron
CN106128673B (en) * 2016-06-22 2018-03-30 烟台首钢磁性材料股份有限公司 A kind of Sintered NdFeB magnet and preparation method thereof
CN106601459B (en) * 2016-12-09 2018-07-24 京磁材料科技股份有限公司 Reduce the sintering method of neodymium iron boron magnetic body carbon content

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197223A (en) * 1997-09-17 1999-04-09 Hitachi Metals Ltd R-fe-b sintered permanent magnet
JPH11273922A (en) * 1999-02-01 1999-10-08 Hitachi Metals Ltd Sintered permanent magnet
JP2009260338A (en) * 2008-03-28 2009-11-05 Tdk Corp Rare earth magnet
JP2010150604A (en) * 2008-12-25 2010-07-08 Tdk Corp Method for producing rare earth sintered magnet
WO2010082492A1 (en) * 2009-01-16 2010-07-22 日立金属株式会社 Method for producing r-t-b sintered magnet
WO2013054845A1 (en) * 2011-10-13 2013-04-18 Tdk株式会社 Thin r-t-b alloy, r-t-b based sintered magnet, and production method for same
WO2013191276A1 (en) * 2012-06-22 2013-12-27 Tdk株式会社 Sintered magnet
JP2017128793A (en) * 2016-01-21 2017-07-27 煙台首鋼磁性材料株式有限公司 MANUFACTURING METHOD OF SINTERED Nd-Fe-B MAGNETIC SUBSTRATE CONTAINING NO HEAVY RARE EARTH ELEMENT
JP2019036707A (en) * 2017-08-10 2019-03-07 煙台首鋼磁性材料株式有限公司 R-t-b system permanent magnet
JP2019102708A (en) * 2017-12-05 2019-06-24 Tdk株式会社 R-t-b based permanent magnet
JP2019169698A (en) * 2018-03-23 2019-10-03 日立金属株式会社 Production method of r-t-b based sintered magnet
JP2019199644A (en) * 2018-05-17 2019-11-21 Tdk株式会社 Cast alloy flake for r-t-b-based rare earth sintered magnet

Also Published As

Publication number Publication date
CN113593799A (en) 2021-11-02
KR20220155597A (en) 2022-11-23
KR102652710B1 (en) 2024-03-29
CN113593799B (en) 2023-06-13
WO2021219063A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
KR102572176B1 (en) R-T-B permanent magnet material and its manufacturing method and application
RU2377680C2 (en) Rare-earth permanaent magnet
JP2023512541A (en) Fine crystal, high coercive force neodymium iron boron sintered magnet and its production method
CN110619984B (en) R-Fe-B sintered magnet with low B content and preparation method thereof
EP0411571B1 (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
KR102631761B1 (en) Neodymium iron boron magnetic material, raw material composition, manufacturing method and application
CN110323053B (en) R-Fe-B sintered magnet and preparation method thereof
KR102632991B1 (en) Neodymium iron boron magnetic material, raw material composition, manufacturing method and application
KR102527122B1 (en) R-T-B rare-earth permanent magnet material, its manufacturing method, and application
CN111223627B (en) Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN111223624B (en) Neodymium-iron-boron magnet material, raw material composition, preparation method and application
KR102589802B1 (en) Neodymium iron boron magnetic material, raw material composition, manufacturing method and application
CN108154988B (en) R-T-B permanent magnet
CN111446055A (en) High-performance neodymium iron boron permanent magnet material and preparation method thereof
CN111724955B (en) R-T-B permanent magnet
WO2023280259A1 (en) Corrosion-resistant and high-performance neodymium-iron-boron sintered magnet, preparation method therefor, and use thereof
CN113517104B (en) Main-auxiliary phase alloy samarium-cobalt magnet material, material for sintered body, preparation method and application thereof
CN114284018A (en) Neodymium-iron-boron magnet and preparation method and application thereof
CN113223849A (en) High-performance and high-abundance rare earth iron boron permanent magnet material and preparation method thereof
CN115637394B (en) Cobalt-reinforced iron-nickel-based hard magnetic alloy and preparation method thereof
CN111724961B (en) R-T-B permanent magnet
WO2023227042A1 (en) R-fe-b based permanent magnet material, preparation method, and application
EP4354471A1 (en) Auxiliary alloy casting piece, high-remanence and high-coercive force ndfeb permanent magnet, and preparation methods thereof
CN115083715A (en) Heterogeneous single crystal magnetic powder and preparation method and application thereof
CN117936210A (en) High-performance high-heat-stability sintered NdFeB magnet and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305