JP2023173644A - High-floor type tsunami evacuation shelter installed on site such as private garden, school, plant, or fish market - Google Patents

High-floor type tsunami evacuation shelter installed on site such as private garden, school, plant, or fish market Download PDF

Info

Publication number
JP2023173644A
JP2023173644A JP2022086042A JP2022086042A JP2023173644A JP 2023173644 A JP2023173644 A JP 2023173644A JP 2022086042 A JP2022086042 A JP 2022086042A JP 2022086042 A JP2022086042 A JP 2022086042A JP 2023173644 A JP2023173644 A JP 2023173644A
Authority
JP
Japan
Prior art keywords
shelter
floor
tsunami
wall
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022086042A
Other languages
Japanese (ja)
Other versions
JP7212818B1 (en
Inventor
盟子 冨田
Meiko Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022086042A priority Critical patent/JP7212818B1/en
Application granted granted Critical
Publication of JP7212818B1 publication Critical patent/JP7212818B1/en
Publication of JP2023173644A publication Critical patent/JP2023173644A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide a way to survive in a situation in which a tsunami caused by the Nankai Trough mega-earthquake reaches in 1 to 5 minutes and is 10 m to 20 m high, more than 320,000 people die, it is said to occur in the midnight in the midwinter, and people are in their houses broken into pieces.SOLUTION: A high-floor type tsunami evacuation shelter 3 having an entrance/exit facing down is installed in a private garden located at the shortest distance from the house. The high-floor type tsunami evacuation shelter has a non-sealed structure that secures the amount of air needed to survive during submerged in water. A space under the high-floor can be effectively utilized as a carport 11, etc. Residents can be positive because their small gardens are not reduced. As a daytime countermeasure, the shelters are installed on sites such as schools, supermarkets, plants, fish markets, etc. The shelters are also installed on roads, stations, etc. along the way.SELECTED DRAWING: Figure 9

Description

本発明は、自宅の庭、マンション、工場敷地、魚市場、校庭などに設置する高床式津波等シェルターに関する。 The present invention relates to a raised-floor tsunami shelter that can be installed in a home garden, an apartment building, a factory site, a fish market, a schoolyard, etc.

来る30年以内に70~80%の確率で発生すると予測される南海トラフ巨大地震では最大34.4mの津波が最短1~5分で到達する。20m、30mの防潮堤ができるのはいつのことか。津波避難タワーまでは遠い。ともかく逃げ切ることとされるがなすすべもない。諦めが先に立つ。死者数は32万人と予測され、負傷する犠牲者も100万人に近い。真冬の真夜中、深夜の時間帯が最大被害である。すなわち、住民は住居内で就寝中に犠牲になるということである。4人家族として被害住宅戸数は25万戸である。このすべてに津波シェルターを設置することは不可能である。そこで、対策として公助の防潮堤の設置となるがデメリットのほうが多く賛成多数とはならない。共助の津波避難タワーも高齢者は上がり切れない。高台移転も国費の破綻をきたす。その他洪水災害にも対応したい。整備を待っている間に20年、30年の歳月はあっと言う間に過ぎる。そこで、自分の命は自分守る、自分でできること、すなわち自助を考える。自宅の庭、マンション、工場敷地に抵抗がなく設置できる高床式避難シェルターを考えた。特許庁特許情報プラットホームで「シェルター 高床式」で検索したところ、0件であった。「シェルター 2階」で検索したところ14件あった。そのうち、特許文献1は、海上コンテナ―を陸上に移設しシェルターとして利用するものだが、10m、20mの津波高さに対して水没したときに、図8の天井の空気孔214から水が入り、生存できないことは明白で、水没の水中で生存できるとした本発明とは異なる。特許文献2は、住宅建物内に筏をセットして浮上するとしものだが、前提となる内閣府想定の南海トラフによる巨大地震で家自体が吹っ飛び、木端みじんとなる前提を忘れ巨大津波に対しては何の役にも立たない。本発明のシェルターは、自宅が吹っ飛ぶとした10m、20m級の津波を想定しているので想定規模があまりにも異なる。 In the Nankai Trough mega-earthquake, which is predicted to have a 70% to 80% chance of occurring within the next 30 years, a tsunami of up to 34.4 meters can reach the area within 1 to 5 minutes. When will the 20m and 30m seawalls be built? It is far from the tsunami evacuation tower. They try to escape anyway, but there is nothing they can do. Giving up comes first. The death toll is predicted to be 320,000, with nearly 1 million injured. The greatest damage occurs in the middle of the night and late at night in the middle of winter. In other words, residents are sacrificed while sleeping in their residences. For a family of four, the number of damaged houses is 250,000. It is impossible to install tsunami shelters in all of these areas. Therefore, as a countermeasure, it was decided to install a publically assisted seawall, but there were many disadvantages and there was no majority in favor of the idea. Even in the mutual aid tsunami evacuation tower, elderly people cannot climb up. Relocating to higher ground will also result in a loss of national funds. We also want to respond to other flood disasters. 20 or 30 years pass by in the blink of an eye while waiting for maintenance. Therefore, I think about what I can do to protect my own life, that is, help myself. The idea was to create a raised-floor evacuation shelter that could be installed in a home's garden, an apartment building, or a factory site without any resistance. When I searched for ``shelter stilt type'' on the Japan Patent Office's patent information platform, there were 0 results. I searched for "shelter 2nd floor" and found 14 results. Among them, in Patent Document 1, a marine container is moved to land and used as a shelter, but when the container is submerged in water due to a tsunami height of 10 m or 20 m, water enters from the air hole 214 in the ceiling shown in Fig. 8. It is clear that they cannot survive, which is different from the present invention which states that they can survive submerged in water. Patent Document 2 assumes that a raft is set inside a residential building and floats to the surface, but forgetting the premise that the house itself will be blown away and shredded by a huge earthquake due to the Nankai Trough, which is assumed by the Cabinet Office, it is difficult to resist a huge tsunami. is of no use. The shelter of the present invention assumes a 10m or 20m class tsunami that would blow away your home, so the assumed scale is too different.

特許第5020416号Patent No. 5020416 実登3174699号Jito No. 3174699

中川工業所安全資料Nakagawa Kogyo Safety Materials 防波堤の耐津波設計ガイドライン:国土交通省港湾局、2013.9Tsunami-resistant design guidelines for breakwaters: Ministry of Land, Infrastructure, Transport and Tourism, Ports and Harbors Bureau, 2013.9

来る南海トラフ巨大地震では、最大34.4mの津波が最短1~5分で到達する。死者数は32万人とされ、真冬の真夜中の時間帯が最大被害である。すなわち、その時間帯では避難する時間余裕もなく当然就寝中であればなすすべもない。1~5分といえども、地震の揺れが収まるのが2~3分とされるので、揺れが収まったその後の避難では2分しか猶予はない。ともかく躊躇している時間はない。揺れている間に意を決して避難しなければならない。しかし、慌てて外への避難は0.3mの津波でも足元をすくわれ、かえって命を落とす危険がある。日頃から反射神経並みの訓練をしておく必要がある。逃げることができるのは庭、敷地までの範囲といえる。
そこで庭、敷地に、避難シェルターを設置するとする。ところが多くの住宅は庭が狭く、命が助かるとわかっていても庭にそのスペースを割く発想に至らないと考えられる。ただ多くの住居の庭には、すでに駐車場、車庫のカーポートがあり、車という利便性が居住性を上回り、納得すればスペースを割いていると考える。しかし命が助かるというだけでは、100%来るかどうか不明な津波に、自分だけは大丈夫というバイアスが働き、庭の狭いスペースを新たに割くという判断に至らないと思われる。2022年1月のトンガ火山噴火に伴う真夜中の津波警報、注意報ではほとんど人が避難していない。真冬の深夜ということがあり、逃げるのが面倒、億劫、寒いから動きたくない、大した津波でないだろうというバイアス、勝手な判断だ。笛吹けど踊らず。これでは、危機管理を謳う政府としてもどうしようもない。一つには、100%助かるという避難のイメージができていないこと、来たら仕方ないというあきらめが先行していること、避難場所が近くにないことも影響している。
一般に津波避難シェルターは、家族分、住民分の水中での生存必要空気量の体積を確保するとなると大規模で、かつ津波の大きさに耐えるには特別の対策を要する。シェルターとしての要件は、津波の波力に破損しない、転倒しない、滑動しない、浮きあがらない、沈下しない、漂流物の衝突に耐える、水中となっても水圧に耐え、生存必要空気量を保持できることなどである。しかし、特別に頑丈なハッチ扉、密閉構造体の大きなシェルターとすればこれらの条件は満足するが、特段に高価であり、一般の狭い庭、敷地に設置するにはかなりの無理がある。
そこで、シェルターは、開口部を設ける非密閉構造体とする。構造体は箱状、ドーム状で、壁に開口部を設ける。開口部の出入り口4を側面壁5に設ける一般的タイプの地上式シェルター1では、その奥の内部に漂流物防止壁8が必要で、そのため生存必要空気量が前面側は有効でないので、結果、シェルターの外形は大きくなる。また、漂流物防止壁を乗り越えて奥に入るために窮屈で、迅速避難に劣る。また、単にシェルターをそのまま2階に上げる嵩上式2では、出入り口4を側面壁5からとすると相変わらず窮屈さが残り、迅速避難に劣る。そこで、出入り口4を下面壁7に設けると避難が早いと考えた。下面に地面があるのでシェルターを2階とする必要がある。2階とすると、波圧による転倒モーメントが大きくなるので基礎を兼ねた下に空間のある高床式シェルター3とする。アルキメデスの原理で水中の軽い空気は上昇するので箱状の上部に溜まる。ボイルの法則で例えば水深10m、20mとなれば内部空気体積は1/2、1/3に圧縮されるが必ず容積内上部に残る。パスカルの原理で外水圧と内水圧が等しいので側壁、天井壁には深い水深による特別のモーメントがかからない。すなわち、壁の厚みはそれほど厚くなくてよい。海底30mの石がつぶれないのと同じ原理である。ただし、津波の横方向からの波圧は同様にかかる。出入り口を下面に設けることで内空の全体積が生存必要空気量を保持するのに有効に使え、シェルターの外寸法を小さくできる。下面の出入り口は広くとってもその上の生存必要空気量は同じなので複数の人の同時避難も可能となる。側面壁高さを低くもでき、津波の横波力を受ける側面積が少なくなり、転倒モーメントが小さくなる。すなわち、上が小さくなれば下も小さくできるということであり、基礎となる一階部分を小さくすることができる。このことは、設置ための必要面積、所要占用面積が小さくなるということであり、狭い庭、敷地を縮小、圧迫しないという課題が解決できる。ここで側壁高を低く設計する。低くすると津波の横力に対して抵抗モーメントが大きくなるメリットがある。しかし反面、天井が低くなり窮屈となる。シェルターの下面の出入り口高さは、低ければ低いほど津波の波力の影響が少ないが、地面から上がり込みやすいように例えば地面から50cm以上とし、出入り口の下には、踏み台、脚立、はしご、タラップ、ステップ階段を用意する。引き潮時には、2階の下部の出入り口からの水はけが素早く直下に抜ける。津波の1波、2波、その次の波の合間に空気の入れ替えが素早くできる。そのために高床式シェルター3の底面高さは、地域の津波の引き潮高さ以上とする。シェルター内の結露対策でも下部の出入り口から容易に滞水が落下するので、維持管理の手間がかからない。波圧をできるだけ受けない構造的な工夫として1階の基礎部では津波の波圧を受けない方向に向け、すなわち、海岸方向に向け波が筒抜けとなるトンネル中空状の壁面壁、または波圧を受け流す、抜けやすいスリット状の構造を考える。
次のステップとして、住民の合意を得る必要がある。
カーポートの建坪、スペースを利用することで、狭い庭のスペースを割かなくても済む方法を考える。そうすれば住民を説得できるはず。すなわち、カーポートと同じ面積かやや大きいスペースを活かし、2階に立体的に有効利用するとすれば、シェルターを庭に構築することで合意、納得を得るという課題を解決できる。1階がカーポート、2階が避難シェルターの構造で、有効利用した兼用工作物といえる。カーポート以外にも、住民が納得しやすい提案でもよい。一戸建て住宅では、カーポートのほかに倉庫、作業室、勉強部屋、ピアノ消音室、温室栽培室など、マンションでは、集会所、小会議場、料理教室、趣味教室、清掃用具庫、備蓄倉庫でもよい。工場では、資材置き部屋、休憩室、会議室、娯楽室など、小学校では、清掃用具庫、着替え室、部活室など、各家庭、学校、職場に応じた用途、メニューがあれば話は前に進みやすい。その施設、用途に応じた空間を1階に確保する。その幅、奥行き、高さを有する空間を確保する基礎構造、またはそれら前記施設の周囲を覆う基礎構造とすることにより、シェルターの波圧に対する抵抗が広い面積から得られ基礎部空間を有効利用することができる。工事期間中は、横に駐車できないときは、近くの駐車場を借りてもらうことで、工事スペースの確保の課題が解決できる。もしくは、カーポートの底地面積の直近外側に、カーポートを使いながら整備する方法として構造物で覆う形式でもよい。工事期間を短縮するには、プレキャストコンクリート製とし、クレーンで組み上げる。ここで、下に有効利用するとなると高床式のシェルター高さはその分、高くなることを理解してなくてはならない。既にあるカーポートの面積を利用することができれば庭の面積は減らないので、特別な抵抗感はあまりない、むしろそれならと歓迎されると考える。カーポートほどの大きな底面積があれば、家族用シェルターの転倒に対して十分に抵抗する設計ができる。とはいっても、カーポートの中には車があり、それなりの高さも必要とする。そこで、高さ方向に立体利用する。2階に構造物であるシェルターを設置し、1階は車を収納できる空間、中空を確保しつつ、兼ねて避難シェルターの基礎構造とする。シェルターの荷重を支えるためにも一体構造とすることで、カーポートに必要とされる広い平面積が有効に荷重分散に働き、転倒抵抗モーメントが大となり、転倒しない。高床式とすれば、波力を受ける津波の浸水深さがその高さ分少なくなり、浸水圧力も減少し、引き潮で内水が吐けるので浸水継続時間も短くなり身体への負荷の課題も解決できる。2階のシェルターでは、地面から下面までの嵩上げ高さ相当分の水圧が軽減され、津波の引き潮となる水位低下に伴い、浸水した水も同期して排出されるので、当然に内部の水はけがよくなり、周辺水位が出入り口高さより低くなると、開口部からいち早く内部空気が入れ替わり、新鮮な空気を吸うことができ、閉塞空間での息苦しさを軽減するという課題を解決できる。結露による内部滞水も自然落下で吐けるので維持管理上の手間もない。1階を基礎として利用することで、地上のシェルターの基礎部分が省略、または兼用できる。1階を壁構造にするか、スリットのある壁、柱にするか選択する。前者は頑丈であるが波圧を大きく受ける。この場合の壁は、筒状で、筒の設置方向を海岸からの波が抜ける方向に、すなわち海岸方向に向かって波圧を受けない空洞、筒抜け構造とすれば転倒モーメントの影響はほとんどない。後者も設置の向きを同じ考え方とするが、比較的全方向に波圧を受け流すので構造負担は少ないが、漂流物の衝突で部分破損はありうる。ただ、1本の柱が破損し多少傾斜しても、2階のシェルターの性能にはほとんど影響ない。壁構造にするにしても、カーポートとしての車出し入れの用途を妨げてはならない。入り口には、シャッターがあるとして、奥側にも全面壁でなく大きな窓とかが良い。シャッター、窓ともに、津波の波力で破壊され、波流は中の車とともに筒抜けとなるので2階のシェルターには転倒の影響がない。スリットのある壁、柱構造では、通風性がある。壁間、柱間のスリットに、ガラス窓を挿入しておけば、津波に無抵抗で破壊され、本体の転倒に影響があるほどでなく、採光を望む多用途に最適となる。自宅の勝手口ドアから、飛行機搭乗用のような覆いのあるタラップを通れば、真冬の寒い真夜中でも、億劫がらずに迅速に避難できる。シェルターの中に暖房を用意してもよい。ただし、一酸化炭素中毒にならないよう、カイロか、ダウンジャケットなど。安全に配慮するなら、内容積を人数分の2倍にする。このことで酸素が2倍となり浸水したままで2倍時間生存できる。酸素ボンベを中に準備することでもよい。また、高床式津波等避難シェルター3は、異常気象による洪水、高潮や、堤防決壊の水害に対しても有効である。
In the coming Nankai Trough mega-earthquake, a tsunami of up to 34.4 meters can reach Japan in as little as 1 to 5 minutes. The death toll is estimated at 320,000, with the greatest damage occurring in the middle of the night in the middle of winter. In other words, there is no time to evacuate at that time of day, and of course there is nothing you can do if you are sleeping. Even if it takes 1 to 5 minutes, the shaking from an earthquake is said to subside within 2 to 3 minutes, so you only have 2 minutes to evacuate after the tremors subside. In any case, there is no time to hesitate. We had to make up our minds and evacuate while the area was shaking. However, if you rush to evacuate outside, even a 0.3m tsunami can sweep you off your feet, and you risk losing your life. It is necessary to train your reflexes on a daily basis. It can be said that the only area you can escape to is your garden or grounds.
Therefore, we will set up an evacuation shelter in the garden or grounds. However, many homes have small gardens, and even if they know that it will save lives, they may not think to allocate that space to their gardens. However, many homes already have parking lots and carports in their garages, and if the convenience of having a car outweighs the livability, I think they will take up the space if they are satisfied with it. However, just because it will save your life, you may not be able to make the decision to allocate a new small space in your garden because you are biased to believe that you will be safe in the event of a tsunami, which is not 100% sure whether it will come or not. Almost no people were evacuated due to midnight tsunami warnings and advisories due to the Tonga volcano eruption in January 2022. It was late at night in the middle of winter, and I was too lazy to escape, I didn't want to move because it was cold, I was biased that the tsunami wouldn't be that big, and my own judgment. I play the flute, but I don't dance. Even the government, which claims to be about crisis management, can't do anything about this situation. One of the factors is that people do not have an image of evacuating that they will be saved 100% of the time, that they have already given up and think that there is nothing they can do about it, and that there are no evacuation sites nearby.
Generally, tsunami evacuation shelters are large in size to ensure enough air volume for families and residents to survive underwater, and require special measures to withstand the size of a tsunami. The requirements for a shelter are that it will not be damaged by the wave force of a tsunami, will not fall over, will not slide, will not float up, will not sink, will withstand collisions with floating objects, will withstand water pressure even when underwater, and will be able to maintain the amount of air necessary for survival. etc. However, although these conditions can be met if a large shelter with a particularly strong hatch door and a sealed structure is used, it is particularly expensive and is quite unreasonable to install in an ordinary small garden or site.
Therefore, the shelter should be a non-sealed structure with an opening. The structure is box-shaped or dome-shaped, with an opening in the wall. In a general type of ground-type shelter 1 in which the entrance/exit 4 of the opening is provided in the side wall 5, a drifting object prevention wall 8 is required inside the shelter, and therefore, the amount of air necessary for survival is not effective on the front side. The outer shape of the shelter becomes larger. In addition, it is difficult to get inside by climbing over a drifting object prevention wall, making it less efficient for quick evacuation. In addition, in the elevating type 2 where the shelter is simply raised to the second floor, if the entrance 4 is opened from the side wall 5, the shelter remains cramped and is inferior to quick evacuation. Therefore, it was thought that evacuation would be quicker if the entrance/exit 4 was provided on the lower wall 7. Since there is ground below, the shelter needs to be on the second floor. If it is on the second floor, the overturning moment due to wave pressure will be large, so a raised-floor shelter 3 with a space underneath that also serves as a foundation will be used. Archimedes' principle causes light air in the water to rise and collect at the top of the box. According to Boyle's law, if the water depth is 10 m or 20 m, for example, the internal air volume will be compressed to 1/2 or 1/3, but it will always remain in the upper part of the volume. Due to Pascal's principle, the external water pressure and internal water pressure are equal, so no special moment is applied to the side walls and ceiling walls due to deep water. That is, the wall thickness does not have to be very thick. This is the same principle that prevents stones 30 meters below the ocean from being crushed. However, the wave pressure from the lateral direction of the tsunami is also applied. By providing the entrance and exit on the bottom surface, the entire interior space can be effectively used to maintain the amount of air necessary for survival, and the external dimensions of the shelter can be reduced. Even if the bottom entrance is wide, the amount of air necessary for survival above it is the same, making it possible for multiple people to evacuate at the same time. The height of the side walls can be lowered, reducing the area of the sides exposed to the transverse wave force of the tsunami, and reducing the overturning moment. In other words, if the top can be made smaller, the bottom can also be made smaller, making it possible to make the first floor, which is the foundation, smaller. This means that the area required for installation and the area required to occupy becomes smaller, and the problem of not shrinking or compressing narrow gardens or sites can be solved. Here, the side wall height is designed to be low. A lower value has the advantage of increasing the moment of resistance against the lateral force of the tsunami. However, on the other hand, the ceiling is low and it becomes cramped. The lower the entrance height of the shelter, the less the influence of tsunami wave force, but to make it easier for people to climb up from the ground, it should be at least 50 cm above the ground, and there should be a step stool, stepladder, ladder, or gangway under the entrance. , prepare step stairs. When the tide is low, water quickly drains from the entrance at the bottom of the second floor. Air can be exchanged quickly between the first, second, and next tsunami waves. For this purpose, the bottom height of the elevated shelter 3 is set to be higher than the ebb tide height of the local tsunami. Even with measures taken to prevent condensation inside the shelter, standing water can easily fall from the entrance at the bottom, reducing the need for maintenance. As a structural measure to reduce wave pressure as much as possible, the foundation of the first floor is oriented in a direction that is not affected by tsunami wave pressure, that is, a hollow tunnel wall that allows waves to pass through toward the coast, or wave pressure. Consider a slit-like structure that allows for easy passage.
The next step is to obtain the consent of the residents.
Think of ways to use the floor space of a carport to avoid having to take up space in a small garden. That should be enough to convince the residents. In other words, if you take advantage of a space that is the same size or slightly larger than the carport and effectively use it three-dimensionally on the second floor, you can solve the problem of gaining agreement and consent by building a shelter in the garden. With a carport on the first floor and an evacuation shelter on the second floor, it can be said to be a dual-purpose structure that was used effectively. In addition to carports, proposals that are easy for residents to accept may also be suitable. In a single-family house, in addition to a carport, it can also be used as a storage room, a work room, a study room, a piano silencer room, a greenhouse cultivation room, etc. In an apartment building, it can be used as an assembly hall, a small conference room, a cooking class, a hobby class, a cleaning equipment storehouse, or a storage room for stockpiling. . In factories, there are storage rooms for materials, rest rooms, conference rooms, recreation rooms, etc. In elementary schools, there are cleaning supplies storage, changing rooms, club rooms, etc. If there is a purpose and menu that suits each home, school, or workplace, the story goes on. Easy to proceed. Space will be secured on the first floor according to the facility and purpose. By creating a foundation structure that secures a space with the same width, depth, and height, or a foundation structure that covers the periphery of the facility, resistance to the wave pressure of the shelter can be obtained from a wide area and the foundation space can be used effectively. be able to. During the construction period, if you cannot park next to the building, you can rent a nearby parking lot to solve the problem of securing construction space. Alternatively, it may be possible to cover the immediate outside of the base area of the carport with a structure as a method of maintaining it while using the carport. In order to shorten the construction period, it will be made of precast concrete and assembled using a crane. Here, you must understand that if you use the space below effectively, the height of the raised-floor shelter will increase accordingly. If the area of the existing carport can be used, the area of the garden will not be reduced, so there is not much resistance, and I think that it will be welcomed. With a floor area as large as a carport, a family shelter can be designed to resist overturning. However, there is a car inside the carport, and it requires a certain height. Therefore, it is used three-dimensionally in the height direction. A shelter structure will be installed on the second floor, and the first floor will have space and hollow space to store cars, while also serving as the basic structure of the evacuation shelter. By adopting an integrated structure to support the load of the shelter, the large flat area required for a carport effectively distributes the load, increasing the overturning resistance moment and preventing it from overturning. If it is a raised floor type, the depth of the tsunami that receives the wave force will be reduced by the height, the water pressure will also be reduced, and the inland water can be discharged at the ebb tide, so the duration of the flood will be shortened and the issue of stress on the body will be solved. can. In the shelter on the second floor, the water pressure equivalent to the height of the raised area from the ground to the bottom is reduced, and as the water level drops due to the ebb of the tsunami, the flooded water is also drained out at the same time, so internal water naturally drains. When the surrounding water level becomes lower than the height of the entrance/exit, the internal air is quickly replaced through the opening, allowing fresh air to be breathed in and solving the problem of alleviating the feeling of breathing in a closed space. Water that accumulates inside due to condensation can be discharged by falling naturally, so there is no need for maintenance. By using the first floor as a foundation, the foundation part of the above-ground shelter can be omitted or used as a base. Choose whether to make the first floor a wall structure, walls with slits, or columns. The former is sturdy, but is subject to significant wave pressure. In this case, the wall is cylindrical, and if the tube is installed in the direction in which waves from the coast pass through, that is, if it is a hollow structure that does not receive wave pressure toward the shore, there will be almost no effect of the overturning moment. The latter uses the same concept of installation direction, but since it receives wave pressure in relatively all directions, there is less stress on the structure, but there is a possibility of partial damage due to collision with drifting objects. However, even if one pillar is damaged and tilts slightly, it will have little effect on the performance of the second-floor shelter. Even if a wall structure is used, it must not interfere with the carport's use as a carport. If there is a shutter at the entrance, it is better to have a large window on the back side instead of a full wall. Both the shutters and windows were destroyed by the force of the tsunami, and the wave flow penetrated through them along with the cars inside, so the shelter on the second floor was not affected by the fall. Walls and pillar structures with slits provide ventilation. By inserting glass windows into the slits between walls and pillars, the building will be destroyed by tsunamis without any resistance, and will not have any effect on the main unit falling over, making it ideal for multi-purpose use where daylight is desired. By walking through the back door of your home and passing through a covered gangway similar to those used for boarding airplanes, you can quickly evacuate without any hassle, even in the cold dead of winter. Heating may be provided within the shelter. However, to avoid carbon monoxide poisoning, bring warmers or a down jacket. If you are concerned about safety, double the internal volume for the number of people. This doubles the amount of oxygen and allows them to survive twice as long under water. You may also prepare an oxygen cylinder inside. Furthermore, the raised floor type tsunami evacuation shelter 3 is also effective against floods and high tides caused by abnormal weather, and water damage caused by levee bursts.

このような課題を解決するために、本発明の住宅、学校、工場用等の高床式津波等避難シェルター3は、
住宅、学校、工場等の庭、敷地に設置する高床式津波等避難シェルター3であって、1階を基礎部、2階を前記シェルター部とし、コンクリートを主材とする基礎一体型構造で、1階の基礎部は、津波の波力による2階の前記シェルターを含む全体の転倒モーメントに対して十分な底面積を有することとし、波力を筒抜けとするトンネル状の壁構造、または波力を受け流すスリット壁、柱としたスリット構造でなる構造10とし、2階の前記シェルター構造は、箱状、ドーム状、円筒状の非密閉型の壁構造で、側壁5と天井壁6に開口部、窓を設けず、下面壁7にのみ出入り口4を設け、1階の天井部から貫通する開口とすることで、前記シェルターは密閉構造のような厚い壁を必要とせず、内空体積の全てが水中での生存必要空気量として活かせるので、前記シェルターの容積、壁高さを小さくでき、このことで波圧による転倒モーメントを軽減でき、また下面部の開口部は広くとっても内部の生存必要空気量は同じなので広い開口とでき、複数人の避難が同時にでき、さらに津波水位低下時に空中となる開口部により内水の落下を促進し新鮮な空気に入れ替わりやすいことを特徴とする。
In order to solve such problems, the raised floor tsunami evacuation shelter 3 for houses, schools, factories, etc. of the present invention has the following features:
This is a raised-floor tsunami evacuation shelter 3 installed in the garden or site of a house, school, factory, etc., with the first floor serving as the foundation and the second floor serving as the shelter part, with a base-integrated structure mainly made of concrete. The foundation of the first floor shall have a sufficient base area to withstand the overturning moment of the entire shelter on the second floor due to the wave force of the tsunami, and shall have a tunnel-like wall structure that allows the wave force to pass through, or a The structure 10 consists of a slit wall for receiving water and a slit structure with pillars, and the shelter structure on the second floor is a box-shaped, dome-shaped, or cylindrical non-sealed wall structure, with openings in the side walls 5 and the ceiling wall 6. By not providing a window and providing an entrance/exit 4 only in the lower wall 7, with an opening penetrating from the ceiling of the first floor, the shelter does not require thick walls like a closed structure, and all of the internal volume is can be used as the amount of air necessary for survival underwater, so the volume and wall height of the shelter can be reduced, which reduces the overturning moment caused by wave pressure.Also, even if the opening at the bottom is wide, the amount of air necessary for survival inside can be reduced. Since the amount of air is the same, the opening can be made wide, allowing multiple people to evacuate at the same time.Furthermore, when the tsunami water level drops, the opening becomes airy, facilitating the fall of internal water and easily replacing it with fresh air.

また、前記高床式津波等避難シェルター3の1階の基礎部を、住宅ではカーポート11、倉庫、作業室、勉強部屋、ピアノ消音室、温室栽培室など、マンションでは集会所12、小会議室、料理教室、趣味教室、清掃用具庫、備蓄倉庫など、工場では資材置き部屋、休憩室、会議室、娯楽室など、小学校では清掃用具庫、着替え室、部活室などの施設、用途に応じた幅、奥行き、高さを有する空間を確保する基礎構造体、またはそれら前記施設の周囲を覆う基礎構造体とすることにより、2階の前記シェルター自体の転倒に対する抵抗モーメントをより大きく取れることとなり、制限される基礎部面積を活かし、立体的に有効利用できる空間を確保することができることを特徴とする。 In addition, the foundation of the first floor of the raised-floor tsunami evacuation shelter 3 can be used as a carport 11, a warehouse, a work room, a study room, a piano silencing room, a greenhouse cultivation room, etc. in a residential building, and an assembly hall 12, a small conference room in an apartment building. , cooking classes, hobby classes, cleaning equipment storage, stockpiling storage, etc. In factories, materials storage rooms, rest rooms, conference rooms, recreation rooms, etc. In elementary schools, facilities such as cleaning equipment storage, changing rooms, club rooms, etc., depending on the purpose. By using a foundation structure that secures a space with width, depth, and height, or a foundation structure that covers the periphery of the facility, a larger moment of resistance against overturning of the shelter itself on the second floor can be obtained, It is characterized by being able to take advantage of the limited area of the foundation and secure a space that can be effectively used three-dimensionally.

また、前記津波等避難シェルター3の内部と外部をつなぐ空気吸引の管であって、津波水位低下がシェルター下面までに至らない場合に外の空気を吸引するもので、ホース管の片端を前記シェルター3の内部置きとし、もう一方の片端を外部の側壁5沿いの高い位置またはそれ以上の突出した高い位置に立ち上げて空気吸引用のホース管を配置することを特徴とする。 Also, an air suction pipe connects the inside and outside of the tsunami evacuation shelter 3, which sucks outside air when the tsunami water level does not reach the lower surface of the shelter, and one end of the hose pipe is connected to the shelter. 3, and the other end is raised at a high position along the external side wall 5 or at a higher position protruding above it, and a hose pipe for air suction is arranged.

また、前記高床式津波等避難シェルター3の壁体の損傷、ひび割れによる水没時の生存必要空気の逸脱に備えて、内部の壁沿いに離隔して気密性、水密性のポリ袋、ビニール袋、ゴム袋など袋状の空気保持独立体13設置することを特徴とする。 In addition, in preparation for the deviation of the air necessary for survival when submerged in water due to damage or cracks to the walls of the raised-floor tsunami evacuation shelter 3, airtight and watertight plastic bags, plastic bags, etc. It is characterized by installing a bag-shaped air retaining independent body 13 such as a rubber bag.

最短1~5分で急襲するとされる津波では、外に出て避難する時間余裕がない。地震の揺れが収まるのが2~3分とされ、残りの時間は2分程度しかない。自宅の庭、マンション、学校、工場、魚市場等の敷地に設置する高床式の津波等避難シェルターは最短に近い距離にあり、最速で逃げ込むことができる。高床式なのでその嵩上げ高さ分の水圧が軽減され、身体負担は少なくなる。避難する場所、方法がない人、避難をあきらめていた人、命をあきらめていた人には絶望の淵からの朗報、助かる見込みが見えてきた。ただし、単に命が助かるというだけでは、天国に金を持っていけないとは分かっていても、予測でありバイアスが働き人は動かない。もう一押しが欲しいところ。狭い庭や、敷地の面積を減らさずに有効利用できるとなると話は進む。高床式とすれば下のその空間で、カーポートの面積、空間をそのまま利用できる構造とすることができる。その他地域でも有効利用のアイデアは無限大だ。トンネル式の壁構造基礎とすれば津波の波力は筒抜けとなる。自宅の勝手口ドアから、飛行機搭乗用のような覆いのあるタラップを通れば、真冬の寒い真夜中でも、億劫がらずに迅速に避難できる。入浴中でも、泥酔中でも、熟睡中でも。また安心して酒が飲めることは何よりうれしい。家族がバラバラにならないということは迷惑をかけず莫大な捜索費もかからない。早く自己投資する決断をすることで、不安なく睡眠できる日々が早くスタートし、たとえ翌日に津波に遭遇してもと考えても、安心して暮らせることはなんと幸せなことか。1日1日が得した気分になる。夜間の来襲時はもちろん昼間の津波来襲にも、下面の出入り口ならば生存空気保有量も同じなので広くすれば多人数でも迅速に避難できる。小学校の校庭でも生徒の避難が早い。子供達は、地域の宝だ。先生も責任追及されることもない。悲劇が全世界中を駆け巡ることもない。保育園でも、靴を履かせるのに泣きじゃくる園児を抱えて放り込むだけでひと安心。職場となる工場の広い敷地でも、割くのはわずかな面積で多人数の避難が迅速だ。社員福祉の一環だ。実際に助かる見込みがあるとなると避難訓練にも身が入る。工場従業員が助かるなら、家で待つ家族も安心だ。経営者も従業員を失わず、サプライチェーンの社会的責務も全うできる。工場従業員の自家用車が集中して逃げて地域交通に大渋滞を起こす迷惑を避けることができる。津波の最前線である漁港、魚市場関係者では低い高床式とし、下面の出入り口を広くすれば大人数の同時、瞬時の避難も可能である。 A tsunami is said to hit in as little as 1 to 5 minutes, leaving no time for people to go outside and evacuate. The shaking from an earthquake is said to subside within two to three minutes, and there is only about two minutes left. Elevated floor tsunami evacuation shelters installed in the grounds of your home, condominium, school, factory, fish market, etc. are located at the shortest distance and are the fastest way to escape. Since it is a raised floor type, water pressure is reduced due to the raised height, which reduces the burden on the body. For those who had no place or way to evacuate, those who had given up on evacuation, and those who had given up on life, from the depths of despair, there was good news and a hope of survival. However, even if people know that simply saving their life will not bring them money to heaven, it is a prediction and bias acts and people do not move. I want one more push. The story progresses when it comes to small gardens and how they can be used effectively without reducing the area of the site. If you choose a raised floor type, you can create a structure where the area and space of a carport can be used as is in the space below. The ideas for effective use in other regions are endless. If the foundation is a tunnel-style wall structure, the wave force of the tsunami will pass through the tunnel. By walking through the back door of your home and passing through a covered gangway similar to those used for boarding airplanes, you can quickly evacuate without any hassle, even in the cold dead of winter. Even while taking a bath, drunk, or sound asleep. I'm more than happy to be able to drink alcohol with peace of mind. The fact that the family is not separated means that there is no inconvenience and there is no need to incur huge search costs. By making the early decision to invest in yourself, you will be able to start sleeping without anxiety, and even if you think about encountering a tsunami the next day, how happy you are to be able to live with peace of mind. I feel like I gained something every day. In case of a tsunami attack during the day as well as at night, the entrance and exit on the bottom side will hold the same amount of survival air, so if it is wide, even a large number of people can evacuate quickly. Even in elementary school playgrounds, students were quickly evacuated. Children are the treasure of the community. Teachers are also not held accountable. Tragedy will not spread all over the world. Even at daycare centers, you can just pick up a crying child and drop him or her in while trying to put on shoes. Even if the workplace is a large factory site, only a small amount of space is needed and a large number of people can evacuate quickly. It's part of employee welfare. If there is any hope of actually being saved, evacuation drills become a necessity. If factory workers can be saved, their families waiting at home can also feel safe. Business owners can also fulfill their social responsibilities in the supply chain without losing employees. It is possible to avoid the inconvenience caused by large numbers of private cars of factory employees fleeing and causing major traffic jams in the local area. Fishing ports and fish markets, which are on the front lines of a tsunami, will be on low stilts, with wide entrances and exits at the bottom, making it possible for a large number of people to evacuate simultaneously and instantly.

地上式の出入り口側壁の4人用シェルター横面断面図Side cross-sectional view of a four-person shelter on the side wall of an above-ground entrance/exit 図1を嵩上げたシェルターShelter with raised figure 1 本発明の高床式の出入り口下面壁の4人用シェルター横面断面図A cross-sectional view of the lower wall of the 4-person shelter of the raised floor entrance of the present invention 図3の正面断面図Front sectional view of Figure 3 カーポートを有効利用した高床式の4人用シェルター横面断面図Side cross-sectional view of a raised-floor shelter for four people that effectively utilizes a carport 図5の正面断面図Front sectional view of Figure 5 トンネル状の壁構造の高床式の出入り口下面壁の4人用シェルター横面断面図Side cross-sectional view of a four-person shelter with a tunnel-like wall structure and elevated floor entrance/exit bottom wall 図7の正面断面図Front sectional view of Figure 7 カーポートを有効利用したトンネル状の壁構造の高床式の出入り口を下面壁またはトンネル状の壁構造の天井とした4人用シェルター横面断面図Side cross-sectional view of a four-person shelter that effectively utilizes a carport and has a raised doorway with a tunnel-like wall structure on the bottom wall or a ceiling with a tunnel-like wall structure. 図10の正面断面図Front sectional view of Figure 10 地上式の出入り口側壁の50人用シェルター横面断面図Side cross-sectional view of the above-ground entrance/exit side wall of a shelter for 50 people 図11を嵩上げたシェルターShelter with raised figure 11 本発明の高床式の出入り口下面壁の50人用シェルター横面断面図A cross-sectional view of the 50-person shelter of the lower wall of the elevated floor entrance of the present invention 図13の正面断面図Front sectional view of Figure 13 集会所を有効利用した高床式の50人用シェルター横面断面図Cross-sectional view of a raised-floor shelter for 50 people that makes effective use of the meeting place 図16の正面断面図Front sectional view of Figure 16 トンネル状の壁構造の高床式の出入り口下面壁の50人用シェルター横面断面図Side cross-sectional view of a 50-person shelter with a tunnel-like wall structure and elevated floor entrance/exit bottom wall 図17の正面断面図Front sectional view of Figure 17 集会所を有効利用したトンネル状の壁構造の高床式の出入り口を下面壁またはトンネル状の壁構造の天井とした50人用シェルター横面断面図A cross-sectional view of a 50-person shelter that effectively utilizes a meeting hall and has a raised entrance/exit with a tunnel-like wall structure on the bottom wall or ceiling with a tunnel-like wall structure. 図19の正面断面図Front sectional view of Figure 19 内部の空気保持独立体、落下防止のロープ配置、空気吸引用のゴムホース管を壁沿いに内外に配置した説明図An explanatory diagram showing the internal air retention unit, rope arrangement to prevent falling, and rubber hose pipes for air suction placed inside and outside along the wall.

図面及び詳細な説明の全体を通じて同じ要素を示すために共通の参照符号が用いられる。 Common reference numerals are used to refer to like elements throughout the drawings and detailed description.

津波被害が予測される地域住民は、津波到達時間、津波高さ、津波波形の波数などあらかじめ熟知しておく必要がある。そのことで臨機の避難方法に対応できる。避難が最短の時間となるには、避難シェルターを住居内か、庭、敷地に設置する必要がある。昼間の職場、学校での津波来襲には、高床式シェルターはなるべく低く、かつ開口部は大きくした方が多人数の同時避難に適している。小学校の校庭では底面高さ50cm以上、大人用が多い高床式シェルターは、約1m~1.5m程度。立体利用、有効利用では、下に施設空間を含むためシェルターの底面位置は高くなる。ただし、シェルター自体の側壁高は、津波の転倒モーメントを少なくするためにできるだけ低いほうが良い。通常の天井高は2m程度だが、窮屈を我慢するならば尻もちをつき足を伸ばすことで高さを1mに半減できる。漁港、魚市場では、高い波が最短時間で来襲するので下の出入り口を広くするなどより迅速な避難構造対策が必要である。全体として、高床式とすれば水圧による身体への負荷も軽減される。構造は、非密閉構造とし、大きな水圧があっても構造内外の水圧が等しく、曲げモーメントがかからないので、壁の厚みも特段に厚くならない。ただし、波圧による横方向力による曲げは側壁高にかかわる。塩害対策分の壁厚も必要。 Residents in areas where tsunami damage is predicted need to be familiar with information such as tsunami arrival time, tsunami height, and wave number of tsunami waveforms. This allows for emergency evacuation methods. For the shortest evacuation time, evacuation shelters should be located inside the residence or in the garden or grounds. In the event of a tsunami hitting a workplace or school during the day, it is better to keep a raised-floor shelter as low as possible and have a large opening to allow multiple people to evacuate at the same time. In elementary school playgrounds, the base height is 50 cm or more, and raised shelters, which are often used for adults, are about 1 m to 1.5 m. In three-dimensional use and effective use, the bottom of the shelter will be higher because the facility space is included below. However, the height of the side walls of the shelter itself should be as low as possible to reduce the overturning moment of the tsunami. The normal ceiling height is about 2m, but if you don't want to feel cramped, you can halve the height to 1m by leaning on your butt and stretching your legs. At fishing ports and fish markets, high waves can hit in the shortest possible time, so faster evacuation structures such as wider entrances and exits at the bottom are needed. Overall, the elevated floor type reduces the stress on the body due to water pressure. The structure is non-sealed, and even if there is a large water pressure, the water pressure inside and outside the structure is equal, and no bending moment is applied, so the wall thickness does not become particularly thick. However, bending due to lateral force due to wave pressure is related to the side wall height. Wall thickness is also required to prevent salt damage.

シェルターの大きさは、避難人数で決まる。地上に設置するシェルター1は、出入り口4が側壁5からとなり、漂流物衝突防止壁8を内部に設置するため空気保有体積がその奥側となり、ロスとなる前面部を含む構造体全体は相対的に大きくなる。それを嵩上げ式2としても同じ。一方、高床式3では、出入り口4を下面壁、底面壁7にとれるので、漂流物衝突防止壁は不要となり、水中に囲まれる空気保有体積は、内空間全体となりロスなく有効空間が大きくなり、構造体寸法は小さくできる。浮遊物防止のために避難後に内部から閉める網戸、格子戸程度の用意で十分である。出入り口は下に開口であるため、避難人数に応じて大きくできるので多人数の同時避難ができ迅速となる。ただし、大きくなると転落防止に、ロープ16などを張ることも検討する。
津波の来襲は昼夜を問わずなので、
家族用のシェルターの大きさは、4人家族、1m3/時間・人として、内空気体積として、1.7mの仮立方体を想定する。1.7*1.7*1.7=4.913m3。 図1に示す地上式シェルター1は、出入り口4が側壁5となるシェルターで、壁厚0.25mとし、内部に漂流物衝突防止壁8を有するのでその前空間は空気保持に有効でないとすると、底面積は、横(0.25+0.75+1.7+0.25)*奥行き(0.25+1.7+0.25)=2.95*2.2=6.49m2、津波は図の右側から来るとして、津波の波圧による横方向力を受ける外面積は2.2m*2.2m=4.84m2で受け、転倒モーメントが大きい。図2に示すそのまま嵩上げた側壁出入り口の嵩上げ式2としても、相変わらず側壁5の出入り口では避難が迅速でない。内部の漂流物衝突防止壁8を乗り越えての避難になるので内空高さ1.7mを縮小することができないので受ける横方向力は同じく大きい。
図3、図4、図7、図8に家庭用高床式のシェルター3を示す。出入り口4をシェルターの下面壁7に設けるとすれば、漂流物衝突防止壁が必要でなくシェルターの全体的スケールを小さくでき、波圧を受ける面積も小とすることができる。下面に出入り口の高床式の場合、地上式と同じ内空体積、底面積として必要高さを求める。内空高さ=4.913m3/(0.75+1.7)m*1.7m=1.180mで、津波の波圧による横方向力は外面積2.2m*(0.25+1.18+0.25)m=3.696m2で受け、地上式の4.84m2よりかなり面積が小さく、転倒モーメントを小さくできる。ただし、内空高さは1.5m程度に上げるほうが現実的といえ、この場合でも 津波の波圧による横方向力は外面積2.2m*(0.25+1.5+0.25)m=4.4m2<4.84m2で受け、転倒モーメントを小さくできる。このときの内空体積は、1.5*1.5*2.25=5.06m2と増え余裕ができる。高床式の出入り口を下面に設けると漂流物衝突防止壁を乗り越える必要がないので避難も迅速である。
The size of the shelter is determined by the number of evacuees. In the shelter 1 installed on the ground, the entrance 4 is from the side wall 5, and the drifting object collision prevention wall 8 is installed inside, so the air holding volume is on the back side, and the entire structure including the front part that causes loss is relatively small. becomes larger. The same goes for raising the height type 2. On the other hand, in the elevated floor type 3, since the entrance/exit 4 can be provided on the lower wall and the bottom wall 7, there is no need for a drifting object collision prevention wall, and the air holding volume surrounded by water becomes the entire internal space, resulting in a larger effective space without loss. Structure dimensions can be reduced. It is sufficient to have a screen or lattice door that can be closed from the inside after evacuation to prevent floating objects. Since the entrance opens at the bottom, it can be enlarged according to the number of evacuees, allowing for rapid evacuation of many people at the same time. However, if it gets too big, consider putting a rope 16 on it to prevent it from falling.
Tsunamis can attack day or night, so
The size of the shelter for a family is assumed to be a temporary cube with a family of four, 1 m3/hour/person, and an internal air volume of 1.7 m. 1.7*1.7*1.7=4.913m3. The ground-type shelter 1 shown in FIG. 1 is a shelter in which the entrance 4 is a side wall 5, the wall thickness is 0.25 m, and there is a drifting object collision prevention wall 8 inside, so the space in front of it is not effective for air retention. The base area is width (0.25 + 0.75 + 1.7 + 0.25) * depth (0.25 + 1.7 + 0.25) = 2.95 * 2.2 = 6.49 m2, and assuming that the tsunami comes from the right side of the diagram, the tsunami The external area that receives the lateral force due to wave pressure is 2.2 m * 2.2 m = 4.84 m2, and the overturning moment is large. Even with the elevated type 2 of the side wall entrance shown in FIG. 2, which is raised as it is, evacuation is still not quick at the entrance of the side wall 5. Since the evacuation requires climbing over the internal drifting object collision prevention wall 8, the internal height of 1.7 m cannot be reduced, so the lateral force received is also large.
3, FIG. 4, FIG. 7, and FIG. 8 show a raised-floor shelter 3 for home use. If the entrance/exit 4 is provided in the lower wall 7 of the shelter, a drifting object collision prevention wall is not required, the overall scale of the shelter can be reduced, and the area subject to wave pressure can also be reduced. In the case of a raised floor type with an entrance/exit on the bottom, the required height is calculated using the same inner volume and base area as the above-ground type. Inner air height = 4.913m3/(0.75+1.7)m*1.7m=1.180m, and the lateral force due to tsunami wave pressure is outer area 2.2m*(0.25+1.18+0.25 ) m = 3.696 m2, which is considerably smaller than the above-ground type (4.84 m2), and the overturning moment can be reduced. However, it is more realistic to raise the inner height to about 1.5 m, and even in this case, the lateral force due to tsunami wave pressure is 2.2 m * (0.25 + 1.5 + 0.25) m = 4. 4m2 < 4.84m2, reducing the overturning moment. At this time, the inner space volume is increased to 1.5*1.5*2.25=5.06 m2, creating a margin. Providing a raised entrance/exit at the bottom eliminates the need to climb over a wall to prevent collisions with floating objects, allowing for quick evacuation.

多人数用のシェルターの大きさは、50人避難、1m3/時間・人として、内空気体積として、横6m*奥行き5m*高さ2m=60m3の仮直方体を想定する。図11に示す地上式シェルター1は、出入り口4が側面壁5となるシェルターでは、壁厚0.25mとし、内部に漂流物衝突防止壁8を有するのでその前方空間は有効でないとすると、底面積は、横(0.25+1+6+0.25)*奥行き(0.25+5+0.25)=7.5*5.5=41.25m2、津波の波圧による横方向力を受ける外面積は5.5*(0.25+2*+0.25)=13.75m2で受け、転倒モーメントが大きい。図12に示すそのまま嵩上げた側面壁出入り口の嵩上げ式2としても、相変わらず側面の出入り口では避難が迅速でない。内部の漂流物衝突防止壁8を乗り越えての多人数避難になるので内空高さ2mを縮小することができないので受ける横方向力は同じく大きい。
図13、図14、図17、図18に高床式の多人数用のシェルター3を示す。出入り口4をシェルターの下面7に設けるとすれば、漂流物衝突防止壁が必要でなくシェルターの全体的スケールを小さくでき、波圧を受ける面積も小とすることができる。下面に出入り口の高床式の場合、地上式と同じ内空体積、底面積として必要高さを求める。内空高さ=60m3/(6+1)m*5m=1.714mで、津波の波圧による横方向力は外面積5.5m*(0.25+1.714+0.25)m=12.177m2で受け、地上式の13.75m2より面積が小さく、転倒モーメントを小さくできる。内空高さ1.714mは現実的といえる。出入り口を下面に設けると漂流物衝突防止壁が必要ないので、同じ内空積で壁高を低くでき津波の波圧による横方向力を受ける面積を少なくでき、転倒モーメントが小さく有利となる設計が可能である。避難も迅速である。
生存必要空気体積は、下面7より上の空気体積となるので、出入り口を広くしても生存必要空気量が減ることがないので多人数の同時避難が可能であり、迅速であるメリットは大きい。就寝中のマンションの多くの住民も即避難できるように日ごろの訓練が大切だ。マンションに上層階があれば特に逃げる必要がない場合もある。
各家庭、マンションに設置となれば、夜間の100万人の犠牲者が救われる。32万人の命が助かる。
The size of the shelter for a large number of people is assumed to be a tentative rectangular parallelepiped with a width of 6 m x depth of 5 m x height of 2 m = 60 m3, with a capacity of 50 people, 1 m3/person per hour, and an internal air volume. The ground-type shelter 1 shown in Fig. 11 has a wall thickness of 0.25 m in a shelter where the entrance 4 is a side wall 5, and the space in front of it is not effective because it has a drifting object collision prevention wall 8 inside. is horizontal (0.25 + 1 + 6 + 0.25) * depth (0.25 + 5 + 0.25) = 7.5 * 5.5 = 41.25 m2, and the outer area that receives the lateral force due to tsunami wave pressure is 5.5 * ( 0.25+2*+0.25)=13.75m2, and the overturning moment is large. Even with the elevated type 2 of the side wall entrance shown in FIG. 12, in which the side wall entrance is raised as it is, evacuation is still not quick at the side entrance. Since a large number of people have to evacuate by climbing over the internal drifting object collision prevention wall 8, the internal height of 2 m cannot be reduced, so the lateral force received is also large.
13, FIG. 14, FIG. 17, and FIG. 18 show a raised floor type shelter 3 for a large number of people. If the entrance/exit 4 is provided on the lower surface 7 of the shelter, a drifting object collision prevention wall is not required, the overall scale of the shelter can be reduced, and the area receiving wave pressure can also be reduced. In the case of a raised floor type with an entrance/exit on the bottom, the required height is calculated using the same inner volume and base area as the above-ground type. Inner space height = 60m3/(6+1)m*5m=1.714m, and lateral force due to tsunami wave pressure is received by outer area 5.5m*(0.25+1.714+0.25)m=12.177m2. The surface area is smaller than that of the above-ground type (13.75m2), and the overturning moment can be reduced. The inner sky height of 1.714 m can be said to be realistic. If the entrance/exit is provided on the bottom side, there is no need for a wall to prevent collisions with drifting objects, so the wall height can be lowered with the same internal space volume, and the area subject to lateral force due to tsunami wave pressure can be reduced, resulting in an advantageous design with a small overturning moment. It is possible. Evacuation is also quick.
Since the air volume necessary for survival is the air volume above the lower surface 7, the air volume necessary for survival does not decrease even if the entrance/exit is widened, so a large number of people can evacuate at the same time, which has a great advantage of being quick. Daily training is important so that many residents of apartment buildings who are sleeping can evacuate immediately. If your apartment building has an upper floor, there may be no need to escape.
If installed in every home and condominium, one million people could be saved at night. 320,000 lives will be saved.

津波は時を選ばない。1日の半分の時間を占める昼間の津波来襲に備える。昼間の学校、工場等職場、スーパーでの対策も怠ってはならない。小学校校庭の高床式の津波避難シェルターは、下に設けた床下空間から開口部へ踏み台を使って迅速に避難ができるので、何も避難するところがない広い校庭の最強の避難施設である。開口部は、非密閉構造体なので避難後に閉じる必要もない。扉、マンホールのような頑丈なものでない。何も無くてもよいが、浮遊物が侵入してくるかもしれないので、格子戸、網戸程度でよい。落下するのを防止する程度でよい。ただし、引き潮時の水位低下が急激だと中の避難者が吸い出される可能性があるかもしれないので、内壁にアンカー15を取り、ロープ16を用意しておくなどの安全配慮も必要だ。小学生はシェルター下面と校庭地面との高さ差が50cmあればかがんで開口部に近づけ、すぐシェルター内に入ることができる。工場等職場、スーパーでも同様の対策でよい。このようにすれば、昼夜、24時間、365日が安心して地域が暮らせる。小学生の集団悲劇が世界中を駆け巡ることもない。校長、教員も責任追及に怯える日々から解放される。経営者も社員を失うことなく、持続可能なサプライチェーンとしての役割を果たす。工場従業員の車の集中渋滞で地域住民の避難を妨げることもない。 Tsunamis can occur at any time. Prepare for a tsunami attack during the daytime, which takes up half of the day. Don't neglect to take precautions during the day at schools, factories and other workplaces, and supermarkets. Raised tsunami evacuation shelters in elementary school playgrounds are the strongest evacuation facilities in large school grounds where there is nothing to evacuate to, as tsunami evacuation shelters on raised floors can be used to quickly evacuate from the space underneath the floor to the opening using a step stool. Since the opening is a non-sealed structure, there is no need to close it after evacuation. It is not something sturdy like a door or manhole. There doesn't have to be anything, but floating objects may get in, so a lattice door or screen door is fine. Just enough to prevent it from falling is sufficient. However, if the water level drops rapidly during low tide, there is a possibility that the evacuees inside may be sucked out, so safety considerations must be taken, such as setting anchors 15 on the inner walls and preparing ropes 16. If there is a height difference of 50 cm between the bottom of the shelter and the schoolyard ground, elementary school students can bend down, approach the opening, and immediately enter the shelter. Similar measures can be taken at factories, workplaces, and supermarkets. In this way, the community can live with peace of mind day and night, 24 hours a day, 365 days a year. The mass tragedy of elementary school students will not travel around the world. Principals and teachers will also be freed from the daily fear of being held accountable. Management also plays a role as a sustainable supply chain without losing employees. Local residents will not be prevented from evacuating due to traffic jams caused by factory workers' cars.

狭い自宅の庭、敷地を減らすことには抵抗がある。そこで、その面積を減らさずに避難シェルターを設置することができれば決断しやすい。すなわち、カーポート、倉庫、などの施設はそれなりの必然性で面積を割いて設けているのに、さらに面積を割くとなるとなかなか決断できない。そこでその施設の面積を利用して、有効利用することで、庭面積を減らさない方法を考えた。シェルターを2階に立体利用することで問題が解決できる。すなわち、立体利用できる空間、その必要とする縦、横、長さの空間を下に確保して、下の空間を有効利用する高床式図5、図6、図9、図10、図15、図16、図19,図20とする。カーポートとすると、シェルター下面の高さは2m程度以上必要で、横圧による転倒モーメントが大きくなる。そのため、1階部の波圧を受ける面積を減らす工夫をする。トンネル状の筒壁構造とするか、または波流の抜けるスリット構造10とするか、外周りに中の施設を覆う別の立体的構造を構築するか。前者の筒壁方法では、波圧は少ない。カーポートの場合、シャッターは吹っ飛び、車も抵抗なく波に乗る。カーポートの後方面も壁でなく、同じく車が抜けるシャッター方式が望ましい。スリット構造は、波圧をある程度受けるので、それ相当の構造設計を要する。あるいは、さらに飛躍して、立体的構造として既にあるカーポートをそのまま外側で包み込む柱、杭構造とすることも可能である。
庭の高床は50cmから1m程度の高さであるが、カーポートと有効利用すると2m以上の嵩上げを必要とする。ただし、庭の面積は減らない、まさしく有効利用、立体利用である。高床の1階基礎部をトンネル状の壁構造として車庫のシャッター方向を海に向けば波が抜け波圧を軽減できる。もともとの道路の塀の壁位置に設けても、それなりに波を避け、あるいは抜けて波圧が減少する可能性がある。シェルターが大きな波力を受けてもその下の基礎構造が縦長、幅広の余裕があるので、逆に十分な転倒抵抗が得られる。
下にマンションの集会所を設ける有効利用では、図15、図16、図19、図20のように集会所の天井壁とシェルターの底面壁を兼ねることができる。集会所の天井壁とシェルターの底面壁が一致した開口部の出入り口で、下の集会所から階段などで上りいち早く3か所の出入り口に分散して避難する。学校では、高床の空間を体育道具入れ倉庫として有効利用できる。シェルターの空間中にも掃除用具を保管して、躊躇せず放り出す。工場では、清掃具倉庫、道具倉庫として有効利用できそう、発想は無限だ。高床式は、助かる希望とともに設置場所の施設との有効利用で楽しみが広がる。
There is resistance to reducing the size of the garden or site in a small home. Therefore, it would be easier to make a decision if an evacuation shelter could be installed without reducing the area. In other words, facilities such as carports, warehouses, etc. are set aside for space out of necessity, but when it comes to allocating even more space, it is difficult to decide. Therefore, we thought of a way to utilize the area of the facility effectively and not reduce the garden area. The problem can be solved by using a three-dimensional shelter on the second floor. In other words, a raised floor type that can be used three-dimensionally, securing the required vertical, horizontal, and length space below and effectively utilizing the space below. 16, FIG. 19, and FIG. 20. When used as a carport, the height of the lower surface of the shelter must be approximately 2 m or more, which increases the overturning moment due to lateral pressure. Therefore, measures will be taken to reduce the area on the first floor that is exposed to wave pressure. Should we use a tunnel-like cylindrical wall structure, a slit structure 10 through which waves can pass, or build another three-dimensional structure around the outside to cover the facility inside? In the former cylinder wall method, wave pressure is small. In the case of a carport, the shutters are blown off and the car rides the wave without resistance. The rear side of the carport should also have a shutter system that the car can pass through, rather than a wall. Since the slit structure receives wave pressure to some extent, it requires a corresponding structural design. Alternatively, it is also possible to go even further and create a three-dimensional structure with pillars and piles that wrap around the existing carport on the outside.
Raised garden beds are approximately 50cm to 1m in height, but if used effectively as a carport, they will need to be raised by 2m or more. However, the area of the garden does not decrease; it is truly an effective and three-dimensional use. The foundation of the first floor of the raised floor has a tunnel-like wall structure and the shutter of the garage faces the sea, allowing waves to pass through and reducing wave pressure. Even if it is installed at the original location of the road wall, there is a possibility that it will avoid or pass through the waves and reduce the wave pressure. Even if the shelter is subjected to large wave forces, the underlying structure underneath is long and wide enough to provide sufficient fall resistance.
In an effective use where a meeting place of an apartment is provided below, it can serve as both the ceiling wall of the meeting place and the bottom wall of the shelter, as shown in FIGS. 15, 16, 19, and 20. The entrance is an opening where the ceiling wall of the assembly hall and the bottom wall of the shelter coincide, and people should ascend the stairs from the assembly hall below and quickly disperse to three entrances and evacuate. At schools, the raised floor spaces can be effectively used as storage for physical education equipment. Store cleaning supplies throughout the shelter space and don't hesitate to throw them out. In a factory, it could be effectively used as a storage for cleaning supplies or tools, and the ideas are endless. The raised floor type can be used with the hope of being saved and can be used effectively with the facilities at the location where it is installed, increasing the enjoyment.

避難シェルターが破損して生存空気が抜けては大変である。ひび割れても水中で空気が抜ける可能性がある。そこで、内部空間に合わせて、壁沿いとなるような離隔を保ち、底を閉じた気密性、水密性の大袋を、底を上にして配置し、人が袋に入れば万が一の空気漏れに2重の安全となる。図3,4,5,6,9,10,13,14,15,16,19,20の特注が可能なら内空壁沿いとなるポリ袋、ビニール袋、ゴム袋などが空気保持独立体13として有効である。 It would be a disaster if the evacuation shelter were damaged and the air for survival was lost. Even if it cracks, air can escape underwater. Therefore, according to the interior space, we placed large airtight and watertight bags with the bottom closed, keeping distance along the wall, and placing the bottom side up to prevent air leakage if a person were to enter the bag. This is double safety. 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 19, 20 If it is possible to make a special order, a plastic bag, plastic bag, rubber bag, etc. that will be along the inner cavity wall will be used as an air retaining independent body 13. It is valid as

地域特性として高床式避難シェルター下面より水位が下がらない場合は、空気の入れ替えがない。そこで、酸素ボンベを用意する。そのほかに、地域水位低下が1.5m程度までとするとそれ以上の高さ位置に下面高さを設計する。あらかじめ空気容量を大きく設計する。あるいは、図13に示すように適切な長さのゴムホース管14を用意し、片端部を内部に置き、他端部をシェルターの外の側壁に沿わせて立ち上げ、天井頂点近く、もしくはそれよりやや突出した位置に突出して設置する。最初に、内部の人がホースの水を口で吸引すれば、あとは空洞ができ、すなわち空気道となり、4人で交互に吸引すれば、新鮮な空気を吸えるので命をつなげることができる。 Due to regional characteristics, if the water level does not fall below the bottom of the raised evacuation shelter, there will be no air exchange. Therefore, prepare an oxygen cylinder. In addition, if the regional water level decline is about 1.5 m, the lower surface height will be designed at a higher level. Design the air capacity to be large in advance. Alternatively, as shown in Fig. 13, prepare a rubber hose pipe 14 of an appropriate length, place one end inside the shelter, and raise the other end along the outside side wall of the shelter, near the top of the ceiling or above. Install it in a slightly protruding position. First, the people inside suck up the water from the hose with their mouths, which creates a cavity that becomes an airway, and if four people take turns sucking in the water, they can breathe in fresh air, which can keep them alive.

1地上式津波等避難シェルター
2嵩上式津波等避難シェルター
3高床式津波等避難シェルター
4出入り口、開口部
5側壁
6天井壁
7下面壁,底面壁
8漂流物衝突防止壁
9嵩上げ柱
10トンネル状の壁式基礎、またはスリット壁、柱の基礎
11カーポート、車
12窓ガラスの大きい集会所、天井がシェルターの下面壁と兼用
13空気保持独立体、ポリ袋、ビニール袋、ゴム袋
14ゴムホース管
15アンカー
16ロープ
17地面、地盤面
1 Above-ground tsunami evacuation shelter 2 Elevated tsunami evacuation shelter 3 Elevated floor tsunami evacuation shelter 4 Entrance/exit, opening 5 Side wall 6 Ceiling wall 7 Lower wall, bottom wall 8 Drifting object collision prevention wall 9 Elevated pillar 10 Tunnel shape Wall foundation or slit wall, pillar foundation 11 Carport, car 12 Meeting room with large window glass, ceiling also serves as lower wall of shelter 13 Air retention independent body, plastic bag, plastic bag, rubber bag 14 Rubber hose pipe 15 anchor 16 rope 17 ground, ground surface

Claims (4)

住宅、学校、工場等の庭、敷地に設置する高床式津波等避難シェルター3であって、1階を基礎部、2階を前記シェルター部とし、コンクリートを主材とする基礎一体型構造で、1階の基礎部は、津波の波力による2階の前記シェルターを含む全体の転倒モーメントに対して十分な底面積を有することとし、波力を筒抜けとするトンネル状の壁構造、または波力を受け流すスリット壁、柱としたスリット構造でなる構造10とし、2階の前記シェルター構造は、箱状、ドーム状、円筒状の非密閉型の壁構造で、側壁5と天井壁6に開口部、窓を設けず、下面壁7にのみ出入り口4を設け、1階の天井部から貫通する開口とすることで、前記シェルターは密閉構造のような厚い壁を必要とせず、内空体積の全てが水中での生存必要空気量として活かせるので、前記シェルターの容積、壁高さを小さくでき、このことで波圧による転倒モーメントを軽減でき、また下面部の開口部は広くとっても内部の生存必要空気量は同じなので広い開口とでき、複数人の避難が同時にでき、さらに津波水位低下時に空中となる開口部により内水の落下を促進し新鮮な空気に入れ替わりやすいことを特徴とする住宅、学校、工場用等の高床式津波等避難シェルター。 This is a raised-floor tsunami evacuation shelter 3 installed in the garden or site of a house, school, factory, etc., with the first floor serving as the foundation and the second floor serving as the shelter part, with a base-integrated structure mainly made of concrete. The foundation of the first floor shall have a sufficient base area to withstand the overturning moment of the entire shelter on the second floor due to the wave force of the tsunami, and shall have a tunnel-like wall structure that allows the wave force to pass through, or a The structure 10 consists of a slit wall for receiving water and a slit structure with pillars, and the shelter structure on the second floor is a box-shaped, dome-shaped, or cylindrical non-sealed wall structure, with openings in the side walls 5 and the ceiling wall 6. By not providing a window and providing an entrance/exit 4 only in the lower wall 7, with an opening penetrating from the ceiling of the first floor, the shelter does not require thick walls like a closed structure, and all of the internal volume is can be used as the amount of air necessary for survival underwater, so the volume and wall height of the shelter can be reduced, which reduces the overturning moment caused by wave pressure.Also, even if the opening at the bottom is wide, the amount of air necessary for survival inside can be reduced. Since the amount of air is the same, the openings can be wide, allowing multiple people to evacuate at the same time.Furthermore, when the tsunami water level drops, the openings become airborne, facilitating the fall of internal water and easily replacing it with fresh air. , raised-floor tsunami evacuation shelters for factories, etc. 前記高床式津波等避難シェルター3の1階の基礎部を、住宅ではカーポート11、倉庫、作業室、勉強部屋、ピアノ消音室、温室栽培室など、マンションでは集会所12、小会議室、料理教室、趣味教室、清掃用具庫、備蓄倉庫など、工場では資材置き部屋、休憩室、会議室、娯楽室など、小学校では清掃用具庫、着替え室、部活室などの施設、用途に応じた幅、奥行き、高さを有する空間を確保する基礎構造体、またはそれら前記施設の周囲を覆う基礎構造体とすることにより、2階の前記シェルター自体の転倒に対する抵抗モーメントをより大きく取れることとなり、制限される基礎部面積を活かし、立体的に有効利用できる空間を確保することを特徴とする請求項1に記載の住宅、学校、工場用等の高床式津波等避難シェルター。 The foundation of the first floor of the raised-floor tsunami evacuation shelter 3 can be used as a carport 11, a warehouse, a work room, a study room, a piano silencing room, a greenhouse cultivation room, etc. in a residential building, and an assembly hall 12, a small conference room, and a cooking room in an apartment building. Facilities such as classrooms, hobby classrooms, cleaning equipment storage, stockpiling storage, etc. in factories, material storage rooms, rest rooms, conference rooms, recreation rooms, etc., and cleaning equipment storage, changing rooms, club activities rooms, etc. in elementary schools, widths depending on the purpose, By using a foundation structure that secures a space with depth and height, or a foundation structure that covers the periphery of the facility, a larger moment of resistance against overturning of the shelter itself on the second floor can be obtained, and it is possible to avoid restrictions. The elevated floor tsunami evacuation shelter for houses, schools, factories, etc. according to claim 1, characterized in that the area of the foundation part is utilized to secure a space that can be effectively used three-dimensionally. 前記津波等避難シェルター3の内部と外部をつなぐ空気吸引の管であって、津波水位低下がシェルター下面までに至らない場合に外の空気を吸引するもので、ホース管の片端を前記シェルター3の内部置きとし、もう一方の片端を外部の側壁5沿いの高い位置またはそれ以上の突出した高い位置に立ち上げて空気吸引用のホース管を配置することを特徴とする請求項1または2のいずれかに記載の住宅、学校、工場用等の高床式津波等避難シェルター。 This is an air suction pipe that connects the inside and outside of the tsunami evacuation shelter 3, and is used to suck in outside air when the tsunami water level does not reach the lower surface of the shelter.One end of the hose pipe is connected to the shelter 3. Any one of claims 1 and 2, characterized in that the hose pipe for air suction is disposed internally, and the other end is raised at a high position along the external side wall 5 or a higher position protruding above the external side wall 5. High-floor tsunami evacuation shelters for homes, schools, factories, etc. as described in the above. 前記高床式津波等避難シェルター3の壁体の損傷、ひび割れによる水没時の生存必要空気の逸脱に備えて、内部の壁沿いに離隔して設置する気密性、水密性のポリ袋、ビニール袋、ゴム袋など袋状の空気保持独立体13。 Air-tight and water-tight plastic bags or plastic bags installed at a distance along the internal wall in preparation for deviation of the air necessary for survival when submerged in water due to damage or cracks in the walls of the raised-floor tsunami evacuation shelter 3; A bag-shaped air retaining independent body 13 such as a rubber bag.
JP2022086042A 2022-05-26 2022-05-26 High-floor tsunami evacuation shelters to be installed in home gardens, schools, factories, fish markets, etc. Active JP7212818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022086042A JP7212818B1 (en) 2022-05-26 2022-05-26 High-floor tsunami evacuation shelters to be installed in home gardens, schools, factories, fish markets, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022086042A JP7212818B1 (en) 2022-05-26 2022-05-26 High-floor tsunami evacuation shelters to be installed in home gardens, schools, factories, fish markets, etc.

Publications (2)

Publication Number Publication Date
JP7212818B1 JP7212818B1 (en) 2023-01-26
JP2023173644A true JP2023173644A (en) 2023-12-07

Family

ID=85035373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022086042A Active JP7212818B1 (en) 2022-05-26 2022-05-26 High-floor tsunami evacuation shelters to be installed in home gardens, schools, factories, fish markets, etc.

Country Status (1)

Country Link
JP (1) JP7212818B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822087B1 (en) * 2011-04-30 2011-11-24 正仁 古郡 Tsunami shelter
JP2013076271A (en) * 2011-09-30 2013-04-25 Taisei Corp Building for evacuation
JP2013076257A (en) * 2011-09-30 2013-04-25 Taisei Corp Evacuation shelter
JP2014214569A (en) * 2013-04-30 2014-11-17 伸和工業株式会社 Shelter
JP2015025253A (en) * 2013-07-25 2015-02-05 日本興業株式会社 Tsunami evacuation stage
JP2015129430A (en) * 2013-04-18 2015-07-16 明 早川 tsunami shelter
JP2015151061A (en) * 2014-02-18 2015-08-24 盟子 冨田 Floating body for tsunami evacuation and air holding formation body
JP2016053296A (en) * 2015-10-30 2016-04-14 元浩 岡田 Tsunami shelter
JP2017008523A (en) * 2015-06-18 2017-01-12 株式会社さつま屋商店 Shelter for tsunami
JP2021095731A (en) * 2019-12-17 2021-06-24 穣 冨田 Evacuation shelter for tsunami and the like

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822087B1 (en) * 2011-04-30 2011-11-24 正仁 古郡 Tsunami shelter
JP2013076271A (en) * 2011-09-30 2013-04-25 Taisei Corp Building for evacuation
JP2013076257A (en) * 2011-09-30 2013-04-25 Taisei Corp Evacuation shelter
JP2015129430A (en) * 2013-04-18 2015-07-16 明 早川 tsunami shelter
JP2014214569A (en) * 2013-04-30 2014-11-17 伸和工業株式会社 Shelter
JP2015025253A (en) * 2013-07-25 2015-02-05 日本興業株式会社 Tsunami evacuation stage
JP2015151061A (en) * 2014-02-18 2015-08-24 盟子 冨田 Floating body for tsunami evacuation and air holding formation body
JP2017008523A (en) * 2015-06-18 2017-01-12 株式会社さつま屋商店 Shelter for tsunami
JP2016053296A (en) * 2015-10-30 2016-04-14 元浩 岡田 Tsunami shelter
JP2021095731A (en) * 2019-12-17 2021-06-24 穣 冨田 Evacuation shelter for tsunami and the like

Also Published As

Publication number Publication date
JP7212818B1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP4031497B2 (en) Tsunami shelter
JP6065274B2 (en) Guide tower-type tsunami-resistant floating small room with poles set up vertically
JP6762464B1 (en) Evacuation shelter for tsunami etc.
JP4871418B1 (en) Apartment house block system with PC artificial ground with disaster prevention function and autonomous function as a village
JP2006219972A (en) Device for countermeasures against disaster
JP2006322311A (en) Floating body construction method of high tide-floating building
CN105155581B (en) Split type floating on water surface energy-saving building structural system and construction method
JP4979040B1 (en) Retreat room for measures against tsunami, storm surge and flood
JP5518822B2 (en) Tsunami countermeasure refuge hut
JP5624237B1 (en) Tsunami ceiling shelter
JP5637414B1 (en) Tsunami disaster shelter
JP2012127177A (en) Protective house building
JP2023173644A (en) High-floor type tsunami evacuation shelter installed on site such as private garden, school, plant, or fish market
JP2013076257A (en) Evacuation shelter
JP6368892B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP6547094B2 (en) Building with evacuation room for tsunami, flood and storm surge
JP5462309B2 (en) Tsunami evacuation room and air holding independent body used therefor
JP6402296B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP6514917B2 (en) shelter
JP5782655B2 (en) Protective housing
JP6569034B1 (en) Evacuation shelters such as tsunami
JP6918277B2 (en) Regional tsunami disaster prevention structure
JP2017218748A (en) Disaster evacuation facility
JP5600135B2 (en) Retreat room for measures against tsunami, storm surge and flood
JP7376004B1 (en) Tsunami, missile blast, etc. disaster evacuation shelter installed inside the building

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7212818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150