JP2023140794A - fuel cell system - Google Patents

fuel cell system Download PDF

Info

Publication number
JP2023140794A
JP2023140794A JP2022046815A JP2022046815A JP2023140794A JP 2023140794 A JP2023140794 A JP 2023140794A JP 2022046815 A JP2022046815 A JP 2022046815A JP 2022046815 A JP2022046815 A JP 2022046815A JP 2023140794 A JP2023140794 A JP 2023140794A
Authority
JP
Japan
Prior art keywords
water
temperature
reforming
battery cooling
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022046815A
Other languages
Japanese (ja)
Inventor
正美 濱走
Masami Hamaso
雅士 田中
Masashi Tanaka
達也 秋田
Tatsuya Akita
和秀 指原
Kazuhide Sashihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2022046815A priority Critical patent/JP2023140794A/en
Publication of JP2023140794A publication Critical patent/JP2023140794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a fuel cell system that can appropriately perform bacterium countermeasure operation of suppressing proliferation of bacteria.SOLUTION: A fuel cell system comprises a control device C that alternately sets operating periods, during which fuel gas generated by steam reforming in a fuel processing device 2 is supplied to a fuel cell 1, and stop periods, during which a reforming water supply unit L2 is stopped, water stored in a reforming water tank 4 is not supplied to the fuel processing device 2, and no steam reforming is performed in the fuel processing device 2; when starting a stop period, determines whether or not a bacterium countermeasure condition for suppressing proliferation of bacteria can be satisfied in the stop period; when it is determined that the bacterium countermeasure condition can be satisfied in the stop period, performs second processing of actuating a water circulation unit L3 in the stop period; and when it is determined that the bacterium countermeasure condition cannot be satisfied in the stop period, does not perform the second processing in the stop period.SELECTED DRAWING: Figure 3

Description

本発明は、燃料電池と、燃料電池に供給する水素を含む燃料ガスを水蒸気改質により生成する燃料処理装置と、燃料処理装置での水蒸気改質に用いられる改質用水としての水に対して不純物除去処理を施す不純物除去装置を備える燃料電池システムに関する。 The present invention relates to a fuel cell, a fuel processing device that generates fuel gas containing hydrogen to be supplied to the fuel cell by steam reforming, and water as reforming water used for steam reforming in the fuel processing device. The present invention relates to a fuel cell system including an impurity removal device that performs impurity removal processing.

燃料電池では、例えば燃料処理装置(改質器)で都市ガス等の炭化水素を水蒸気改質して水素を生成し、その水素と空気中の酸素とをセルスタックで反応させて発電させている。燃料処理装置には水蒸気改質反応のための純水(改質用水)が供給されるが、多くのシステムでは発電反応時に生成される水を回収して燃料処理装置での水蒸気改質用の水(改質用水)として利用している。尚、この改質用水に不純物(空気中の硫酸イオン、アンモニアイオン等)が含まれると燃料処理装置の触媒が被毒するため、イオン交換樹脂などの不純物除去装置を設けている。また、改質用水の流路に自然由来のバクテリア(例えばシュードモナス属など)等の菌が増殖し、流路を狭窄させる可能性があることが一般的に知られている。 In a fuel cell, for example, hydrocarbons such as city gas are reformed with steam in a fuel processing device (reformer) to generate hydrogen, and the hydrogen is reacted with oxygen in the air in a cell stack to generate electricity. . The fuel processing equipment is supplied with pure water (reforming water) for the steam reforming reaction, but in many systems, the water produced during the power generation reaction is recovered and used for the steam reforming in the fuel processing equipment. It is used as water (water for reforming). Note that if this reforming water contains impurities (sulfuric acid ions, ammonia ions, etc. in the air), the catalyst of the fuel processing device will be poisoned, so an impurity removal device such as an ion exchange resin is provided. Furthermore, it is generally known that bacteria such as naturally occurring bacteria (for example, Pseudomonas genus, etc.) may proliferate in the flow path of the reforming water, causing the flow path to become narrowed.

特許文献1及び特許文献2には、改質用水の流路を流れる水に対して、菌の増殖を抑制するための運転を行うことが記載されている。 Patent Document 1 and Patent Document 2 describe that water flowing through a reforming water flow path is operated to suppress bacterial growth.

特開2018-106952号公報Japanese Patent Application Publication No. 2018-106952 特願2012-109094号公報Patent Application No. 2012-109094

菌の増殖を抑制するための菌対策運転が、燃料電池の発電停止中にしか行えないシステムもある。例えば、定期的に運転開始と運転停止とを繰り返すSS運転(スタート-ストップ運転)を行う燃料電池システムでは、発電を停止させた後、次の発電の開始までの間に菌対策運転を行う必要がある。そのため、停止から次の起動までの期間が短い場合には、菌対策運転の対象とする水に対して菌の増殖を抑制するのに十分な熱を与えることができず、菌対策運転を適切に完了できない可能性もある。 In some systems, anti-bacterial operation to suppress the growth of bacteria can only be performed while the fuel cell is stopped generating electricity. For example, in a fuel cell system that performs SS operation (start-stop operation) in which operation starts and stops periodically, it is necessary to perform anti-bacterial operation after stopping power generation and before starting the next power generation. There is. Therefore, if the period from shutdown to next startup is short, sufficient heat cannot be applied to the water targeted for anti-bacterial operation to suppress the growth of bacteria, and anti-bacterial operation may be performed appropriately. There is a possibility that it may not be completed.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、菌の増殖を抑制する菌対策運転を適切に行うことができる燃料電池システムを提供する点にある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a fuel cell system that can appropriately perform anti-bacterial operation that suppresses the proliferation of bacteria.

上記目的を達成するための本発明に係る燃料電池システムの特徴構成は、燃料電池と、
前記燃料電池に供給する水素を含む燃料ガスを水蒸気改質により生成する燃料処理装置と、
前記燃料電池から排出される熱を回収する電池冷却水として用いられる水を貯える電池冷却水タンクと、
前記水蒸気改質に用いられる改質用水としての水を貯える改質用水タンクと、
前記改質用水として用いられる水に対して不純物除去処理を施す不純物除去装置と、
前記電池冷却水として用いられる水を、前記燃料電池と前記電池冷却水タンクとの間で循環させる電池冷却水循環部と、
前記改質用水として用いられる水を、前記改質用水タンクと前記不純物除去装置とを経由して前記燃料処理装置に供給する改質用水供給部と、
前記電池冷却水タンクと前記改質用水タンクとを接続するタンク接続部と、
前記電池冷却水及び前記改質用水として用いられる水を、前記電池冷却水タンクと前記タンク接続部と前記改質用水タンクと前記不純物除去装置とを順に流す形態で循環させる水循環部と、
制御装置とを備え、
前記制御装置は、
前記改質用水供給部を動作させ、前記改質用水タンクに貯えられている水を前記燃料処理装置に供給する第1処理を行い、前記燃料処理装置で前記水蒸気改質により生成された前記燃料ガスを前記燃料電池に供給する運転期間と、前記改質用水供給部を停止させ、前記改質用水タンクに貯えられている水を前記燃料処理装置に供給せず、前記燃料処理装置で前記水蒸気改質を行わない停止期間とを交互に設定し、
前記停止期間を開始する場合、当該停止期間において菌の増殖を抑制するための菌対策条件を満たすことができるか否かを判定し、
前記停止期間において前記菌対策条件を満たすことができると判定した場合、当該停止期間において、前記水循環部を動作させる第2処理を行い、
前記停止期間において前記菌対策条件を満たすことができないと判定した場合、当該停止期間において前記第2処理を行わない点にある。
ここで、前記制御装置は、前記停止期間において前記水循環部によって循環させられる循環水の温度を所定の目標温度以上にできると判定した場合、前記菌対策条件を満たすことができると判定してもよい。
The characteristic configuration of the fuel cell system according to the present invention for achieving the above object includes a fuel cell,
a fuel processing device that generates hydrogen-containing fuel gas to be supplied to the fuel cell by steam reforming;
a battery cooling water tank that stores water used as battery cooling water to recover heat discharged from the fuel cell;
a reforming water tank that stores water as reforming water used in the steam reforming;
an impurity removal device that performs impurity removal treatment on the water used as the reforming water;
a battery cooling water circulation unit that circulates water used as the battery cooling water between the fuel cell and the battery cooling water tank;
a reforming water supply unit that supplies water used as the reforming water to the fuel processing device via the reforming water tank and the impurity removal device;
a tank connection part that connects the battery cooling water tank and the reforming water tank;
a water circulation unit that circulates water used as the battery cooling water and the reforming water in a manner that it flows through the battery cooling water tank, the tank connection part, the reforming water tank, and the impurity removal device in order;
and a control device;
The control device includes:
The reforming water supply unit is operated to perform a first process of supplying the water stored in the reforming water tank to the fuel processing device, and the fuel produced by the steam reforming in the fuel processing device During the operation period in which gas is supplied to the fuel cell, the reforming water supply section is stopped, water stored in the reforming water tank is not supplied to the fuel processing device, and the water vapor is not supplied to the fuel processing device. Alternately set a stop period in which no reforming is performed,
When starting the suspension period, determine whether the bacteria countermeasure conditions for suppressing the proliferation of bacteria can be satisfied during the suspension period,
If it is determined that the anti-bacterial conditions can be met during the stop period, performing a second process of operating the water circulation unit during the stop period;
If it is determined that the anti-bacterial conditions cannot be met during the suspension period, the second process is not performed during the suspension period.
Here, if the control device determines that the temperature of the circulating water circulated by the water circulation unit during the stop period can be made equal to or higher than a predetermined target temperature, the control device determines that the bacteria control condition can be satisfied. good.

上記特徴構成によれば、停止期間において菌対策条件を満たすことができると判定された場合には第2処理が実行される。その結果、電池冷却水タンクに貯えられている電池冷却水及び改質用水タンクに貯えられている水が、水循環部によって循環させられる循環水として、改質用水タンクと不純物除去装置と電池冷却水タンクとタンク接続部とを順に流れて循環する。つまり、少なくとも電池冷却水タンクに貯えられていた電池冷却水が保有していた熱が、第2処理において水循環部によって循環させられる循環水の全体に伝達されてその循環水が昇温され、その循環水での菌の増殖が抑制されることが期待される。
また、停止期間において菌対策条件を満たすことができないと判定された場合には、その停止期間において第2処理は行われない。その結果、循環水の昇温が不十分な状態で第2処理が終了することを回避できる。
従って、菌の増殖を抑制する菌対策運転を適切に行うことができる燃料電池システムを提供できる。
According to the characteristic configuration described above, when it is determined that the anti-bacterial conditions can be satisfied during the stop period, the second process is executed. As a result, the battery cooling water stored in the battery cooling water tank and the water stored in the reforming water tank are used as circulating water that is circulated by the water circulation section between the reforming water tank, the impurity removal device, and the battery cooling water. It circulates through the tank and the tank connection in sequence. In other words, at least the heat held by the battery cooling water stored in the battery cooling water tank is transferred to the entire circulating water that is circulated by the water circulation section in the second process, raising the temperature of the circulating water, and increasing the temperature of the circulating water. It is expected that the growth of bacteria in circulating water will be suppressed.
Further, if it is determined that the anti-bacterial conditions cannot be met during the suspension period, the second process is not performed during the suspension period. As a result, it is possible to avoid ending the second process in a state where the temperature of the circulating water is insufficient.
Therefore, it is possible to provide a fuel cell system that can appropriately perform anti-bacterial operation that suppresses the proliferation of bacteria.

本発明に係る燃料電池システムの更に別の特徴構成は、前記制御装置は、前記水循環部によって循環させられる前記循環水の量と、前記第2処理の開始前の時点での前記循環水の流路途中の複数の箇所での温度と、外気温度とに基づいて、前記循環水の全体の温度を前記目標温度以上にできるか否かを判定する点にある。 In still another characteristic configuration of the fuel cell system according to the present invention, the control device controls the amount of the circulating water circulated by the water circulation unit and the flow rate of the circulating water at a time before the start of the second process. The point is that it is determined whether the temperature of the entire circulating water can be made equal to or higher than the target temperature based on the temperature at a plurality of points along the road and the outside air temperature.

停止期間において水循環部を動作させる第2処理を行った場合、循環水が循環により適切に混合されるとすると、混合された後の循環水の全体の温度は、循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度とによって決まると考えてよい。
そこで本特徴構成では、制御装置は、循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度とに基づいて、混合された後の循環水の全体の温度を予測することで、その温度が目標温度以上になるか否かを判定できる。
When the second process of operating the water circulation unit is performed during the stop period, assuming that the circulating water is appropriately mixed by circulation, the overall temperature of the circulating water after mixing is determined by the amount of circulating water and the second process. It can be considered that the temperature is determined by the temperature at multiple points in the flow path of the circulating water and the outside air temperature at the time before the start of the treatment.
Therefore, in this characteristic configuration, the control device mixes the circulating water based on the amount of circulating water, the temperature at multiple points in the flow path of the circulating water before the start of the second process, and the outside air temperature. By predicting the temperature of the entire circulating water after the temperature has passed, it can be determined whether the temperature will be equal to or higher than the target temperature.

本発明に係る燃料電池システムの更に別の特徴構成は、前記電池冷却水を加熱する加熱装置を備え、
前記制御装置は、前記水循環部によって循環させられる前記循環水の量と、前記第2処理の開始前の時点での前記循環水の流路途中の複数の箇所での温度と、外気温度と、前記加熱装置が前記電池冷却水に与えることができる熱量とに基づいて、前記循環水の全体の温度を前記目標温度以上にできるか否かを判定する点にある。
ここで、前記制御装置は、前記加熱装置が前記電池冷却水を加熱する場合、前記電池冷却水タンクに貯えられる前記電池冷却水の温度が所定の上限温度を超えないことを制約条件としてもよい。
Yet another characteristic configuration of the fuel cell system according to the present invention includes a heating device that heats the cell cooling water,
The control device determines the amount of the circulating water that is circulated by the water circulation unit, the temperature at a plurality of locations in the flow path of the circulating water at a time before the start of the second process, and the outside air temperature; Based on the amount of heat that the heating device can give to the battery cooling water, it is determined whether the overall temperature of the circulating water can be made equal to or higher than the target temperature.
Here, when the heating device heats the battery cooling water, the control device may set as a constraint that the temperature of the battery cooling water stored in the battery cooling water tank does not exceed a predetermined upper limit temperature. .

停止期間において加熱装置で電池冷却水を加熱すると共に水循環部を動作させる第2処理を行った場合、循環水が循環により適切に混合されるとすると、混合された後の循環水の全体の温度は、循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度と、加熱装置が前記電池冷却水に与えることができる熱量とによって決まると考えてよい。
そこで本特徴構成では、制御装置は、循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度と、加熱装置が電池冷却水に与えることができる熱量とに基づいて、混合された後の循環水の全体の温度を予測することで、その温度が目標温度以上になるか否かを判定できる。
When a second process is performed in which the battery cooling water is heated by the heating device and the water circulation unit is operated during the stop period, assuming that the circulating water is appropriately mixed by circulation, the overall temperature of the circulating water after mixing is is the amount of circulating water, the temperature at multiple points in the circulating water flow path before the start of the second process, the outside air temperature, and the amount of heat that the heating device can give to the battery cooling water. It can be thought that it is determined by
Therefore, in this characteristic configuration, the control device determines the amount of circulating water, the temperature at multiple points in the circulating water flow path before the start of the second process, the outside air temperature, and the heating device that controls the battery cooling. By predicting the temperature of the entire circulating water after mixing based on the amount of heat that can be given to the water, it is possible to determine whether the temperature will be equal to or higher than the target temperature.

燃料電池システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a fuel cell system. 燃料電池システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a fuel cell system. 燃料電池システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a fuel cell system. 菌対策運転を説明するフローチャートである。It is a flow chart explaining anti-bacterial operation. 第2処理の開始前の時点での水の温度と、第2処理によって均一化された水の温度とを説明する図である。FIG. 6 is a diagram illustrating the temperature of water before the start of the second treatment and the temperature of water made uniform by the second treatment. 第2処理の開始前の時点での水の温度と、第2処理によって均一化された水の温度とを説明する図である。FIG. 6 is a diagram illustrating the temperature of water before the start of the second treatment and the temperature of water made uniform by the second treatment. 第2処理の開始前の時点での水の温度と、第2処理によって均一化された水の温度とを説明する図である。FIG. 6 is a diagram illustrating the temperature of water before the start of the second treatment and the temperature of water made uniform by the second treatment.

<第1実施形態>
以下に、図面を参照して本発明の第1実施形態に係る燃料電池システムについて説明する。
図1~図3は、燃料電池システムの構成を示す図である。詳細は後述するが、図1は、改質用水タンク4に貯えられている水を燃料処理装置2に供給する第1処理が行われている状態を示す図である。また、図1に示す状態では、燃料処理装置2で生成された燃料ガスが燃料電池1に供給され、燃料電池1で発電も行われている。図2は、改質用水タンク4に貯えられている水を改質用水タンク4と不純物除去装置としてのイオン交換樹脂部5と電池冷却水タンク3とタンク接続部12とを順に流して循環させる第2処理が行われている状態を示す図である。図3は、第2処理及び加熱処理が行われている状態を示す図である。図1~図3では、水などの流体が流れている箇所を太線で示している。
<First embodiment>
EMBODIMENT OF THE INVENTION Below, the fuel cell system based on 1st Embodiment of this invention is demonstrated with reference to drawings.
1 to 3 are diagrams showing the configuration of a fuel cell system. Although details will be described later, FIG. 1 is a diagram showing a state in which a first process of supplying water stored in the reforming water tank 4 to the fuel processing device 2 is being performed. Further, in the state shown in FIG. 1, fuel gas generated by the fuel processing device 2 is supplied to the fuel cell 1, and the fuel cell 1 is also generating electricity. In FIG. 2, water stored in the reforming water tank 4 is circulated through the reforming water tank 4, the ion exchange resin section 5 as an impurity removal device, the battery cooling water tank 3, and the tank connection section 12 in order. It is a figure showing the state where the 2nd processing is performed. FIG. 3 is a diagram showing a state where the second treatment and heat treatment are being performed. In FIGS. 1 to 3, locations where fluid such as water flows are indicated by thick lines.

イオン交換樹脂部5は、改質用水に含まれる可能性がある不純物(例えば空気中の硫酸イオン、アンモニアイオン等)を除去するために設けられている。尚、イオン交換樹脂部5を含む改質用水の流路に自然由来のバクテリア(例えばシュードモナス属など)等の菌が増殖し、流路を狭窄させる可能性がある。そのため、本実施形態の燃料電池システムでは、改質用水の流路を流れる水に対して、菌の増殖を抑制するための菌対策運転を行おうとしている。 The ion exchange resin section 5 is provided to remove impurities (for example, sulfate ions, ammonia ions, etc. in the air) that may be contained in the reforming water. Incidentally, there is a possibility that bacteria such as naturally occurring bacteria (for example, Pseudomonas genus, etc.) may proliferate in the flow path of the reforming water including the ion exchange resin portion 5, causing the flow path to become narrowed. Therefore, in the fuel cell system of this embodiment, anti-bacterial operation for suppressing the growth of bacteria is performed on the water flowing through the reforming water flow path.

燃料電池システムは、燃料電池1と、燃料処理装置2と、電池冷却水タンク3と、改質用水タンク4と、イオン交換樹脂部5と、電池冷却水循環部L1と、改質用水供給部L2と、タンク接続部12と、水循環部L3と、制御装置Cとを備える。加えて、本実施形態の燃料電池システムは加熱装置23を備える。 The fuel cell system includes a fuel cell 1, a fuel processing device 2, a cell cooling water tank 3, a reforming water tank 4, an ion exchange resin section 5, a cell cooling water circulation section L1, and a reforming water supply section L2. , a tank connection section 12, a water circulation section L3, and a control device C. In addition, the fuel cell system of this embodiment includes a heating device 23.

燃料電池1は、例えば固体高分子型燃料電池、固体酸化物形燃料電池などであり、水素などの燃料ガスが供給されるアノードと、酸素が供給されるカソードとを有する。 The fuel cell 1 is, for example, a polymer electrolyte fuel cell or a solid oxide fuel cell, and includes an anode to which a fuel gas such as hydrogen is supplied and a cathode to which oxygen is supplied.

燃料処理装置2は、燃料電池1に供給する水素を含む燃料ガスを水蒸気改質により生成する。例えば、燃料処理装置2には、メタン等の炭化水素ガスと、水(水蒸気)とが供給され、その炭化水素ガスの水蒸気改質により水素を含む燃料ガスが生成される。燃料処理装置2で生成された燃料ガスは、燃料ガス供給路17を介して燃料電池1に供給される。 The fuel processing device 2 generates fuel gas containing hydrogen to be supplied to the fuel cell 1 by steam reforming. For example, the fuel processing device 2 is supplied with a hydrocarbon gas such as methane and water (steam), and a fuel gas containing hydrogen is generated by steam reforming the hydrocarbon gas. The fuel gas generated by the fuel processing device 2 is supplied to the fuel cell 1 via the fuel gas supply path 17.

燃料電池1から排出される熱は、電池冷却水により回収される。例えば、冷却水循環路6には、電池冷却水が燃料電池1と電池冷却水タンク3との間を循環するように冷却水ポンプ7によって流される。つまり、冷却水循環路6及び冷却水ポンプ7は、電池冷却水として用いられる水を、燃料電池1と電池冷却水タンク3との間で循環させる電池冷却水循環部L1として機能する。また、電池冷却水タンク3は、燃料電池1から排出される熱を回収する電池冷却水を貯える。冷却水ポンプ7の動作は制御装置Cが制御する。 Heat discharged from the fuel cell 1 is recovered by cell cooling water. For example, a cooling water pump 7 causes battery cooling water to flow through the cooling water circulation path 6 so as to circulate between the fuel cell 1 and the battery cooling water tank 3 . That is, the cooling water circulation path 6 and the cooling water pump 7 function as a battery cooling water circulation section L1 that circulates water used as battery cooling water between the fuel cell 1 and the battery cooling water tank 3. Further, the battery cooling water tank 3 stores battery cooling water that recovers heat discharged from the fuel cell 1. The operation of the cooling water pump 7 is controlled by a control device C.

加えて、冷却水循環路6の途中の、燃料電池1から熱を回収した電池冷却水が電池冷却水タンク3に至る間には熱交換部18が設けられる。この熱交換部18には、湯水を貯える貯湯タンク21から取り出された湯水が流入し、その湯水は熱交換部18で熱交換をした後で貯湯タンク21へと戻る。つまり、湯水が貯湯タンク21と熱交換部18とを順に流れる形態で湯水循環路19を通って循環する。湯水循環路19では湯水ポンプ20によって湯水が流される。従って、燃料電池1から排出された熱は、先ず冷却水循環路6を流れる電池冷却水に渡され、その後、熱交換部18において湯水に渡された後、貯湯タンク21で蓄熱される。尚、燃料電池1から排出された熱の全てが貯湯タンク21で蓄熱されるのではなく、一部は電池冷却水タンク3でも貯えられる。例えば、電池冷却水タンク3に貯えられる電池冷却水の温度は60℃~70℃などの温度になる場合もある。湯水ポンプ20の動作は制御装置Cが制御する。 In addition, a heat exchange section 18 is provided in the cooling water circulation path 6 between the battery cooling water that has recovered heat from the fuel cell 1 and reaches the battery cooling water tank 3 . Hot water taken out from a hot water storage tank 21 that stores hot water flows into the heat exchange section 18, and after the hot water exchanges heat in the heat exchange section 18, it returns to the hot water storage tank 21. That is, the hot water circulates through the hot water circulation path 19 in a form that flows through the hot water storage tank 21 and the heat exchange section 18 in order. Hot water is passed through the hot water circulation path 19 by a hot water pump 20. Therefore, the heat discharged from the fuel cell 1 is first transferred to the cell cooling water flowing through the cooling water circulation path 6, and then transferred to hot water in the heat exchange section 18, and then stored in the hot water storage tank 21. Note that not all of the heat discharged from the fuel cell 1 is stored in the hot water storage tank 21, but a portion is also stored in the battery cooling water tank 3. For example, the temperature of the battery cooling water stored in the battery cooling water tank 3 may be 60°C to 70°C. The operation of the hot water pump 20 is controlled by the control device C.

冷却水循環路6の途中の、熱交換部18と電池冷却水タンク3との間には加熱装置23が設けられる。加熱装置23は、電気ヒーター等で発生した熱を用いて電池冷却水を加熱できる。加熱装置23の動作は制御装置Cが制御する。 A heating device 23 is provided in the middle of the cooling water circulation path 6 between the heat exchange section 18 and the battery cooling water tank 3. The heating device 23 can heat the battery cooling water using heat generated by an electric heater or the like. The operation of the heating device 23 is controlled by a control device C.

改質用水タンク4は、燃料処理装置2での水蒸気改質に用いられる改質用水としての水を貯える。また、改質用水タンク4には、燃料電池1から水回収路16を介して回収した回収水が流入する。電池冷却水タンク3と改質用水タンク4とはタンク接続部12で接続される。つまり、電池冷却水タンク3に貯えられている水(電池冷却水)が改質用水タンク4に流入する。 The reforming water tank 4 stores water as reforming water used for steam reforming in the fuel processing device 2 . In addition, recovered water recovered from the fuel cell 1 via the water recovery path 16 flows into the reforming water tank 4 . The battery cooling water tank 3 and the reforming water tank 4 are connected through a tank connection portion 12 . That is, water (battery cooling water) stored in the battery cooling water tank 3 flows into the reforming water tank 4.

改質用水タンク4から出た水(改質用水)は、改質用水流路8aを通ってイオン交換樹脂部5に供給される。イオン交換樹脂部5は、例えばイオン化して水に溶存している塩類やアンモニアなどのイオン性物質を除去する装置である。改質用水流路8(8a、8b)は、イオン交換樹脂部5と開閉弁11と改質用水ポンプ10とを通って燃料処理装置2に至る。開閉弁11及び改質用水ポンプ10の動作は制御装置Cが制御する。 Water (reforming water) discharged from the reforming water tank 4 is supplied to the ion exchange resin section 5 through the reforming water channel 8a. The ion exchange resin section 5 is a device that ionizes and removes ionic substances such as salts and ammonia dissolved in water. The reforming water flow path 8 (8a, 8b) reaches the fuel processing device 2 through the ion exchange resin section 5, the on-off valve 11, and the reforming water pump 10. The operation of the on-off valve 11 and the reforming water pump 10 is controlled by the control device C.

つまり、改質用水流路8と開閉弁11と改質用水ポンプ10とは、改質用水として用いられる水を、改質用水タンク4とイオン交換樹脂部5とを経由して燃料処理装置2に供給する改質用水供給部L2として機能する。 In other words, the reforming water flow path 8, the on-off valve 11, and the reforming water pump 10 supply water to be used as reforming water to the fuel processing device 2 via the reforming water tank 4 and the ion exchange resin section 5. It functions as a reforming water supply section L2 that supplies water to the water.

また、改質用水流路8はイオン交換樹脂部5の下流側の分岐部9で、水帰還路13に分岐する。水帰還路13の側に流入した改質用水は、開閉弁15と水ポンプ14とを通って電池冷却水タンク3に流入する。開閉弁15及び水ポンプ14の動作は制御装置Cが制御する。 Further, the reforming water channel 8 branches into a water return channel 13 at a branch section 9 on the downstream side of the ion exchange resin section 5 . The reforming water that has flowed into the water return path 13 passes through the on-off valve 15 and the water pump 14 and flows into the battery cooling water tank 3 . The operation of the on-off valve 15 and the water pump 14 is controlled by the control device C.

つまり、改質用水流路8aと水帰還路13と開閉弁15と水ポンプ14とタンク接続部12とは、電池冷却水及び改質用水として用いられる水を、電池冷却水タンク3とタンク接続部12と改質用水タンク4とイオン交換樹脂部5とを順に流す形態で循環させる水循環部L3として機能する。 In other words, the reforming water flow path 8a, the water return path 13, the on-off valve 15, the water pump 14, and the tank connection part 12 connect water used as battery cooling water and reforming water to the battery cooling water tank 3. The water circulation section L3 functions as a water circulation section L3 that circulates the section 12, the reforming water tank 4, and the ion exchange resin section 5 in order.

電池冷却水タンク3には、電池冷却水タンク3に貯えられている電池冷却水の温度を測定する温度センサT1が設けられている。改質用水タンク4には、改質用水タンク4に貯えられている改質用水の温度を測定する温度センサT2が設けられている。改質用水タンク4とイオン交換樹脂部5との間の改質用水流路8aには、イオン交換樹脂部5に流入する改質用水の温度を測定する温度センサT3が設けられている。また、外気温を測定する外気温度センサ22が設けられている。温度センサT1,T2,T3、及び、外気温度センサ22の測定結果は制御装置Cに伝達される。 The battery cooling water tank 3 is provided with a temperature sensor T1 that measures the temperature of the battery cooling water stored in the battery cooling water tank 3. The reforming water tank 4 is provided with a temperature sensor T2 that measures the temperature of the reforming water stored in the reforming water tank 4. A temperature sensor T3 that measures the temperature of the reforming water flowing into the ion exchange resin section 5 is provided in the reforming water flow path 8a between the reforming water tank 4 and the ion exchange resin section 5. Further, an outside air temperature sensor 22 is provided to measure outside air temperature. The measurement results of the temperature sensors T1, T2, T3 and the outside temperature sensor 22 are transmitted to the control device C.

図1に示すように、改質用水供給部L2を動作させ、改質用水タンク4に貯えられている水を燃料処理装置2に供給する第1処理が行われている場合、開閉弁11が開かれ、改質用水ポンプ10が動作し、開閉弁15が閉じられ、水ポンプ14は停止している。そのため、改質用水タンク4から流出した改質用水は、分岐部9から燃料処理装置2の方へと流れるが、水帰還路13には流れない。つまり、第1処理は、改質用水タンク4に貯えられている水を燃料処理装置2に供給する必要がある間に、改質用水供給部L2を動作させて、改質用水タンク4に貯えられている水を燃料処理装置2に供給する処理である。 As shown in FIG. 1, when the first process of supplying water stored in the reforming water tank 4 to the fuel processing device 2 by operating the reforming water supply unit L2 is performed, the on-off valve 11 is activated. It is opened, the reforming water pump 10 is in operation, the on-off valve 15 is closed, and the water pump 14 is stopped. Therefore, the reforming water flowing out of the reforming water tank 4 flows from the branch portion 9 toward the fuel processing device 2, but does not flow into the water return path 13. That is, in the first process, while the water stored in the reforming water tank 4 needs to be supplied to the fuel processing device 2, the reforming water supply section L2 is operated to supply water stored in the reforming water tank 4. This is a process of supplying the water that has been used in the fuel processing system to the fuel processing device 2.

図2に示すように、第2処理が行われている間、上記改質用水供給部L2を停止させ、改質用水タンク4に貯えられている水を燃料処理装置2に供給しない。そして、第2処理が行われている間、電池冷却水タンク3に貯えられている水及び改質用水タンク4に貯えられている水を改質用水タンク4とイオン交換樹脂部5と電池冷却水タンク3とタンク接続部12とを順に流して循環させる。つまり、第2処理は、改質用水タンク4に貯えられている水を燃料処理装置2に供給する必要がない間に、水循環部L3を動作させて、電池冷却水タンク3に貯えられている水及び改質用水タンク4に貯えられている水を改質用水タンク4とイオン交換樹脂部5と電池冷却水タンク3とタンク接続部12とを順に流して循環させる処理である。本実施形態では、第1処理及び第2処理は同時に行われない。 As shown in FIG. 2, while the second process is being performed, the reforming water supply section L2 is stopped and the water stored in the reforming water tank 4 is not supplied to the fuel processing device 2. While the second process is being performed, the water stored in the battery cooling water tank 3 and the water stored in the reforming water tank 4 are transferred to the reforming water tank 4 and the ion exchange resin part 5 for battery cooling. The water is circulated by flowing through the water tank 3 and the tank connection part 12 in order. In other words, in the second process, while there is no need to supply the water stored in the reforming water tank 4 to the fuel processing device 2, the water circulation unit L3 is operated to remove the water stored in the battery cooling water tank 3. This is a process in which the water stored in the water and reforming water tank 4 is circulated through the reforming water tank 4, the ion exchange resin section 5, the battery cooling water tank 3, and the tank connection section 12 in this order. In this embodiment, the first process and the second process are not performed simultaneously.

第2処理について補足すると、第2処理の開始前の時点では、電池冷却水タンク3に貯えられている水の温度は例えば60℃~70℃等と高く、改質用水タンク4に貯えられている水の温度は例えば外気温度と同等になっている。つまり、第2処理の開始前の時点では、水循環部L3によって循環させられる循環水の流路途中の複数の箇所の温度には高低分布が存在している。そのため、水の温度が所定の目標温度以上になった場合に水中の菌が死滅するとした場合、循環水の温度がその目標温度以上の部分では菌が死滅するが、循環水の温度が目標温度未満の部分では菌が死滅しない。但し、水ポンプ14を動作させて一定期間経過すると循環水の全体の温度が均一になるため、循環水の全体の温度が均一になった状態でその循環水の温度が目標温度以上になるならば、循環水全体について菌が死滅すると考えてもよい。 To add more information about the second process, before the start of the second process, the temperature of the water stored in the battery cooling water tank 3 is high, for example, 60°C to 70°C, and the temperature of the water stored in the reforming water tank 4 is high. The temperature of the water in the room is, for example, the same as the outside temperature. That is, before the start of the second process, there is a high-low temperature distribution in the temperature at a plurality of locations in the flow path of the circulating water circulated by the water circulation unit L3. Therefore, if bacteria in the water die when the temperature of the water exceeds a predetermined target temperature, the bacteria will die in areas where the temperature of the circulating water is above the target temperature, but if the temperature of the circulating water exceeds the target temperature. Bacteria will not be killed in the area below. However, after a certain period of time has elapsed after the water pump 14 is operated, the temperature of the entire circulating water becomes uniform, so if the temperature of the circulating water becomes equal to or higher than the target temperature when the temperature of the entire circulating water becomes uniform, For example, it may be assumed that bacteria are killed in the entire circulating water.

制御装置Cは、後述する図5及び図6に示すように、第2処理によって温度が均一化された場合の循環水の全体の温度が何度になるのか、即ち、予測均一化温度を、水循環部L3によって循環させられる循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度とに基づいて予測できる。以下の説明では、制御装置Cが予測する、第2処理によって温度が均一化された場合に予測される循環水の温度のことを「予測均一化温度」と表記する場合がある。 As shown in FIGS. 5 and 6, which will be described later, the control device C determines the temperature of the entire circulating water when the temperature is equalized by the second process, that is, the predicted equalization temperature. It can be predicted based on the amount of circulating water circulated by the water circulation unit L3, the temperature at a plurality of locations in the circulating water flow path before the start of the second process, and the outside air temperature. In the following description, the temperature of the circulating water predicted by the control device C when the temperature is equalized by the second process may be referred to as a "predicted equalization temperature."

但し、第2処理が行われる場合、水ポンプ14を設定出力で動作させて循環水を循環させている間にその温度の均一化が徐々に進行するため、循環水の温度の均一化が完了するには所定の期間を要する。制御装置Cは、第2処理が行われる場合に、循環水の温度が均一になるのに要する期間について情報を記憶している。以下の説明では、制御装置Cが記憶している、第2処理によって循環水の温度が均一になるのに要する期間のことを「均一化必要期間」と表記する場合がある。 However, when the second process is performed, the temperature of the circulating water gradually becomes uniform while the water pump 14 is operated at the set output and the circulating water is being circulated, so the uniformity of the temperature of the circulating water is completed. It takes a certain period of time to do so. The control device C stores information regarding the period required for the temperature of the circulating water to become uniform when the second process is performed. In the following description, the period required for the temperature of the circulating water to become uniform through the second process, which is stored in the control device C, may be referred to as a "uniformization required period."

例えば、制御装置Cは、温度センサT1、T2、T3等で測定される循環水の現在の温度、外気温度センサ22で測定される現在の外気温度などと、均一化必要期間との関係を示すテーブルを記憶している。そして、制御装置Cは、温度センサT1、T2、T3、及び、外気温度センサ22の測定結果から、均一化必要期間を決定することができる。 For example, the control device C indicates the relationship between the current temperature of the circulating water measured by the temperature sensors T1, T2, T3, etc., the current outside air temperature measured by the outside air temperature sensor 22, and the equalization required period. Remembers the table. Then, the control device C can determine the period required for equalization from the measurement results of the temperature sensors T1, T2, T3 and the outside temperature sensor 22.

そして、制御装置Cは、第2処理によって温度が均一化された場合の循環水の温度が最終的に何度になるのかという情報(予測均一化温度)と、循環水の温度を均一化するのに要する期間についての情報(均一化必要期間)とに基づいて、後述する菌対策条件を満たすことができるか否かを判定する。 Then, the control device C equalizes the temperature of the circulating water and information about the final temperature of the circulating water when the temperature is equalized by the second process (predicted equalized temperature). Based on information about the period required for this (uniformization required period), it is determined whether the bacteria countermeasure conditions described below can be satisfied.

図4は、菌対策運転を説明するフローチャートである。制御装置Cは、このフローチャートを設定タイミングで繰り返し実行する。 FIG. 4 is a flowchart illustrating the anti-bacterial operation. The control device C repeatedly executes this flowchart at set timings.

本実施形態の燃料電池システムは、例えば負荷の多少などに基づいて定期的に運転実施と運転停止とを繰り返すSS運転(スタート-ストップ運転)を行う。そのため、制御装置Cは、運転期間と停止期間とを交互に設定する。運転期間は、改質用水供給部L2を動作させ、改質用水タンク4に貯えられている水を燃料処理装置2に供給する第1処理を行い、燃料処理装置2で水蒸気改質により生成された燃料ガスを燃料電池1に供給する期間、即ち、燃料電池1の発電運転を実施する期間である。停止期間は、改質用水供給部L2を停止させ、改質用水タンク4に貯えられている水を燃料処理装置2に供給せず、燃料処理装置2で水蒸気改質を行わない期間、即ち、燃料電池1の発電運転を停止する期間である。 The fuel cell system of this embodiment performs an SS operation (start-stop operation) in which operation and stop are periodically repeated based on, for example, the amount of load. Therefore, the control device C alternately sets the operation period and the stop period. During the operation period, the reforming water supply unit L2 is operated to perform a first process of supplying water stored in the reforming water tank 4 to the fuel processing device 2, and water generated by steam reforming in the fuel processing device 2 is processed. This is a period during which fuel gas is supplied to the fuel cell 1, that is, a period during which the fuel cell 1 performs power generation operation. The stop period is a period in which the reforming water supply unit L2 is stopped, the water stored in the reforming water tank 4 is not supplied to the fuel processing device 2, and the fuel processing device 2 does not perform steam reforming, that is, This is the period during which the power generation operation of the fuel cell 1 is stopped.

工程#10において制御装置Cは、菌対策運転の開始タイミングであるか否かを判定する。例えば、制御装置Cは、燃料電池1の発電運転を停止して、改質用水タンク4に貯えられている水を燃料処理装置2に供給する必要がなくなった場合、例えば、改質用水ポンプ10を停止させ且つ開閉弁11を閉じた場合に、菌対策運転の開始タイミングになったと判定する。そして、制御装置Cは、菌対策運転の開始タイミングであると判定した場合には工程#11に移行し、菌対策運転の開始タイミングではないと判定した場合にはこのフローチャートを終了する。 In step #10, the control device C determines whether it is time to start the anti-bacterial operation. For example, when the power generation operation of the fuel cell 1 is stopped and the water stored in the reforming water tank 4 no longer needs to be supplied to the fuel processing device 2, the control device C controls the reforming water pump 10, for example. When the on-off valve 11 is stopped and the on-off valve 11 is closed, it is determined that the time has come to start the anti-bacterial operation. Then, when the control device C determines that it is the timing to start the anti-bacterial operation, it moves to step #11, and when it determines that it is not the timing to start the anti-bacterial operation, it ends this flowchart.

工程#11において制御装置Cは、停止期間を開始する場合、その停止期間において菌の増殖を抑制するための菌対策条件を満たすことができるか否かを判定する。具体的には、制御装置Cは、第2処理によって温度が均一化された場合の循環水の温度が最終的に何度になるのかを示す予測均一化温度と、循環水の温度を均一化するのに要する期間を示す均一化必要期間とを決定する。また、制御装置Cは、停止期間を開始する場合、その停止期間の長さを予め決定している。 In step #11, when starting the stop period, the control device C determines whether the anti-bacterial conditions for suppressing the proliferation of bacteria can be satisfied during the stop period. Specifically, the control device C calculates the predicted uniformization temperature that indicates the final temperature of the circulating water when the temperature is equalized by the second process, and uniformizes the temperature of the circulating water. Determine the period required for equalization, which indicates the period required to complete the process. Furthermore, when starting a stop period, the control device C determines the length of the stop period in advance.

決定された予測均一化温度が、菌が死滅する温度の目安となる目標温度以上になる場合、均一化必要期間の経過後には循環水の温度は予測均一化温度になるため(即ち、目標温度以上になるため)、均一化必要期間の経過後には循環水の流路に生息している菌は死滅すると思われる。そこで、制御装置Cは、予測均一化温度が目標温度以上であり、且つ、均一化必要期間が停止期間以下である場合に、菌対策条件を満たすことができると判定する。但し、均一化必要期間よりも停止期間が短い場合、停止期間が経過した時点では循環水の少なくとも一部の温度は予測均一化温度に到達していないため、循環水の流路に生息している菌を死滅させることはできない。 If the determined predicted homogenization temperature is equal to or higher than the target temperature, which is a guideline for the temperature at which bacteria will die, the temperature of the circulating water will reach the predicted homogenization temperature after the homogenization required period (i.e., the target temperature will be reached). Therefore, it is thought that the bacteria living in the circulating water flow path will die after the period required for equalization has passed. Therefore, the control device C determines that the anti-bacterial conditions can be satisfied when the predicted uniformization temperature is equal to or higher than the target temperature and the equalization required period is equal to or less than the stop period. However, if the suspension period is shorter than the required equalization period, the temperature of at least a portion of the circulating water has not reached the predicted equalization temperature by the time the suspension period has elapsed, and therefore, the temperature of at least a portion of the circulating water has not reached the predicted equalization temperature. It is not possible to kill existing bacteria.

制御装置Cは、菌対策条件を満たすことができると判定した場合は工程#12に移行して、その停止期間において、水循環部L3を動作させる第2処理を行う。それに対して、制御装置Cは、菌対策条件を満たすことができないと判定した場合には、その停止期間において第2処理を行わず、このフローチャートを終了する。 When the control device C determines that the anti-bacterial conditions can be satisfied, the control device C moves to step #12 and performs a second process of operating the water circulation unit L3 during the stop period. On the other hand, if the control device C determines that the anti-bacterial conditions cannot be met, the control device C does not perform the second process during the stop period and ends this flowchart.

図5及び図6は、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、第2処理によって均一化された循環水の全体の温度とを説明する図である。この例では、菌を死滅させるに必要な循環水の目標温度は40℃であるとする。また、計算の簡略化のため、電池冷却水タンク3に貯えられている水(1L)及び改質用水タンク4に貯えられている水(2L)のみを考慮し、他の水帰還路13などに存在する水の量については考慮しない。 FIGS. 5 and 6 illustrate the temperatures at multiple points in the flow path of the circulating water before the start of the second process and the overall temperature of the circulating water that has been made uniform by the second process. It is a diagram. In this example, it is assumed that the target temperature of the circulating water necessary to kill bacteria is 40°C. In addition, in order to simplify the calculation, only the water (1L) stored in the battery cooling water tank 3 and the water (2L) stored in the reforming water tank 4 are considered, and other water return paths 13, etc. The amount of water present in is not considered.

図5に示す例では、外気温度が25℃であるため、改質用水タンク4に貯えられている水(2L)の温度も25℃になっており、蓄熱量は0kWになる。また、電池冷却水タンク3に貯えられている水(1L)は70℃になっているため、その70℃と外気温度の25℃との差分に対応する蓄熱量は約3.1kWになる。この状態で第2処理を行った場合、循環する水(3L)の温度は40℃で均一化される。つまり、予測均一化温度(40℃)は目標温度(40℃)以上になっている。従って、工程#11において制御装置Cは、予測均一化温度は目標温度以上であるので、均一化必要期間が停止期間以下であれば、菌対策条件を満たすことができると判定して工程#12に移行する。それに対して、工程#11において制御装置Cは、予測均一化温度は目標温度以上であるが、均一化必要期間が停止期間より長ければ、菌対策条件を満たすことができないと判定して、第2処理を行わずにこのフローチャートを終了する。 In the example shown in FIG. 5, since the outside air temperature is 25° C., the temperature of the water (2L) stored in the reforming water tank 4 is also 25° C., and the amount of heat storage is 0 kW. Further, since the water (1 L) stored in the battery cooling water tank 3 is at 70°C, the amount of heat storage corresponding to the difference between the 70°C and the outside temperature of 25°C is approximately 3.1 kW. When the second treatment is performed in this state, the temperature of the circulating water (3 L) is uniformized at 40°C. In other words, the predicted uniformization temperature (40°C) is higher than the target temperature (40°C). Therefore, in step #11, the control device C determines that the anti-bacterial conditions can be satisfied if the expected equalization temperature is equal to or higher than the target temperature, and the required equalization period is less than or equal to the stop period, and then returns to step #11. to move to. On the other hand, in step #11, the control device C determines that the anti-bacterial conditions cannot be met if the predicted homogenization temperature is equal to or higher than the target temperature, but the homogenization required period is longer than the stop period, and the This flowchart ends without performing the second process.

図6に示す例では、外気温度が20℃であるため、改質用水タンク4に貯えられている水(2L)の温度も20℃になっており、蓄熱量は0kWになる。また、電池冷却水タンク3に貯えられている水(1L)は70℃になっているため、その70℃と外気温度の20℃との差分に対応する蓄熱量は約3.5kWになる。この状態で第2処理を行った場合、循環する水(3L)の温度は35℃で均一化される。つまり、予測均一化温度(35℃)は目標温度(40℃)以上になっていない。従って、工程#11において制御装置Cは、予測均一化温度は目標温度以上ではないので、菌対策条件を満たすことができないと判定して、第2処理を行わずにこのフローチャートを終了する。 In the example shown in FIG. 6, since the outside air temperature is 20° C., the temperature of the water (2L) stored in the reforming water tank 4 is also 20° C., and the amount of heat storage is 0 kW. Further, since the water (1 L) stored in the battery cooling water tank 3 is at 70°C, the amount of heat storage corresponding to the difference between the 70°C and the outside temperature of 20°C is approximately 3.5kW. When the second treatment is performed in this state, the temperature of the circulating water (3 L) is uniformized at 35°C. In other words, the predicted uniformization temperature (35°C) is not higher than the target temperature (40°C). Therefore, in step #11, the control device C determines that the anti-bacterial conditions cannot be satisfied because the predicted uniform temperature is not higher than the target temperature, and ends this flowchart without performing the second process.

工程#12において制御装置Cは、水循環部L3を動作させて、循環水を改質用水タンク4とイオン交換樹脂部5と電池冷却水タンク3とタンク接続部12とを順に流して循環させる第2処理を開始する。具体的には、制御装置Cは、水循環部L3としての開閉弁15を開き且つ水ポンプ14を動作させることで、循環水を図2に太線で描いている経路で循環させる。その結果、図5に示したように、水循環部L3によって循環させられる循環水の全体の温度が目標温度の40℃になる。 In step #12, the control device C operates the water circulation section L3 to cause the circulating water to flow through the reforming water tank 4, the ion exchange resin section 5, the battery cooling water tank 3, and the tank connection section 12 in this order. 2 Start processing. Specifically, the control device C circulates the circulating water along the path depicted by the thick line in FIG. 2 by opening the on-off valve 15 as the water circulation unit L3 and operating the water pump 14. As a result, as shown in FIG. 5, the temperature of the entire circulating water circulated by the water circulation section L3 reaches the target temperature of 40°C.

その後、工程#13において制御装置Cは、菌対策運転の終了タイミングであるか否かを判定し、終了タイミングになった場合には工程#14に移行して第2処理を終了する。例えば、制御装置Cは、温度センサT1,T2,T3で測定される水の温度が全て目標温度以上になった場合に、菌対策運転の終了タイミングになったと判定できる。或いは、制御装置Cは、温度センサT1,T2,T3で測定される水の温度が全て目標温度以上になった後、所定時間経過した場合に、菌対策運転の終了タイミングになったと判定できる。 Thereafter, in step #13, the control device C determines whether or not it is the end timing of the anti-bacterial operation, and if the end timing has come, the control device C moves to step #14 and ends the second process. For example, the control device C can determine that it is time to end the anti-bacterial operation when the temperatures of the water measured by the temperature sensors T1, T2, and T3 all become equal to or higher than the target temperature. Alternatively, the control device C can determine that it is time to end the anti-bacterial operation when a predetermined period of time has elapsed after the temperatures of the water measured by the temperature sensors T1, T2, and T3 all became equal to or higher than the target temperature.

以上のように、停止期間において菌対策条件を満たすことができると判定された場合には第2処理が実行される。その結果、電池冷却水タンク3に貯えられている電池冷却水及び改質用水タンク4に貯えられている水が、水循環部L3によって循環させられる循環水として、改質用水タンク4とイオン交換樹脂部5と電池冷却水タンク3とタンク接続部12とを順に流れて循環する。つまり、少なくとも電池冷却水タンク3に貯えられていた電池冷却水が保有していた熱が、第2処理において水循環部L3によって循環させられる循環水の全体に伝達されてその循環水が昇温され、その循環水での菌の増殖が抑制されることが期待される。また、停止期間において菌対策条件を満たすことができないと判定された場合には、その停止期間において第2処理は行われない。その結果、循環水の昇温が不十分な状態で第2処理が終了することを回避できる。 As described above, if it is determined that the anti-bacterial conditions can be satisfied during the stop period, the second process is executed. As a result, the battery cooling water stored in the battery cooling water tank 3 and the water stored in the reforming water tank 4 are used as circulating water that is circulated by the water circulation section L3 between the reforming water tank 4 and the ion exchange resin. 5, the battery cooling water tank 3, and the tank connection part 12 in order. In other words, at least the heat held in the battery cooling water stored in the battery cooling water tank 3 is transferred to the entire circulating water circulated by the water circulation section L3 in the second process, and the temperature of the circulating water is raised. It is expected that the growth of bacteria in the circulating water will be suppressed. Further, if it is determined that the anti-bacterial conditions cannot be met during the suspension period, the second process is not performed during the suspension period. As a result, it is possible to avoid ending the second process in a state where the temperature of the circulating water is insufficient.

<第2実施形態>
第2実施形態の燃料電池システムは、第2処理の内容が上記実施形態と異なっている。以下に第2実施形態の燃料電池システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
<Second embodiment>
The fuel cell system of the second embodiment differs from the above embodiments in the content of the second process. A fuel cell system according to a second embodiment will be described below, but a description of the same configuration as the above embodiment will be omitted.

上記第1実施形態の図6で示した例では、制御装置Cは、第2処理によって温度が均一化された場合に予測される循環水の温度(予測均一化温度)が目標温度以上ではないので、菌対策条件を満たすことができないと判定していた。但し、制御装置Cは、加熱装置23を用いて電池冷却水を加熱する加熱処理を行うこともできる。例えば、図3に示すように、加熱処理では、冷却水ポンプ7が動作して冷却水循環路6を電池冷却水が循環し、加熱装置23が動作して電池冷却水が加熱される。つまり、加熱処理によって、電池冷却水タンク3に貯えられる電池冷却水に熱が与えられて昇温される。その場合、制御装置Cは、第2処理によって温度が均一化された場合に予測される循環水の全体の温度(予測均一化温度)を、水循環部L3によって循環させられる循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度と、加熱装置23が電池冷却水に与えることができる熱量とに基づいて予測できる。 In the example shown in FIG. 6 of the first embodiment, the control device C determines that the predicted temperature of the circulating water (predicted equalization temperature) when the temperature is equalized by the second process is not higher than the target temperature. Therefore, it was determined that the bacteria control conditions could not be met. However, the control device C can also perform a heat treatment of heating the battery cooling water using the heating device 23. For example, as shown in FIG. 3, in the heat treatment, the cooling water pump 7 operates to circulate the battery cooling water through the cooling water circulation path 6, and the heating device 23 operates to heat the battery cooling water. That is, through the heat treatment, heat is applied to the battery cooling water stored in the battery cooling water tank 3 to raise its temperature. In that case, the control device C calculates the total temperature of the circulating water predicted when the temperature is equalized by the second process (predicted equalization temperature), the amount of circulating water to be circulated by the water circulation unit L3, It can be predicted based on the temperature at multiple locations in the circulating water flow path before the start of the second process, the outside air temperature, and the amount of heat that the heating device 23 can give to the battery cooling water.

図7は、加熱処理を行った場合での、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、第2処理によって均一化された循環水の全体の温度とを説明する図である。図示するように、制御装置Cは、加熱処理として、加熱装置23を動作させ、冷却水ポンプ7を動作させることで、70℃から80℃へと昇温された電池冷却水を電池冷却水タンク3に供給する。その結果、電池冷却水タンク3に貯えられている水(1L)は80℃になっているため、その80℃と外気温度の20℃との差分に対応する蓄熱量は約4.2kWになる。この状態で第2処理を行った場合、循環する水(3L)の温度は40℃で均一化され、菌対策運転に必要な水の温度(40℃)を満たす。つまり、制御装置Cは、第2処理を行った場合での循環水の温度は40℃にするためには、電池冷却水タンク3に貯えられている水を80℃にする必要があると決定し、温度センサT1で測定される電池冷却水の温度が80℃になるまで加熱処理を実行する。 Figure 7 shows the temperature at multiple points in the flow path of the circulating water before the start of the second treatment when heat treatment is performed, and the overall temperature of the circulating water that has been made uniform by the second treatment. FIG. As shown in the figure, the control device C operates the heating device 23 and operates the cooling water pump 7 to carry out the heat treatment, so that the battery cooling water heated from 70° C. to 80° C. is transferred to the battery cooling water tank. Supply to 3. As a result, the water (1L) stored in the battery cooling water tank 3 is at 80°C, so the amount of heat storage corresponding to the difference between 80°C and the outside temperature of 20°C is approximately 4.2kW. . When the second treatment is performed in this state, the temperature of the circulating water (3 L) is made uniform at 40° C., which satisfies the water temperature (40° C.) necessary for anti-bacterial operation. In other words, the control device C determines that the water stored in the battery cooling water tank 3 needs to be heated to 80°C in order to make the temperature of the circulating water 40°C when performing the second treatment. Then, the heating process is performed until the temperature of the battery cooling water measured by the temperature sensor T1 reaches 80°C.

但し、イオン交換樹脂部5に流入する循環水の温度に所定の上限温度が定められている場合、電池冷却水タンク3に貯えられる水がイオン交換樹脂部5に流入し得ることを考慮すると、電池冷却水タンク3に貯えられる水の温度がその上限温度を超えないことが求められる。他には、燃料電池1に流入する電池冷却水の温度に所定の上限温度が定められている場合、電池冷却水タンク3に貯えられる水の温度がその上限温度を超えないことが求められる。このような場合、制御装置Cは、加熱装置23が電池冷却水を加熱する場合に、電池冷却水タンク3に貯えられる電池冷却水の温度が所定の上限温度を超えないことを制約条件とする。例えば、上限温度は80℃などである。図7に示す場合、この制約条件は満たされている。 However, if a predetermined upper limit temperature is set for the temperature of the circulating water flowing into the ion exchange resin section 5, considering that the water stored in the battery cooling water tank 3 may flow into the ion exchange resin section 5, It is required that the temperature of the water stored in the battery cooling water tank 3 does not exceed its upper limit temperature. In addition, if a predetermined upper limit temperature is set for the temperature of the battery cooling water flowing into the fuel cell 1, it is required that the temperature of the water stored in the battery cooling water tank 3 does not exceed the upper limit temperature. In such a case, when the heating device 23 heats the battery cooling water, the control device C sets a constraint that the temperature of the battery cooling water stored in the battery cooling water tank 3 does not exceed a predetermined upper limit temperature. . For example, the upper limit temperature is 80°C. In the case shown in FIG. 7, this constraint is satisfied.

このように、制御装置Cは、第2処理によって温度が均一化された場合に予測される循環水の全体の温度(予測均一化温度)を、水循環部L3によって循環させられる循環水の量と、第2処理の開始前の時点での循環水の流路途中の複数の箇所での温度と、外気温度と、加熱装置23が電池冷却水に与えることができる熱量とに基づいて予測できる。そして、上記工程#11において制御装置Cは、上記実施形態と同様に、菌対策条件を満たすことができるか否かを判定する。 In this way, the control device C calculates the total temperature of the circulating water predicted when the temperature is equalized by the second process (predicted equalization temperature), and the amount of circulating water circulated by the water circulation unit L3. , can be predicted based on the temperature at multiple points in the circulating water flow path before the start of the second process, the outside air temperature, and the amount of heat that the heating device 23 can give to the battery cooling water. Then, in the above step #11, the control device C determines whether the anti-bacterial conditions can be satisfied, similarly to the above embodiment.

<別実施形態>
<1>
上記実施形態では燃料電池システムの構成について具体的に説明したが、その構成は適宜変更可能である。
<Another embodiment>
<1>
Although the configuration of the fuel cell system has been specifically described in the above embodiment, the configuration can be changed as appropriate.

例えば、上記実施形態では、加熱装置23が冷却水循環路6の途中に設けられる例を説明したが、加熱装置23が電池冷却水タンク3などの他の場所に設けられてもよい。また、加熱装置23は、電気ヒーター等で発生した熱を用いて上記循環水を加熱するものに限らず、別の熱媒体と循環水との熱交換により循環水を加熱するようなものでもよい。 For example, in the embodiment described above, an example has been described in which the heating device 23 is provided in the middle of the cooling water circulation path 6, but the heating device 23 may be provided in another location such as the battery cooling water tank 3. Further, the heating device 23 is not limited to one that heats the circulating water using heat generated by an electric heater or the like, but may be one that heats the circulating water by heat exchange between another heat medium and the circulating water. .

また、上記実施形態では、不純物除去装置としてのイオン交換樹脂部5を例示したが、微生物や油分などの有機物を除去する活性炭などの吸着材を備える不純物除去装置を用いてもよい。 Further, in the above embodiment, the ion exchange resin section 5 is used as an impurity removing device, but an impurity removing device including an adsorbent such as activated carbon that removes organic matter such as microorganisms and oil may also be used.

<2>
上記実施形態において、制御装置Cは、第2処理を実行するための、燃料処理装置2に改質用水タンク4に貯えられている水を供給する必要がない期間のうち、外気温度が高くなる時間帯に第2処理を実行してもよい。例えば、制御装置Cは、第2処理を実行するための、燃料処理装置2に改質用水タンク4に貯えられている水を供給する必要がない期間のうち、外気温度が所定温度以上になると予測される時間帯にある場合に、上述した菌対策運転の開始タイミングであると判定してもよい。
<2>
In the embodiment described above, the control device C controls the control device C during a period in which it is not necessary to supply the water stored in the reforming water tank 4 to the fuel processing device 2 in order to execute the second process, when the outside air temperature becomes high. The second process may be executed during the time period. For example, during a period in which it is not necessary to supply water stored in the reforming water tank 4 to the fuel processing device 2 in order to execute the second process, the control device C controls the control device C when the outside air temperature reaches a predetermined temperature or higher. If it is within the predicted time period, it may be determined that it is time to start the anti-bacterial operation described above.

外気温度が相対的に高い時間帯では、改質用水タンク4に貯えられている改質用水の温度も高くなっていると想定される。つまり、図5で示したように外気温度が相対的に高い時間帯に第2処理において水循環部L3によって循環させられる循環水を所定の温度まで昇温するために必要な熱量は、図6で示したように外気温度が相対的に低い場合に必要となる熱量よりも少なくなる点で好ましい。従って、停止期間が均一化必要期間よりも長い場合、その停止期間のどこかのタイミングで第2処理を行えばよい。例えば、停止期間の外気温度を予測し、外気温度が最も高くなると予測されるタイミングを含む時間帯に第2処理を行えばよい。外気温度が高くなる時間帯に第2処理を実行することで、循環水の昇温を容易に行うことができる。 During the time period when the outside air temperature is relatively high, it is assumed that the temperature of the reforming water stored in the reforming water tank 4 is also high. In other words, as shown in FIG. 5, the amount of heat required to raise the temperature of the circulating water circulated by the water circulation unit L3 in the second process to a predetermined temperature during a time period when the outside air temperature is relatively high is as shown in FIG. As shown, this is preferable in that the amount of heat required is smaller than that required when the outside air temperature is relatively low. Therefore, if the stop period is longer than the equalization required period, the second process may be performed at some timing during the stop period. For example, the outside air temperature during the stop period may be predicted, and the second process may be performed during a time period that includes the timing when the outside air temperature is predicted to be the highest. By performing the second process during a time period when the outside air temperature is high, it is possible to easily raise the temperature of the circulating water.

<3>
上記実施形態では、制御装置Cが、温度センサT1,T2,T3で測定される水の温度が目標温度以上になった場合などに、菌対策運転の終了タイミングになったと判定する例を説明したが、別のタイミングを菌対策運転の終了タイミングとしてもよい。例えば、制御装置Cは、第1処理を開始すべきタイミングになった場合、即ち、燃料電池1を発電運転させるために、改質用水タンク4に貯えられている水を燃料処理装置2に供給することが必要になったタイミングを、菌対策運転の終了タイミングとしてもよい。つまり、制御装置Cは、第1処理を開始するべきタイミングになるまで、第2処理を継続して実施してもよい。
<3>
In the above embodiment, an example was explained in which the control device C determines that it is time to end the anti-bacterial operation when the temperature of the water measured by the temperature sensors T1, T2, and T3 becomes equal to or higher than the target temperature. However, the anti-bacterial operation may be ended at a different timing. For example, when the timing to start the first process has come, the control device C supplies water stored in the reforming water tank 4 to the fuel processing device 2 in order to cause the fuel cell 1 to operate as a power generator. The timing at which it becomes necessary to do so may be the timing at which the anti-bacterial operation ends. In other words, the control device C may continue to perform the second process until the timing to start the first process is reached.

尚、制御装置Cは、温度センサT3で測定される循環水の温度が上述した上限温度に達した場合、第2処理を終了してもよい。例えば、イオン交換樹脂部5の使用温度の上限値が設定されている場合、循環水の温度はその上限値以下にする必要がある。そのため、制御装置Cは、温度センサT3で測定される循環水の温度が上昇してイオン交換樹脂部5の使用温度の上限値に達した場合には、第2処理を終了してもよい。但し、イオン交換樹脂部5の使用温度の上限値は上記目標温度よりも高い温度である。 Note that the control device C may end the second process when the temperature of the circulating water measured by the temperature sensor T3 reaches the above-mentioned upper limit temperature. For example, if an upper limit value for the operating temperature of the ion exchange resin section 5 is set, the temperature of the circulating water needs to be lower than the upper limit value. Therefore, the control device C may end the second process when the temperature of the circulating water measured by the temperature sensor T3 rises and reaches the upper limit of the operating temperature of the ion exchange resin section 5. However, the upper limit of the operating temperature of the ion exchange resin section 5 is higher than the target temperature.

<4>
上記実施形態では、加熱処理を行った後で第2処理を行う例を説明したが、加熱処理と第2処理とを同時に行ってもよい。例えば、制御装置Cは、加熱処理を行って冷却水循環路6を循環する電池冷却水を加熱しながら、水循環部L3で循環水を循環させてもよい。そして、制御装置Cは、例えば温度センサT3で測定される循環水の温度が40℃(菌の増殖を抑制するための目標温度)になった場合に第2処理を終了するタイミングであると判定してもよい。
<4>
In the above embodiment, an example has been described in which the second treatment is performed after the heat treatment, but the heat treatment and the second treatment may be performed simultaneously. For example, the control device C may perform heat treatment to heat the battery cooling water circulating in the cooling water circulation path 6 while circulating the circulating water in the water circulation section L3. Then, the control device C determines that it is time to end the second process when the temperature of the circulating water measured by the temperature sensor T3 reaches 40°C (target temperature for suppressing bacterial growth), for example. You may.

<5>
上記実施形態では、水の温度や熱量などについて具体的な数値を挙げて説明したが、それらの数値は例示目的で記載したものであり適宜変更可能である。
<5>
In the embodiment described above, specific numerical values have been given and explained regarding the temperature of water, the amount of heat, etc., but these numerical values are described for the purpose of illustration and can be changed as appropriate.

<6>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
<6>
The configurations disclosed in the above embodiments (including other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and this specification The embodiments disclosed in this book are illustrative, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the purpose of the present invention.

本発明は、菌の増殖を抑制する菌対策運転を適切に行うことができる燃料電池システムに利用できる。 INDUSTRIAL APPLICATION This invention can be utilized for the fuel cell system which can perform the anti-bacteria operation which suppresses the growth of bacteria appropriately.

1 :燃料電池
2 :燃料処理装置
3 :電池冷却水タンク
4 :改質用水タンク
5 :イオン交換樹脂部(不純物除去装置)
12 :タンク接続部
23 :加熱装置
C :制御装置
L1 :電池冷却水循環部
L2 :改質用水供給部
L3 :水循環部
1: Fuel cell 2: Fuel processing device 3: Cell cooling water tank 4: Reforming water tank 5: Ion exchange resin section (impurity removal device)
12 : Tank connection part 23 : Heating device C : Control device L1 : Battery cooling water circulation part L2 : Reforming water supply part L3 : Water circulation part

Claims (5)

燃料電池と、
前記燃料電池に供給する水素を含む燃料ガスを水蒸気改質により生成する燃料処理装置と、
前記燃料電池から排出される熱を回収する電池冷却水として用いられる水を貯える電池冷却水タンクと、
前記水蒸気改質に用いられる改質用水としての水を貯える改質用水タンクと、
前記改質用水として用いられる水に対して不純物除去処理を施す不純物除去装置と、
前記電池冷却水として用いられる水を、前記燃料電池と前記電池冷却水タンクとの間で循環させる電池冷却水循環部と、
前記改質用水として用いられる水を、前記改質用水タンクと前記不純物除去装置とを経由して前記燃料処理装置に供給する改質用水供給部と、
前記電池冷却水タンクと前記改質用水タンクとを接続するタンク接続部と、
前記電池冷却水及び前記改質用水として用いられる水を、前記電池冷却水タンクと前記タンク接続部と前記改質用水タンクと前記不純物除去装置とを順に流す形態で循環させる水循環部と、
制御装置とを備え、
前記制御装置は、
前記改質用水供給部を動作させ、前記改質用水タンクに貯えられている水を前記燃料処理装置に供給する第1処理を行い、前記燃料処理装置で前記水蒸気改質により生成された前記燃料ガスを前記燃料電池に供給する運転期間と、前記改質用水供給部を停止させ、前記改質用水タンクに貯えられている水を前記燃料処理装置に供給せず、前記燃料処理装置で前記水蒸気改質を行わない停止期間とを交互に設定し、
前記停止期間を開始する場合、当該停止期間において菌の増殖を抑制するための菌対策条件を満たすことができるか否かを判定し、
前記停止期間において前記菌対策条件を満たすことができると判定した場合、当該停止期間において、前記水循環部を動作させる第2処理を行い、
前記停止期間において前記菌対策条件を満たすことができないと判定した場合、当該停止期間において前記第2処理を行わない、燃料電池システム。
fuel cell and
a fuel processing device that generates hydrogen-containing fuel gas to be supplied to the fuel cell by steam reforming;
a battery cooling water tank that stores water used as battery cooling water to recover heat discharged from the fuel cell;
a reforming water tank that stores water as reforming water used in the steam reforming;
an impurity removal device that performs impurity removal treatment on the water used as the reforming water;
a battery cooling water circulation unit that circulates water used as the battery cooling water between the fuel cell and the battery cooling water tank;
a reforming water supply unit that supplies water used as the reforming water to the fuel processing device via the reforming water tank and the impurity removal device;
a tank connection part that connects the battery cooling water tank and the reforming water tank;
a water circulation unit that circulates water used as the battery cooling water and the reforming water in a manner that it flows through the battery cooling water tank, the tank connection part, the reforming water tank, and the impurity removal device in order;
and a control device;
The control device includes:
The reforming water supply unit is operated to perform a first process of supplying the water stored in the reforming water tank to the fuel processing device, and the fuel produced by the steam reforming in the fuel processing device During the operation period in which gas is supplied to the fuel cell, the reforming water supply section is stopped, water stored in the reforming water tank is not supplied to the fuel processing device, and the water vapor is not supplied to the fuel processing device. Alternately set a stop period in which no reforming is performed,
When starting the suspension period, determine whether the bacteria countermeasure conditions for suppressing the proliferation of bacteria can be satisfied during the suspension period,
If it is determined that the anti-bacterial conditions can be met during the stop period, performing a second process of operating the water circulation unit during the stop period;
If it is determined that the anti-bacterial condition cannot be met during the suspension period, the second process is not performed during the suspension period.
前記制御装置は、前記停止期間において前記水循環部によって循環させられる循環水の温度を所定の目標温度以上にできると判定した場合、前記菌対策条件を満たすことができると判定する請求項1に記載の燃料電池システム。 2. The control device determines that the anti-bacterial condition can be satisfied if the control device determines that the temperature of the circulating water circulated by the water circulation unit during the stop period can be made equal to or higher than a predetermined target temperature. fuel cell system. 前記制御装置は、前記水循環部によって循環させられる前記循環水の量と、前記第2処理の開始前の時点での前記循環水の流路途中の複数の箇所での温度と、外気温度とに基づいて、前記循環水の全体の温度を前記目標温度以上にできるか否かを判定する請求項2に記載の燃料電池システム。 The control device is configured to control the amount of the circulating water circulated by the water circulation unit, the temperature at a plurality of locations in the flow path of the circulating water before the start of the second process, and the outside air temperature. 3. The fuel cell system according to claim 2, wherein it is determined whether or not the entire temperature of the circulating water can be made equal to or higher than the target temperature based on the temperature. 前記電池冷却水を加熱する加熱装置を備え、
前記制御装置は、前記水循環部によって循環させられる前記循環水の量と、前記第2処理の開始前の時点での前記循環水の流路途中の複数の箇所での温度と、外気温度と、前記加熱装置が前記電池冷却水に与えることができる熱量とに基づいて、前記循環水の全体の温度を前記目標温度以上にできるか否かを判定する請求項2に記載の燃料電池システム。
comprising a heating device that heats the battery cooling water,
The control device determines the amount of the circulating water that is circulated by the water circulation unit, the temperature at a plurality of locations in the flow path of the circulating water at a time before the start of the second process, and the outside air temperature; 3. The fuel cell system according to claim 2, wherein it is determined whether the overall temperature of the circulating water can be made equal to or higher than the target temperature based on the amount of heat that the heating device can give to the cell cooling water.
前記制御装置は、前記加熱装置が前記電池冷却水を加熱する場合、前記電池冷却水タンクに貯えられる前記電池冷却水の温度が所定の上限温度を超えないことを制約条件とする請求項4に記載の燃料電池システム。 5. The control device according to claim 4, wherein when the heating device heats the battery cooling water, a constraint condition is that the temperature of the battery cooling water stored in the battery cooling water tank does not exceed a predetermined upper limit temperature. The fuel cell system described.
JP2022046815A 2022-03-23 2022-03-23 fuel cell system Pending JP2023140794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022046815A JP2023140794A (en) 2022-03-23 2022-03-23 fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022046815A JP2023140794A (en) 2022-03-23 2022-03-23 fuel cell system

Publications (1)

Publication Number Publication Date
JP2023140794A true JP2023140794A (en) 2023-10-05

Family

ID=88205376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046815A Pending JP2023140794A (en) 2022-03-23 2022-03-23 fuel cell system

Country Status (1)

Country Link
JP (1) JP2023140794A (en)

Similar Documents

Publication Publication Date Title
JP5528451B2 (en) Fuel cell device
JP5092186B2 (en) Fuel cell cogeneration system
US7560181B2 (en) Fuel cell system and method of operating the same
JP5645645B2 (en) Solid oxide fuel cell device
JP5132143B2 (en) Fuel cell device
JP2013004295A (en) Fuel cell device
JP2008135356A (en) Fuel cell device
JP2023140794A (en) fuel cell system
JP2003217623A (en) Solid polymer electrolyte fuel cell generator
JP2010170877A (en) Fuel cell power generation system and operation method thereof
JP4926298B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP5460208B2 (en) Fuel cell cogeneration system
JP2006127861A (en) Fuel cell system
KR101392452B1 (en) A fuel cell apparatus providing fuel processor and managing method thereof
JP5534775B2 (en) Fuel cell cogeneration system
JP3448567B2 (en) Polymer electrolyte fuel cell power generator
JP2006147348A (en) Fuel cell power generation device and water quality control method of the same
JP5178020B2 (en) Fuel cell device
JP2012160329A (en) Fuel cell system and operation method of the same
JP2004213985A (en) Fuel cell system
JP6214364B2 (en) Fuel cell system
JP6501577B2 (en) Fuel cell system
JP2005216488A (en) Operation method of fuel cell power generation device
JP4265239B2 (en) Fuel reforming system
JP5495637B2 (en) Fuel cell system