JP2023176449A - toilet bowl - Google Patents

toilet bowl Download PDF

Info

Publication number
JP2023176449A
JP2023176449A JP2022088730A JP2022088730A JP2023176449A JP 2023176449 A JP2023176449 A JP 2023176449A JP 2022088730 A JP2022088730 A JP 2022088730A JP 2022088730 A JP2022088730 A JP 2022088730A JP 2023176449 A JP2023176449 A JP 2023176449A
Authority
JP
Japan
Prior art keywords
cross
flow path
sectional area
section
toilet bowl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022088730A
Other languages
Japanese (ja)
Inventor
祥 伊藤
Sho Ito
昭範 神谷
Akinori Kamiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2022088730A priority Critical patent/JP2023176449A/en
Publication of JP2023176449A publication Critical patent/JP2023176449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sanitary Device For Flush Toilet (AREA)

Abstract

To provide a toilet bowl capable of suppressing solid matter clogging in a trap flow path.SOLUTION: A toilet bowl has: a toilet bowl part; a water spout part for forming a swirling flow in the toilet bowl part by discharging washing water into the toilet bowl part; and a trap flow path 34 connected to the bottom of the toilet bowl part. The trap flow path has: a downstream flow path 40 connected to the bottom of the toilet bowl part; and an upstream flow path 42 connected to a downstream end of the downstream flow path 40. An upper surface of the downstream flow path 40 and an upper surface of the upstream flow path 42 are formed by separate parts of a wall portion that is continuous in a flow direction of the trap flow path. When, in the trap flow path 34, an area below a bisecting position Pc (1/2) in a longitudinal direction of a reference channel cross section passing through a lowest end 34a of the trap flow path 34 is defined as a bottom region 34b, and it is assumed that volumes of the downstream flow path 40 and the upstream flow path 42 in the bottom region 34b are Va (1/2) and Vb (1/2), respectively, the volume Vb (1/2) of the upstream flow path 42 is larger than the volume Va (1/2) of the downstream flow path 40.SELECTED DRAWING: Figure 3

Description

本開示は、便器に関する。 The present disclosure relates to toilet bowls.

特許文献1は、便鉢部と、便鉢部の底部に接続されるトラップ流路と、を備える便器を開示している。トラップ流路は、便鉢部の底部に接続される下り流路と、下り流路の下流側端部に接続される上り流路とを備える。 Patent Document 1 discloses a toilet bowl including a toilet bowl portion and a trap channel connected to the bottom of the toilet bowl portion. The trap flow path includes a down flow path connected to the bottom of the toilet bowl portion and an up flow path connected to the downstream end of the down flow path.

特開2016-98491号公報Japanese Patent Application Publication No. 2016-98491

トイレットペーパー等の変形可能な固形物がトラップ流路内を流れる場合を考える。この場合、トラップ流路内を流れる水の水圧等により、上り流路の壁面に向けて押し付けられることで固形物に摩擦力が付与され、トラップ流路内で固形物詰まりが発生し易くなる。本願発明者は、このトラップ流路内での固形物詰まりを抑制するための新たなアイデアを見出した。 Consider a case where a deformable solid material such as toilet paper flows in a trap channel. In this case, the solids are pressed against the wall surface of the upstream channel due to the water pressure of the water flowing in the trap channel, and a frictional force is applied to the solids, making it easier for solids to become clogged in the trap channel. The inventor of the present application has discovered a new idea for suppressing solid matter clogging in this trap flow path.

本開示の目的の1つは、トラップ流路内での固形物詰まりを抑制できる便器を提供することにある。 One of the objects of the present disclosure is to provide a toilet bowl that can suppress clogging of solids in a trap flow path.

本開示の便器は、便鉢部と、前記便鉢部内に洗浄水を吐き出すことにより前記便鉢部内に旋回流を形成するための吐水部と、前記便鉢部の底部に接続されるトラップ流路と、を備え、前記トラップ流路は、前記便鉢部の底部に接続される下り流路と、前記下り流路の下流側端部に接続される上り流路と、を備え、前記下り流路の上面と前記上り流路の上面とは前記トラップ流路の流れ方向に連続する壁部の別々の部位によって形成され、前記トラップ流路の最下端を通る基準流路断面の縦方向での二等分位置から下方にある底部領域における前記下り流路及び前記上り流路それぞれの体積Va(1/2)、Vb(1/2)を想定したとき、前記上り流路の体積Vb(1/2)は、前記下り流路の体積Va(1/2)よりも大きい便器。 The toilet bowl of the present disclosure includes a toilet bowl section, a water spout section for forming a swirling flow in the toilet bowl section by discharging flush water into the toilet bowl section, and a trap flow connected to a bottom of the toilet bowl section. The trap flow path includes a downward flow path connected to the bottom of the toilet bowl portion, and an upward flow path connected to the downstream end of the downward flow path, The upper surface of the flow path and the upper surface of the upstream flow path are formed by separate portions of a wall portion continuous in the flow direction of the trap flow path, and Assuming the volumes Va (1/2) and Vb (1/2) of the down flow path and the up flow path in the bottom region below the bisecting position of the up flow path, the volume of the up flow path Vb ( 1/2) is a toilet bowl larger than the volume Va (1/2) of the downflow path.

実施形態の便器の平面図である。It is a top view of the toilet bowl of an embodiment. 実施形態の便器の側面断面図である。FIG. 2 is a side cross-sectional view of the toilet bowl of the embodiment. 図2の一部の拡大図である。3 is an enlarged view of a portion of FIG. 2. FIG. 図3のA-A線で切断した流路断面を示す図である。4 is a diagram showing a cross section of a flow path taken along line AA in FIG. 3. FIG. 図2の一部を拡大した説明図である。FIG. 3 is an enlarged explanatory diagram of a part of FIG. 2; 図6(A)は、トラップ流路における流路断面の全体の断面積分布を示し、図6(B)は、その流路断面の上半部及び下半部それぞれの断面積分布を示す。FIG. 6(A) shows the cross-sectional area distribution of the entire channel cross-section in the trap channel, and FIG. 6(B) shows the cross-sectional area distribution of the upper half and lower half of the channel cross-section. 図7(A)は、図5の位置Pb1を通る流路断面を示す図であり、図7(B)は、図5の位置Pb3を通る流路断面を示す図であり、図7(C)は、図7(A)、図7(B)の関係を示す図である。7(A) is a diagram showing a flow path cross section passing through position Pb1 in FIG. 5, and FIG. 7(B) is a diagram showing a flow path cross section passing through position Pb3 in FIG. ) is a diagram showing the relationship between FIGS. 7(A) and 7(B). 図2の一部の更に他の拡大図である。3 is yet another enlarged view of a portion of FIG. 2. FIG.

以下、実施形態を説明する。同一の構成要素には同一の符号を付し、重複する説明を省略する。各図面では、説明の便宜のため、適宜、構成要素を省略、拡大、縮小する。図面は符号の向きに合わせて見るものとする。 Embodiments will be described below. Identical components are given the same reference numerals and redundant explanations will be omitted. In each drawing, constituent elements are omitted, enlarged, or reduced as appropriate for convenience of explanation. The drawings should be viewed according to the direction of the symbols.

図1、図2を参照する。以下、各構成要素の位置関係に関して、直交座標系を構成する三方向を用いて説明する。これら三方向は、左右方向X、前後方向Y及び上下方向Zである。これら三方向は、便器10に搭載される便座(不図示)に通常の姿勢で座るユーザの向きと対応する。 Please refer to FIGS. 1 and 2. Hereinafter, the positional relationship of each component will be explained using three directions forming an orthogonal coordinate system. These three directions are the left-right direction X, the front-back direction Y, and the up-down direction Z. These three directions correspond to the orientations of a user who sits in a normal posture on a toilet seat (not shown) mounted on the toilet bowl 10.

便器10は、便鉢部12と、便鉢部12内に洗浄水を吐き出すことによって便鉢部12内に旋回流を形成するための吐水部14と、便鉢部12の底部に接続される便器排水路16と、を備える。 The toilet bowl 10 is connected to a toilet bowl part 12, a water spout part 14 for forming a swirling flow in the toilet bowl part 12 by discharging wash water into the toilet bowl part 12, and a bottom part of the toilet bowl part 12. A toilet drainage channel 16 is provided.

便鉢部12は、汚物を受けるための汚物受け面18と、便鉢部12の底部を形成する溜水部20と、便鉢部12の上端側部分を形成するリム部22と、を備える。溜水部20は、便鉢部12において下向きに窪む凹部として設けられ、汚物受け面18の下端縁部から下方に窪んでいる。便鉢部12の底部に設けられる溜水部20の底面部には、便器排水路16の入口が開口する。溜水部20には後述する封水38(図1では省略)の一部が溜水として溜められる。 The toilet bowl section 12 includes a filth receiving surface 18 for receiving filth, a water reservoir section 20 that forms the bottom of the toilet bowl section 12, and a rim section 22 that forms the upper end portion of the toilet bowl section 12. . The water storage portion 20 is provided as a downwardly recessed portion in the toilet bowl portion 12, and is recessed downward from the lower end edge of the waste receiving surface 18. An inlet of a toilet drainage channel 16 opens at the bottom of a water reservoir 20 provided at the bottom of the toilet bowl 12 . A portion of a water seal 38 (not shown in FIG. 1), which will be described later, is stored in the water storage section 20 as water.

吐水部14は、便鉢部12のリム部22に開口する吐水孔24と、給水源26から供給される洗浄水を吐水孔24に導くための導水路28と、を備える。本実施形態の給水源26は重力給水式タンクであるが、ポンプ給水式タンク、フラッシュバルブ等でもよい。導水路28は、便鉢部12の外周側に設けられ、ここでは便鉢部12の後方に設けられる。 The water spouting part 14 includes a water spouting hole 24 that opens in the rim part 22 of the toilet bowl part 12 and a water conduit 28 for guiding the flushing water supplied from the water supply source 26 to the water spouting hole 24. Although the water supply source 26 in this embodiment is a gravity water supply tank, it may also be a pump water supply tank, a flush valve, or the like. The water conduit 28 is provided on the outer peripheral side of the toilet bowl portion 12, and is provided at the rear of the toilet bowl portion 12 here.

便器排水路16は、便鉢部12から排出される汚物を建物に設置される排水管(不図示)に導く排水流路30の一部となる。本実施形態の排水流路30は、便器排水路16の他に、便器排水路16と排水管を接続する排水ソケット32を備える。便器排水路16は、便鉢部12の底部に接続されるトラップ流路34と、トラップ流路34の下流側端部に接続される下降流路36と、を備える。下降流路36は、下流側に向かうに連れて下降している。 The toilet bowl drainage channel 16 becomes a part of a drainage channel 30 that guides waste discharged from the toilet bowl section 12 to a drain pipe (not shown) installed in the building. The drainage channel 30 of this embodiment includes, in addition to the toilet bowl drainage channel 16, a drainage socket 32 that connects the toilet bowl drainage channel 16 and a drain pipe. The toilet drainage channel 16 includes a trap channel 34 connected to the bottom of the toilet bowl section 12 and a descending channel 36 connected to the downstream end of the trap channel 34. The descending flow path 36 descends toward the downstream side.

トラップ流路34は、トラップ流路34内の流れ方向での空気の流れを遮断する封水38を貯留する。ここでの流れ方向とは、トラップ流路34内において上流側から下流側に向かう方向をいう。トラップ流路34は、便鉢部12の底部に接続される下り流路40と、下り流路40の下流側端部に接続される上り流路42と、を備える。下り流路40は、下流側に向かうに連れて下降するとともに後方に延びている。上り流路42は、下流側に向かうに連れて上昇するとともに後方に延びている。 The trap channel 34 stores seal water 38 that blocks the flow of air in the flow direction within the trap channel 34 . The flow direction here refers to the direction from the upstream side to the downstream side within the trap channel 34. The trap flow path 34 includes a down flow path 40 connected to the bottom of the toilet bowl portion 12 and an up flow path 42 connected to the downstream end of the down flow path 40. The downflow path 40 descends toward the downstream side and extends rearward. The upflow path 42 rises toward the downstream side and extends rearward.

下り流路40の上面と上り流路42の上面とはトラップ流路34の流れ方向に連続する壁部の別々の部位によって形成される。下り流路40の上面と上り流路42の上面は、同じ壁部の壁厚方向両側の異なる部位によって形成されないということである。 The upper surface of the downstream flow path 40 and the upper surface of the upstream flow path 42 are formed by separate portions of a wall portion of the trap flow path 34 that is continuous in the flow direction. This means that the upper surface of the downward flow path 40 and the upper surface of the upward flow path 42 are not formed by different parts on both sides in the wall thickness direction of the same wall.

上り流路42の下流側端部の下面には、トラップ流路34内に溜めることのできる封水38の最高水位を定める溢れ縁44が設けられる。便器排水路16内に溢れ縁44を超える水が入り込んだとき、その水が溢れ縁44から下流側に溢れ出ることで、封水38の最高水位が定められる。 An overflow edge 44 is provided on the lower surface of the downstream end of the upstream channel 42 to define the highest water level of the sealed water 38 that can be stored in the trap channel 34 . When water that exceeds the overflow edge 44 enters the toilet drain channel 16, the water overflows from the overflow edge 44 to the downstream side, thereby determining the highest water level of the water seal 38.

なお、便器10は、便器洗浄後に導水路28内に残った残水をトラップ流路34に排出するための水抜き水路46を備える。水抜き水路46の下流側端部にはトラップ流路34に開口する水抜き孔46aが設けられる。本実施形態の水抜き孔46aは、下り流路40の上面に開口する。 Note that the toilet bowl 10 includes a drainage channel 46 for discharging residual water remaining in the water conduit 28 into the trap channel 34 after flushing the toilet bowl. A drain hole 46 a that opens into the trap channel 34 is provided at the downstream end of the drain channel 46 . The drain hole 46a of this embodiment opens on the upper surface of the downflow channel 40.

便器10は、便器洗浄中に、固形物の排出を促進するジェット水流をトラップ流路34内に形成するためのジェット吐水孔を備えていない。このジェット吐水孔は、給水源26から供給された洗浄水を吐き出すことにより、トラップ流路34の下流側に向かうジェット水流を形成する。前述した水抜き孔46aは、便器洗浄中に、固形物の排出に影響しない程度の勢いでトラップ流路34内に水を排出し、ジェット吐水孔に該当しない。ジェット吐水孔は、後述する基準流路断面Cs0の上端位置Paよりも下方においてトラップ流路34に開口するものとして捉えてもよい。このように捉えた場合も、水抜き孔46aは、この上端位置Paよりも上方において開口するため、ジェット吐水孔に該当しない。 The toilet bowl 10 is not equipped with a jet water outlet for forming a jet water flow in the trap channel 34 to promote the discharge of solids during flushing the toilet bowl. This jet water discharge hole forms a jet water flow toward the downstream side of the trap channel 34 by discharging the cleaning water supplied from the water supply source 26 . The water drain hole 46a described above discharges water into the trap flow path 34 with such force that it does not affect the discharge of solid matter during toilet flushing, and does not correspond to a jet water discharge hole. The jet water discharge hole may be regarded as opening into the trap flow path 34 below the upper end position Pa of a reference flow path cross section Cs0, which will be described later. Even when viewed in this way, the drain hole 46a does not correspond to a jet water discharge hole because it opens above the upper end position Pa.

以上の便器10を用いた洗浄方法の概要を説明する。本実施形態の便器10の洗浄方式は、水の落差を用いて、トラップ流路34を通して固形物を押し流すことで固形物を排出する洗い落とし式である。また、本実施形態の便器10の洗浄方式では、ジェット水流を利用することなく洗い落とし式を実現する。所定の洗浄開始条件を満たすと、給水源26から吐水部14に洗浄水が供給されることで便器洗浄が実行される。吐水部14は、便器洗浄中、給水源26から供給される洗浄水を吐き出すことで便鉢部12内を洗浄する洗浄水流を形成する。ここでは洗浄水流として旋回流48が形成される。便鉢部12内の固形物は、洗浄水流によって、便器排水路16を通して排出される。旋回流48は、便器10の溜水部20周りにおいて汚物受け面18を旋回する過程で分流50に分かれつつ、溜水部20内に流下するように形成される。図1では旋回流48、分流50の流れ方向に矢印を付して示す。 An overview of the cleaning method using the toilet bowl 10 described above will be explained. The flushing method of the toilet bowl 10 of this embodiment is a flushing type in which the solid matter is discharged by flushing the solid matter through the trap channel 34 using the head of water. Further, in the cleaning method of the toilet bowl 10 of this embodiment, a flushing type is realized without using a jet water stream. When a predetermined flushing start condition is met, flushing water is supplied from the water supply source 26 to the water spouting section 14 to perform toilet flushing. The water spouting section 14 forms a flushing water flow that cleans the inside of the toilet bowl section 12 by discharging the flushing water supplied from the water supply source 26 during flushing the toilet bowl. Here, a swirling flow 48 is formed as a cleaning water flow. The solid matter in the toilet bowl portion 12 is discharged through the toilet drain channel 16 by the flushing water flow. The swirling flow 48 is formed so as to flow down into the water reservoir 20 while being divided into branch streams 50 in the process of swirling around the waste receiving surface 18 around the water reservoir 20 of the toilet bowl 10 . In FIG. 1, the flow directions of the swirling flow 48 and the branched flow 50 are shown with arrows.

図3、図4を示す。以下、図4のような流路断面を示す断面図では、トラップ流路34を形成する壁の内周面のみを示し、その壁の他の部分は省略する。トラップ流路34を通る前後方向Yに直交する鉛直断面の下端位置をトラップ流路34のある前後方向範囲で連ねた線Laを想定する。図3では、線Laの上流端La1と下流端La2とを示す。この線La上にある点でトラップ流路34に接する接平面(ここでは左右方向Yと平行)において、その点を通る法線を想定する。本明細書では、この線La上にある点を通る接平面の法線と左右方向Xとに平行な平面で切断した断面をトラップ流路34の流路断面という。この流路断面内での法線に沿った方向を縦方向Pといい、左右方向Xを横方向Qとい Figures 3 and 4 are shown. Hereinafter, in a cross-sectional view showing a cross section of a flow path as shown in FIG. 4, only the inner circumferential surface of the wall forming the trap flow path 34 is shown, and other parts of the wall are omitted. A line La is assumed that connects the lower end positions of a vertical cross section perpendicular to the longitudinal direction Y passing through the trap channel 34 in a certain longitudinal direction range of the trap channel 34 . In FIG. 3, an upstream end La1 and a downstream end La2 of the line La are shown. At a point on this line La, in a tangential plane (here parallel to the left-right direction Y) that touches the trap flow path 34, a normal line passing through that point is assumed. In this specification, a cross section taken along a plane parallel to the normal to the tangential plane passing through a point on the line La and the left-right direction X is referred to as a flow path cross section of the trap flow path 34. The direction along the normal line within this channel cross section is called the vertical direction P, and the left-right direction X is called the horizontal direction Q.

上り流路42と下り流路40の境界部にはトラップ流路34の流れ方向範囲のなかで最下端34aとなる箇所が設けられる。図4では、トラップ流路34の最下端34aを通る基準流路断面Cs0を示す。基準流路断面Cs0は最下端34aを通り左右方向Yに平行な鉛直断面でもある。この基準流路断面Cs0の縦方向寸法を縦方向Pに二等分する二等分位置Pc(1/2)を想定する。トラップ流路34において二等分位置Pc(1/2)から下方を底部領域34bという。 A lowermost end 34a in the flow direction range of the trap flow path 34 is provided at the boundary between the up flow path 42 and the down flow path 40. In FIG. 4, a reference flow path cross section Cs0 passing through the lowermost end 34a of the trap flow path 34 is shown. The reference channel cross section Cs0 is also a vertical cross section that passes through the lowermost end 34a and is parallel to the left-right direction Y. A bisecting position Pc (1/2) that divides the vertical dimension of this standard flow path cross section Cs0 into two in the vertical direction P is assumed. In the trap channel 34, the area below the bisecting position Pc (1/2) is referred to as a bottom region 34b.

このトラップ流路34の底部領域34bにおける下り流路40の体積Va(1/2)、上り流路42の体積Vb(1/2)を想定する。基準流路断面Cs0の上端位置Pc、上端位置Pcから下方における下り流路40全体の体積Va、上端位置34cから下方における上り流路42全体の体積Vbを想定する。また、基準流路断面Cs0の縦方向Pでの三つの四等分位置のうち、最も上側の四等分位置Pc(3/4)を想定する。この四等分位置Pc(3/4)から下方における下り流路40の体積Va(3/4)、四等分位置Pc(3/4)から下方における上り流路42の体積Vb(3/4)を想定する。ここでの下り流路40の体積は、トラップ流路34の底部領域34bにおいて基準流路断面Cs0から上流側の体積であり、上り流路42の体積は、その基準流路断面Cs0から下流側の体積である。なお、体積の単位は、例えば、mmである。 Assume that the volume Va (1/2) of the down flow path 40 and the volume Vb (1/2) of the up flow path 42 in the bottom region 34b of the trap flow path 34 are assumed. The upper end position Pc of the reference flow path cross section Cs0, the volume Va of the entire down flow path 40 downward from the upper end position Pc, and the volume Vb of the entire up flow path 42 downward from the upper end position 34c are assumed. Furthermore, of the three quartering positions in the longitudinal direction P of the reference flow path cross section Cs0, the uppermost quartering position Pc (3/4) is assumed. The volume Va (3/4) of the downflow passage 40 below this quartering position Pc (3/4), and the volume Vb (3/4) of the upflow passage 42 downward from the quartering position Pc (3/4). Assume 4). The volume of the downstream channel 40 here is the volume upstream from the standard channel cross section Cs0 in the bottom region 34b of the trap channel 34, and the volume of the upstream channel 42 is the volume downstream from the standard channel cross section Cs0. is the volume of Note that the unit of volume is, for example, mm3 .

汚物、トイレットペーパー等の変形可能な固形物60がトラップ流路34内を流れる場合を考える。この場合、固形物60は、トラップ流路34の入口90からトラップ流路34の底部領域34bに突き当たるまで、斜め下向きの方向Daにほぼ直線的に流れる。この後、固形物60は、トラップ流路34の底部領域34bの壁面に接触しつつ流れ方向を変更し、上り流路42内を斜め上向きの方向Dbに流れることで、トラップ流路34を通り抜ける。このとき、固形物60は、トラップ流路34の流路断面よりも大きい場合でも、その流路断面内に収まりつつ広がるように広がり変形をしながらトラップ流路34を通り抜けようとする。また、トラップ流路34の底部領域34bにおいて、トラップ流路34内を流れる水の水圧等により、トラップ流路34の壁面に向けて押し付けられることで固形物60に摩擦力が付与される。 Consider a case where a deformable solid material 60 such as filth or toilet paper flows through the trap channel 34. In this case, the solid matter 60 flows substantially linearly in the diagonally downward direction Da from the inlet 90 of the trap channel 34 until it hits the bottom region 34b of the trap channel 34. Thereafter, the solid matter 60 changes the flow direction while contacting the wall surface of the bottom region 34b of the trap channel 34, and passes through the trap channel 34 by flowing in the diagonally upward direction Db within the up channel 42. . At this time, even if the solid matter 60 is larger than the cross section of the trap flow path 34, it attempts to pass through the trap flow path 34 while being expanded and deformed so that it fits within the cross section of the flow path and expands. Further, in the bottom region 34b of the trap channel 34, a frictional force is applied to the solid material 60 by being pressed toward the wall surface of the trap channel 34 due to the water pressure of the water flowing in the trap channel 34, etc.

本実施形態では、上り流路42の体積Vb(1/2)は、下り流路40の体積Va(1/2)よりも大きくなる。このように、上り流路42の体積Vb(1/2)が下り流路40の体積Va(1/2)に対して広がるほど、固形物60が広がり変形を伴い上り流路42の壁面に接触しつつ流れる過程で、その壁面に対する固形物60の接触範囲を減らし易くなる。よって、体積Vb(1/2)が体積Va(1/2)よりも小さくなるよりも、固形物60が広がり変形を伴い上り流路42の底部領域34bの壁面に接触しつつ流れる過程で、その壁面に対する固形物60の接触範囲を減らし易くなる。ひいては、トラップ流路34の上り流路42の壁面から固形物60に付与される摩擦抵抗を抑制し易くなり、トラップ流路34内での固形物詰まりを抑制できる。 In this embodiment, the volume Vb (1/2) of the upstream channel 42 is larger than the volume Va (1/2) of the downstream channel 40. In this way, the more the volume Vb (1/2) of the upstream channel 42 expands relative to the volume Va (1/2) of the downstream channel 40, the more the solid matter 60 spreads and deforms and becomes attached to the wall surface of the upstream channel 42. In the process of flowing while being in contact with each other, it becomes easier to reduce the contact area of the solid material 60 with the wall surface. Therefore, rather than the volume Vb (1/2) becoming smaller than the volume Va (1/2), in the process of the solid material 60 spreading and deforming and flowing while contacting the wall surface of the bottom region 34b of the upflow channel 42, This makes it easier to reduce the contact area of the solid material 60 with the wall surface. As a result, the frictional resistance applied to the solid matter 60 from the wall surface of the upstream channel 42 of the trap channel 34 can be easily suppressed, and solid matter clogging in the trap channel 34 can be suppressed.

特に、便鉢部12内を旋回流48により洗浄する場合、便鉢部12のリム部22に設けた吐水孔から下向きに洗浄水を吐き出す洗浄形式(ボックスリム洗浄等)と比べ、固形物60の排出能力に劣る傾向がある。このような便器10においても、トラップ流路34内での固形物詰まりを抑制できる。また、ジェット吐水孔を備えておらず固形物60の排出能力に劣る便器10においても、トラップ流路34内での固形物詰まりを抑制できる。 In particular, when cleaning the inside of the toilet bowl part 12 with the swirling flow 48, the solids 60 The discharge capacity tends to be inferior. In such a toilet bowl 10 as well, clogging of solid matter in the trap channel 34 can be suppressed. Further, even in the toilet bowl 10 which is not equipped with a jet water discharge hole and has an inferior ability to discharge the solid matter 60, clogging of the solid matter in the trap channel 34 can be suppressed.

この効果を得る観点から、好ましくは、上り流路42の体積Vb(3/4)が、下り流路40の体積Vb(3/4)よりも大きくなるとよい。同様の観点から、より好ましくは、上り流路42の体積Vbが、下り流路40の体積Vaよりも大きくなるとよい。 From the viewpoint of obtaining this effect, preferably, the volume Vb (3/4) of the upstream channel 42 is larger than the volume Vb (3/4) of the downstream channel 40. From the same viewpoint, more preferably, the volume Vb of the upstream passage 42 is larger than the volume Va of the downstream passage 40.

本実施形態の便器10の他の特徴を説明する。図4を参照する。以下、トラップ流路34の流路断面の断面積(mm)を検討する。この流路断面において、その流路断面の縦方向Pでの二等分位置Pc(1/2)から上側を上半部62u、二等分位置Pc(1/2)から下側を下半部62dという。この流路断面におけるトラップ流路34の断面積からは、トラップ流路34に開口する他の孔(例えば、前述の水抜き孔46a)の断面積は除外される。この流路断面において上半部62uの断面積を上側断面積、下半部62dの断面積を下側断面積という。トラップ流路34の最下端34aを通る基準流路断面Cs0全体の断面積を基準断面積S0といい、その下半部62dの断面積を基準下側断面積S0dといい、その上半部62uの断面積を基準上側断面積S0uという。 Other features of the toilet bowl 10 of this embodiment will be explained. See FIG. 4. The cross-sectional area (mm 2 ) of the trap flow path 34 will be discussed below. In this channel cross section, the upper side from the bisecting position Pc (1/2) in the longitudinal direction P of the channel cross section is the upper half 62u, and the lower side from the bisecting position Pc (1/2) is the lower half. It is called part 62d. The cross-sectional area of the trap flow path 34 in this flow path cross section excludes the cross-sectional area of other holes (for example, the above-mentioned water drain hole 46a) that open to the trap flow path 34. In this channel cross section, the cross-sectional area of the upper half 62u is referred to as an upper cross-sectional area, and the cross-sectional area of the lower half 62d is referred to as a lower cross-sectional area. The cross-sectional area of the entire reference channel cross-section Cs0 passing through the lowermost end 34a of the trap channel 34 is referred to as a reference cross-sectional area S0, the cross-sectional area of its lower half 62d is referred to as a reference lower cross-sectional area S0d, and its upper half 62u The cross-sectional area is called the reference upper cross-sectional area S0u.

図5、図6を参照する。図6は、図5の線La上の各位置P0、Pa1~Pa8、Pb1~Pb7を通る流路断面の断面積を示す。位置P0の流路断面は前述の基準流路断面Cs0である。図6では、トラップ流路34の流路断面において水抜き孔46aの断面積を除外した断面積を実線で示し、水抜き孔46aを含めた断面積を破線で示す。 Refer to FIGS. 5 and 6. FIG. 6 shows the cross-sectional area of the flow path passing through each position P0, Pa1 to Pa8, and Pb1 to Pb7 on the line La in FIG. The flow path cross section at position P0 is the aforementioned reference flow path cross section Cs0. In FIG. 6, the cross-sectional area of the trap channel 34 excluding the cross-sectional area of the water drain hole 46a is shown by a solid line, and the cross-sectional area including the water drain hole 46a is shown by a broken line.

トラップ流路34の最も底側にある領域を最底部領域34dという。側面視において、トラップ流路34の底部領域34bの前後方向寸法L1を想定する。前述のトラップ流路34のある線La上において、トラップ流路34の最下端34aから前方に前後方向Yに沿って0.3×L1の位置Pa2と、その最下端34aから後方に前後方向Yに沿って0.3×L1の位置Pb2とを想定する。このとき、最底部領域34dは、その位置Pa2と位置Pb2とを通り、左右方向Yと平行な平面49から下方の範囲をいう。この他にも、トラップ流路34のある線La上において、位置Pa2は、トラップ流路34の最下端34aから前方に線Laに沿って30mmの位置とし、位置Pb2は、その最下端34aから後方にLaに沿って30mmの位置としてもよい。トラップ流路34の底部領域34bにおいて、最底部領域34dの上流端の位置Pa2から上流側(前側)を下り底部領域34e、最底部領域34dの下流端の位置Pb2から下流側(後側)を上り底部領域34fという。下り底部領域34eを通る流れ方向範囲の全域は流れ方向に向かって湾曲する下り湾曲流路部を構成する。上り底部領域34fを通る流れ方向範囲の全域は流れ方向に向かって湾曲する上り湾曲流路部を構成する。 The bottommost region of the trap channel 34 is referred to as the bottommost region 34d. In a side view, a longitudinal dimension L1 of the bottom region 34b of the trap channel 34 is assumed. On the line La where the trap flow path 34 is located, there is a position Pa2 of 0.3×L1 from the lowest end 34a of the trap flow path 34 forward in the front-rear direction Y, and a position Pa2 of 0.3×L1 backward from the lowest end 34a in the front-rear direction Y. Assume a position Pb2 of 0.3×L1 along. At this time, the bottom region 34d refers to the range below from a plane 49 that passes through the positions Pa2 and Pb2 and is parallel to the left-right direction Y. In addition, on the line La where the trap channel 34 is located, the position Pa2 is a position 30 mm forward from the lowest end 34a of the trap channel 34 along the line La, and the position Pb2 is a position from the lowest end 34a of the trap channel 34. The position may be 30 mm along La toward the rear. In the bottom region 34b of the trap flow path 34, from the upstream end position Pa2 of the bottom region 34d down the upstream side (front side) to the bottom region 34e, and from the downstream end position Pb2 of the bottom region 34d to the downstream side (rear side). This is called an up-bottom region 34f. The entire region in the flow direction passing through the descending bottom region 34e constitutes a downwardly curved flow path section that curves in the flow direction. The entire region in the flow direction passing through the rising bottom region 34f constitutes an upwardly curved flow path section that curves in the flow direction.

下り底部領域34eを通る流路断面の下半部62dの断面積を下側断面積Sadという。下り底部領域34eを通る流路断面の下側断面積Sadのなかで最大となるものを最大下側断面積Sad(max)という。上り底部領域34fを通る流路断面の下半部62dの断面積を下側断面積Sbdという。上り底部領域34fを通る流路断面の下側断面積Sbdのなかで最大となるものを最大下側断面積Sbd(max)という。図6(B)では、最大下側断面積Sad(max)となる箇所、最大下側断面積Sbd(max)となる箇所を示す。 The cross-sectional area of the lower half 62d of the channel cross-section passing through the descending bottom region 34e is referred to as a lower cross-sectional area Sad. The maximum lower cross-sectional area Sad (max) of the flow path cross-section passing through the descending bottom region 34e is referred to as the maximum lower cross-sectional area Sad (max). The cross-sectional area of the lower half 62d of the flow path cross-section passing through the rising bottom region 34f is referred to as a lower cross-sectional area Sbd. The maximum lower cross-sectional area Sbd of the channel cross-section passing through the up-bottom region 34f is referred to as the maximum lower cross-sectional area Sbd (max). FIG. 6(B) shows a location where the maximum lower cross-sectional area Sad (max) is achieved and a location where the maximum lower cross-sectional area Sbd (max) is achieved.

上り底部領域34fを通る流路断面の下側断面積Sbdが下り底部領域34eを通る流路断面の下側断面積Sadに対して広がるほど、固形物60が広がり変形を伴い上り底部領域34fを通る流路断面の下壁面に接触しつつ流れる過程で、その壁面に対する固形物60の接触範囲を減らし易くなる。本実施形態では、下側最大断面積Sbd(max)が下側最大断面積Sad(max)よりも大きくなる。よって、下側最大断面積Sbd(max)が下側最大断面積Sad(max)よりも小さくなるよりも、固形物60が広がり変形を伴い上り底部領域34fを通る流路断面の下壁面に接触しつつ流れる過程で、その壁面に対する固形物60の接触範囲を減らし易くなる。ひいては、上り底部領域34fを通る流路断面の下壁面から固形物60に付与される摩擦抵抗を抑制し易くなる。 As the lower cross-sectional area Sbd of the flow path cross section passing through the ascending bottom region 34f spreads with respect to the lower cross-sectional area Sad of the flow passage cross section passing through the descending bottom region 34e, the solid matter 60 spreads and deforms, and the higher the ascending bottom region 34f. In the process of flowing while contacting the lower wall surface of the cross section of the flow path, the contact area of the solid material 60 with the wall surface can be easily reduced. In this embodiment, the lower maximum cross-sectional area Sbd(max) is larger than the lower maximum cross-sectional area Sad(max). Therefore, before the lower maximum cross-sectional area Sbd (max) becomes smaller than the lower maximum cross-sectional area Sad (max), the solid material 60 spreads and deforms and comes into contact with the lower wall surface of the flow path cross section passing through the ascending bottom region 34f. In the process of flowing while flowing, it becomes easier to reduce the contact area of the solid material 60 with the wall surface. As a result, it becomes easier to suppress the frictional resistance applied to the solid material 60 from the lower wall surface of the flow path cross section passing through the ascending bottom region 34f.

基準下側断面積S0dから下り底部領域34eの最大下側断面積Sad(max)を減算した減算値を下り流路40の下側断面積変化量ΔSad(=S0d-Sad(max))という。上り底部領域34fの最大下側断面積Sbd(max)から基準下側断面積S0dを減算した減算値を上り流路42の下側断面積変化量ΔSbd(=Sbd(max)-S0d)という。 The subtracted value obtained by subtracting the maximum lower cross-sectional area Sad(max) of the downward bottom region 34e from the reference lower cross-sectional area S0d is referred to as the lower cross-sectional area change amount ΔSad (=S0d−Sad(max)) of the downward flow path 40. The subtraction value obtained by subtracting the standard lower cross-sectional area S0d from the maximum lower cross-sectional area Sbd(max) of the upstream bottom region 34f is referred to as the amount of change in the lower cross-sectional area ΔSbd (=Sbd(max)−S0d) of the upstream flow path 42.

最大下側断面積Sad(max)及び最大下側断面積Sbd(max)のそれぞれは、基準下側断面積S0dより小さくなる。下側断面積変化量ΔSbdは、下側断面積変化量ΔSadよりも小さくなる(ΔSbd<ΔSad)。下り流路40内の固形物60は便鉢部12内から流れ込む水の勢いをそのまま受けるので、上り流路42内の固形物60と比べて詰まり難い。言い換えると、上り流路42は下り流路40と比べて固形物60が詰まり易い。ΔSbd<ΔSadとすることで、このような詰まり易い上り流路42にあるSbd(max)をSad(max)より大きくできる。ひいては、Sad(max)となる箇所では流速を速くしつつ、詰まり易いSbd(max)となる箇所では固形物詰まりを抑制できる。 Each of the maximum lower cross-sectional area Sad (max) and the maximum lower cross-sectional area Sbd (max) is smaller than the reference lower cross-sectional area S0d. The lower cross-sectional area change amount ΔSbd is smaller than the lower cross-sectional area change amount ΔSad (ΔSbd<ΔSad). Since the solid matter 60 in the down flow path 40 directly receives the force of the water flowing from inside the toilet bowl portion 12, it is less likely to become clogged compared to the solid matter 60 in the up flow path 42. In other words, the upstream channel 42 is more likely to be clogged with solid matter 60 than the downstream channel 40. By setting ΔSbd<ΔSad, Sbd(max) in the upward flow path 42, which is easily clogged, can be made larger than Sad(max). As a result, it is possible to increase the flow rate at a location where Sad (max) is reached, while suppressing solid clogging at a location where Sbd (max) is a tendency to clog.

上り底部領域34fを通る流路断面の上半部62uの断面積を上側断面積Sbuという。上り底部領域34fを通る流路断面の上側断面積Sbdのなかで最大となるものを最大上側断面積Sbu(max)という。図6(B)では、最大上側断面積Sbu(max)となる箇所を示す。上り流路42の最大上側断面積Sbu(max)と基準上側断面積S0uとの差分絶対値を上り流路42の上側断面積変化量ΔSbuという。 The cross-sectional area of the upper half 62u of the channel cross-section passing through the rising bottom region 34f is referred to as an upper cross-sectional area Sbu. The maximum upper cross-sectional area Sbd of the flow path cross-section passing through the rising bottom region 34f is referred to as the maximum upper cross-sectional area Sbu (max). FIG. 6(B) shows a location where the maximum upper cross-sectional area Sbu (max) is achieved. The absolute value of the difference between the maximum upper cross-sectional area Sbu (max) of the upstream passage 42 and the reference upper cross-sectional area S0u is referred to as the amount of change in the upper cross-sectional area ΔSbu of the upstream passage 42 .

上り流路42の下側断面変化量ΔSbdは、上り流路42の上側断面変化量ΔSbuよりも大きくなる。これにより、下側断面変化量ΔSbdが上側断面変化量ΔSbuよりも小さくなるより、上り流路42の下側最大断面積Sbd(max)を大きくし易くなる。ひいては、固形物60が広がり変形を伴い上り底部領域34fを通る流路断面の下壁面に接触しつつ流れる過程で、その壁面に対する固形物60の接触範囲を減らし易くなる。 The lower side cross-sectional change amount ΔSbd of the upstream flow path 42 is larger than the upper side cross-sectional change amount ΔSbu of the upstream flow path 42 . This makes it easier to increase the lower side maximum cross-sectional area Sbd (max) of the upstream flow path 42 than when the lower side cross-sectional change amount ΔSbd becomes smaller than the upper side cross-sectional change amount ΔSbu. As a result, in the process where the solid material 60 spreads and deforms and flows while contacting the lower wall surface of the flow path cross section passing through the ascending bottom region 34f, it becomes easier to reduce the contact range of the solid material 60 with the wall surface.

上り底部領域34fを通る流路断面の下側断面積Sbdのなかで最小となるものを最小下側断面積Sbd(min)という。上り底部領域34fを通る流路断面の上側断面積Sbuのなかで最小となるものを最小上側断面積Sbu(min)という。最小下側断面積Sbd(min)から基準下側断面積S0dを減算した減算値を下側断面積変化量ΔSbd’(=Sbd(min)-S0d)という。最小上側断面積Sbu(min)から基準上側断面積S0uを減算した減算値を上側断面積変化量ΔSbu’(=Sbu(min)-S0u)という。このとき、上側断面積変化量ΔSbu’は、下側断面積変化量ΔSbd’よりも小さくなる。これにより、上側断面積変化量ΔSbu’が下側断面積変化量ΔSbd’よりも大きくなる場合と比べ、上り底部領域34fを通る流路断面における上半部62uでの流れ方向での断面変化を小さくできる。前述のΔSbd>ΔSbuの条件も満たしつつ、このΔSbd’>ΔSbu’とすると好ましい。これにより、上り底部領域34fを通る流路断面において下半部62dでの断面積を広げつつ、上半部62uでの断面変化を小さくすることで、できるだけ流速の低減を抑えることができる。 The minimum lower cross-sectional area Sbd of the flow path cross-section passing through the up-bottom region 34f is referred to as the minimum lower cross-sectional area Sbd (min). The minimum upper cross-sectional area Sbu of the flow path cross-section passing through the up-bottom region 34f is referred to as the minimum upper cross-sectional area Sbu (min). The subtracted value obtained by subtracting the reference lower cross-sectional area S0d from the minimum lower cross-sectional area Sbd (min) is referred to as the lower cross-sectional area change amount ΔSbd' (=Sbd (min) - S0d). The subtracted value obtained by subtracting the reference upper cross-sectional area S0u from the minimum upper cross-sectional area Sbu (min) is referred to as the upper cross-sectional area change amount ΔSbu' (=Sbu (min) - S0u). At this time, the upper cross-sectional area change amount ΔSbu' is smaller than the lower cross-sectional area change amount ΔSbd'. As a result, compared to the case where the upper cross-sectional area change amount ΔSbu' is larger than the lower cross-sectional area change amount ΔSbd', the cross-sectional change in the flow direction at the upper half portion 62u in the flow path cross section passing through the up-bottom region 34f is reduced. Can be made smaller. It is preferable to set ΔSbd'>ΔSbu' while also satisfying the above-mentioned condition of ΔSbd>ΔSbu. Thereby, in the cross-section of the flow path passing through the up-bottom region 34f, the cross-sectional area at the lower half portion 62d is increased, while the cross-sectional change at the upper half portion 62u is reduced, thereby suppressing a decrease in the flow velocity as much as possible.

下り底部領域34eを通る流路断面全体の断面積Saを想定する。断面積Saは、下側断面積Sadと上側断面積Sadとの合算値である。下り底部領域34eを通る流路断面の断面積Saのなかで最大となるものを下り流路40の最大断面積Sa(max)という。上り底部領域34fを通る流路断面全体の断面積を断面積Sbという。断面積Sbは、下側断面積Sbdと上側断面積Sbdとの合算値である。上り底部領域34fを通る流路断面の断面積Sbのなかで最大となるものを上り流路42の最大断面積Sb(max)という。図6(A)では、最大断面積Sa(max)、最大断面積Sb(max)となる箇所を示す。 The cross-sectional area Sa of the entire cross-section of the flow path passing through the downward bottom region 34e is assumed. The cross-sectional area Sa is the sum of the lower cross-sectional area Sad and the upper cross-sectional area Sad. The maximum cross-sectional area Sa of the flow path cross section passing through the downward bottom region 34e is referred to as the maximum cross-sectional area Sa (max) of the downward flow path 40. The cross-sectional area of the entire flow path cross-section passing through the rising bottom region 34f is referred to as a cross-sectional area Sb. The cross-sectional area Sb is the sum of the lower cross-sectional area Sbd and the upper cross-sectional area Sbd. The maximum cross-sectional area Sb of the flow path cross section passing through the upstream bottom region 34f is referred to as the maximum cross-sectional area Sb (max) of the upstream flow path 42. FIG. 6A shows locations where the maximum cross-sectional area Sa (max) and the maximum cross-sectional area Sb (max) are achieved.

基準断面積S0から下り流路40の最大断面積Sa(max)を減算した減算値を下り流路40の断面積変化量ΔSa(=S0-Sa(max))という。上り流路42の最大断面積Sb(max)から基準断面積S0を減算した減算値を上り流路42の断面積変化量ΔSb(=Sb(max)-S0)という。最大断面積Sa(max)及び最大断面積Sb(max)のそれぞれは、基準断面積S0よりも小さくなる。断面積変化量ΔSbは、断面積変化量ΔSaよりも小さくなる(ΔSb<ΔSa)。ΔSb<ΔSaとすることで、固形物60が詰まり易い上り流路42にあるSb(max)をSa(max)より大きくできる。ひいては、Sa(max)となる箇所では流速を速くしつつ、詰まり易いSb(max)となる箇所では固形物詰まりを抑制できる。 The subtracted value obtained by subtracting the maximum cross-sectional area Sa (max) of the downstream flow path 40 from the reference cross-sectional area S0 is referred to as the cross-sectional area change amount ΔSa (=S0−Sa (max)) of the downstream flow path 40. The subtracted value obtained by subtracting the reference cross-sectional area S0 from the maximum cross-sectional area Sb(max) of the upstream channel 42 is referred to as the cross-sectional area change amount ΔSb (=Sb(max)−S0) of the upstream channel 42. Each of the maximum cross-sectional area Sa (max) and the maximum cross-sectional area Sb (max) is smaller than the reference cross-sectional area S0. The cross-sectional area change amount ΔSb is smaller than the cross-sectional area change amount ΔSa (ΔSb<ΔSa). By setting ΔSb<ΔSa, Sb(max) in the upflow channel 42 where the solid matter 60 is easily clogged can be made larger than Sa(max). As a result, it is possible to increase the flow rate at a location where Sa(max) is reached, while suppressing solid clogging at a location where Sb(max) is easily clogged.

下り底部領域34eを通る流路断面全体の断面積Saのなかで最小となるものを下り流路40の最小断面積Sa(min)という。上り底部領域34fを通る流路断面全体の断面積Sbのなかで最小となるものを上り流路42の最小断面積Sb(min)という。図6(A)では、最小断面積Sa(min)、最小断面積Sb(min)となる箇所を示す。トラップ流路34は、Sa(min)<Sb(min)<S0の条件を満足する。これにより、下り底部領域34eの最小断面積Sa(min)が基準断面積S0よりも大きくなる場合と比べ、下り底部領域34eを通る流路断面を固形物60が通過するときの流速を速くした状態で最底部領域34dを通る流路断面まで固形物60を届かせ易くなる。また、上り底部領域34fの最小断面積Sb(min)が基準断面積S0よりも大きくなる場合と比べ、上り底部領域34eを通る流路断面を固形物60が通過するときの流速を速くできる。ひいては、底部領域34bを通過しようとする固形物60の流れ方向での推進力を高めることができ、固形物詰まりの抑制に寄与する。また、Sa(min)<Sb(min)とすることで、Sa(min)となる箇所では流速を速くしつつ、詰まり易いSb(min)となる箇所では固形物詰まりを抑制できる。 The smallest cross-sectional area Sa of the entire cross section of the flow path passing through the downward bottom region 34e is referred to as the minimum cross-sectional area Sa (min) of the downward flow path 40. The minimum cross-sectional area Sb of the entire cross section of the flow path passing through the upstream bottom region 34f is referred to as the minimum cross-sectional area Sb (min) of the upstream flow path 42. FIG. 6(A) shows locations where the minimum cross-sectional area Sa (min) and the minimum cross-sectional area Sb (min) are achieved. The trap channel 34 satisfies the condition Sa(min)<Sb(min)<S0. As a result, the flow velocity when the solid material 60 passes through the flow path cross section passing through the descending bottom region 34e is increased compared to the case where the minimum cross-sectional area Sa (min) of the descending bottom region 34e is larger than the reference cross-sectional area S0. In this state, it becomes easier for the solid material 60 to reach the cross section of the flow path passing through the bottom region 34d. Moreover, compared to the case where the minimum cross-sectional area Sb (min) of the up-bottom area 34f is larger than the reference cross-sectional area S0, the flow velocity when the solid material 60 passes through the channel cross section passing through the up-bottom area 34e can be made faster. As a result, the driving force in the flow direction of the solid matter 60 attempting to pass through the bottom region 34b can be increased, which contributes to suppressing solid matter clogging. Further, by setting Sa(min)<Sb(min), it is possible to increase the flow rate at the location where Sa(min) is achieved, while suppressing solid clogging at the location where Sb(min) is easily clogged.

下り流路40は、下り流路40において下り底部領域34eの上流端(位置Pa4)を通る流路断面から上流側に設けられ、その流路断面に連続する上流側流路部64を備える。上流側流路部64の上流端(位置Pa7)は、上流側流路部64を通る流路断面がトラップ流路34の入口90を通る水平断面65と点Pfで交差する位置に設けられる。 The downflow path 40 includes an upstream flow path portion 64 that is provided upstream from a flow path cross section passing through the upstream end (position Pa4) of the downhill bottom region 34e in the downflow path 40, and continues to the flow path cross section. The upstream end (position Pa7) of the upstream flow path portion 64 is provided at a position where a flow path cross section passing through the upstream flow path portion 64 intersects a horizontal cross section 65 passing through the inlet 90 of the trap flow path 34 at a point Pf.

上流側流路部64を通る流路断面の断面積Scを想定する。上流側流路部64を通る流路断面全体の断面積Scのなかで最小となるものを上流側流路部64の最小断面積Sc(min)という。図6(A)では、最小断面積Sc(min)となる箇所を示す。 The cross-sectional area Sc of the flow path cross section passing through the upstream flow path section 64 is assumed. The smallest cross-sectional area Sc of the entire flow passage section passing through the upstream flow passage section 64 is referred to as the minimum cross-sectional area Sc (min) of the upstream flow passage section 64 . FIG. 6A shows the location where the minimum cross-sectional area Sc (min) is achieved.

最小断面積Sc(min)は、最小断面積Sa(min)よりも小さくなる。これにより、最小断面積Sc(min)が最小断面積Sa(min)よりも大きくなるより、上流側流路部64を固形物60が通過するときの流速を速くすることができる。ひいては、下り流路40を通過しようとする固形物60の流れ方向での推進力を高めることができ、固形物詰まりの抑制に寄与する。 The minimum cross-sectional area Sc (min) is smaller than the minimum cross-sectional area Sa (min). Thereby, the flow velocity when the solid material 60 passes through the upstream channel portion 64 can be made faster than when the minimum cross-sectional area Sc (min) is larger than the minimum cross-sectional area Sa (min). As a result, the driving force in the flow direction of the solid matter 60 attempting to pass through the downflow path 40 can be increased, contributing to suppressing solid matter clogging.

上り流路42は、上り流路42において上り底部領域34fの下流端(位置Pb4)を通る流路断面から下流側に設けられ、その流路断面に連続する下流側流路部66を備える。下流側流路部66の下流端(位置Pb7)は、下流側流路部66を通る流路断面が最高水位にある封水38の下流側封水面38aと点Pgで交差する位置に設けられる。ここでの下流側封水面38aとは最高水位にある封水38の下流側の水面をいう。下流側流路部66を通る流路断面全体の断面積Sdのなかで最小となるものを最小断面積Sd(min)という。図6(A)では、最小断面積Sd(min)となる箇所を示す。 The upstream channel 42 is provided downstream from a channel cross section passing through the downstream end (position Pb4) of the upstream bottom region 34f in the upstream channel 42, and includes a downstream channel section 66 that is continuous with the channel section. The downstream end (position Pb7) of the downstream flow path portion 66 is provided at a position where the cross section of the flow path passing through the downstream flow path portion 66 intersects the downstream water seal surface 38a of the water seal 38 at the highest water level at a point Pg. . The downstream water seal surface 38a here refers to the water surface downstream of the water seal 38 at the highest water level. The minimum cross-sectional area Sd (min) of the entire cross-sectional area of the flow path passing through the downstream flow path section 66 is referred to as the minimum cross-sectional area Sd (min). FIG. 6A shows the location where the minimum cross-sectional area Sd (min) is achieved.

最小断面積Sd(min)は、上り底部領域34fを通る流路断面の最大断面積Sb(max)よりも小さくなる。これにより、最小断面積Sd(min)が最大断面積Sb(max)よりも大きくなるより、下流側流路部66を固形物60が通過するときの流速を速くすることができる。ひいては、上り流路42を通過しようとする固形物60の流れ方向での推進力を高めることができ、固形物詰まりの抑制に寄与する。 The minimum cross-sectional area Sd (min) is smaller than the maximum cross-sectional area Sb (max) of the flow path cross section passing through the up-bottom region 34f. Thereby, the flow velocity when the solid material 60 passes through the downstream flow path section 66 can be made faster than when the minimum cross-sectional area Sd (min) becomes larger than the maximum cross-sectional area Sb (max). As a result, the driving force in the flow direction of the solid matter 60 attempting to pass through the upflow channel 42 can be increased, which contributes to suppressing solid matter clogging.

図7を参照する。図7(A)は、上り底部領域34fの上流端(位置Pb2)を通る流路断面を示す。図7(B)は、上り底部領域34fにおいて最大下側断面積Sbd(max)となる箇所(位置Pb4)の流路断面を示す。図7(C)は、図7(A)、図7(B)の流路断面の中心Caを合致させた状態で、両者の流路断面の一部を示す図である。 See FIG. 7. FIG. 7(A) shows a cross section of the flow path passing through the upstream end (position Pb2) of the rising bottom region 34f. FIG. 7B shows a flow path cross section at a location (position Pb4) where the maximum lower cross-sectional area Sbd (max) is reached in the up-bottom region 34f. FIG. 7(C) is a diagram showing a part of the flow path cross sections of FIG. 7(A) and FIG. 7(B), with the centers Ca of the flow path cross sections of both FIGS. 7(A) and 7(B) aligned.

トラップ流路34は、流路断面において、下方にある下面部70と、横方向Q両側にある一対の横面部72と、トラップ流路34の下面部70と横面部72を接続する凹曲面状のコーナー部74と、を備える。トラップ流路34の流路断面を縦方向Pに二等分する縦二等分線Lb1、横方向Qに二等分する横二等分線Lb2を想定する。縦二等分線Lb1と横二等分線Lb2の交点を流路断面の中心Caといい、その中心Caを円中心とする半径方向を流路断面の径方向という。縦二等分線Lb1と横面部72の交点を流路断面の横面部中央位置Pe1、横二等分線Lb2と下面部70の交点を流路断面の下面部中央位置Pe2という。 The trap flow path 34 has a concave curved surface that connects the lower surface portion 70 located below, a pair of lateral surface portions 72 on both sides in the lateral direction Q, and the lower surface portion 70 and the lateral surface portions 72 of the trap flow path 34 in the flow path cross section. A corner portion 74 is provided. A vertical bisector line Lb1 bisects the channel cross section of the trap channel 34 into two equal parts in the vertical direction P, and a horizontal bisector line Lb2 bisects the channel cross section in the horizontal direction Q into two equal parts. The intersection of the vertical bisector Lb1 and the horizontal bisector Lb2 is referred to as the center Ca of the flow path cross section, and the radial direction with the center Ca as the center of the circle is referred to as the radial direction of the flow path cross section. The intersection of the vertical bisector Lb1 and the horizontal surface portion 72 is referred to as the center position Pe1 of the horizontal surface portion of the flow path cross section, and the intersection of the horizontal bisector Lb2 and the lower surface portion 70 is referred to as the center position Pe2 of the lower surface portion of the flow path cross section.

コーナー部74は、単数の曲率半径を持ち、流路断面の径方向外側に凹となる凹曲面状をなす。コーナー部74は、流路断面の横面部中央位置Pe1から下面部中央位置Pe2に向かう途中で最も曲率半径が小さくなる箇所となる。図7(C)では、各流路断面のコーナー部74の範囲を示す。 The corner portion 74 has a single radius of curvature, and forms a concave curved surface that is concave toward the outside in the radial direction of the flow path cross section. The corner portion 74 is a portion where the radius of curvature becomes the smallest on the way from the center position Pe1 of the lateral surface portion of the channel cross section to the center position Pe2 of the lower surface portion. FIG. 7C shows the range of the corner portion 74 of each channel cross section.

上り底部領域34fの上流端を通る流路断面から最大下側断面積Sbd(max)となる箇所に向かうに連れて、コーナー部74の曲率半径が徐々に小さくなる。上り底部領域34fの上流端を通る流路断面(図7(A)の流路断面)のコーナー部74の曲率半径R1を想定する。また、最大下側断面積Sbd(max)となる箇所の流路断面(図7(B)の流路断面)のコーナー部74の曲率半径R2を想定する。このとき、後者の曲率半径R2が前者の曲率半径R1よりも小さくなることになる。また、この上り底部領域34fの上流端を通る流路断面から最大下側断面積Sbd(max)となる箇所に向かうに連れて、コーナー部74は徐々に下方にずれるように設けられる。また、この上り底部領域34fの上流端を通る流路断面から最大下側断面積Sbd(max)となる箇所に向かうに連れて、下面部70の曲率半径は徐々に大きくなるように設けられる。これにより、この流れ方向範囲で、流路断面の下面部70全体の位置が下側に広がり難くなる。ひいては、その範囲において、トラップ流路34を形成するトラップ管路の下側にあるスペースを確保し易くなり、そこに排水ソケットを配置し易くなる。 The radius of curvature of the corner portion 74 gradually decreases from the flow path cross section passing through the upstream end of the up-bottom region 34f toward the location where the maximum lower cross-sectional area Sbd(max) is reached. The radius of curvature R1 of the corner portion 74 of the flow path cross section (the flow path cross section in FIG. 7(A)) passing through the upstream end of the rising bottom region 34f is assumed. Furthermore, the radius of curvature R2 of the corner portion 74 of the flow path cross section (the flow path cross section in FIG. 7(B)) at the location where the maximum lower cross-sectional area Sbd (max) is assumed is assumed. At this time, the latter radius of curvature R2 will be smaller than the former radius of curvature R1. Further, the corner portion 74 is provided so as to gradually shift downward from the flow path cross section passing through the upstream end of the up-bottom region 34f toward the location where the maximum lower cross-sectional area Sbd (max) is reached. Further, the radius of curvature of the lower surface portion 70 is provided so as to gradually increase from the flow path cross section passing through the upstream end of the rising bottom region 34f toward the location where the maximum lower cross-sectional area Sbd (max) is reached. Thereby, in this flow direction range, the position of the entire lower surface portion 70 of the flow path cross section becomes difficult to expand downward. Consequently, in this range, it becomes easier to secure a space below the trap conduit that forms the trap flow path 34, and it becomes easier to arrange the drain socket there.

なお、同様の観点から、この流れ方向範囲において、流路断面の縦方向寸法の拡大量より横方向寸法の拡大量が大きくなってもよい。これにより、上り流路42の下側断面積Sbdを徐々に大きくする流れ方向範囲で、流路断面の下面部70全体の位置が下側に広がり難くなり、同様の効果を得ることができる。 From the same viewpoint, in this flow direction range, the amount of expansion in the lateral dimension of the cross section of the flow path may be larger than the amount of expansion in the vertical dimension. Thereby, in the flow direction range in which the lower cross-sectional area Sbd of the upstream flow path 42 is gradually increased, the position of the entire lower surface portion 70 of the flow path cross section becomes difficult to expand downward, and the same effect can be obtained.

図8を参照する。トラップ流路34は、便鉢部12の底部に開口する入口90と、入口90の前端部90aにおいて便鉢部12の底部に連結されトラップ流路34の下流側に向けて延びる連結面92と、を備える。入口90は、便鉢部12の底部にある溜水部20の底面部20aに開口し、入口90の前端部90aは、溜水部20の底面部20aに連結される。連結面92は、トラップ流路34の入口90の平面視での中心Cb(図1参照)を通る鉛直線に沿った切断面において、単数の曲率半径を持つ凸曲面状をなす。 Refer to FIG. The trap channel 34 includes an inlet 90 that opens at the bottom of the toilet bowl section 12, and a connecting surface 92 that is connected to the bottom of the toilet bowl section 12 at a front end 90a of the inlet 90 and extends toward the downstream side of the trap channel 34. , is provided. The inlet 90 opens to the bottom 20a of the water reservoir 20 at the bottom of the toilet bowl 12, and the front end 90a of the inlet 90 is connected to the bottom 20a of the water reservoir 20. The connecting surface 92 has a convex curved shape with a single radius of curvature in a cut plane along a vertical line passing through the center Cb (see FIG. 1) of the inlet 90 of the trap channel 34 in a plan view.

便鉢部12及びトラップ流路34は、便鉢部12の底部における後面から下り流路40の上流端部における後面まで連続する入口後面94を備える。入口後面94は、例えば、最高水位にある封水38の上流側封水面38cから下方に設けられる。入口後面94の水平断面の後端位置を入口後面94のある上下方向範囲で連ねた線Lcにおいて最も前側にある位置を入口後面94の最前位置94aという。この最前位置94aを決めるにあたり、この入口後面94のある上下方向範囲は、上流側封水面38cから下方の範囲のみを考慮してもよい。本実施形態では、トラップ流路34の入口90の中心Cbを通り前後方向Yに沿って切断した側面断面において、入口後面94の最も前側にある位置が入口後面94の最前位置94aでもある。入口後面94は、側面視において、上方から最前位置94aに向かうに連れて徐々に前方に延びるように設けられ、最前位置94aから下方に向かうに連れて徐々に後方に延びるように設けられる。 The toilet bowl section 12 and the trap channel 34 include an inlet rear surface 94 that is continuous from the rear surface at the bottom of the toilet bowl section 12 to the rear surface at the upstream end of the downflow channel 40 . The inlet rear surface 94 is provided, for example, below the upstream water seal surface 38c of the water seal 38 at the highest water level. The most forward position on a line Lc connecting the rear end positions of the horizontal section of the entrance rear surface 94 in a certain vertical range of the entrance rear surface 94 is referred to as the frontmost position 94a of the entrance rear surface 94. In determining the foremost position 94a, only the range below the upstream water sealing surface 38c may be considered as the vertical range in which the inlet rear surface 94 is located. In the present embodiment, in a side cross section cut along the front-rear direction Y through the center Cb of the inlet 90 of the trap channel 34, the most forward position of the inlet rear surface 94 is also the most forward position 94a of the inlet rear surface 94. In side view, the entrance rear surface 94 is provided so as to gradually extend forward as it goes from above toward the frontmost position 94a, and is provided so as to gradually extend rearward as it goes downward from the frontmost position 94a.

入口後面94の最前位置94aは、連結面92の下端92aよりも上方に位置している。また、入口後面94の最前位置94aは、連結面92の上端92bよりも下方に位置している。本実施形態において、これらの条件は、トラップ流路34の入口90の中心Cbを通り前後方向Yに沿って切断した側面断面において満たされる。 The frontmost position 94a of the rear entrance surface 94 is located above the lower end 92a of the connecting surface 92. Further, the frontmost position 94a of the rear entrance surface 94 is located below the upper end 92b of the connecting surface 92. In this embodiment, these conditions are satisfied in a side cross section cut along the front-rear direction Y passing through the center Cb of the inlet 90 of the trap channel 34.

便鉢部12の底部に溜まった固形物60をトラップ流路34内に引き込むとき、固形物60は便鉢部12の後壁面等を形成する入口後面94に接触しつつ下向きに流れようとする。入口後面94の最前位置94aが連結面92の下端92aよりも上方に位置することで、その連結面92の下端92aよりも下方に位置する場合と比べ、入口後面94の最前位置94aに固形物60が引っ掛かり難くなる。ひいては、固形物60をトラップ流路34内にスムーズに引き込み易くなり、トラップ流路34の入口90周りでの固形物詰まりの抑制に寄与する。 When the solid matter 60 accumulated at the bottom of the toilet bowl section 12 is drawn into the trap channel 34, the solid matter 60 tries to flow downward while coming into contact with the inlet rear surface 94 forming the rear wall surface of the toilet bowl section 12. . Since the frontmost position 94a of the inlet rear surface 94 is located above the lower end 92a of the connecting surface 92, solid objects are not placed at the frontmost position 94a of the inlet rear surface 94 than when the frontmost position 94a of the inlet rear surface 94 is located lower than the lower end 92a of the connecting surface 92. 60 becomes difficult to catch. In turn, it becomes easier to draw the solid matter 60 into the trap channel 34 smoothly, which contributes to suppressing solid matter clogging around the entrance 90 of the trap channel 34.

以下、側面視での条件を説明する。連結面92の下端92aを通る流路断面の重心位置Ga、上り流路42の下流端(溢れ縁44)を通る水平断面での重心位置Gbを想定する。ここでの重心位置とは言及している断面の重心(幾何中心)のある位置をいう。上り流路42の下流端は封水38の下流側封水面38aと重なる位置である。基準流路断面の二等分位置Pc(1/2)と重心位置Gaを結ぶ直線La、二等分位置Pc(1/2)と重心位置Gbを結ぶ直線Lbを想定する。このとき、直線Laと直線Lbのなす鋭角での角度θは、好ましくは、105°以下となる。角度θは、95°以下、90°以下の順で、より好ましい。角度θの下限値は特に限定されないが、例えば、80°以上となる。このような急な角度θの場合、トラップ流路34内で固形物詰まりが発生し易くなる。このような状況のもとでも、前述のように固形物詰まりの発生を抑制できる。なお、角度θは、X°超であってもよい。 The conditions in side view will be explained below. Assume a center of gravity position Ga of a flow path cross section passing through the lower end 92a of the connecting surface 92, and a center of gravity position Gb of a horizontal cross section passing through the downstream end (overflow edge 44) of the upstream flow path 42. The centroid position here refers to the position of the centroid (geometric center) of the mentioned cross section. The downstream end of the upflow channel 42 is a position that overlaps with the downstream water seal surface 38a of the water seal 38. Assume a straight line La connecting the bisecting position Pc (1/2) of the reference flow path cross section and the center of gravity position Ga, and a straight line Lb connecting the bisecting position Pc (1/2) and the center of gravity position Gb. At this time, the acute angle θ between the straight line La and the straight line Lb is preferably 105° or less. The angle θ is more preferably in the order of 95° or less and 90° or less. The lower limit value of the angle θ is not particularly limited, but is, for example, 80° or more. In the case of such a steep angle θ, solid matter clogging is likely to occur within the trap channel 34. Even under such circumstances, the occurrence of solid clogging can be suppressed as described above. Note that the angle θ may be greater than X°.

以上の便器10の変形形態を説明する。 Modifications of the above toilet bowl 10 will be explained.

便器排水路16は、排水ソケットを用いずに排水管に接続されてもよい。この場合、便器排水路16は下降流路36を備えずともよい。便器10はジェット吐水孔を備えていてもよい。 The toilet bowl drain 16 may be connected to a drain pipe without using a drain socket. In this case, the toilet drainage channel 16 may not include the descending flow channel 36. The toilet bowl 10 may be equipped with a jet water discharge hole.

上り流路42の体積Vbは、下り流路40の体積Va以下であってもよい。上り流路42の最大下側断面積Sbd(max)は、下り流路40の最大下側断面積Sad(max)以下であってもよい。上り流路42の下側断面変化量ΔSbdは、下り流路40の下側断面変化量ΔSad以下であってもよい。上り流路42の下側断面変化量ΔSbdは、上り流路42の上側断面変化量ΔSbu以下であってもよい。上り流路42の断面積変化量ΔSbは、下り流路40の断面積変化量ΔSa以下であってもよい。下り流路40の上流側流路部64における最小断面積Sc(min)は、下り流路40の下り底部領域34eにおける最小断面積Sa(min)以上となってもよい。上り流路42の下流側流路部66の最小断面積Sd(min)は、上り底部領域34fの最大断面積Sb(max)以上であってもよい。 The volume Vb of the upstream channel 42 may be less than or equal to the volume Va of the downstream channel 40. The maximum lower cross-sectional area Sbd(max) of the upstream flow path 42 may be less than or equal to the maximum lower cross-sectional area Sad(max) of the downstream flow path 40. The amount of change ΔSbd in the lower side cross section of the upstream flow path 42 may be equal to or less than the amount of change ΔSad in the lower side cross section of the downstream flow path 40 . The lower side cross-sectional change amount ΔSbd of the upstream flow path 42 may be equal to or less than the upper side cross-sectional change amount ΔSbu of the upstream flow path 42 . The cross-sectional area change amount ΔSb of the upstream flow path 42 may be less than or equal to the cross-sectional area change amount ΔSa of the downstream flow path 40. The minimum cross-sectional area Sc (min) in the upstream flow path portion 64 of the down flow path 40 may be greater than or equal to the minimum cross sectional area Sa (min) in the down bottom region 34 e of the down flow path 40 . The minimum cross-sectional area Sd (min) of the downstream flow path portion 66 of the upstream flow path 42 may be greater than or equal to the maximum cross-sectional area Sb (max) of the upstream bottom region 34f.

入口後面94の最前位置94aは連結面92の下端92aの位置よりも下方に位置していてもよい。 The frontmost position 94a of the rear entrance surface 94 may be located below the position of the lower end 92a of the connecting surface 92.

トラップ流路34のコーナー部74の曲率半径は、上り底部領域34fの下流端を通る流路断面から最大下側断面積Sbd(max)となる箇所に向かうに連れて大きくなってもよいし、変化しなくともよい。 The radius of curvature of the corner portion 74 of the trap flow path 34 may increase from the flow path cross section passing through the downstream end of the up-bottom region 34f toward the point where the maximum lower cross-sectional area Sbd (max) is reached. It doesn't have to change.

以上の実施形態及び変形形態は例示である。これらを抽象化した技術的思想は、実施形態及び変形形態の内容に限定的に解釈されるべきではない。実施形態及び変形形態の内容は、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態」との表記を付して強調している。しかしながら、そのような表記のない内容でも設計変更が許容される。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。実施形態及び変形形態において言及している構造/数値には、製造誤差等を考慮すると同一とみなすことができるものも当然に含まれる。 The above embodiments and modifications are illustrative. These abstracted technical ideas should not be interpreted as being limited to the contents of the embodiments and modified forms. The contents of the embodiments and modified forms may be subject to many design changes such as changes, additions, and deletions of constituent elements. In the embodiments described above, the content that allows such design changes is emphasized by adding the notation "embodiment". However, design changes are allowed even if there is no such notation. The hatching added to the cross section of the drawing does not limit the material of the hatched object. Naturally, the structures/numerical values referred to in the embodiments and modifications include those that can be considered to be the same when manufacturing errors and the like are taken into consideration.

以上の構成要素の任意の組み合わせも有効である。例えば、実施形態に対して他の実施形態の任意の説明事項を組み合わせてもよいし、変形形態に対して実施形態及び他の変形形態の任意の説明事項を組み合わせてもよい。 Any combination of the above components is also effective. For example, an embodiment may be combined with any description of another embodiment, or a modified form may be combined with any description of the embodiment and other modified forms.

10…便器、12…便鉢部、14…吐水部、34…トラップ流路、34a…最下端、34b…底部領域、34c…上端位置、34d…最底部領域、34e…下り底部領域、34f…上り底部領域、38…封水、40…下り流路、42…上り流路、48…旋回流、60…固形物、62d…下半部、62u…上半部、64…上流側流路部、66…下流側流路部、70…下面部、72…横面部、74…コーナー部、90…入口、92…連結面、92a…下端、92b…上端、94…入口後面、94a…最前位置。 DESCRIPTION OF SYMBOLS 10... Toilet bowl, 12... Toilet bowl part, 14... Water discharge part, 34... Trap flow path, 34a... Bottom end, 34b... Bottom area, 34c... Upper end position, 34d... Bottom area, 34e... Downward bottom area, 34f... Upward bottom region, 38...Water seal, 40...Downflow path, 42...Upflow path, 48...Swirling flow, 60...Solid matter, 62d...Lower half, 62u...Upper half, 64...Upstream flow path , 66...Downstream flow path section, 70...Bottom surface section, 72...Side surface section, 74...Corner section, 90...Inlet, 92...Connection surface, 92a...Lower end, 92b...Upper end, 94...Inlet rear surface, 94a...Frontmost position .

Claims (13)

便鉢部と、
前記便鉢部内に洗浄水を吐き出すことにより前記便鉢部内に旋回流を形成するための吐水部と、
前記便鉢部の底部に接続されるトラップ流路と、を備え、
前記トラップ流路は、前記便鉢部の底部に接続される下り流路と、前記下り流路の下流側端部に接続される上り流路と、を備え、
前記下り流路の上面と前記上り流路の上面とは前記トラップ流路の流れ方向に連続する壁部の別々の部位によって形成され、
前記トラップ流路において前記トラップ流路の最下端を通る基準流路断面の縦方向での二等分位置から下方を底部領域とし、前記底部領域における前記下り流路及び前記上り流路それぞれの体積Va(1/2)、体積Vb(1/2)を想定したとき、
前記体積Vb(1/2)は、前記体積Va(1/2)よりも大きい便器。
A toilet bowl part,
a water spouting section for forming a swirling flow within the toilet bowl section by discharging wash water into the toilet bowl section;
a trap flow path connected to the bottom of the toilet bowl section,
The trap flow path includes a down flow path connected to the bottom of the toilet bowl part, and an up flow path connected to the downstream end of the down flow path,
The upper surface of the downstream flow path and the upper surface of the upstream flow path are formed by separate parts of a wall portion that is continuous in the flow direction of the trap flow path,
In the trap flow path, a bottom region is defined as a bottom region from a bisecting position in the vertical direction of a reference flow path cross section passing through the lowest end of the trap flow path, and the volume of each of the down flow path and the up flow path in the bottom region When assuming Va (1/2) and volume Vb (1/2),
The volume Vb (1/2) is larger than the volume Va (1/2) of the toilet bowl.
前記トラップ流路において前記トラップ流路の最下端を通る流路断面の上端位置から下方における前記下り流路及び前記上り流路それぞれの体積Va、Vbを想定したとき、
前記体積Vbは、前記体積Vaよりも大きい請求項1に記載の便器。
When assuming the respective volumes Va and Vb of the down flow path and the up flow path below from the upper end position of the flow path cross section passing through the lowest end of the trap flow path in the trap flow path,
The toilet bowl according to claim 1, wherein the volume Vb is larger than the volume Va.
前記底部領域において前記トラップ流路の最底部領域の上流端から上流側を下り底部領域といい、前記最底部領域の下流端から下流側を上り底部領域といい、
前記下り底部領域を通る流路断面の下半部の下側断面積Sadのなかで最大となるものを最大下側断面積Sad(max)といい、
前記上り底部領域を通る流路断面の下半部の下側断面積Sbdのなかで最大となるものを最大下側断面積Sbd(max)というとき、
前記最大下側断面積Sbd(max)は、前記最大下側断面積Sad(max)よりも大きい請求項1に記載の便器。
In the bottom region, the upstream side from the upstream end of the bottommost region of the trap flow path is referred to as a downward bottom region, and the downstream side from the downstream end of the bottommost region is referred to as an upward bottom region;
The maximum lower cross-sectional area Sad (max) of the lower half of the cross-section of the flow path passing through the descending bottom region is referred to as the maximum lower cross-sectional area Sad (max),
When the maximum lower cross-sectional area Sbd of the lower half of the flow path cross section passing through the up-bottom region is referred to as the maximum lower cross-sectional area Sbd (max),
The toilet bowl according to claim 1, wherein the maximum lower cross-sectional area Sbd (max) is larger than the maximum lower cross-sectional area Sad (max).
前記基準流路断面の下半部の断面積を基準下側断面積S0dといい、
前記基準下側断面積S0dから前記下り流路の前記最大下側断面積Sad(max)を減算した減算値を下側断面積変化量ΔSad(=S0d-Sad(max))といい、
前記上り流路の前記最大下側断面積Sbd(max)から前記基準下側断面積S0dを減算した減算値を下側断面積変化量ΔSbd(=Sbd(max)-S0d)というとき、
前記下側断面積変化量ΔSbdは、前記下側断面積変化量ΔSadよりも小さい請求項3に記載の便器。
The cross-sectional area of the lower half of the reference flow path cross section is referred to as the reference lower cross-sectional area S0d,
The subtraction value obtained by subtracting the maximum lower cross-sectional area Sad (max) of the downstream flow path from the reference lower cross-sectional area S0d is referred to as the lower cross-sectional area change amount ΔSad (= S0d - Sad (max)),
When the subtraction value obtained by subtracting the reference lower cross-sectional area S0d from the maximum lower cross-sectional area Sbd (max) of the upstream flow path is referred to as the lower cross-sectional area change amount ΔSbd (= Sbd (max) - S0d),
The toilet bowl according to claim 3, wherein the lower cross-sectional area change amount ΔSbd is smaller than the lower cross-sectional area change amount ΔSad.
前記基準流路断面の下半部の断面積を基準下側断面積S0d、前記基準流路断面の上半部の断面積を基準上側断面積S0uといい、
前記上り底部領域を通る流路断面の上半部の上側断面積Sbuのなかで最大となるものを最大上側断面積Sbu(max)といい、
前記最大下側断面積Sbd(max)と前記基準下側断面積S0dとの差分絶対値を下側断面積変化量ΔSbdといい、
前記最大上側断面積Sbu(max)と前記基準上側断面積S0uとの差分絶対値を上側断面積変化量ΔSbuというとき、
前記下側断面積変化量ΔSbdは、前記上側断面積変化量ΔSbuよりも大きい請求項3に記載の便器。
The cross-sectional area of the lower half of the reference flow path cross section is referred to as a reference lower cross-sectional area S0d, the cross-sectional area of the upper half of the reference flow path cross-section is referred to as a reference upper cross-sectional area S0u,
The maximum upper cross-sectional area Sbu (max) of the upper half of the flow path cross-section passing through the ascending bottom region is referred to as the maximum upper cross-sectional area Sbu (max);
The absolute value of the difference between the maximum lower cross-sectional area Sbd (max) and the reference lower cross-sectional area S0d is referred to as lower cross-sectional area change amount ΔSbd,
When the absolute value of the difference between the maximum upper cross-sectional area Sbu (max) and the reference upper cross-sectional area S0u is referred to as upper cross-sectional area change amount ΔSbu,
The toilet bowl according to claim 3, wherein the lower cross-sectional area variation ΔSbd is larger than the upper cross-sectional area variation ΔSbu.
前記基準流路断面全体の断面積を基準断面積S0といい、
前記下り底部領域を通る流路断面全体の断面積Saのなかで最大となるものを最大断面積Sa(max)といい、
前記上り底部領域を通る流路断面全体の断面積Sbのなかで最大となるものを最大断面積Sb(max)といい、
前記基準断面積S0から前記最大断面積Sa(max)を減算した減算値を前記下り流路の断面積変化量ΔSa(=S0-Sa(max))といい、
前記最大断面積Sb(max)から前記基準断面積S0を減算した減算値を前記上り流路の断面積変化量ΔSb(=Sb(max)-S0)というとき、
前記断面積変化量ΔSbは、前記断面積変化量ΔSaよりも小さい請求項3に記載の便器。
The cross-sectional area of the entire reference flow path cross section is referred to as a reference cross-sectional area S0,
The maximum cross-sectional area Sa of the entire cross-sectional area of the flow path passing through the descending bottom region is referred to as the maximum cross-sectional area Sa (max),
The maximum cross-sectional area Sb of the entire cross-sectional area of the flow path passing through the up-bottom region is referred to as the maximum cross-sectional area Sb (max),
The subtraction value obtained by subtracting the maximum cross-sectional area Sa (max) from the reference cross-sectional area S0 is referred to as the cross-sectional area change amount ΔSa (= S0 - Sa (max)) of the downstream flow path,
When the subtraction value obtained by subtracting the reference cross-sectional area S0 from the maximum cross-sectional area Sb (max) is referred to as the cross-sectional area change amount ΔSb (= Sb (max) - S0) of the upstream flow path,
The toilet bowl according to claim 3, wherein the cross-sectional area change amount ΔSb is smaller than the cross-sectional area change amount ΔSa.
前記基準流路断面全体の断面積を基準断面積S0といい、
前記下り底部領域を通る流路断面全体の断面積Saのなかで最小となるものを最小断面積Sa(min)といい、
前記上り底部領域を通る流路断面全体の断面積Sbのなかで最小となるものを最小断面積Sb(min)というとき、
前記トラップ流路は、Sa(min)<Sb(min)<S0の条件を満足する請求項3に記載の便器。
The cross-sectional area of the entire reference flow path cross section is referred to as a reference cross-sectional area S0,
The smallest cross-sectional area Sa of the entire cross-section of the flow path passing through the descending bottom region is called the minimum cross-sectional area Sa (min),
When the minimum cross-sectional area Sb of the entire cross-sectional area of the flow path passing through the up-bottom region is referred to as the minimum cross-sectional area Sb (min),
The toilet bowl according to claim 3, wherein the trap flow path satisfies the condition Sa (min) < Sb (min) < S0.
前記下り流路は、前記下り流路において前記下り底部領域の上流端を通る流路断面から上流側に設けられ、その流路断面に連続する上流側流路部を備え、
前記下り底部領域を通る流路断面全体の断面積Saのなかで最小となるものを最小断面積Sa(min)といい、
前記上流側流路部を通る流路断面全体の断面積Scのなかで最小となるものを最小断面積Sc(min)というとき、
前記最小断面積Sc(min)は、前記最小断面積Sa(min)よりも小さい請求項3に記載の便器。
The downward flow path is provided upstream from a flow path cross section passing through the upstream end of the downward bottom region in the downward flow path, and includes an upstream flow path portion that is continuous with the flow path cross section,
The smallest cross-sectional area Sa of the entire cross-section of the flow path passing through the descending bottom region is called the minimum cross-sectional area Sa (min),
When the minimum cross-sectional area Sc of the entire cross-sectional area of the flow path passing through the upstream flow path section is referred to as the minimum cross-sectional area Sc (min),
The toilet bowl according to claim 3, wherein the minimum cross-sectional area Sc (min) is smaller than the minimum cross-sectional area Sa (min).
前記トラップ流路は、前記便鉢部の底部に開口する入口と、前記入口の前端部において前記便鉢部の底部に連結され前記トラップ流路の下流側に向けて延びる凸曲面状の連結面と、を備え、
前記便鉢部及び前記トラップ流路は、前記便鉢部の底部における後面から前記下り流路の上流端部における後面まで連続する入口後面を備え、
前記入口後面の水平断面の後端位置を前記入口後面のある上下方向範囲で連ねた線において最も前側にある位置を前記入口後面の最前位置というとき、
前記最前位置は、前記連結面の下端よりも上方に位置する請求項8に記載の便器。
The trap channel includes an inlet that opens at the bottom of the toilet bowl, and a convex curved connecting surface that is connected to the bottom of the toilet bowl at the front end of the inlet and extends toward the downstream side of the trap channel. and,
The toilet bowl portion and the trap channel include an inlet rear surface that is continuous from the rear surface at the bottom of the toilet bowl portion to the rear surface at the upstream end of the downflow channel,
When the most forward position in a line connecting the rear end position of the horizontal section of the rear entrance surface in a certain vertical range of the rear entrance surface is referred to as the frontmost position of the rear entrance surface,
The toilet bowl according to claim 8, wherein the foremost position is located above a lower end of the connecting surface.
前記上り流路は、前記上り流路において前記上り底部領域の下流端を通る流路断面から下流側に設けられ、その流路断面に連続する下流側流路部を備え、
前記上り底部領域を通る流路断面全体の断面積Sbのなかで最大となるものを最大断面積Sb(max)といい、
前記下流側流路部を通る流路断面全体の断面積Sdのなかで最小となるものを最小断面積Sd(min)というとき、
前記最小断面積Sd(min)は、前記最大断面積Sb(max)よりも小さい請求項3に記載の便器。
The upstream flow path is provided downstream from a flow path cross section passing through the downstream end of the upstream bottom region in the upstream flow path, and includes a downstream flow path section that is continuous with the flow path cross section,
The maximum cross-sectional area Sb of the entire cross-sectional area of the flow path passing through the up-bottom region is referred to as the maximum cross-sectional area Sb (max),
When the minimum cross-sectional area Sd (min) of the entire cross-sectional area of the flow path passing through the downstream flow path section is referred to as the minimum cross-sectional area Sd (min),
The toilet bowl according to claim 3, wherein the minimum cross-sectional area Sd (min) is smaller than the maximum cross-sectional area Sb (max).
前記トラップ流路は、流路断面において、前記トラップ流路の下面部と横面部を接続する凹曲面状のコーナー部を備え、
前記上り底部領域の上流端を通る流路断面から前記最大下側断面積Sbd(max)となる箇所に向かうに連れて、前記コーナー部の曲率半径が小さくなる請求項3に記載の便器。
The trap flow path includes a concave curved corner portion connecting a lower surface portion and a side surface portion of the trap flow path in a cross section of the flow path,
4. The toilet bowl according to claim 3, wherein the radius of curvature of the corner portion decreases from the flow path cross section passing through the upstream end of the up-bottom region toward the location where the maximum lower cross-sectional area Sbd(max) is reached.
前記トラップ流路は、前記便鉢部の底部に開口する入口と、前記入口の前端部において前記便鉢部の底部に連結され前記トラップ流路の下流側に向けて延びる凸曲面状の連結面と、を備え、
側面視において、前記連結面の下端を通る流路断面の重心位置Gaと、前記上り流路の下流端を通る水平断面での重心位置Gbと、前記基準流路断面の前記二等分位置と前記重心位置Gaを結ぶ直線Laと、前記基準流路断面の前記二等分位置と前記重心位置Gbを結ぶ直線Lbとを想定したとき、前記直線Laと前記直線Lbのなす鋭角での角度θは105°以下である請求項1に記載の便器。
The trap channel includes an inlet that opens at the bottom of the toilet bowl, and a convex curved connecting surface that is connected to the bottom of the toilet bowl at the front end of the inlet and extends toward the downstream side of the trap channel. and,
In a side view, a center of gravity position Ga of a flow path cross section passing through the lower end of the connecting surface, a center of gravity position Gb of a horizontal cross section passing through the downstream end of the upstream flow path, and the bisecting position of the reference flow path cross section. Assuming a straight line La connecting the center of gravity position Ga and a straight line Lb connecting the bisecting position of the reference flow path cross section and the center of gravity position Gb, an acute angle θ between the straight line La and the straight line Lb The toilet bowl according to claim 1, wherein is 105° or less.
固形物の排出を促進するジェット水流を前記トラップ流路内に形成するためのジェット吐水孔を備えていない請求項1に記載の便器。 The toilet bowl according to claim 1, which does not include a jet water discharge hole for forming a jet water flow in the trap channel to promote discharge of solids.
JP2022088730A 2022-05-31 2022-05-31 toilet bowl Pending JP2023176449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022088730A JP2023176449A (en) 2022-05-31 2022-05-31 toilet bowl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022088730A JP2023176449A (en) 2022-05-31 2022-05-31 toilet bowl

Publications (1)

Publication Number Publication Date
JP2023176449A true JP2023176449A (en) 2023-12-13

Family

ID=89122975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022088730A Pending JP2023176449A (en) 2022-05-31 2022-05-31 toilet bowl

Country Status (1)

Country Link
JP (1) JP2023176449A (en)

Similar Documents

Publication Publication Date Title
JP5093627B1 (en) Flush toilet
JP5971612B2 (en) Flush toilet
US20120284911A1 (en) Drainage channel of flush toilet
JP5234500B2 (en) Flush toilet
JP6792187B2 (en) Drainage socket and flush toilet equipped with it
JP7441872B2 (en) flush toilet
EP3219861B1 (en) Flush toilet
JP2009243052A (en) Water closet
CN107090887B (en) Flush toilet
JP6627319B2 (en) Flush toilet
JP2023176449A (en) toilet bowl
JP6826760B2 (en) Flush toilet
JP5715403B2 (en) Drainage channel for flush toilet
JP2005113643A (en) Flush toilet
JP6880470B2 (en) Flush toilet
JP7402666B2 (en) Drain socket and flush toilet
JP5164022B2 (en) Tank structure of flush toilet
JP2008045277A (en) Flush toilet bowl
JP6079967B2 (en) Flush toilet
JP6351064B2 (en) Flush toilet
JP6256676B2 (en) Wash-away toilet
JP7415665B2 (en) flush toilet
JP2023102352A (en) toilet bowl
JP6094939B2 (en) Flush toilet
JP6843368B2 (en) Flush toilet