JP2023145266A - Resistance spot welded joint and method for manufacturing the same - Google Patents

Resistance spot welded joint and method for manufacturing the same Download PDF

Info

Publication number
JP2023145266A
JP2023145266A JP2022052638A JP2022052638A JP2023145266A JP 2023145266 A JP2023145266 A JP 2023145266A JP 2022052638 A JP2022052638 A JP 2022052638A JP 2022052638 A JP2022052638 A JP 2022052638A JP 2023145266 A JP2023145266 A JP 2023145266A
Authority
JP
Japan
Prior art keywords
nugget
plate
energization
steel plates
spot welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022052638A
Other languages
Japanese (ja)
Inventor
大河 谷口
Taiga Taniguchi
誠司 古迫
Seiji Furusako
真二 児玉
Shinji Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022052638A priority Critical patent/JP2023145266A/en
Publication of JP2023145266A publication Critical patent/JP2023145266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

To provide a resistance spot welded joint in which a plate set such that high strength steel sheets with a tensile strength of 980 MPa or more are overlapped is used, a joint strength is improved and variations in joint strength can be suppressed, and a method for manufacturing the same.SOLUTION: Provided is a resistance spot welded joint that includes a nugget having a nugget diameter which is a minimum nugget diameter Dmin represented the following formula (1): Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01 V+3)×√t or more at a position of a plate interface of two high strength steel sheets which are overlapped adjacent to each other and respectively have a tensile strength of 980 MPa or more, and crystal grains with an aspect ratio of 1.0 or more and 1.7 or less exist in the nugget. Further, provided is a method for manufacturing the same. In the formula, each element symbol is weighted average content (mass%) of each chemical component of two high strength steel sheets multiplied by a plate thickness ratio of each steel plate, and t is an average plate thickness (mm) of two high strength steel sheets.SELECTED DRAWING: Figure 2

Description

本開示は、抵抗スポット溶接継手及びその製造方法に関する。 TECHNICAL FIELD The present disclosure relates to resistance spot weld joints and methods of manufacturing the same.

車体の組立や部品の取付け等の工程においては主としてスポット溶接が使われている。近年、自動車分野では、低燃費化やCO排出量削減を達成するための車体の軽量化や、衝突安全性を向上させるための車体の高剛性化がより求められている。そのような要求を満たすために、車体、部品等にハイテン材(高強度鋼板)を使用するニーズが高まっている。 Spot welding is mainly used in processes such as car body assembly and parts attachment. In recent years, in the automobile field, there has been an increasing demand for lighter vehicle bodies in order to achieve higher fuel efficiency and reduction in CO2 emissions, and higher rigidity in vehicle bodies to improve collision safety. In order to meet such demands, there is an increasing need to use high-tensile steel materials (high-strength steel plates) for vehicle bodies, parts, etc.

しかし、ハイテン材、例えば引張強さが980MPa以上の高強度鋼板を重ねた板組を用いて抵抗スポット溶接した場合、継手強度(十字引張強さ:CTS)が低下し易い。そこで、ハイテン材を用いても高いCTSを有するスポット溶接継手が求められている。
ハイテン材を用いてスポット溶接を行う場合にCTSを向上させるため、本通電によりナゲットを形成した後、後通電を行うことが提案されている。そのような後通電として、焼戻しのための通電と、凝固偏析緩和のための通電の2つの後通電が報告されている。
However, when resistance spot welding is performed using a high tensile strength material, for example, a set of stacked high-strength steel plates with a tensile strength of 980 MPa or more, the joint strength (cross tensile strength: CTS) tends to decrease. Therefore, there is a need for spot welded joints that have a high CTS even when using high tensile strength materials.
In order to improve CTS when performing spot welding using high tensile strength materials, it has been proposed to perform post-energization after forming a nugget by main energization. As such post-energization, two types of post-energization have been reported: energization for tempering and energization for relaxation of solidification and segregation.

例えば、特許文献1には、ナゲット径と後通電条件を規定範囲内にすることで、高い継手強度を実現させることが提案されている。この場合、後通電条件はナゲットを形成する本通電電流値よりも後通電電流値が大きく、パルス通電を想定している。
また、特許文献2では、高板厚比を含む板組で、チリを発生させず、適切なナゲット径と継手強度を得ることができる製造方法が提案されている。
特許文献3では、高強度鋼板をスポット溶接継手において、ナゲットの炭素当量、ナゲットの周囲におけるHAZ(熱影響部)組織、及び後通電条件を規定することで、高い継手強度を実現することが提案されている。
For example, Patent Document 1 proposes achieving high joint strength by adjusting the nugget diameter and post-energization conditions within specified ranges. In this case, the post-energization conditions are such that the post-energization current value is larger than the main energization current value for forming the nugget, and pulse energization is assumed.
Moreover, Patent Document 2 proposes a manufacturing method that can obtain an appropriate nugget diameter and joint strength without causing dust in a plate assembly including a high plate thickness ratio.
Patent Document 3 proposes to achieve high joint strength by specifying the carbon equivalent of the nugget, the HAZ (heat affected zone) structure around the nugget, and the post-energization conditions in a spot welded joint of high-strength steel plates. has been done.

特開2010-115706号公報Japanese Patent Application Publication No. 2010-115706 特開2010-240739号公報Japanese Patent Application Publication No. 2010-240739 特許第5987982号Patent No. 5987982

ハイテン材を重ね合わせた板組を抵抗スポット溶接した際、継手強度(CTS)の向上のため、後通電処理を行うと、後通電効果がばらつき、後通電後の継手強度もばらつき易い。 When resistance spot welding is performed on a set of plates made of overlapping high-tensile steel materials, if a post-energization treatment is performed to improve joint strength (CTS), the post-energization effect will vary, and the joint strength after post-energization will also tend to vary.

そこで、本開示は、引張強さが980MPa以上の高強度鋼板を重ね合わせた板組を単通電のみで抵抗スポット溶接したスポット溶接継手に比べ、継手強度が向上し、かつ継手強度のばらつきが抑制され得る抵抗スポット溶接継手及びその製造方法を提供することを目的とする。 Therefore, the present disclosure improves joint strength and suppresses variations in joint strength, compared to a spot welded joint in which a set of overlapping high-strength steel plates with a tensile strength of 980 MPa or more is resistance-spot welded using only a single current. It is an object of the present invention to provide a resistance spot welded joint that can be used as a resistance spot welded joint and a method for manufacturing the same.

上記目的を達成するための本開示の要旨は次の通りである。
<1> 隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む、複数枚の鋼板が重ね合わされた板組と、前記板組において前記複数枚の鋼板を接合し、前記2枚の高強度鋼板の板界面であった位置において下記式(1)で規定される最小ナゲット径Dmin(mm)以上であるナゲット径を有するナゲットとを含み、
前記ナゲット内にアスペクト比が1.0以上1.7以下の結晶粒が存在する抵抗スポット溶接継手。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
<2> 前記ナゲットの中心を通る前記板組の板厚方向の断面において、前記ナゲットの溶融境界のうち、前記2枚の高強度鋼板の板界面であった位置に相当する部分をナゲット端部とし、前記ナゲット内で前記ナゲット端部近傍の100μm四方の観察領域において、鉄系炭化物の面積率が0.3%以上である<1>に記載の抵抗スポット溶接継手。
<3> 前記観察領域において、全析出物の総面積に対する、円相当粒径が30nm以上かつアスペクト比が3以上である鉄系炭化物の総面積が40%である<2>に記載の抵抗スポット溶接継手。
<4> 前記ナゲットの中心を通る前記板組の板厚方向の断面において、前記ナゲットの溶融境界のうち、前記2枚の高強度鋼板の板界面であった位置に相当する部分をナゲット端部とし、前記ナゲット内で前記ナゲット端部近傍の1000μm四方の測定領域における平均ビッカース硬さが、下記推定式HVで算出される推定ビッカース硬さよりも20Hv以上低い<1>~<3>のいずれか1つに記載の抵抗スポット溶接継手。
推定式HV=217+1080×(C+Si/70+Mn/113+Cr/93+Mo/30)
式中、各元素記号は、前記板組に含まれる各鋼板の化学成分に前記板組の総厚に対する各鋼板の板厚比を乗じた加重平均を前記ナゲットの平均化学成分とみなした場合の各元素の含有量を意味する。
<5> 前記ナゲットの中心を通る前記板組の板厚方向の断面において、前記ナゲットの溶融境界のうち、前記2枚の高強度鋼板の板界面であった位置に相当する部分をナゲット端部とし、
前記板組に含まれる各鋼板の化学成分に前記板組の総厚に対する各鋼板の板厚比を乗じた加重平均を前記ナゲットの平均化学成分とみなした場合に、
前記ナゲット内で前記ナゲット端部近傍の100μm四方の観察領域において、前記板厚方向に対する垂直方向のそれぞれに沿って1μm間隔で10000点のP濃度及びMn濃度を測定し、前記P濃度が前記ナゲットの平均化学成分の平均P含有量の2倍以上である測定点をP濃化部とし、前記Mn濃度が前記ナゲットの平均化学成分の平均Mn含有量の2倍以上である測定点をMn濃化部とするとき、
全測定点数10000点に対する前記P濃化部の数であるP濃化部面積率及び前記全測定点数10000点に対する前記Mn濃化部の数であるMn濃化部面積率が、それぞれ0.5%以下である<1>~<4>のいずれか1つに記載の抵抗スポット溶接継手。
<6> 前記ナゲットの前記2枚の高強度鋼板の板界面であった位置における前記ナゲット径が、1.2×Dmin以上である<1>~<5>のいずれか1つに記載の抵抗スポット溶接継手。
<7> <1>~<6>のいずれか1つに記載の抵抗スポット溶接継手を製造する方法であって、
隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む、複数枚の鋼板が重ね合わされた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電することにより、前記2枚の高強度鋼板の板界面において下記式(1)で規定される最小ナゲット径Dmin(mm)以上であるナゲット径を有するナゲットを形成する第1通電工程と、
前記第1通電工程後、前記一対の電極間の通電を休止して前記ナゲットを冷却する冷却工程と、
前記冷却工程後、前記一対の電極間で電流値I(kA)で通電することにより前記ナゲットを加熱する第2通電工程と、
を含む、抵抗スポット溶接継手の製造方法。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
<8> 前記第2通電工程において、アップスロープ通電及びダウンスロープ通電の少なくとも一方を行う<7>に記載の抵抗スポット溶接継手の製造方法。
<9> 前記冷却工程において、前記通電を休止する時間が0.4s以上であり、
前記第2通電工程において、前記第1通電工程の前記電流値I(kA)に対する前記第2通電工程の最大電流値I2max(kA)の電流比(I2max/I)が0.50~0.80となるように通電を行い、かつ、25kA/sec以上のアップスロープ及び-25kA/sec以下のダウンスロープの少なくとも一方を施す<8>に記載の抵抗スポット溶接継手の製造方法。
<10> 前記冷却工程において、前記通電を休止する時間が0.08s以上であり、
前記第2通電工程において、前記第1通電工程の前記電流値I(kA)に対する前記第2通電工程の最大電流値I2max(kA)の電流比(I2max/I)が0.70~0.95となるように通電を行い、かつ、25kA/sec以上のアップスロープ及び-25kA/sec以下のダウンスロープの少なくとも一方を施す<8>に記載の抵抗スポット溶接継手の製造方法。
<11> 前記第1通電工程の前に、前記式(1)によって前記最小ナゲット径Dminを算出する算出工程を含む<7>~<10>のいずれか1つに記載の抵抗スポット溶接継手の製造方法。
The gist of the present disclosure for achieving the above object is as follows.
<1> A plate set in which a plurality of steel plates are stacked, including two adjacently overlapped high-strength steel plates each having a tensile strength of 980 MPa or more, and joining the plurality of steel plates in the plate set, A nugget having a nugget diameter that is equal to or larger than the minimum nugget diameter Dmin (mm) defined by the following formula (1) at the position that was the plate interface of the two high-strength steel plates,
A resistance spot welded joint in which crystal grains having an aspect ratio of 1.0 or more and 1.7 or less are present in the nugget.
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.
<2> In a cross section in the plate thickness direction of the plate assembly passing through the center of the nugget, a portion of the molten boundary of the nugget that corresponds to the position of the plate interface of the two high-strength steel plates is the nugget end. The resistance spot welded joint according to <1>, wherein the area ratio of iron-based carbides is 0.3% or more in an observation area of 100 μm square near the end of the nugget within the nugget.
<3> The resistance spot according to <2>, wherein in the observation region, the total area of iron-based carbides having a circular equivalent grain size of 30 nm or more and an aspect ratio of 3 or more is 40% of the total area of all precipitates. welded joints.
<4> In a cross section in the plate thickness direction of the plate assembly passing through the center of the nugget, a portion of the molten boundary of the nugget that corresponds to the plate interface of the two high-strength steel plates is set as the nugget end. and any one of <1> to <3> in which the average Vickers hardness in a 1000 μm square measurement area near the nugget end within the nugget is 20 Hv or more lower than the estimated Vickers hardness calculated by the following estimation formula HV. 1. A resistance spot welded joint according to claim 1.
Estimated formula HV=217+1080×(C+Si/70+Mn/113+Cr/93+Mo/30)
In the formula, each element symbol represents the weighted average of the chemical composition of each steel plate included in the plate set multiplied by the plate thickness ratio of each steel plate to the total thickness of the plate set, which is regarded as the average chemical composition of the nugget. It means the content of each element.
<5> In a cross section in the plate thickness direction of the plate set passing through the center of the nugget, a portion of the molten boundary of the nugget that corresponds to the plate interface of the two high-strength steel plates is set as the nugget end. year,
When the weighted average of the chemical composition of each steel plate included in the plate set multiplied by the plate thickness ratio of each steel plate to the total thickness of the plate set is considered as the average chemical composition of the nugget,
In an observation area of 100 μm square near the end of the nugget in the nugget, the P concentration and Mn concentration were measured at 10,000 points at 1 μm intervals along each direction perpendicular to the plate thickness direction, and the P concentration was The measurement point where the average P content of the average chemical component of the nugget is more than twice the average P content is defined as the P-enriched area, and the measurement point where the Mn concentration is more than twice the average Mn content of the average chemical component of the nugget is defined as the Mn-enriched area. When making a division,
The P-enriched area area ratio, which is the number of the P-enriched areas with respect to the total number of measurement points of 10,000 points, and the Mn-enriched area area rate, which is the number of the Mn-enriched areas with respect to the total number of measurement points of 10,000 points, are each 0.5. % or less, the resistance spot welded joint according to any one of <1> to <4>.
<6> The resistor according to any one of <1> to <5>, wherein the nugget diameter at a position that was the plate interface of the two high-strength steel plates is 1.2 × Dmin or more. Spot welded fittings.
<7> A method for manufacturing the resistance spot welded joint according to any one of <1> to <6>, comprising:
A plate set in which multiple steel plates are stacked, including two adjacently stacked high-strength steel plates each having a tensile strength of 980 MPa or more, is sandwiched in the thickness direction between a pair of electrodes and applied with a current value I. 1 (kA) to form a nugget having a nugget diameter that is equal to or larger than the minimum nugget diameter Dmin (mm) defined by the following formula (1) at the plate interface of the two high-strength steel plates. energizing process,
After the first energization step, a cooling step of stopping energization between the pair of electrodes to cool the nugget;
After the cooling step, a second energization step of heating the nugget by applying current at a current value I 2 (kA) between the pair of electrodes;
A method of manufacturing resistance spot welded joints, including:
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.
<8> The method for manufacturing a resistance spot welded joint according to <7>, wherein at least one of upslope energization and downslope energization is performed in the second energization step.
<9> In the cooling step, the time for stopping the energization is 0.4 seconds or more,
In the second energization step, a current ratio (I 2max /I 1 ) of the maximum current value I 2max (kA) in the second energization step to the current value I 1 (kA) in the first energization step is 0.50. The method for manufacturing a resistance spot welded joint according to <8>, wherein current is applied so that the current is 0.80, and at least one of an up slope of 25 kA/sec or more and a down slope of -25 kA/sec or less is applied.
<10> In the cooling step, the time during which the energization is stopped is 0.08 seconds or more,
In the second energization step, a current ratio (I 2max /I 1 ) of the maximum current value I 2max (kA) in the second energization step to the current value I 1 (kA) in the first energization step is 0.70. The method for manufacturing a resistance spot welded joint according to <8>, wherein the current is applied so that the current is 0.95, and at least one of an up slope of 25 kA/sec or more and a down slope of -25 kA/sec or less is applied.
<11> The resistance spot welded joint according to any one of <7> to <10>, including a calculation step of calculating the minimum nugget diameter Dmin using the formula (1) before the first energization step. Production method.

本開示によれば、引張強さが980MPa以上の高強度鋼板を重ね合わせた板組を単通電のみで抵抗スポット溶接したスポット溶接継手に比べ、継手強度が向上し、かつ継手強度のばらつきが抑制され得る抵抗スポット溶接継手及びその製造方法が提供される。 According to the present disclosure, the joint strength is improved and variation in joint strength is suppressed compared to a spot welded joint in which a set of high-strength steel plates with a tensile strength of 980 MPa or higher is resistance-spot welded using only a single current. A resistance spot welded joint and a method of manufacturing the same are provided.

最小ナゲット径Dminの算出式1の導出を説明する図である。FIG. 2 is a diagram illustrating the derivation of Equation 1 for calculating the minimum nugget diameter Dmin. 2枚の高強度鋼板を重ねた板組をスポット溶接したナゲットの板厚方向の断面の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a cross section in the plate thickness direction of a nugget obtained by spot welding a plate set of two high-strength steel plates stacked together. 図2に示すナゲット端部近傍を拡大して示す模式図である。FIG. 3 is a schematic diagram showing an enlarged view of the vicinity of the nugget end shown in FIG. 2; 3枚の鋼板を重ねた板組をスポット溶接したナゲットの板厚方向の断面の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a cross section in the plate thickness direction of a nugget obtained by spot welding a plate set of three stacked steel plates. 2枚の鋼板を重ね合わせた板組に対して抵抗スポット溶接を行った場合に形成されるナゲット及び熱影響部(HAZ)の一例を概略的に示す図である。FIG. 2 is a diagram schematically showing an example of a nugget and a heat affected zone (HAZ) that are formed when resistance spot welding is performed on a plate set in which two steel plates are stacked one on top of the other. 2枚の高強度鋼板と厚みが相対的に薄い1枚の鋼板を含む3枚の鋼板を重ねた板組をスポット溶接したナゲットの板厚方向の断面の他の例を示す模式図である。FIG. 7 is a schematic diagram showing another example of a cross section in the plate thickness direction of a nugget obtained by spot welding a plate set of three stacked steel plates including two high-strength steel plates and one relatively thin steel plate.

以下、本開示の一例である実施形態について説明する。
なお、本開示において、各元素の含有量の「%」表示は「質量%」を意味する。また、本開示において、「~」を用いて表される数値範囲は、特に断りの無い限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
本開示に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値又は実施例に示されている値に置き換えてもよい。また、本開示に段階的に記載されている数値範囲において、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値又は実施例に示されている値に置き換えてもよい。
また、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
また、本開示において「抵抗スポット溶接継手」を「スポット溶接継手」または単に「継手」と記す場合がある。
An embodiment that is an example of the present disclosure will be described below.
In addition, in this disclosure, the expression "%" for the content of each element means "mass %". Furthermore, in the present disclosure, unless otherwise specified, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. Furthermore, a numerical range in which "more than" or "less than" is attached to the numerical value written before and after "~" means a range that does not include these numerical values as the lower limit or upper limit.
In the numerical ranges described step by step in this disclosure, the upper limit of one step-by-step numerical range may be replaced by the upper limit of the numerical range described in another step-by-step manner or the value shown in the Examples. good. In addition, in the numerical ranges described step by step in this disclosure, the lower limit value of one stepwise numerical range is replaced with the lower limit value of the numerical range described in another stepwise manner or the value shown in the examples. It's okay.
Furthermore, the term "process" is used not only to refer to an independent process but also to include a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
Further, in the present disclosure, a "resistance spot weld joint" may be referred to as a "spot weld joint" or simply a "joint."

一般的に、鋼板の引張強さが高いほど、溶接部の靭性は低下して継手強度が低下する。ハイテン材を抵抗スポット溶接した際、継手強度(十字引張強さ:CTS)の低下を防ぐ手段として、後通電処理がある。これは、後通電を施すことで、焼戻しや凝固偏析緩和が生じるためである。
しかし、後通電処理を行うと、後通電時の電極と鋼板の接触等の問題で、後通電効果がばらつき、後通電後の継手強度のばらつきが生じ易い。
Generally, the higher the tensile strength of the steel plate, the lower the toughness of the welded part and the lower the joint strength. When high tensile strength materials are resistance spot welded, post-energization treatment is available as a means to prevent a decrease in joint strength (cross tensile strength: CTS). This is because post-energization causes tempering and solidification segregation relaxation.
However, when the post-energization process is performed, the post-energization effect tends to vary due to problems such as contact between the electrode and the steel plate during the post-energization, and the strength of the joint after the post-energization tends to vary.

そこで、本発明者らが実験、検討を重ねたところ、高強度鋼板の板界面における最小ナゲット径を規定することで、後通電効果を安定して得ることができ、継手強度(CTS)を向上させることが分かった。その理由は定かでないが以下のように推測される。
ハイテン材はナゲット靭性が低いため、十字引張試験をすると界面破断する。そのため、プラグ破断をさせて継手強度(CTS)を向上させる必要がある。プラグ破断させるためには後通電を施し、ナゲット靭性を向上させる手法がある。
しかし、ナゲット径によって後通電の適正電流範囲がどのように変化するかを調査した事例は少ない。そこで、本発明者らが調査した結果、高強度鋼板の板界面だった位置におけるナゲット径が増加することで、後通電の適正電流範囲が広がるということがわかった。これは、ナゲット径が増加することで、広い後通電電流値範囲において界面破断強度よりもプラグ破断強度のほうが低くなるためである。そのため、最小ナゲット径を規定して、それ以上であるナゲット径を有することで広い後通電電流値範囲を有し、安定した高CTSを得ることができると考えられる。
Therefore, after repeated experiments and studies, the present inventors found that by specifying the minimum nugget diameter at the plate interface of high-strength steel plates, it was possible to stably obtain the post-energization effect and improve joint strength (CTS). I found out that it does. Although the reason is not certain, it is assumed as follows.
Since high-tensile steel has low nugget toughness, it will break at the interface when subjected to a cross tension test. Therefore, it is necessary to improve the joint strength (CTS) by breaking the plug. In order to break the plug, there is a method of applying post-energization to improve the nugget toughness.
However, there are few studies that have investigated how the appropriate current range for post-energization changes depending on the nugget diameter. Accordingly, as a result of investigation by the present inventors, it was found that by increasing the nugget diameter at the position that was the plate interface of the high-strength steel plate, the appropriate current range for post-energization is expanded. This is because as the nugget diameter increases, the plug rupture strength becomes lower than the interfacial rupture strength over a wide range of post-energization current values. Therefore, it is considered that by specifying a minimum nugget diameter and having a nugget diameter larger than that, it is possible to have a wide post-energization current value range and obtain a stable high CTS.

[スポット溶接継手]
本開示に係るスポット溶接継手について詳細に説明する。本開示に係る抵抗スポット溶接継手は、隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む、複数枚の鋼板が重ね合わされた板組と、前記板組において前記複数枚の鋼板を接合し、前記2枚の高強度鋼板の板界面であった位置において下記式(1)で規定される最小ナゲット径Dmin(mm)以上であるナゲット径を有するナゲットとを含み、前記ナゲット内にアスペクト比が1.0以上1.7以下の結晶粒が存在する。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
[Spot welded joint]
The spot weld joint according to the present disclosure will be described in detail. The resistance spot welded joint according to the present disclosure includes a plate set in which a plurality of steel plates are stacked together, including two adjacently stacked high-strength steel plates each having a tensile strength of 980 MPa or more, and a plate set in which a plurality of steel plates are stacked together, and a nugget having a nugget diameter equal to or larger than the minimum nugget diameter Dmin (mm) defined by the following formula (1) at a position that was the plate interface of the two high-strength steel plates, Crystal grains having an aspect ratio of 1.0 or more and 1.7 or less are present in the nugget.
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.

<板組>
本開示に係るスポット溶接継手の板組は、隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む複数枚の鋼板が重ね合わされた板組である。隣接して重なった980MPa以上の高強度鋼板を含むことにより、高い引張強さを確保することができる。なお、板組を構成する鋼板は2枚でもよいし、3枚以上でもよい。3枚以上の場合、全て980MPa以上の高強度鋼板(本開示において「高強度鋼板」と称する場合がある。)でもよいし、980MPa未満の鋼板が含まれていてもよい。
また、板組に高強度鋼板が3枚以上あり、高強度鋼板同士を重ね合せた面が2面以上ある場合には、少なくとも一つの重ね合せ面において本開示で規定するナゲット径と結晶粒のアスペクト比を満たしていればよく、高強度鋼板同士を重ね合せた面の全てにおいて本開示で規定するナゲット径と結晶粒のアスペクト比を満たしていることが好ましい。
<Board set>
The plate set of the spot welded joint according to the present disclosure is a plate set in which a plurality of steel plates including two adjacently overlapped high-strength steel plates each having a tensile strength of 980 MPa or more are stacked. By including adjacent high-strength steel plates of 980 MPa or more, high tensile strength can be ensured. Note that the number of steel plates constituting the plate set may be two or three or more. In the case of three or more sheets, all may be high-strength steel plates of 980 MPa or higher (sometimes referred to as "high-strength steel plates" in the present disclosure), or steel plates of less than 980 MPa may be included.
In addition, if there are three or more high-strength steel plates in a plate set and there are two or more surfaces in which the high-strength steel plates are overlapped, the nugget diameter and crystal grains specified in the present disclosure shall be met on at least one overlapping surface. It is sufficient that the aspect ratio is satisfied, and it is preferable that the nugget diameter and crystal grain aspect ratio specified in the present disclosure be satisfied on all surfaces where the high-strength steel plates are overlapped.

図2は2枚の高強度鋼板1A,1Bを重ねた板組をスポット溶接したナゲット13の中心を通る板厚方向の断面の一例を示す模式図である。図3は、図2に示すナゲット端部近傍を拡大して示す模式図である。2枚の鋼板1A,1Bを接合し、板界面15であった部分が長軸である楕円形状のナゲット13が形成されている。 FIG. 2 is a schematic diagram showing an example of a cross section in the plate thickness direction passing through the center of a nugget 13 obtained by spot welding a plate set in which two high-strength steel plates 1A and 1B are stacked. FIG. 3 is a schematic diagram showing an enlarged view of the nugget end portion shown in FIG. 2 and its vicinity. Two steel plates 1A and 1B are joined together to form an elliptical nugget 13 whose major axis is the plate interface 15.

本開示に係るスポット溶接継手10の板組は、全ての鋼板1A,1Bの引張強さが980MPa以上であってもよいし、隣接して重なった2枚の高強度鋼板1A,1Bのほかに引張強さが980MPa未満の鋼板を含んでもよい。全ての鋼板の引張強さが980MPa以上である場合、同じ引張強さを有する同種の鋼板でもよいし、引張強さが異なる異種の鋼板でもよい。 In the plate set of the spot welded joint 10 according to the present disclosure, the tensile strength of all the steel plates 1A and 1B may be 980 MPa or more, and in addition to the two adjacent and overlapping high strength steel plates 1A and 1B, A steel plate having a tensile strength of less than 980 MPa may be included. When the tensile strength of all the steel plates is 980 MPa or more, the steel plates may be of the same type having the same tensile strength, or may be steel plates of different types having different tensile strengths.

本開示に係るスポット溶接継手10における各高強度鋼板1A,1Bの化学成分、金属組織は限定されず、引張強さが980MPa以上となるように所望の元素を選択すればよい。なお、高強度鋼板1A,1Bは、高強度化のため、C含有量が0.20質量%以上、0.25質量%以上、または0.30質量%以上であることが好ましい。 The chemical composition and metal structure of each high-strength steel plate 1A, 1B in the spot welded joint 10 according to the present disclosure are not limited, and desired elements may be selected so that the tensile strength is 980 MPa or more. Note that the high strength steel plates 1A and 1B preferably have a C content of 0.20% by mass or more, 0.25% by mass or more, or 0.30% by mass or more in order to increase the strength.

板組を構成する各高強度鋼板1A,1Bの板厚は特に限定されないが、例えば、0.5~3.5mmの板厚が挙げられる。
板組の総厚も特に限定されないが、例えば1.5~8.0mmが挙げられる。
図4は3枚の高強度鋼板1A,1B,1Cを重ねた板組をスポット溶接したナゲット13の中心を通る板厚方向の断面の一例を示す模式図である。図4に示すスポット溶接継手20では、3枚の高強度鋼板1A,1B,1Cが断面において楕円形状のナゲット13によって接合されている。
以下、図2に示すように引張強さが980MPa以上である2枚の高強度鋼板1A,1Bの板組をスポット溶接したスポット溶接継手について主に説明する。
The thickness of each high-strength steel plate 1A, 1B constituting the plate set is not particularly limited, but may be, for example, 0.5 to 3.5 mm thick.
The total thickness of the plate assembly is not particularly limited either, but may be, for example, 1.5 to 8.0 mm.
FIG. 4 is a schematic diagram showing an example of a cross section in the plate thickness direction passing through the center of a nugget 13 obtained by spot welding a plate set of three high-strength steel plates 1A, 1B, and 1C. In a spot welded joint 20 shown in FIG. 4, three high-strength steel plates 1A, 1B, and 1C are joined by a nugget 13 having an elliptical cross section.
Hereinafter, as shown in FIG. 2, a spot welded joint obtained by spot welding a set of two high-strength steel plates 1A and 1B each having a tensile strength of 980 MPa or more will be mainly described.

<ナゲット>
ナゲット13は、板組に含まれる複数枚の鋼板がスポット溶接された位置において溶融凝固することにより全ての鋼板を接合するように形成された溶接金属である。
なお、ナゲット13の形状は、板厚方向の断面で見たときに通常は図2及び図4に示すように板厚方向が短辺であり、板の面内方向が長辺である略楕円形であるが、このような形状に限定されない。
<Nugget>
The nugget 13 is a weld metal formed so as to join all the steel plates by melting and solidifying them at positions where the plurality of steel plates included in the plate set are spot welded.
Note that the shape of the nugget 13, when viewed in cross section in the plate thickness direction, is generally an approximately ellipse with the short side in the plate thickness direction and the long side in the in-plane direction of the plate, as shown in FIGS. 2 and 4. shape, but is not limited to this shape.

(最小ナゲット径)
ナゲット13は、2枚の高強度鋼板1A,1Bの板界面であった位置において下記式(1)で規定される最小ナゲット径Dmin以上であるナゲット径を有する。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板1A,1Bの各化学成分に2枚の高強度鋼板1A,1Bの総厚に対する各鋼板1A,1Bの板厚比を乗じた加重平均含有量(質量%)であり、tは2枚の高強度鋼板1A,1Bの平均の板厚(mm)である。
(Minimum nugget diameter)
The nugget 13 has a nugget diameter that is equal to or larger than the minimum nugget diameter Dmin defined by the following formula (1) at a position that was the plate interface between the two high-strength steel plates 1A and 1B.
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol is calculated by multiplying each chemical component of the two high-strength steel plates 1A, 1B by the thickness ratio of each steel plate 1A, 1B to the total thickness of the two high-strength steel plates 1A, 1B. t is the weighted average content (mass %), and t is the average thickness (mm) of the two high-strength steel plates 1A and 1B.

2枚の高強度鋼板の板界面(重ね合わせ面)における最小ナゲット径を上記式1で算出される化学成分と板厚に基づいて規定することで、それ以上であるナゲット径を有する抵抗スポット溶接継手では、後通電効果を安定して得ることができ、CTSが大きく向上する。 By specifying the minimum nugget diameter at the plate interface (overlapping surface) of two high-strength steel plates based on the chemical composition and plate thickness calculated by the above formula 1, resistance spot welding with a nugget diameter larger than the minimum nugget diameter can be achieved. In the joint, it is possible to stably obtain the post-energization effect, and the CTS is greatly improved.

ここで、最小ナゲット径Dminを算出するための上記式1は、以下のような実験、考えによって導出されたものである。
C量、N量の係数は単通電におけるプラグ破断する最小ナゲット径を考えた。この際、使ったプロットは(C量,最小ナゲット径)=(0%,4mm)、(0.08%,4.2mm)、(0.21%,5mm)である。図1に示すように、算出された係数は4.9であったが、高Cになるにつれて傾きが小さくなるので、少し小さい4.2とした。
PとSに関しては、Cと同等程度、靭性に影響を与えるため係数を同じ程度とした。他の元素に関しては、Ms点の式の係数とセメンタイトの成長に与える影響を考慮して係数を決めた。例えば、Crはセメンタイトの成長を抑え、軟化を抑制する、などである。
Here, the above equation 1 for calculating the minimum nugget diameter Dmin was derived from the following experiments and ideas.
The coefficients for the amount of C and the amount of N were determined by considering the minimum nugget diameter at which the plug would break when a single current was applied. At this time, the plots used were (C amount, minimum nugget diameter) = (0%, 4 mm), (0.08%, 4.2 mm), (0.21%, 5 mm). As shown in FIG. 1, the calculated coefficient was 4.9, but since the slope becomes smaller as the C becomes higher, it was set as 4.2, which is a little smaller.
As for P and S, the coefficients were set to be the same as those of C, since they affect toughness. Regarding other elements, the coefficients were determined in consideration of the coefficients of the formula for the Ms point and their influence on the growth of cementite. For example, Cr suppresses cementite growth and softening.

2枚の高強度鋼板1A,1Bの板界面15だった位置(重ね合せ面)におけるナゲット径は1.2×Dmin以上であることが好ましい。1.2×Dmin以上であるナゲット径を有することにより、継手は高CTSや広い適正電流比範囲の確保との追加効果を有する。 It is preferable that the nugget diameter at the position (overlapping surface) of the plate interface 15 of the two high-strength steel plates 1A and 1B is 1.2×Dmin or more. By having a nugget diameter of 1.2×Dmin or more, the joint has the additional effect of ensuring a high CTS and a wide appropriate current ratio range.

(アスペクト比が1.0以上1.7以下の結晶粒)
本開示に係るスポット溶接継手10はナゲット13内にアスペクト比が1.0以上1.7以下の結晶粒が存在する。単通電のみでスポット溶接継手を製造する場合、溶融池の中心に向かって凝固が進行していくため結晶粒は細長い形状となり、アスペクト比は1.7超となる。これに対し、適切に後通電を行うと、ナゲットが再度加熱され、ナゲット内で再結晶が生じることとなりアスペクト比は1.0以上1.7以下となる。
後通電により、ナゲット内において、アスペクト比が1.0以上1.7以下、すなわち、各粒の縦横比が比較的小さい形状を有する結晶粒が存在することで、高強度鋼板を剥離する方向の力に強く、継手強度が向上する。なお、ナゲット内に各粒の縦横比が比較的小さい形状を有する結晶粒が存在すればよく、そのような結晶粒が存在する位置は特に限定されない。例えば、後通電によりナゲットの中心部分が再溶融して、中心部分以外の位置に各粒の縦横比が比較的小さい形状を有する結晶粒が存在していてもよい。
(Crystal grains with an aspect ratio of 1.0 or more and 1.7 or less)
In the spot welded joint 10 according to the present disclosure, crystal grains with an aspect ratio of 1.0 or more and 1.7 or less are present in the nugget 13. When a spot welded joint is manufactured using only a single current, solidification progresses toward the center of the molten pool, resulting in crystal grains having an elongated shape and an aspect ratio exceeding 1.7. On the other hand, if post-energization is performed appropriately, the nugget is heated again, recrystallization occurs within the nugget, and the aspect ratio becomes 1.0 or more and 1.7 or less.
By post-energization, the presence of crystal grains in the nugget with an aspect ratio of 1.0 or more and 1.7 or less, that is, a shape in which each grain has a relatively small aspect ratio, causes the high-strength steel plate to be separated in the direction of peeling. Strong against force and improves joint strength. Note that it is sufficient that crystal grains having a shape in which the aspect ratio of each grain is relatively small are present in the nugget, and the position where such crystal grains are present is not particularly limited. For example, the center portion of the nugget may be remelted by post-energization, and crystal grains each having a relatively small aspect ratio may be present at positions other than the center portion.

ここで、ナゲット内の結晶粒のアスペクト比は以下のように特定する。
ナゲットの中心を通る板厚方向の断面(ナゲット断面)の旧オーステナイト粒界を示す画像において、各々の旧オーステナイト粒の形状を最小二乗法により楕円近似する。楕円近似の方法は、各々のオーステナイト粒の長径と、面積を用いてその長径を有する楕円の短径を算出する。この楕円形状において、長軸の寸法を短軸の寸法で除することにより、旧オーステナイト粒のアスペクト比を算出する。具体的には、ナゲットの中心部を通るように板厚方向に切断し、この切断面をドデシルベンゼンスルホン酸ナトリウム腐食して、測定対象となる2枚の高強度鋼板の板界面に沿って、光学顕微鏡で観察面積1000μm四方の観察領域R2における旧オーステナイト粒のアスペクト比を測定する。ここで、旧オーステナイト粒の観察領域R2は、図2に示すように、ナゲット13の各高強度鋼板1A,1Bの板界面15だった位置に沿ってナゲット端部13Eからナゲット中心部まで、一辺が板厚方向であり、かつ板界面15に対して対称となる1000μm四方とする。
図2に示すように、ナゲット13は同心楕円状に対称であるため、ナゲット13の一端部13Eから中心部まで順次測定することで、アスペクト比が1.0以上1.7以下となる結晶粒が存在するか否か確認すればよい。
Here, the aspect ratio of crystal grains within the nugget is specified as follows.
In an image showing prior austenite grain boundaries in a cross section in the plate thickness direction passing through the center of the nugget (nugget cross section), the shape of each prior austenite grain is approximated to an ellipse by the least squares method. In the ellipse approximation method, the major axis of each austenite grain and the minor axis of an ellipse having the major axis are calculated using the area. In this elliptical shape, the aspect ratio of the prior austenite grains is calculated by dividing the long axis dimension by the short axis dimension. Specifically, the nugget was cut in the thickness direction so as to pass through the center, and this cut surface was corroded with sodium dodecylbenzene sulfonate, and then the nugget was cut along the plate interface of the two high-strength steel plates to be measured. The aspect ratio of prior austenite grains in an observation area R2 of 1000 μm square is measured using an optical microscope. Here, as shown in FIG. 2, the observation region R2 of prior austenite grains extends from the nugget end 13E to the center of the nugget along the position that was the plate interface 15 of each high-strength steel plate 1A, 1B of the nugget 13. is the plate thickness direction and is 1000 μm square and symmetrical with respect to the plate interface 15.
As shown in FIG. 2, the nugget 13 is symmetrical in a concentric ellipse, so by sequentially measuring from one end 13E of the nugget 13 to the center, crystal grains with an aspect ratio of 1.0 or more and 1.7 or less can be identified. Just check whether it exists or not.

ナゲット内のいずれかの観察領域において旧オーステナイト粒のアスペクト比が1.0以上1.7以下となる結晶粒がナゲット内に微量でも存在すれば、後通電が施されたものと理解でき、そのような結晶粒の割合は特に限定されない。すなわち、ナゲット内の結晶粒は、アスペクト比が1.7を超える結晶粒が存在してもよいが、高いCTSを確保するため、アスペクト比が1.0以上1.7以下の旧オーステナイト粒が50個数%以上であることが好ましく、60個数%以上であることがより好ましく、70個数%以上であることがさらに好ましい。なお、後通電を行った場合、観察領域内の旧オーステナイト粒のアスペクト比は同程度になる場合が多く、観察領域内で旧オーステナイト粒のアスペクト比が大きくバラつく場合は少ない。 If even a small amount of crystal grains with an aspect ratio of prior austenite grains of 1.0 or more and 1.7 or less exist in the nugget in any observation area within the nugget, it can be understood that post-energization has been applied, and that The proportion of such crystal grains is not particularly limited. In other words, the crystal grains in the nugget may include crystal grains with an aspect ratio exceeding 1.7, but in order to ensure a high CTS, prior austenite grains with an aspect ratio of 1.0 or more and 1.7 or less are used. The content is preferably 50% by number or more, more preferably 60% by number or more, and even more preferably 70% by number or more. Note that when post-energization is performed, the aspect ratios of prior austenite grains within the observation region are often approximately the same, and it is rare that the aspect ratios of prior austenite grains vary greatly within the observation region.

(鉄系炭化物)
ナゲット13の中心を通る板組の板厚方向の断面において、ナゲット13の溶融境界のうち、2枚の高強度鋼板1A,1Bの板界面15であった位置に相当する部分をナゲット端部とし、ナゲット内のナゲット端部を含む領域内のナゲット端部近傍の100μm四方の観察領域R1において、鉄系炭化物の面積率が0.3%以上であることが好ましい。
ここで鉄系炭化物とは、例えばFe2~3Cであり、本開示では、Feが50at%以上、Cが25at%以上のものを鉄系炭化物とみなす。鉄系炭化物の面積率は、ナゲット断面に対してピクラール腐食を行い、SEM観察して測定される値である。焼き戻しを目的とした後通電(テンパー通電)が行われていることで、ナゲット端部近傍の観察領域R1において、鉄系炭化物の面積率が0.3%以上となり、継手は剥離強度、主にCTSにおいて高い値を得ることができる。
(Iron-based carbide)
In a cross section in the plate thickness direction of the plate set passing through the center of the nugget 13, the portion of the melted boundary of the nugget 13 corresponding to the position of the plate interface 15 of the two high-strength steel plates 1A and 1B is defined as the nugget end. In the observation region R1 of 100 μm square near the nugget end in the region including the nugget end within the nugget, the area ratio of iron-based carbides is preferably 0.3% or more.
Here, the iron-based carbide is, for example, Fe 2 to 3 C, and in the present disclosure, those containing 50 at % or more of Fe and 25 at % or more of C are considered to be iron-based carbides. The area ratio of iron-based carbides is a value measured by performing picral corrosion on a cross section of a nugget and observing it with an SEM. As the post-energization for tempering (temper energization) is performed, the area ratio of iron-based carbides is 0.3% or more in the observation region R1 near the nugget end, and the joint has poor peel strength and main A high value can be obtained in CTS.

また、観察領域R1において、全析出物の総面積に対する、円相当粒径が30nm以上かつアスペクト比が3以上である鉄系炭化物の総面積が40%であることが好ましい。
析出物としては、セメンタイトが挙げられる。ナゲット13のテンパー通電が進んでいる場合、ナゲット端部近傍の観察領域R1において、全析出物の面積に対し、円相当粒径が30nm以上かつアスペクト比が3以上である鉄系炭化物の面積率が40%以上となり、より高いCTSを有することができる。
Further, in the observation region R1, it is preferable that the total area of iron-based carbides having a circular equivalent grain size of 30 nm or more and an aspect ratio of 3 or more is 40% of the total area of all precipitates.
Cementite is mentioned as a precipitate. When the tempering energization of the nugget 13 is progressing, in the observation region R1 near the nugget end, the area ratio of iron-based carbides having a circular equivalent grain size of 30 nm or more and an aspect ratio of 3 or more to the area of the total precipitates. is 40% or more, and can have a higher CTS.

(ビッカース硬さ)
ナゲット内でナゲット端部近傍の1000μm四方の測定領域における平均ビッカース硬さが、下記推定式HVで算出される推定ビッカース硬さよりも20Hv以上低いことが好ましい。
推定式HV=217+1080×(C+Si/70+Mn/113+Cr/93+Mo/30)
式中、各元素記号は、板組に含まれる各鋼板の化学成分に板組の総厚に対する各鋼板の板厚比を乗じた加重平均をナゲットの平均化学成分とみなした場合の各元素の含有量を意味する。
(Vickers hardness)
It is preferable that the average Vickers hardness in a 1000 μm square measurement area near the nugget end within the nugget is 20 Hv or more lower than the estimated Vickers hardness calculated using the following estimation formula HV.
Estimated formula HV=217+1080×(C+Si/70+Mn/113+Cr/93+Mo/30)
In the formula, each element symbol represents the weighted average of the chemical composition of each steel plate included in the plate set multiplied by the plate thickness ratio of each steel plate to the total thickness of the plate set, which is regarded as the average chemical composition of the nugget. means content.

本開示に係るスポット溶接継手10は、焼き戻しを目的とした後通電(テンパー通電)が行われていることで、ナゲット端部近傍における平均ビッカース硬さが、推定式HVから算出されるビッカース硬さに対して20HV以上低くなり、継手は剥離強度、主にCTSにおいて高い値を得ることができる。 The spot welded joint 10 according to the present disclosure is subjected to post-energization (temper energization) for the purpose of tempering, so that the average Vickers hardness in the vicinity of the nugget end is the Vickers hardness calculated from the estimation formula HV. The peel strength of the joint is 20 HV or more lower than that of the steel, and the joint can obtain a high value of peel strength, mainly CTS.

ナゲット端部近傍におけるビッカース硬さの測定は、ナゲット13の内部において、ナゲット端部13Eに最も近く、一辺が板厚方向となり、かつ板界面15に対して対称となる1000μm四方の領域R2にて行う。ナゲット端部近傍の測定領域R2において、荷重300gfでビッカース硬さを10点測定し、その平均値を平均ビッカース硬さとする。なお、測定においては、すべての圧痕が最近接圧痕から自身の圧痕サイズ4つ分以上に相当する距離があるものとする。
なお、板厚が小さくナゲット端部近傍に1000μm四方の領域R2が確保できない場合は、ナゲット端13Eから2000μm以内の領域においてビッカース硬さを10点測定し、その平均値を平均ビッカース硬さとする。
The Vickers hardness near the nugget end is measured at a 1000 μm square region R2 inside the nugget 13 that is closest to the nugget end 13E, one side is in the thickness direction, and is symmetrical with respect to the board interface 15. conduct. In the measurement region R2 near the end of the nugget, the Vickers hardness is measured at 10 points under a load of 300 gf, and the average value is taken as the average Vickers hardness. In addition, in the measurement, it is assumed that all indentations have a distance corresponding to four or more indentation sizes from the nearest indentation.
Note that if the plate thickness is small and it is not possible to secure a region R2 of 1000 μm square near the nugget end, the Vickers hardness is measured at 10 points in the region within 2000 μm from the nugget end 13E, and the average value is taken as the average Vickers hardness.

(ナゲット端部近傍におけるP濃度及びMn濃度)
ナゲット端部近傍の観察領域R1の板厚方向及び板厚方向に対する垂直方向のそれぞれに沿って1μm間隔で10000点のP濃度及びMn濃度を測定し、P濃度がナゲットの平均化学成分の平均P含有量の2倍以上である測定点をP濃化部、Mn濃度がナゲットの平均化学成分の平均Mn含有量の2倍以上である測定点をMn濃化部とするとき、全測定点数10000点に対する前記P濃化部の数であるP濃化部面積率及び前記全測定点数10000点に対する前記Mn濃化部の数であるMn濃化部面積率が、それぞれ0.5%以下であることが好ましい。各濃化部は、EPMA(電子プローブマイクロアナライザー)によって測定することができる。
ここでの、ナゲットの平均化学成分は、2枚の高強度鋼板1A,1Bの加重平均含有量(質量%)で算出する。
(P concentration and Mn concentration near the nugget end)
The P concentration and Mn concentration were measured at 10,000 points at 1 μm intervals along the thickness direction and the direction perpendicular to the thickness direction of the observation region R1 near the nugget end, and the P concentration was determined to be the average P of the average chemical components of the nugget. The total number of measurement points is 10,000 when the measurement point where the content is twice or more is defined as the P-enriched part, and the measurement point where the Mn concentration is more than twice the average Mn content of the average chemical component of the nugget is defined as the Mn-enriched part. The P-enriched area area ratio, which is the number of the P-enriched areas with respect to a point, and the Mn-enriched area area ratio, which is the number of Mn-enriched areas with respect to the total number of measurement points of 10,000, are each 0.5% or less. It is preferable. Each enriched area can be measured by EPMA (electron probe microanalyzer).
The average chemical composition of the nugget here is calculated from the weighted average content (mass %) of the two high-strength steel plates 1A and 1B.

ナゲット端部領域におけるP濃化部面積率及びMn濃化部面積率が、それぞれ0.5%以下であれば、これらの元素の偏析が生じていないとみなすことができ、CTSがより向上した抵抗スポット溶接継手とすることができる。 If the P-enriched area area ratio and Mn-enriched area area ratio in the nugget end region are each 0.5% or less, it can be considered that segregation of these elements does not occur, and CTS is further improved. Can be resistance spot welded joints.

本開示に係るスポット溶接継手の用途は特に限定されないが、例えば、車体部品として特に好適に用いることができる。 Although the use of the spot welded joint according to the present disclosure is not particularly limited, it can be particularly suitably used as a vehicle body part, for example.

[スポット溶接継手の製造方法]
次に、本開示に係るスポット溶接継手を製造する方法について説明する。本開示に係るスポット溶接継手を製造する方法は特に限定されないが、以下に説明するスポット溶接継手の製造方法によれば、本開示に係るスポット溶接継手を好適に製造することができる。ただし、本開示に係るスポット溶接継手は、以下に説明するスポット溶接継手の製造方法(「本開示に係るスポット溶接継手の製造方法」と称する。)によって製造されたスポット溶接継手に限定されない。
[Method of manufacturing spot welded joints]
Next, a method for manufacturing a spot welded joint according to the present disclosure will be described. Although the method for manufacturing the spot welded joint according to the present disclosure is not particularly limited, the spot welded joint according to the present disclosure can be suitably manufactured according to the method for manufacturing a spot welded joint described below. However, the spot welded joint according to the present disclosure is not limited to a spot welded joint manufactured by the method for manufacturing a spot welded joint described below (referred to as "method for manufacturing a spot welded joint according to the present disclosure").

本開示に係るスポット溶接継手の製造方法は、隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む複数枚の鋼板が重ね合わされた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電することにより、前記2枚の高強度鋼板の板界面において下記式(1)で規定される最小ナゲット径Dmin(mm)以上であるナゲット径を有するナゲットを形成する第1通電工程と、
前記第1通電工程後、前記一対の電極間の通電を休止して前記ナゲットを冷却する冷却工程と、
前記冷却工程後、前記一対の電極間で電流値I(kA)で通電することにより前記ナゲットを加熱する第2通電工程と、
を含む。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
A method for manufacturing a spot welded joint according to the present disclosure involves using a pair of electrodes to assemble a plate assembly in which a plurality of steel plates including two adjacently stacked high-strength steel plates each having a tensile strength of 980 MPa or more are stacked together. By applying current at a current value I 1 (kA) while sandwiching and pressurizing in the thickness direction, a nugget with a minimum nugget diameter Dmin (mm) or more defined by the following formula (1) at the plate interface of the two high-strength steel plates is formed. a first energization step of forming a nugget having a certain nugget diameter;
After the first energization step, a cooling step of stopping energization between the pair of electrodes to cool the nugget;
After the cooling step, a second energization step of heating the nugget by applying current at a current value I 2 (kA) between the pair of electrodes;
including.
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.

<第1通電工程>
まず、第1通電工程として、隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む複数枚の鋼板が重ね合わされた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電することにより、前記2枚の高強度鋼板の板界面において下記式(1)で規定される最小ナゲット径Dmin以上となるナゲット径を有するナゲットを形成する。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
<First energization process>
First, as a first energization process, a plate set in which multiple steel plates are stacked, including two adjacently stacked high-strength steel plates each having a tensile strength of 980 MPa or more, is sandwiched between a pair of electrodes in the plate thickness direction. By applying current at a current value I 1 (kA) while applying pressure at Form.
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.

2枚の高強度鋼板の板界面において最小ナゲット径Dmin以上となるナゲットを形成するには、事前テストまたはシミュレーションによって、最小ナゲット径以上となる本通電条件を求めればよい。本通電条件とは、電流値や加圧力のシーケンスである。
事前テストは例えば、加圧力を一定とし、電流値を変化させることにより実施できる。またシミュレーションは、市販の抵抗溶接シミュレーションソフトウェア、例えばSORPAS(SCSK株式会社)を用いて、電流値や加圧力を入力することで、その条件に対するナゲット径を確認することにより実施できる。
In order to form a nugget having a minimum nugget diameter Dmin or more at the plate interface of two high-strength steel plates, the main energization conditions that result in a minimum nugget diameter or more may be determined by a preliminary test or simulation. The main energization conditions are a sequence of current values and pressing forces.
The preliminary test can be performed, for example, by keeping the pressing force constant and changing the current value. Further, the simulation can be carried out by using commercially available resistance welding simulation software, for example SORPAS (SCSK Corporation), by inputting the current value and pressing force, and checking the nugget diameter corresponding to the conditions.

第1通電工程では、スポット溶接によって、高強度鋼板1A,1Bの板界面において、最小ナゲット径Dmin以上となるナゲット径を有し、板組を構成する全ての鋼板を接合するナゲットが形成されるように電流値I(kA)及び通電時間t(ms)を設定することが好ましい。
図5は、2枚の鋼板を重ねた板組に対して第1通電工程を行った場合に形成されるナゲットの一例を概略的に示している。図5に示すように、鋼板1A,1Bを重ね合わせた板組を板厚方向に挟み込むように電極2A、2Bを押し当てた状態のまま、電極2Aと電極2Bの間で通電を行う。これにより鋼板1Aと鋼板1Bとの通電部にはナゲット13及び熱影響部(いわゆるHAZ)14が形成され、両鋼板がスポット溶接される。
In the first energization step, a nugget is formed by spot welding at the plate interface between the high-strength steel plates 1A and 1B, having a nugget diameter equal to or larger than the minimum nugget diameter Dmin and joining all the steel plates constituting the plate set. It is preferable to set the current value I 1 (kA) and the energization time t 1 (ms) as follows.
FIG. 5 schematically shows an example of a nugget that is formed when the first energization process is performed on a plate set made of two stacked steel plates. As shown in FIG. 5, electricity is applied between the electrodes 2A and 2B while the electrodes 2A and 2B are pressed against each other so as to sandwich the steel plates 1A and 1B in the thickness direction. As a result, a nugget 13 and a heat-affected zone (so-called HAZ) 14 are formed in the current-carrying portions of the steel plates 1A and 1B, and both steel plates are spot-welded.

第1通電工程では最小ナゲット径Dmin以上であるナゲット径が形成されれば溶接条件の制限は無い。電流値Iは一定でも変化させてもパルス状でもよく、パルス状のように電流値を変化させる場合、Iは最大の値をいう。
アップスロープの場合、アップスロープも含めた通電時間をtとし、パルス状通電の場合、無通電の時間を除いた通電時間をtとする。
板組に対する電極2A、2Bの加圧力加圧力は一定でも変化させてもパルス状でもよく、加圧力は例えば3.0~5.0kNである。
In the first energization process, there are no restrictions on welding conditions as long as a nugget diameter that is equal to or larger than the minimum nugget diameter Dmin is formed. The current value I1 may be constant, variable, or pulsed. When the current value is varied in a pulsed manner, I1 refers to the maximum value.
In the case of upslope, the energization time including the upslope is set as t1 , and in the case of pulsed energization, the energization time excluding the non-energization time is set as t1 .
The pressing force of the electrodes 2A, 2B against the plate set may be constant, variable, or pulsed, and the pressing force is, for example, 3.0 to 5.0 kN.

<冷却工程>
第1通電工程後、一対の電極間の通電を休止してナゲットを冷却する。冷却工程では、少なくともナゲット端部がマルテンサイト変態している必要がある。ナゲット内での温度勾配は大きくないので、ナゲット端部でマルテンサイト変態が生じている場合はほとんどナゲット中心でもマルテンサイト変態が生じている。少なくともナゲット端部でマルテンサイト変態を生じさせるには、ナゲット端部をMs点以下に冷却する。Ms点は板組から下記式により算出できる。下記式中、(%元素記号)は、板組に含まれる各鋼板の各元素の含有量(質量%)に、板組の総厚に対する各鋼板の板厚比を乗じた加重平均、すなわち前述のナゲットの平均化学成分を意味する。
Ms点=550-361×(%C)-39×(%Mn)-35×(%V)-20×(%Cr)-17×(%Ni)-10×(%Cu)-5×(%Mo+%W)+15×(%Co)+30(%Al)

ナゲット端部をMs点以下に冷却する手段としては、例えば、以下の3つの手段が挙げられる。
(1)無通電で加圧
(2)低電流の通電
(3)電極を開放
上記(1)~(3)のいずれか単独で冷却してもよいし、組み合わせて冷却してもよいが、冷却時間tc1は400ms以上とすることが好ましい。
冷却時間tc1が400ms未満では第2通電工程の前にナゲット端部が凝固しないおそれがある。
冷却時間tc1の上限は限定されない。ただし、冷却時間tc1が長いほど作業効率が低下することになるため、冷却時間tc1は2000ms以下であることが好ましい。
<Cooling process>
After the first energization step, the nugget is cooled by stopping the energization between the pair of electrodes. In the cooling step, at least the nugget end portion must be transformed into martensitic. Since the temperature gradient within the nugget is not large, when martensitic transformation occurs at the nugget ends, martensitic transformation also occurs almost always at the nugget center. In order to cause martensitic transformation at least at the nugget end, the nugget end is cooled to below the Ms point. The Ms point can be calculated from the board set using the following formula. In the formula below, (% element symbol) is the weighted average of the content (mass %) of each element in each steel plate included in the plate set multiplied by the plate thickness ratio of each steel plate to the total thickness of the plate set, that is, the weighted average as described above. means the average chemical composition of the nuggets.
Ms point = 550-361×(%C)-39×(%Mn)-35×(%V)-20×(%Cr)-17×(%Ni)-10×(%Cu)-5×( %Mo+%W)+15×(%Co)+30(%Al)
.
Examples of means for cooling the nugget end to below the Ms point include the following three means.
(1) Applying pressure without energizing (2) Applying low current (3) Opening the electrode Any of the above (1) to (3) may be cooled alone or in combination. The cooling time t c1 is preferably 400 ms or more.
If the cooling time t c1 is less than 400 ms, the nugget end may not be solidified before the second energization step.
The upper limit of the cooling time tc1 is not limited. However, since the longer the cooling time t c1 is, the lower the working efficiency is, the cooling time t c1 is preferably 2000 ms or less.

<第2通電工程>
前記冷却工程後、前記一対の電極間で電流値I(kA)で通電することにより前記ナゲットを加熱する。
第2通電工程では、アップスロープ通電及びダウンスロープ通電の少なくとも一方を行うことが好ましい。ナゲット径が増加するにつれて、ナゲット端部が電極の外側に位置する場合がある。そのため、アップスープやダウンスロープ入れることで、電極と鋼板がなじみやすくなり、ナゲット端部の熱処理が行いやすくなる。
<Second energization process>
After the cooling step, the nugget is heated by passing current at a current value I 2 (kA) between the pair of electrodes.
In the second energization step, it is preferable to perform at least one of upslope energization and downslope energization. As the nugget diameter increases, the nugget end may be located outside the electrode. Therefore, by adding up-soup or down-slope, the electrode and steel plate become more compatible with each other, making it easier to heat-treat the nugget end.

冷却工程において通電を休止する時間が0.4s(=20cycles)以上であり、第2通電工程において、第1通電工程の電流値I(kA)に対する第2通電工程の最大電流値I2max(kA)の電流比(I2max/I)が0.50~0.80となるように後通電を行い、かつ、25kA/sec(=0.5kA/cycle)以上のアップスロープ及び-25kA/sec(=-0.5kA/cycle)以下のダウンスロープの少なくとも一方を施すことが好ましい。
第2通電工程では、少なくともナゲット端部がA点未満まで加熱される。第2通電において、焼き戻しが生じていることは、硬さ試験でナゲット端部近傍を観察することにより確認できる。
あるいは、冷却工程において、通電を休止する時間が0.08s(=4cycles)以上であり、第2通電工程において、第1通電工程の電流値I(kA)に対する第2通電工程の最大電流値I2max(kA)の電流比(I2max/I)が0.70~0.95となるように後通電を行い、かつ、25kA/sec(=0.5kA/cycle)以上のアップスロープ及び-25kA/sec(=-0.5kA/cycle)以下のダウンスロープの少なくとも一方を施すことも好ましい。
第2通電工程では、少なくともナゲット端部が融点未満まで加熱される。第2通電において、凝固偏析緩和が生じていることは、EPMA測定でナゲット端部近傍を観察することにより確認できる。第2通電時間tの上限は、ナゲット端部まで再溶融することを避けるため2500ms以下であることが好ましい。
The time during which the energization is stopped in the cooling process is 0.4 s (=20 cycles) or more, and in the second energization process, the maximum current value I 2max ( Post-energization is performed so that the current ratio (I 2max /I 1 ) of 25 kA/sec (=0.5 kA/cycle) or more and -25 kA/cycle is 0.50 to 0.80. It is preferable to apply at least one of the down slopes of sec (=-0.5 kA/cycle) or less.
In the second energization step, at least the nugget end portion is heated to less than the A1 point. In the second energization, it can be confirmed that tempering has occurred by observing the vicinity of the nugget end in a hardness test.
Alternatively, in the cooling process, the time during which the energization is stopped is 0.08 seconds (=4 cycles) or more, and in the second energization process, the maximum current value in the second energization process with respect to the current value I 1 (kA) in the first energization process. Post-energization is performed so that the current ratio (I 2max /I 1 ) of I 2max (kA) is 0.70 to 0.95, and an upslope of 25 kA/sec (=0.5 kA/cycle) and It is also preferable to provide at least one of the down slopes of −25 kA/sec (=−0.5 kA/cycle) or less.
In the second energization step, at least the nugget end portion is heated to below the melting point. In the second energization, the occurrence of solidification segregation relaxation can be confirmed by observing the vicinity of the nugget end by EPMA measurement. The upper limit of the second energization time t2 is preferably 2500 ms or less in order to avoid remelting up to the end of the nugget.

第2通電はどのような通電パターンでもよい。好ましくはアップスロープやダウンスロープを行い、これにより、電極と鋼板の接触を安定させることで、電極肩部が鋼板に接するためにナゲット端部の焼戻しをしやすくなる The second energization may have any energization pattern. Preferably, upslope or downslope is performed to stabilize the contact between the electrode and the steel plate, making it easier to temper the nugget end because the electrode shoulder is in contact with the steel plate.

以上、本開示に係るスポット溶接継手及びその製造方法の実施形態の一例ついて説明したが、本開示に係るスポット溶接継手及びスポット溶接継手の製造方法は上記実施形態に限定されない。
本開示に係るスポット溶接継手の製造方法は、第1通電工程の前に、各高強度鋼板1A,1Bの化学成分に基づき、式(1)により最小ナゲット径Dminを算出する算出工程を含んでもよい。
また、例えば、第2通電後、板組から一旦電極を離して又は離さずに無通電として時間tc2が経過してから、ナゲットが再溶融しない第3通電を行ってもよい。
Although an example of the embodiment of the spot welded joint and the method for manufacturing the same according to the present disclosure has been described above, the spot weld joint and the method for manufacturing the spot weld joint according to the present disclosure are not limited to the above embodiment.
The method for manufacturing a spot welded joint according to the present disclosure may include a calculation step of calculating the minimum nugget diameter Dmin using equation (1) based on the chemical composition of each high-strength steel plate 1A, 1B before the first energization step. good.
Further, for example, after the second energization, the electrode may be removed from the plate set or not, and the time t c2 may elapse without energization, and then the third energization may be performed so that the nugget does not melt again.

また、ナゲットは、例えば、図6に示すように鋼板3枚のうち外側に位置する1枚の鋼板1Dの厚みが他の2枚の高強度鋼板1A,1Bの厚みより薄く、隣接する2枚の鋼板の間に形成された2つのナゲット13A,13Bが結合したような形状であってもよい。このようなスポット溶接継手30において、例えば、鋼板1A,1Bが980MPa以上の高強度鋼板であり、鋼板1Dは980MPa未満である場合、図2に示すスポット溶接継手10と同様、ナゲットのうち高強度鋼板1A,1Bを接合する部分13Bにおいて、ナゲット径が式1によって算出される最小ナゲットDmin以上であり、アスペクト比が1.0~7.0の旧オーステナイト粒が存在していればよい。 Further, as shown in FIG. 6, for example, the thickness of the outermost one of the three steel plates 1D of the nugget is thinner than the thickness of the other two high-strength steel plates 1A and 1B, and the two adjacent The shape may be such that two nuggets 13A and 13B formed between steel plates are combined. In such a spot welded joint 30, for example, if the steel plates 1A and 1B are high strength steel plates of 980 MPa or more and the steel plate 1D is less than 980 MPa, the high strength of the nugget is similar to the spot welded joint 10 shown in FIG. In the portion 13B where the steel plates 1A and 1B are joined, it is sufficient that the nugget diameter is equal to or larger than the minimum nugget Dmin calculated by Equation 1, and prior austenite grains with an aspect ratio of 1.0 to 7.0 are present.

以下、本開示に係るスポット溶接継手およびその製造方法の実施例について説明する。尚、本開示に係るスポット溶接継手およびその製造方法は以下の実施例に限定されるものではない。 Examples of spot welded joints and methods of manufacturing the same according to the present disclosure will be described below. Note that the spot welded joint and the method for manufacturing the same according to the present disclosure are not limited to the following examples.

<実施例1>
[2枚板の抵抗スポット溶接継手の製造]
表1に示す鋼板を表2A~表2Dに示すように組み合わせて種々の板組を準備し、各板組に対してスポット溶接を行い、種々のスポット溶接継手を製造した。
表1には、鋼板の板厚、引張強さ、化学成分の含有量(質量%)のほか、式1によって算出される最小ナゲット径Dmin、各鋼板2枚の板組をスポット溶接したナゲット端部近傍におけるビッカース硬さ(「ナゲット硬さ」と表記)等を記載した。
<Example 1>
[Manufacture of resistance spot welded joint of two plates]
Various plate sets were prepared by combining the steel plates shown in Table 1 as shown in Tables 2A to 2D, and spot welding was performed on each plate set to produce various spot welded joints.
Table 1 includes the thickness, tensile strength, and content of chemical components (mass%) of the steel plates, as well as the minimum nugget diameter Dmin calculated by formula 1, and the nugget edge obtained by spot welding each set of two steel plates. The Vickers hardness (denoted as "nugget hardness") in the vicinity of the part is recorded.


[評価]
製造したスポット溶接継手について、ナゲット内の旧オーステナイト粒のアスペクト比、ナゲット端部近傍のP及びMnの各濃化部面積率、平均ビッカース硬さHV等を前述の通り測定した。
[evaluation]
Regarding the manufactured spot welded joints, the aspect ratio of prior austenite grains in the nugget, the area ratio of each P and Mn enriched area near the nugget end, the average Vickers hardness HV, etc. were measured as described above.

また、各スポット溶接継手のCTSを、JIS Z 3137:1999「抵抗スポット及びプロジェクション溶接継手の十字引張試験に対する試験片寸法及び試験方法」に準拠して測定した。 In addition, the CTS of each spot welded joint was measured in accordance with JIS Z 3137:1999 "Test specimen size and test method for cross tensile test of resistance spot and projection welded joints".

(CTS上昇量)
各スポット溶接継手のCTSとそれぞれ対応する単通電(第1通電)のみを施したスポット溶接継手のCTSとの差を、対応する単通電(第1通電)のみを施したスポット溶接継手のCTSで除して上昇量(%)を算出し、以下の基準により評価した。
×:10%以下
△:10%超、20%未満
〇:20%以上
(CTS increase amount)
The difference between the CTS of each spot welded joint and the CTS of the corresponding spot welded joint subjected to only single energization (first energization) is determined by the CTS of the corresponding spot welded joint subjected to only single energization (first energization). The amount of increase (%) was calculated by dividing the amount, and evaluated based on the following criteria.
×: 10% or less △: More than 10%, less than 20% 〇: 20% or more

(CTSばらつき評価)
また、各例において同じ条件でそれぞれ5個のスポット溶接継手を製造し、各CTSを測定してCTSばらつきを下記基準により評価した。
×:±1.8kN以上
△:±1.0超、1.8kN未満
〇:1.0kN以下
(CTS variation evaluation)
Further, in each example, five spot welded joints were manufactured under the same conditions, each CTS was measured, and CTS variation was evaluated according to the following criteria.
×: ±1.8kN or more △: More than ±1.0, less than 1.8kN 〇: 1.0kN or less

(総合判定)
CTS及びCTSばらつきの各評価に基づき、以下のように判定した。
×:1つでも×がある場合
△:一方が△、一方が〇の場合
〇:両方とも〇の場合
(Comprehensive judgment)
Based on each evaluation of CTS and CTS variation, the following judgments were made.
×: If there is at least one × △: If one is △ and one is 〇 〇: If both are 〇

表2A~表2Dに、板組、溶接条件、評価結果を示す。なお、第二通電条件における「クール時間」は第一通電工程後、第二通電開始までの冷却時間を、「電流比」は第一通電工程の電流値に対する第二通電工程の電流値の電流比を意味する。また、「母材に対するビッカース硬さ低下量(Hv)」は、板組に含まれる各鋼板の化学成分を各板厚に応じて加重平均した含有量によって算出したナゲット端部領域における推定ビッカース硬さに対する低下量である。 Tables 2A to 2D show the plate sets, welding conditions, and evaluation results. In addition, "cooling time" in the second energization condition is the cooling time from the first energization step to the start of the second energization, and "current ratio" is the current value of the current value of the second energization step relative to the current value of the first energization step. means ratio. In addition, the "Vickers hardness reduction amount (Hv) with respect to the base material" is the estimated Vickers hardness in the nugget end region calculated from the weighted average content of the chemical components of each steel plate included in the plate assembly according to each plate thickness. This is the amount of decrease relative to the




<実施例2>
[3枚板の抵抗スポット溶接継手の製造]
表1に示す鋼板を表3に示すように組み合わせて種々の板組を準備し、各板組に対してスポット溶接を行い、種々のスポット溶接継手を製造し、実施例1と同様に評価した。なお、3枚板組の鋼板1と鋼板2の板界面に剥離荷重がかかるように十字引張試験を実施した。また、実際のナゲット径は、鋼板1と鋼板2の板界面だった位置の長さである。
<Example 2>
[Manufacture of three-plate resistance spot welded joint]
Various plate sets were prepared by combining the steel plates shown in Table 1 as shown in Table 3, spot welding was performed on each plate set, various spot welded joints were manufactured, and evaluated in the same manner as in Example 1. . Note that a cross tension test was conducted such that a peeling load was applied to the plate interface between steel plate 1 and steel plate 2 in a three-plate set. Further, the actual nugget diameter is the length of the position that was the plate interface between the steel plate 1 and the steel plate 2.


発明例では、いずれも本開示で規定する最小ナゲット径以上であるナゲット径を有し、ナゲット内にアスペクト比が1.0以上1.7以下の結晶粒が存在し、CTS上昇量が高く、かつCTSばらつきが抑制されていた。
一方、比較例では、本開示で規定する板組又は通電条件を満たさず、CTS上昇量及びCTSの少なくとも一方が不足した。
In the invention examples, all have a nugget diameter that is equal to or larger than the minimum nugget diameter defined in the present disclosure, crystal grains with an aspect ratio of 1.0 or more and 1.7 or less are present in the nugget, and the amount of increase in CTS is high; Moreover, CTS variation was suppressed.
On the other hand, the comparative example did not satisfy the board assembly or energization conditions specified in the present disclosure, and at least one of the CTS increase amount and CTS was insufficient.

1A、1B、1C、1D 鋼板
2A、2B 電極
10、20、30 スポット溶接継手
13 ナゲット
13E ナゲット端部
14 熱影響部(HAZ)
15 板界面
1A, 1B, 1C, 1D Steel plate 2A, 2B Electrode 10, 20, 30 Spot weld joint 13 Nugget 13E Nugget end 14 Heat affected zone (HAZ)
15 Plate interface

Claims (11)

隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む、複数枚の鋼板が重ね合わされた板組と、前記板組において前記複数枚の鋼板を接合し、前記2枚の高強度鋼板の板界面であった位置において下記式(1)で規定される最小ナゲット径Dmin(mm)以上であるナゲット径を有するナゲットとを含み、
前記ナゲット内にアスペクト比が1.0以上1.7以下の結晶粒が存在する抵抗スポット溶接継手。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
A plate set in which a plurality of steel plates are stacked together, including two adjacently overlapped high-strength steel plates each having a tensile strength of 980 MPa or more, and a plate set in which the plurality of steel plates are joined in the plate set, and the two sheets are A nugget having a nugget diameter that is equal to or larger than the minimum nugget diameter Dmin (mm) defined by the following formula (1) at the position that was the plate interface of the high-strength steel plate,
A resistance spot welded joint in which crystal grains having an aspect ratio of 1.0 or more and 1.7 or less are present in the nugget.
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.
前記ナゲットの中心を通る前記板組の板厚方向の断面において、前記ナゲットの溶融境界のうち、前記2枚の高強度鋼板の板界面であった位置に相当する部分をナゲット端部とし、前記ナゲット内で前記ナゲット端部近傍の100μm四方の観察領域において、鉄系炭化物の面積率が0.3%以上である請求項1に記載の抵抗スポット溶接継手。 In a cross section in the plate thickness direction of the plate assembly passing through the center of the nugget, a portion of the molten boundary of the nugget corresponding to the position of the plate interface of the two high-strength steel plates is defined as the nugget end, and The resistance spot welded joint according to claim 1, wherein the area ratio of iron-based carbides is 0.3% or more in an observation area of 100 μm square near the end of the nugget within the nugget. 前記観察領域において、全析出物の総面積に対する、円相当粒径が30nm以上かつアスペクト比が3以上である鉄系炭化物の総面積が40%である請求項2に記載の抵抗スポット溶接継手。 3. The resistance spot welded joint according to claim 2, wherein in the observation region, the total area of iron-based carbides having a circular equivalent grain size of 30 nm or more and an aspect ratio of 3 or more is 40% of the total area of all precipitates. 前記ナゲットの中心を通る前記板組の板厚方向の断面において、前記ナゲットの溶融境界のうち、前記2枚の高強度鋼板の板界面であった位置に相当する部分をナゲット端部とし、前記ナゲット内で前記ナゲット端部近傍の1000μm四方の測定領域における平均ビッカース硬さが、下記推定式HVで算出される推定ビッカース硬さよりも20Hv以上低い請求項1~請求項3のいずれか1項に記載の抵抗スポット溶接継手。
推定式HV=217+1080×(C+Si/70+Mn/113+Cr/93+Mo/30)
式中、各元素記号は、前記板組に含まれる各鋼板の化学成分に前記板組の総厚に対する各鋼板の板厚比を乗じた加重平均を前記ナゲットの平均化学成分とみなした場合の各元素の含有量を意味する。
In a cross section in the plate thickness direction of the plate assembly passing through the center of the nugget, a portion of the molten boundary of the nugget corresponding to the position of the plate interface of the two high-strength steel plates is defined as the nugget end, and The average Vickers hardness in a 1000 μm square measurement area near the end of the nugget within the nugget is 20 Hv or more lower than the estimated Vickers hardness calculated by the following estimation formula HV. Resistance spot weld fittings listed.
Estimated formula HV=217+1080×(C+Si/70+Mn/113+Cr/93+Mo/30)
In the formula, each element symbol represents the weighted average of the chemical composition of each steel plate included in the plate set multiplied by the plate thickness ratio of each steel plate to the total thickness of the plate set, which is regarded as the average chemical composition of the nugget. It means the content of each element.
前記ナゲットの中心を通る前記板組の板厚方向の断面において、前記ナゲットの溶融境界のうち、前記2枚の高強度鋼板の板界面であった位置に相当する部分をナゲット端部とし、
前記板組に含まれる各鋼板の化学成分に前記板組の総厚に対する各鋼板の板厚比を乗じた加重平均を前記ナゲットの平均化学成分とみなした場合に、
前記ナゲット内で前記ナゲット端部近傍の100μm四方の観察領域において、前記板厚方向に対する垂直方向のそれぞれに沿って1μm間隔で10000点のP濃度及びMn濃度を測定し、前記P濃度が前記ナゲットの平均化学成分の平均P含有量の2倍以上である測定点をP濃化部とし、前記Mn濃度が前記ナゲットの平均化学成分の平均Mn含有量の2倍以上である測定点をMn濃化部とするとき、
全測定点数10000点に対する前記P濃化部の数であるP濃化部面積率及び前記全測定点数10000点に対する前記Mn濃化部の数であるMn濃化部面積率が、それぞれ0.5%以下である請求項1~請求項4のいずれか1項に記載の抵抗スポット溶接継手。
In a cross section in the plate thickness direction of the plate set passing through the center of the nugget, a portion of the molten boundary of the nugget corresponding to the position of the plate interface of the two high-strength steel plates is defined as a nugget end;
When the weighted average of the chemical composition of each steel plate included in the plate set multiplied by the plate thickness ratio of each steel plate to the total thickness of the plate set is considered as the average chemical composition of the nugget,
In an observation area of 100 μm square near the end of the nugget in the nugget, the P concentration and Mn concentration were measured at 10,000 points at 1 μm intervals along each direction perpendicular to the plate thickness direction, and the P concentration was The measurement point where the average P content of the average chemical component of the nugget is more than twice the average P content is defined as the P-enriched area, and the measurement point where the Mn concentration is more than twice the average Mn content of the average chemical component of the nugget is defined as the Mn-enriched area. When making a division,
The P-enriched area area ratio, which is the number of the P-enriched areas with respect to the total number of measurement points of 10,000 points, and the Mn-enriched area area rate, which is the number of the Mn-enriched areas with respect to the total number of measurement points of 10,000 points, are each 0.5. % or less, the resistance spot welded joint according to any one of claims 1 to 4.
前記ナゲットの前記2枚の高強度鋼板の板界面であった位置における前記ナゲット径が、1.2×Dmin以上である請求項1~請求項5のいずれか1項に記載の抵抗スポット溶接継手。 The resistance spot welded joint according to any one of claims 1 to 5, wherein the nugget diameter at a position that was the plate interface of the two high-strength steel plates is 1.2 × Dmin or more. . 請求項1~請求項6のいずれか1項に記載の抵抗スポット溶接継手を製造する方法であって、
隣接して重なったそれぞれ引張強さが980MPa以上の2枚の高強度鋼板を含む、複数枚の鋼板が重ね合わされた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電することにより、前記2枚の高強度鋼板の板界面において下記式(1)で規定される最小ナゲット径Dmin(mm)以上であるナゲット径を有するナゲットを形成する第1通電工程と、
前記第1通電工程後、前記一対の電極間の通電を休止して前記ナゲットを冷却する冷却工程と、
前記冷却工程後、前記一対の電極間で電流値I(kA)で通電することにより前記ナゲットを加熱する第2通電工程と、
を含む、抵抗スポット溶接継手の製造方法。
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t・・・式(1)
式(1)において、各元素記号は、前記2枚の高強度鋼板の各化学成分に前記2枚の高強度鋼板の総厚に対する各鋼板の板厚比を乗じた加重平均含有量(質量%)であり、tは前記2枚の高強度鋼板の平均の板厚(mm)である。
A method for manufacturing a resistance spot welded joint according to any one of claims 1 to 6, comprising:
A plate set in which multiple steel plates are stacked, including two adjacently stacked high-strength steel plates each having a tensile strength of 980 MPa or more, is sandwiched in the thickness direction between a pair of electrodes and applied with a current value I. 1 (kA) to form a nugget having a nugget diameter that is equal to or larger than the minimum nugget diameter Dmin (mm) defined by the following formula (1) at the plate interface of the two high-strength steel plates. energizing process,
After the first energization step, a cooling step of stopping energization between the pair of electrodes to cool the nugget;
After the cooling step, a second energization step of heating the nugget by applying current at a current value I 2 (kA) between the pair of electrodes;
A method of manufacturing resistance spot welded joints, including:
Dmin=(4.2(C+N)+0.2Mn+0.1(Si+Al)+0.05Cr+4(P+S)+0.02(Ti+Mo+Nb)+0.01V+3)×√t...Formula (1)
In formula (1), each element symbol represents the weighted average content (mass% ), and t is the average thickness (mm) of the two high-strength steel plates.
前記第2通電工程において、アップスロープ通電及びダウンスロープ通電の少なくとも一方を行う請求項7に記載の抵抗スポット溶接継手の製造方法。 The method for manufacturing a resistance spot welded joint according to claim 7, wherein in the second energization step, at least one of upslope energization and downslope energization is performed. 前記冷却工程において、前記通電を休止する時間が0.4s以上であり、
前記第2通電工程において、前記第1通電工程の前記電流値I(kA)に対する前記第2通電工程の最大電流値I2max(kA)の電流比(I2max/I)が0.50~0.80となるように通電を行い、かつ、25kA/sec以上のアップスロープ及び-25kA/sec以下のダウンスロープの少なくとも一方を施す請求項8に記載の抵抗スポット溶接継手の製造方法。
In the cooling step, the time for stopping the energization is 0.4 seconds or more,
In the second energization step, a current ratio (I 2max /I 1 ) of the maximum current value I 2max (kA) in the second energization step to the current value I 1 (kA) in the first energization step is 0.50. 9. The method for manufacturing a resistance spot welded joint according to claim 8, wherein the current is applied so that the current is 0.80, and at least one of an up slope of 25 kA/sec or more and a down slope of -25 kA/sec or less is applied.
前記冷却工程において、前記通電を休止する時間が0.08s以上であり、
前記第2通電工程において、前記第1通電工程の前記電流値I(kA)に対する前記第2通電工程の最大電流値I2max(kA)の電流比(I2max/I)が0.70~0.95となるように通電を行い、かつ、25kA/sec以上のアップスロープ及び-25kA/sec以下のダウンスロープの少なくとも一方を施す請求項8に記載の抵抗スポット溶接継手の製造方法。
In the cooling step, the time for stopping the energization is 0.08 seconds or more,
In the second energization step, a current ratio (I 2max /I 1 ) of the maximum current value I 2max (kA) in the second energization step to the current value I 1 (kA) in the first energization step is 0.70. 9. The method for manufacturing a resistance spot welded joint according to claim 8, wherein the current is applied so that the current is 0.95, and at least one of an up slope of 25 kA/sec or more and a down slope of -25 kA/sec or less is applied.
前記第1通電工程の前に、前記式(1)によって前記最小ナゲット径Dminを算出する算出工程を含む請求項7~請求項10のいずれか1項に記載の抵抗スポット溶接継手の製造方法。 The method for manufacturing a resistance spot welded joint according to any one of claims 7 to 10, including a calculation step of calculating the minimum nugget diameter Dmin using the equation (1) before the first energization step.
JP2022052638A 2022-03-28 2022-03-28 Resistance spot welded joint and method for manufacturing the same Pending JP2023145266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022052638A JP2023145266A (en) 2022-03-28 2022-03-28 Resistance spot welded joint and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022052638A JP2023145266A (en) 2022-03-28 2022-03-28 Resistance spot welded joint and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2023145266A true JP2023145266A (en) 2023-10-11

Family

ID=88253558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022052638A Pending JP2023145266A (en) 2022-03-28 2022-03-28 Resistance spot welded joint and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2023145266A (en)

Similar Documents

Publication Publication Date Title
TWI587954B (en) Point welding joints and point welding method
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP6409470B2 (en) Spot welding method
JP5641158B2 (en) Spot welded joint
WO2015016287A1 (en) Arc spot weld joint and method for producing same
JP6879345B2 (en) Resistance spot welding method, resistance spot welding joint manufacturing method
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP6036438B2 (en) High strength resistance welded joint and manufacturing method thereof
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP7003806B2 (en) Joined structure and its manufacturing method
JP7453600B2 (en) Spot welded joints and method for manufacturing spot welded joints
WO2020105325A1 (en) Joined structure and method for manufacturing joined structure
JP2023145266A (en) Resistance spot welded joint and method for manufacturing the same
WO2020105267A1 (en) Joint structure and method for manufacturing joint structure
JP7021591B2 (en) Joined structure and its manufacturing method
JP5347416B2 (en) High-strength steel with excellent one-side spot weldability and one-side spot welding method
JP2023145265A (en) Spot welded joint and spot welded joint manufacturing method
US20230105155A1 (en) Welded member having excellent fatigue strength of welded portion and method for manufacturing same
JP7347716B1 (en) Resistance spot welding joints and resistance spot welding methods
WO2024127866A1 (en) Resistance spot-welded joint and resistance spot welding method therefor
JP7480929B1 (en) Resistance spot welded joint and resistance spot welding method thereof
JP2001131679A (en) Joint and structure composed of hyperfine-grained steel
WO2023021922A1 (en) Resistance spot welding joint and resistance spot welding method therefor
WO2024063009A1 (en) Welded member and method for producing same