JP2023134245A - Fatigue breakdown starting point and fatigue limit estimation method - Google Patents

Fatigue breakdown starting point and fatigue limit estimation method Download PDF

Info

Publication number
JP2023134245A
JP2023134245A JP2022039658A JP2022039658A JP2023134245A JP 2023134245 A JP2023134245 A JP 2023134245A JP 2022039658 A JP2022039658 A JP 2022039658A JP 2022039658 A JP2022039658 A JP 2022039658A JP 2023134245 A JP2023134245 A JP 2023134245A
Authority
JP
Japan
Prior art keywords
measured
order differential
stress
calculated
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022039658A
Other languages
Japanese (ja)
Inventor
秀樹 上田
Hideki Ueda
泰三 牧野
Taizo Makino
浩 白水
Hiroshi Shiromizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022039658A priority Critical patent/JP2023134245A/en
Publication of JP2023134245A publication Critical patent/JP2023134245A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Radiation Pyrometers (AREA)

Abstract

To provide a method for accurately estimating a fatigue breakdown starting point and a fatigue limit of a measurement object on the basis of the dissipation energy distribution of the measurement object measured by using an infrared imaging device.SOLUTION: A method according to the present invention calculates a relation between stress width σa and dissipation energy q for a plurality of portions of a measurement object by imaging the measurement object by using an infrared imaging device while sequentially adding repeated loads with the different stress width σa to the measurement object, calculates for each of the plurality of portions a second-order differential value d2 obtained by performing second-order differentiation of the relation with the stress width σa, calculates for each of the plurality of portions a second-order differentiation correction value d2' obtained by multiplying the second-order differential value d2 by a fatigue limit dispersion degree R considering Vickers hardness HV of the measurement object, estimates the portion where the maximum value d2'max of the second-order differentiation correction value d2' is obtained in the plurality of portions as a fatigue breakdown starting point of the measurement object, and estimates the stress width σa in which the maximum value d2'max is obtained as a fatigue limit of the measurement object.SELECTED DRAWING: Figure 2

Description

本発明は、赤外線撮像装置を用いて測定した被測定物の散逸エネルギー分布に基づき、被測定物の疲労破壊起点及び疲労限度を精度良く推定する方法に関する。 The present invention relates to a method for accurately estimating the fatigue fracture origin and fatigue limit of a measured object based on the dissipated energy distribution of the measured object measured using an infrared imaging device.

被測定物に発生する応力分布を非接触で測定する方法として、赤外線撮像装置(サーモグラフィ)を用いた熱弾性応力測定法が提案されている(例えば、非特許文献1参照)。
熱弾性応力測定法は、被測定物が断熱的に弾性変形する際に温度変化が生じるという熱弾性効果を利用し、繰り返し負荷が付加される被測定物を赤外線撮像装置を用いて撮像することで被測定物の温度分布の時間的変化(所定時間内における温度分布の変化)を測定し、この測定した温度分布の時間的変化を被測定物の応力分布の時間的変化(所定時間内における応力分布の変化)に換算する方法である。応力分布の初期値を把握していれば(実際に応力分布を測定して把握している場合のみならず、想定可能な場合も含む)、この初期値に応力分布の時間的変化を加算することで、所定時間経過後の応力分布を測定可能である。
A thermoelastic stress measurement method using an infrared imaging device (thermography) has been proposed as a method for non-contactly measuring the stress distribution generated in a measured object (see, for example, Non-Patent Document 1).
The thermoelastic stress measurement method utilizes the thermoelastic effect in which a temperature change occurs when the measured object undergoes adiabatic elastic deformation, and uses an infrared imaging device to image the measured object under repeated loads. The temporal change in the temperature distribution of the measured object (change in temperature distribution within a predetermined time) is measured, and the temporal change in the measured temperature distribution is calculated as the temporal change in the stress distribution of the measured object (change in temperature distribution within a specified time). This is a method of converting into changes in stress distribution (changes in stress distribution). If the initial value of the stress distribution is known (not only when the stress distribution is actually measured and understood, but also when it can be predicted), the temporal change in the stress distribution is added to this initial value. This makes it possible to measure the stress distribution after a predetermined period of time has elapsed.

この熱弾性応力測定法を用いて被測定物の温度分布の時間的変化を測定する際、例えば、被測定物の周囲の熱(赤外線)が被測定物の表面で反射し、赤外線撮像装置で受光される場合がある。換言すれば、赤外線撮像装置を用いて測定した被測定物の温度分布の時間的変化に、上記のような外乱要因の他、被測定物内での熱伝導や、後述のエネルギー散逸に起因した発熱のように、熱弾性効果によって生じる温度変化(被測定物から放射される赤外線の強度変化)以外の要因で生じた温度変化が含まれる場合がある。 When measuring temporal changes in the temperature distribution of a measured object using this thermoelastic stress measurement method, for example, the heat (infrared rays) surrounding the measured object is reflected by the surface of the measured object, and the infrared imaging device Light may be received. In other words, in addition to the above-mentioned disturbance factors, changes in the temperature distribution of the measured object measured using an infrared imaging device are affected by heat conduction within the measured object and energy dissipation as described below. In some cases, such as heat generation, temperature changes caused by factors other than temperature changes caused by thermoelastic effects (changes in the intensity of infrared rays emitted from the object to be measured) are included.

このため、非特許文献1に記載の技術では、赤外線撮像装置から出力された画像信号から、測定対象とする熱弾性効果によって生じる温度変化に応じた信号波形をロックイン処理している。すなわち、赤外線撮像装置から出力された画像信号から、所定の周波数成分のみを抽出している。
具体的には、例えば、被測定物に繰り返し負荷を付加する疲労試験機から出力され、付加する繰り返し負荷と同じ周波数の参照信号を利用する。この参照信号で画像信号を同期検波し、参照信号に応じた周波数帯域の画像信号成分のみ(参照信号と同じ周波数を有する画像信号成分のみ又は参照信号と同じ周波数を含む狭周波数帯域の画像信号のみ)を抽出することで、測定すべき熱弾性効果によって生じる温度変化のS/N比を向上させている。そして、抽出した画像信号成分の大きさと、予め記憶されている画像信号成分の大きさ及び温度の対応関係とに応じて、被測定物の温度分布の時間的変化(赤外線撮像装置で撮像した撮像画像を構成する画素毎の温度の時間的変化)を算出する。次に、被測定物の温度分布の時間的変化と、温度の時間的変化及び応力の時間的変化の間の所定の関係式とに基づき、被測定物の応力分布の時間的変化を算出する。具体的には、被測定物の温度分布の時間的変化と、以下の式(1)で表される関係式とに基づき、被測定物の応力分布の時間的変化を算出する。
Δσ=-1/K・ΔT/T ・・・(1)
上記の式(1)において、ΔTは温度の時間的変化を、Δσは応力の時間的変化を、Tは被測定物の温度を、Kは熱弾性係数を意味する。熱弾性係数Kは被測定物の材質によって決まる物性値であり、例えば被測定物が鉄鋼材料から形成されている場合、K=3.5×10-12[Pa-1]となる。
このように、ロックイン処理を用いれば、被測定物の応力分布の時間的変化、ひいては被測定物の応力分布を精度良く算出することが可能である。
Therefore, in the technique described in Non-Patent Document 1, lock-in processing is performed on a signal waveform corresponding to a temperature change caused by a thermoelastic effect to be measured, from an image signal output from an infrared imaging device. That is, only predetermined frequency components are extracted from the image signal output from the infrared imaging device.
Specifically, for example, a reference signal output from a fatigue testing machine that repeatedly applies a load to the object to be measured and that has the same frequency as the applied repetitive load is used. The image signal is synchronously detected using this reference signal, and only the image signal component in the frequency band corresponding to the reference signal (only the image signal component having the same frequency as the reference signal or only the image signal in a narrow frequency band including the same frequency as the reference signal) ), the S/N ratio of the temperature change caused by the thermoelastic effect to be measured is improved. Then, according to the magnitude of the extracted image signal component and the correspondence relationship between the magnitude of the image signal component and the temperature stored in advance, the temporal change in the temperature distribution of the object to be measured (the image captured by the infrared imaging device) is determined. Temporal change in temperature for each pixel that makes up the image is calculated. Next, the temporal change in the stress distribution of the measured object is calculated based on the temporal change in the temperature distribution of the measured object and a predetermined relational expression between the temporal change in temperature and the temporal change in stress. . Specifically, the temporal change in the stress distribution of the measured object is calculated based on the temporal change in the temperature distribution of the measured object and the relational expression expressed by the following equation (1).
Δσ=-1/K・ΔT/T...(1)
In the above equation (1), ΔT means the temporal change in temperature, Δσ means the temporal change in stress, T means the temperature of the object to be measured, and K means the thermoelastic coefficient. The thermoelastic coefficient K is a physical property value determined by the material of the object to be measured. For example, when the object to be measured is made of a steel material, K=3.5×10 −12 [Pa −1 ].
In this way, by using the lock-in process, it is possible to accurately calculate the temporal change in the stress distribution of the object to be measured, and by extension, the stress distribution of the object to be measured.

被測定物に繰り返し負荷を付加することによって、上記の熱弾性効果に起因した温度分布の時間的変化とは別に、エネルギー散逸に起因した温度分布の時間的変化も発生する。
非特許文献2に記載のように、エネルギー散逸に起因した温度分布の時間的変化は、被測定物に最大応力と最小応力とが作用した際に、それぞれ発熱成分として発生すると考えられており、散逸エネルギーは、温度の時間的変化における、被測定物に付加する繰り返し負荷の周波数の2倍の周波数成分として定義される。この散逸エネルギーをΔTとし、赤外線撮像装置を用いて測定した温度の時間的変化(ロックイン処理前の温度の時間的変化)をΔTとし、熱弾性効果に起因した温度の時間的変化(ロックイン処理後の温度の時間的変化)をΔTとすると、外乱要因や熱伝導を考慮しない場合、以下の式(2)が成立する。
ΔT=ΔT-ΔT ・・・(2)
したがって、散逸エネルギー分布は、赤外線撮像装置を用いて測定可能である。具体的には、例えば、赤外線撮像装置を用いて測定した温度分布の時間的変化から、前述のようにロックイン処理によって算出した熱弾性効果に起因した温度分布の時間的変化を減算することによって算出可能である。
By repeatedly applying a load to the object to be measured, apart from the temporal change in temperature distribution due to the thermoelastic effect described above, a temporal change in temperature distribution due to energy dissipation also occurs.
As described in Non-Patent Document 2, it is believed that temporal changes in temperature distribution due to energy dissipation occur as exothermic components when maximum stress and minimum stress act on the measured object, respectively. Dissipated energy is defined as a frequency component that is twice the frequency of a repetitive load applied to an object under test in a temporal change in temperature. This dissipated energy is ΔT D , the temporal change in temperature measured using an infrared imaging device (temporal change in temperature before lock-in processing) is ΔT M , and the temporal change in temperature due to the thermoelastic effect ( When the temporal change in temperature after the lock-in process is ΔT E , the following equation (2) holds true when disturbance factors and heat conduction are not considered.
ΔT D = ΔT M - ΔT E ...(2)
Therefore, the dissipated energy distribution can be measured using an infrared imager. Specifically, for example, by subtracting the temporal change in temperature distribution due to the thermoelastic effect calculated by the lock-in process as described above from the temporal change in temperature distribution measured using an infrared imaging device. It is possible to calculate.

また、非特許文献2には、赤外線撮像装置を用いて測定した被測定物の散逸エネルギーに基づき、被測定物の疲労限度を推定することが提案されている。
具体的には、被測定物に応力幅(=最大応力-最小応力)の異なる繰り返し負荷を順次付加(例えば、付加する繰り返し負荷の応力幅を段階的に増加させ、各応力幅の繰り返し負荷を数千サイクル程度付加)しながら、赤外線撮像装置を用いて被測定物を撮像することで、繰り返し負荷毎に被測定物の温度分布の時間的変化を測定する。そして、繰り返し負荷毎に測定した被測定物の温度分布の時間的変化に基づき、繰り返し負荷毎に被測定物の散逸エネルギー分布を算出し、この繰り返し負荷毎に算出した被測定物の散逸エネルギー分布に基づき、応力幅と散逸エネルギーとの関係を算出する。
Furthermore, Non-Patent Document 2 proposes estimating the fatigue limit of an object to be measured based on the dissipated energy of the object measured using an infrared imaging device.
Specifically, repeated loads with different stress widths (=maximum stress - minimum stress) are sequentially applied to the object to be measured (for example, the stress width of the applied repeated loads is increased stepwise, and the repeated loads of each stress width are By using an infrared imaging device to image the object under test (approximately several thousand cycles), temporal changes in the temperature distribution of the object are measured for each repeated load. Then, the dissipated energy distribution of the measured object is calculated for each repeated load based on the temporal change in the temperature distribution of the measured object measured for each repeated load, and the dissipated energy distribution of the measured object calculated for each repeated load is calculated. Based on this, calculate the relationship between stress width and dissipated energy.

図1は、応力幅と散逸エネルギーとの関係を模式的に示す図である。図1において「◆」でプロットした点が、応力幅の異なる繰り返し負荷毎に算出した散逸エネルギーである。図1に示すように、両者の関係には、ある応力幅を境にして散逸エネルギーが急増する急増点が本来的に生じる。そして、この急増点における繰り返し負荷の応力幅が、いわゆるS-N線図によって求められる疲労限度に対応すると考えられている。
したがって、応力幅と散逸エネルギーとの関係を算出し、散逸エネルギーが急増する急増点を検出すれば、この急増点における繰り返し負荷の応力幅を疲労限度として推定可能である。
FIG. 1 is a diagram schematically showing the relationship between stress width and dissipated energy. In FIG. 1, the points plotted with "◆" are the dissipated energy calculated for each repeated load with a different stress width. As shown in FIG. 1, in the relationship between the two, there inherently occurs a sharp increase point where the dissipated energy sharply increases after a certain stress width. It is believed that the stress width of repeated loading at this rapid increase point corresponds to the fatigue limit determined by a so-called SN diagram.
Therefore, by calculating the relationship between the stress width and the dissipated energy and detecting a sharp increase point where the dissipated energy rapidly increases, it is possible to estimate the stress width of repeated loads at this rapid rise point as the fatigue limit.

しかしながら、赤外線撮像装置を用いて測定される散逸エネルギー分布から得られる、応力幅と散逸エネルギーとの関係は、実際には、図1に示した通りのものになるとは限らず、被測定物が残留応力を含む熱処理材や溶接材である場合や、測定時に外乱要因の影響が大きい場合には、散逸エネルギーのばらつきが大きくなったり、全体的に散逸エネルギーが一定の勾配で単調増加してしまい、疲労限度を精度良く推定できる急増点が明確に生じない場合がある。 However, in reality, the relationship between the stress width and the dissipated energy obtained from the dissipated energy distribution measured using an infrared imaging device is not necessarily as shown in Figure 1; When heat-treated or welded materials contain residual stress, or when the influence of disturbance factors is large during measurement, the dissipated energy may vary widely, or the overall dissipated energy monotonically increases at a constant slope. , there are cases where a sharp increase point at which the fatigue limit can be accurately estimated does not occur clearly.

また、図1に示すような応力幅と散逸エネルギーとの関係は、被測定物の疲労破壊起点における散逸エネルギーをプロットすることを前提にしているが、被測定物が熱処理をした鉄鋼材料から形成されていたり、被測定物が溶接材である場合の溶接部近傍では、組織の違いや残留応力によって、疲労破壊起点の特定が困難な場合があり、応力集中する部位が必ずしも疲労破壊起点になるとは限らない。 Furthermore, the relationship between stress width and dissipated energy as shown in Figure 1 is based on the assumption that the dissipated energy at the fatigue fracture origin of the measured object is plotted, but if the measured object is made of heat-treated steel material, It may be difficult to identify the origin of fatigue fracture due to differences in structure and residual stress in the vicinity of the weld where the object to be measured is a welded material. is not limited.

特許文献1、2には、赤外線カメラから得られた温度画像から、測定対象物に関する、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、前記関係を、二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、前記第一の近似線と前記第二の近似線の交点に基づき前記測定対象物の疲労限度応力を求める方法が提案されている。
また、特許文献3には、赤外線カメラが撮影した温度画像から、測定対象物に対する加振の基本周波数成分及び第2高調波成分の温度振幅画像を取得し、第2高調波成分の温度振幅画像の最大を示す領域内において、基本周波数成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセル領域の散逸エネルギーから疲労限度を推定する方法が提案されている。
しかしながら、特許文献1~3に記載の方法は、図1に示すような応力幅と散逸エネルギーとの関係において、疲労限度に対応すると考えられる散逸エネルギーの急増点を検出するものではない。また、特許文献1~3に記載の方法は、疲労破壊起点を推定するものではない。
Patent Documents 1 and 2 disclose that the relationship between the temperature amplitude of the fundamental frequency component of excitation and the temperature amplitude of the second harmonic component of the object to be measured is determined from a temperature image obtained from an infrared camera, and the relationship is calculated. , fitting is performed using a first approximation line that is a quadratic curve and a second approximation line that is a quadratic curve, and the fatigue limit of the measurement object is determined based on the intersection of the first approximation line and the second approximation line. A method for determining stress has been proposed.
Furthermore, Patent Document 3 discloses that a temperature amplitude image of the fundamental frequency component and a second harmonic component of excitation of the object to be measured is acquired from a temperature image taken by an infrared camera, and a temperature amplitude image of the second harmonic component is obtained. A method has been proposed for estimating the fatigue limit from the dissipated energy of the pixel region where the slope of the load characteristic with respect to the temperature amplitude image of the fundamental frequency component is the maximum within the region showing the maximum of .
However, the methods described in Patent Documents 1 to 3 do not detect a point where the dissipated energy increases rapidly, which is considered to correspond to the fatigue limit, in the relationship between the stress width and the dissipated energy as shown in FIG. Further, the methods described in Patent Documents 1 to 3 do not estimate the starting point of fatigue fracture.

なお、非特許文献3には、疲労限度がビッカース硬さに比例することが記載されている。 Note that Non-Patent Document 3 states that the fatigue limit is proportional to Vickers hardness.

矢尾板達也、他2名、「赤外線カメラによる応力測定と疲労限界点の予測測定」、自動車技術会秋季学術講演会、No.98-03、(2003)Tatsuya Yaoita and 2 others, “Stress measurement using an infrared camera and predictive measurement of fatigue limit point,” Society of Automotive Engineers of Japan Autumn Academic Conference, No. 98-03, (2003) 塩澤大輝、他6名、「散逸エネルギ計測に基づいたTi-6Al-4V合金の疲労限度推定」、日本材料学会第69期学術講演会講演論文集、No.132、(2020)Daiki Shiozawa and 6 others, “Estimation of fatigue limit of Ti-6Al-4V alloy based on dissipated energy measurement,” Proceedings of the 69th Academic Conference of the Society of Materials Science, No. 132, (2020) 「初心者のための疲労用語の解説」、日本材料学会疲労部門委員会、(2015)“Explanation of fatigue terminology for beginners”, Fatigue Division Committee, Japan Society of Materials Science, (2015)

特開2018-105709号公報Japanese Patent Application Publication No. 2018-105709 特開2019-148507号公報JP 2019-148507 Publication 特開2016-024056号公報JP2016-024056A

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、赤外線撮像装置を用いて測定した被測定物の散逸エネルギー分布に基づき、被測定物の疲労破壊起点及び疲労限度を精度良く推定する方法を提供することを課題とする。 The present invention has been made to solve the problems of the prior art as described above, and is based on the dissipated energy distribution of the measured object measured using an infrared imaging device. The objective is to provide a method for estimating fatigue limits with high accuracy.

前記課題を解決するため、本発明者らは鋭意検討した結果、被測定物の複数の部位(疲労破壊起点になる可能性のある部位)に対して、被測定物に付加する繰り返し負荷の応力幅と散逸エネルギーとの関係を算出した後、この関係を応力幅で2階微分して得られる2階微分値に着目すれば、2階微分値の最大値(複数の部位に対して算出した全ての2階微分値の最大値)が得られた部位が被測定物の疲労破壊起点に対応し、2階微分値の最大値が得られた応力幅が被測定物の疲労限度に対応する可能性があることを知見した。換言すれば、被測定物の残留応力や外乱要因の影響により、応力幅と散逸エネルギーとの関係を図示するだけでは明確な急増点が生じていない場合であっても、2階微分値の最大値が得られた部位が疲労破壊起点に対応し、2階微分値の最大値が得られた応力幅が本来の急増点に相当するものになる可能性があることを知見した。
ただし、本発明者らは、2階微分値の最大値を算出するだけでは、被測定物の疲労破壊起点及び疲労限度を十分な精度で推定できない場合があることを知見した。そこで、本発明者らは、非特許文献3に記載のように、疲労限度がビッカース硬さに比例することを利用して2階微分値を補正することに着眼して、更に鋭意検討を行った。その結果、ビッカース硬さから推定される疲労限度(ビッカース硬さに所定の定数を乗算して算出される疲労限度)を基準とし、応力幅がこの基準から離れるに従って、その値が小さくなるパラメータ(本発明では、このパラメータを「疲労限度分散度」と称する)を2階微分値に乗算する補正を行えば、補正後の2階微分値(本発明では、これを「2階微分補正値」と称する)の最大値(複数の部位に対して算出した全ての2階微分補正値の最大値)が得られた部位が被測定物の疲労破壊起点に精度良く対応し、2階微分補正値の最大値が得られた応力幅が被測定物の疲労限度に精度良く対応することを知見した。
In order to solve the above-mentioned problem, the present inventors conducted extensive studies and found that the stress of repeated loads applied to multiple parts of the measured object (parts that may become the starting point of fatigue failure) After calculating the relationship between the width and the dissipated energy, if we focus on the second-order differential value obtained by second-order differentiating this relationship with the stress width, we can calculate the maximum value of the second-order differential value (calculated for multiple parts). The part where the maximum value of all second-order differential values was obtained corresponds to the fatigue fracture origin of the object to be measured, and the stress width where the maximum value of the second-order differential values was obtained corresponds to the fatigue limit of the object to be measured. I found out that there is a possibility. In other words, due to the residual stress of the object to be measured and the influence of disturbance factors, even if there is no clear sharp increase in the relationship between stress width and dissipated energy, the maximum second derivative It was found that the location where the value was obtained corresponds to the starting point of fatigue fracture, and that the stress width where the maximum value of the second order differential value was obtained may correspond to the original rapid increase point.
However, the present inventors have found that simply calculating the maximum value of the second-order differential value may not allow the fatigue fracture origin and fatigue limit of the object to be estimated with sufficient accuracy. Therefore, as described in Non-Patent Document 3, the present inventors focused on correcting the second-order differential value by utilizing the fact that the fatigue limit is proportional to the Vickers hardness, and conducted further intensive studies. Ta. As a result, the fatigue limit estimated from the Vickers hardness (the fatigue limit calculated by multiplying the Vickers hardness by a predetermined constant) is used as the standard, and as the stress width moves away from this standard, the parameter ( In the present invention, this parameter is referred to as the "fatigue limit dispersion degree"). The part where the maximum value (the maximum value of all second-order differential correction values calculated for multiple parts) of It was found that the stress width at which the maximum value of was obtained accurately corresponds to the fatigue limit of the object to be measured.

本発明は、本発明者らの上記の知見に基づき完成したものである。
すなわち、前記課題を解決するため、本発明は、被測定物に応力幅σaの異なる繰り返し負荷を順次付加しながら、赤外線撮像装置を用いて前記被測定物を撮像することで、前記繰り返し負荷毎に前記被測定物の温度分布の時間的変化を測定し、前記繰り返し負荷毎に測定した前記被測定物の温度分布の時間的変化に基づき、前記繰り返し負荷毎に前記被測定物の散逸エネルギー分布を算出し、前記繰り返し負荷毎に算出した前記被測定物の散逸エネルギー分布に基づき、前記被測定物の複数の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出する関係算出ステップと、算出した前記関係を前記応力幅σaで2階微分して得られる前記応力幅σa毎の2階微分値d2を、前記複数の部位毎に算出する2階微分値算出ステップと、算出した前記応力幅σa毎の2階微分値d2に前記応力幅σa毎の疲労限度分散度Rを乗算して得られる前記応力幅σa毎の2階微分補正値d2’を、前記複数の部位毎に算出する2階微分補正値算出ステップと、前記複数の部位のうち、前記複数の部位に対して算出した全ての前記2階微分補正値d2’の最大値d2’maxが得られた部位を、前記被測定物の疲労破壊起点として推定する疲労破壊起点推定ステップと、前記最大値d2’maxが得られた前記応力幅σaを前記被測定物の疲労限度として推定する疲労限度推定ステップと、を有し、前記疲労限度分散度Rは、以下の式(A)で表される、疲労破壊起点及び疲労限度推定方法を提供する。
R=1-abs(1-σa/(α・HV)) ・・・(A)
上記の式(A)において、σaは応力幅[MPa]であり、HVは前記被測定物のビッカース硬さ[HV]であり、αは定数である。また、abs(・)は括弧内の絶対値を意味する。
The present invention was completed based on the above findings of the present inventors.
That is, in order to solve the above problem, the present invention sequentially applies repeated loads with different stress widths σa to the measured object, and images the measured object using an infrared imaging device. measure the temporal change in the temperature distribution of the measured object, and calculate the dissipated energy distribution of the measured object for each repeated load based on the temporal change in the temperature distribution of the measured object measured for each repeated load. and calculating the relationship between the stress width σa and the dissipated energy q for each of the plurality of parts of the measured object based on the dissipated energy distribution of the measured object calculated for each repeated load. a second-order differential value calculation step of calculating, for each of the plurality of parts, a second-order differential value d2 for each of the stress widths σa obtained by second-order differentiating the calculated relationship with the stress width σa; The second-order differential correction value d2' for each stress width σa obtained by multiplying the second-order differential value d2 for each stress width σa by the fatigue limit dispersion R for each stress width σa is calculated for each of the plurality of parts. a step of calculating a second-order differential correction value to calculate a second-order differential correction value, and a step of calculating a second-order differential correction value d2' max of all the second-order differential correction values d2' calculated for the plurality of parts among the plurality of parts. , a fatigue fracture origin estimation step of estimating the fatigue fracture origin of the object to be measured; a fatigue limit estimation step of estimating the stress width σa from which the maximum value d2' max is obtained as a fatigue limit of the object to be measured; , and the fatigue limit dispersion R is expressed by the following equation (A), which provides a fatigue fracture origin and a fatigue limit estimation method.
R=1-abs(1-σa/(α・HV))...(A)
In the above formula (A), σa is the stress width [MPa], HV is the Vickers hardness [HV] of the object to be measured, and α is a constant. Moreover, abs(.) means the absolute value in parentheses.

本発明によれば、関係算出ステップにおいて、被測定物の複数の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出し、2階微分値算出ステップにおいて、この関係を応力幅σaで2階微分して得られる応力幅σa毎の2階微分値d2を、複数の部位毎に算出する。そして、2階微分補正値算出ステップにおいて、応力幅σa毎の2階微分値d2に応力幅σa毎の疲労限度分散度Rを乗算して得られる応力幅σa毎の2階微分補正値d2’を、複数の部位毎に算出する。2階微分値d2に乗算する疲労限度分散度Rは、式(A)で表されるため、被測定物のビッカース硬さHVに比例する値α・HV(ビッカース硬さHVから推定される疲労限度に相当)を基準とし、応力幅σaがこの基準α・HVに等しい場合に、Rは最大値である1となり、応力幅σaが基準α・HVから離れるに従って、Rは小さな値となる。このため、本発明者らが知見した通り、疲労破壊起点推定ステップにおいて、複数の部位のうち、複数の部位に対して算出した全ての2階微分補正値d2’の最大値d2’maxが得られた部位を、被測定物の疲労破壊起点として精度良く推定可能である。また、疲労限度推定ステップにおいて、最大値d2’maxが得られた応力幅σaを被測定物の疲労限度として精度良く推定可能である。 According to the present invention, in the relationship calculation step, the relationship between the stress width σa and the dissipated energy q is calculated for each of the plurality of parts of the object to be measured, and in the second-order differential value calculation step, this relationship is calculated as the stress width A second-order differential value d2 for each stress width σa obtained by second-order differentiation with respect to σa is calculated for each of a plurality of parts. Then, in the second-order differential correction value calculation step, the second-order differential correction value d2' for each stress width σa is obtained by multiplying the second-order differential value d2 for each stress width σa by the degree of fatigue limit dispersion R for each stress width σa. is calculated for each of multiple parts. Since the fatigue limit dispersion R, which is multiplied by the second-order differential value d2, is expressed by the formula (A), the fatigue limit dispersion R is proportional to the Vickers hardness HV of the object to be measured. When the stress width σa is equal to this reference α·HV, R has a maximum value of 1, and as the stress width σa moves away from the reference α·HV, R becomes a smaller value. Therefore, as found by the present inventors, in the fatigue fracture origin estimation step, the maximum value d2' max of all second-order differential correction values d2' calculated for a plurality of parts among the plurality of parts is obtained. It is possible to accurately estimate the location where the fatigue failure occurred as the fatigue fracture origin of the object to be measured. Furthermore, in the fatigue limit estimation step, the stress width σa from which the maximum value d2' max is obtained can be accurately estimated as the fatigue limit of the object to be measured.

なお、本発明において、応力幅σaと散逸エネルギーqとの関係を算出する被測定物の複数の部位は、疲労破壊起点になる可能性のある部位の中から選択すればよい。具体的には、例えば、算出した散逸エネルギー分布の中で散逸エネルギーが大きく、なお且つ、同じ赤外線撮像装置を用いて算出した応力分布の中で応力が大きな部位を選択することが考えられる。
また、本発明において、ビッカース硬さHVは、繰り返し負荷を付加する前の被測定物に対して、公知のビッカース硬さ試験機を用いて測定すればよい。この際、ビッカース硬さの測定箇所は、応力幅σaと散逸エネルギーqとの関係を算出する被測定物の複数の部位近傍に設定することが好ましい。また、被測定物そのものではなく、被測定物と同じ材質・形状を有する試験片を用いてビッカース硬さHVを測定することも可能である。
さらに、本発明において、式(A)中のαは、非特許文献3に記載のように、例えば、α=1.6に設定される。
In the present invention, the plurality of parts of the object to be measured for calculating the relationship between the stress width σa and the dissipated energy q may be selected from among parts that are likely to become fatigue fracture starting points. Specifically, for example, it is conceivable to select a portion where the dissipated energy is large in the calculated dissipated energy distribution and the stress is large in the stress distribution calculated using the same infrared imaging device.
Furthermore, in the present invention, the Vickers hardness HV may be measured using a known Vickers hardness tester on the object before being subjected to repeated loads. At this time, it is preferable that the points where the Vickers hardness is measured are set in the vicinity of a plurality of portions of the object to be measured where the relationship between the stress width σa and the dissipated energy q is calculated. Furthermore, it is also possible to measure the Vickers hardness HV using a test piece having the same material and shape as the object to be measured, rather than the object to be measured itself.
Furthermore, in the present invention, α in formula (A) is set to α=1.6, for example, as described in Non-Patent Document 3.

本発明者らの知見によれば、2階微分値d2に代えて、1階微分値dを用いても、被測定物の疲労破壊起点及び疲労限度を精度良く推定可能である。
すなわち、前記課題を解決するため、本発明は、被測定物に応力幅σaの異なる繰り返し負荷を順次付加しながら、赤外線撮像装置を用いて前記被測定物を撮像することで、前記繰り返し負荷毎に前記被測定物の温度分布の時間的変化を測定し、前記繰り返し負荷毎に測定した前記被測定物の温度分布の時間的変化に基づき、前記繰り返し負荷毎に前記被測定物の散逸エネルギー分布を算出し、前記繰り返し負荷毎に算出した前記被測定物の散逸エネルギー分布に基づき、前記被測定物の複数の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出する関係算出ステップと、算出した前記関係を前記応力幅σaで1階微分して得られる前記応力幅σa毎の1階微分値dを、前記複数の部位毎に算出する1階微分値算出ステップと、算出した前記応力幅σa毎の1階微分値dに前記応力幅σa毎の疲労限度分散度Rを乗算して得られる前記応力幅σa毎の1階微分補正値d’を、前記複数の部位毎に算出する1階微分補正値算出ステップと、前記複数の部位のうち、前記複数の部位に対して算出した全ての前記1階微分補正値d’の最大値d’maxが得られた部位を、前記被測定物の疲労破壊起点として推定する疲労破壊起点推定ステップと、前記最大値d’maxが得られた前記応力幅σaを前記被測定物の疲労限度として推定する疲労限度推定ステップと、を有し、前記疲労限度分散度Rは、以下の式(A)で表される、
疲労破壊起点及び疲労限度推定方法としても提供される。
R=1-abs(1-σa/(α・HV)) ・・・(A)
上記の式(A)において、σaは応力幅[MPa]であり、HVは前記被測定物のビッカース硬さ[HV]であり、αは定数である。また、abs(・)は括弧内の絶対値を意味する。
According to the findings of the present inventors, even if the first-order differential value d is used instead of the second-order differential value d2, the fatigue fracture origin and fatigue limit of the object to be measured can be estimated with high accuracy.
That is, in order to solve the above problem, the present invention sequentially applies repeated loads with different stress widths σa to the measured object, and images the measured object using an infrared imaging device. measure the temporal change in the temperature distribution of the measured object, and calculate the dissipated energy distribution of the measured object for each repeated load based on the temporal change in the temperature distribution of the measured object measured for each repeated load. and calculating the relationship between the stress width σa and the dissipated energy q for each of the plurality of parts of the measured object based on the dissipated energy distribution of the measured object calculated for each repeated load. a first-order differential value calculating step of calculating a first-order differential value d for each of the stress widths σa obtained by first-order differentiating the calculated relationship with the stress width σa for each of the plurality of parts; The first-order differential correction value d' for each stress width σa obtained by multiplying the first-order differential value d for each stress width σa by the fatigue limit dispersion R for each stress width σa is calculated for each of the plurality of parts. a step of calculating a first-order differential correction value, and a step of calculating a first-order differential correction value for the plurality of parts, and a part from which the maximum value d' max of all the first-order differential correction values d' calculated for the plurality of parts is obtained. , a fatigue fracture origin estimation step of estimating the fatigue fracture origin of the object to be measured; a fatigue limit estimation step of estimating the stress width σa from which the maximum value d' max is obtained as a fatigue limit of the object to be measured; , and the fatigue limit dispersion R is expressed by the following formula (A):
It is also provided as a fatigue fracture origin and fatigue limit estimation method.
R=1-abs(1-σa/(α・HV))...(A)
In the above formula (A), σa is the stress width [MPa], HV is the Vickers hardness [HV] of the object to be measured, and α is a constant. Moreover, abs(.) means the absolute value in parentheses.

本発明によれば、赤外線撮像装置を用いて測定した被測定物の散逸エネルギー分布に基づき、被測定物の疲労破壊起点及び疲労限度を精度良く推定可能である。 According to the present invention, it is possible to accurately estimate the fatigue fracture origin and fatigue limit of a measured object based on the dissipated energy distribution of the measured object measured using an infrared imaging device.

応力幅と散逸エネルギーとの関係を模式的に示す図である。FIG. 3 is a diagram schematically showing the relationship between stress width and dissipated energy. 第1実施形態に係る疲労破壊起点及び疲労限度推定方法のステップを概略的に示すフロー図である。FIG. 2 is a flow diagram schematically showing steps of a fatigue fracture origin and fatigue limit estimation method according to the first embodiment. 図2に示す関係算出ステップST1で算出される、被測定物の散逸エネルギー分布の一例を示す図である。3 is a diagram showing an example of the dissipated energy distribution of the object to be measured, which is calculated in the relationship calculation step ST1 shown in FIG. 2. FIG. 応力幅σaと散逸エネルギーqとの関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship between stress width σa and dissipated energy q. 図4に示す応力幅σaと散逸エネルギーqとの関係と、この関係から算出した2階微分値d2と、を示す図である。5 is a diagram showing the relationship between the stress width σa and the dissipated energy q shown in FIG. 4, and the second-order differential value d2 calculated from this relationship. FIG. 図5に示す応力幅σa毎に算出した疲労限度分散度Rの一例を示す。An example of fatigue limit dispersion R calculated for each stress width σa shown in FIG. 5 is shown. 図4に示す応力幅σaと散逸エネルギーqとの関係と、図5に示す応力幅σa毎の2階微分値d2に図6に示す応力幅σa毎の疲労限度分散度Rを乗算して得られる2階微分補正値d2’と、を示す図である。The relationship between the stress width σa and the dissipated energy q shown in FIG. 4 is obtained by multiplying the second-order differential value d2 for each stress width σa shown in FIG. FIG. 3 is a diagram showing a second-order differential correction value d2'. 第2実施形態に係る疲労破壊起点及び疲労限度推定方法のステップを概略的に示すフロー図である。FIG. 7 is a flow diagram schematically showing steps of a fatigue fracture origin and fatigue limit estimation method according to a second embodiment. 実施例の概要を説明する説明図である。It is an explanatory diagram explaining an outline of an example. 実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、この関係から2階微分値算出ステップST2で算出した2階微分値d2と、を示す図である。It is a figure showing the relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of the example, and the second-order differential value d2 calculated from this relationship in the second-order differential value calculation step ST2. 実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、この関係から1階微分値算出ステップST2’で算出した1階微分値dと、を示す図である。FIG. 3 is a diagram showing the relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of the embodiment, and the first-order differential value d calculated from this relationship in the first-order differential value calculation step ST2'. 図10及び図11に示す応力幅σa毎に算出した疲労限度分散度Rを示す。The fatigue limit dispersion degree R calculated for each stress width σa shown in FIGS. 10 and 11 is shown. 実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、図10に示す応力幅σa毎の2階微分値d2に図12に示す応力幅σa毎の疲労限度分散度Rを乗算して得られた2階微分補正値d2’と、を示す図である。The relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of the example, the second-order differential value d2 for each stress width σa shown in FIG. 10, and the fatigue limit dispersion degree for each stress width σa shown in FIG. 12 It is a figure which shows the second-order differential correction value d2' obtained by multiplying R. 実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、図11に示す応力幅σa毎の1階微分値dに図12に示す応力幅σa毎の疲労限度分散度Rを乗算して得られた1階微分補正値d’と、を示す図である。The relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of the example, the first-order differential value d for each stress width σa shown in FIG. 11, and the fatigue limit dispersion degree for each stress width σa shown in FIG. 12 It is a figure which shows the first-order differential correction value d' obtained by multiplying R.

以下、添付図面を適宜参照しつつ、本発明の実施形態(第1実施形態及び第2実施形態)に係る疲労破壊起点及び疲労限度推定方法(以下、適宜、単に「推定方法」という)について説明する。 Hereinafter, with appropriate reference to the attached drawings, a fatigue fracture origin and fatigue limit estimation method (hereinafter referred to simply as "estimation method") according to embodiments (first embodiment and second embodiment) of the present invention will be explained. do.

<第1実施形態>
図2は、第1実施形態に係る疲労破壊起点及び疲労限度推定方法のステップを概略的に示すフロー図である。
図2に示すように、第1実施形態に係る推定方法は、関係算出ステップST1と、2階微分値算出ステップST2と、2階微分補正値算出ステップST3と、疲労破壊起点推定ステップST4と、疲労限度推定ステップST5と、を有する。以下、各ステップST1~ST5について順に説明する。
<First embodiment>
FIG. 2 is a flow diagram schematically showing the steps of the fatigue fracture origin and fatigue limit estimation method according to the first embodiment.
As shown in FIG. 2, the estimation method according to the first embodiment includes a relationship calculation step ST1, a second-order differential value calculation step ST2, a second-order differential correction value calculation step ST3, a fatigue fracture origin estimation step ST4, and a fatigue limit estimation step ST5. Below, each step ST1 to ST5 will be explained in order.

[関係算出ステップST1]
関係算出ステップST1では、疲労試験機等によって、被測定物に応力幅(=最大応力-最小応力)σaの異なる繰り返し負荷を順次付加しながら、赤外線撮像装置を用いて被測定物を撮像することで、繰り返し負荷毎に被測定物の温度分布の時間的変化を測定する。具体的には、被測定物に付加する繰り返し負荷の応力幅σaを、応力比(=最小応力/最大応力)を一定にした条件で段階的に増加させ、各応力幅σaの繰り返し負荷を数千サイクル程度付加しながら、赤外線撮像装置を用いて被測定物を撮像することで、繰り返し負荷毎に被測定物の温度分布の時間的変化を測定する。そして、繰り返し負荷毎に測定した被測定物の温度分布の時間的変化に基づき、繰り返し負荷毎に被測定物の散逸エネルギー分布を算出する。
具体的には、赤外線撮像装置から出力された画像信号から、熱弾性効果によって生じる温度変化に応じた信号波形をロックイン処理する(付加する繰り返し負荷と同じ周波数の参照信号で画像信号を同期検波し、参照信号に応じた周波数帯域の画像信号成分のみを抽出する)。そして、赤外線撮像装置から出力された画像信号(ロックイン処理前の画像信号)によって得られた被測定物の温度分布の時間的変化から、ロックイン処理によって抽出した画像信号成分によって得られた熱弾性効果に起因した被測定物の温度分布の時間的変化を減算することで、被測定物の散逸エネルギー分布を算出する。
なお、関係算出ステップST1の上記の手順を実行するための赤外線撮像装置としては、例えば、FLIR社製のX6580シリーズ(冷却式、温度分解能0.02℃、画素数最大640×512ピクセル、フレームレート最大350Hz)を、散逸エネルギー分布の算出用ソフトウェアとしては、同社製のAltairLIを用いることができる。
[Relationship calculation step ST1]
In the relationship calculation step ST1, images of the object to be measured are taken using an infrared imaging device while sequentially applying repeated loads with different stress widths (=maximum stress - minimum stress) σa to the object to be measured using a fatigue testing machine or the like. Then, the temporal changes in the temperature distribution of the object to be measured are measured for each repeated load. Specifically, the stress width σa of the repeated load applied to the object to be measured is increased stepwise under the condition that the stress ratio (= minimum stress / maximum stress) is kept constant, and the repeated load of each stress width σa is increased several times. By imaging the object to be measured using an infrared imaging device while applying approximately 1,000 cycles, temporal changes in the temperature distribution of the object to be measured are measured for each repeated load. Then, the dissipated energy distribution of the measured object is calculated for each repeated load based on the temporal change in the temperature distribution of the measured object measured for each repeated load.
Specifically, from the image signal output from the infrared imaging device, the signal waveform corresponding to the temperature change caused by the thermoelastic effect is subjected to lock-in processing (synchronous detection of the image signal with a reference signal of the same frequency as the repeated load to be applied). Then, only the image signal components in the frequency band corresponding to the reference signal are extracted). Then, from the temporal change in the temperature distribution of the measured object obtained from the image signal output from the infrared imaging device (image signal before lock-in processing), the heat obtained by the image signal component extracted by lock-in processing is calculated. The dissipated energy distribution of the measured object is calculated by subtracting the temporal change in the temperature distribution of the measured object due to the elastic effect.
In addition, as an infrared imaging device for executing the above-mentioned procedure of the relationship calculation step ST1, for example, the As the software for calculating the dissipated energy distribution, AltairLI manufactured by the same company can be used.

次に、関係算出ステップST1では、上記のようにして、繰り返し負荷毎に算出した被測定物の散逸エネルギー分布に基づき、被測定物の複数の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出する。
図3は、関係算出ステップST1で算出される、被測定物の散逸エネルギー分布(散逸エネルギー分布を示す画像)の一例を示す図である。図4は、応力幅σaと散逸エネルギーqとの関係の一例を示す図である。図3に示す散逸エネルギー分布は、濃度の濃い(黒い)画素ほど、散逸エネルギーが大きいことを示している。図3及び図4に示す例では、疲労破壊起点になる可能性のある図3に示すArea-1、Area-2、Area-3(それぞれ縦横数~十数ピクセルずつの画素領域)の3箇所の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出している。ただし、本発明はこれに限るものではなく、4箇所以上の部位に対して関係を算出してもよいし、2箇所の部位に対して関係を算出してもよい。図4(a)はArea-1に対して算出した関係を、図4(b)はArea-2に対して算出した関係を、図4(c)はArea-3に対して算出した関係を示す。図4に示す関係は、図3に示すような散逸エネルギー分布を繰り返し負荷毎に(段階的に増加させた異なる応力幅σa毎に)算出し、Area-1~Area-3における散逸エネルギーの代表値(具体的には、平均値)を繰り返し負荷毎にプロットしたものである。なお、代表値としては、平均値に限るものではなく、例えば、最大値を用いることも可能である。
Next, in relation calculation step ST1, stress width σa and dissipated energy q are calculated for multiple parts of the object to be measured based on the dissipated energy distribution of the object to be measured calculated for each repeated load as described above. Calculate the relationship between
FIG. 3 is a diagram showing an example of the dissipated energy distribution (image showing the dissipated energy distribution) of the object to be measured, which is calculated in the relationship calculation step ST1. FIG. 4 is a diagram showing an example of the relationship between the stress width σa and the dissipated energy q. The dissipated energy distribution shown in FIG. 3 shows that the higher the density (black) of a pixel, the greater the dissipated energy. In the examples shown in FIGS. 3 and 4, three locations, Area-1, Area-2, and Area-3 (each pixel area of several to ten-odd pixels in length and width) shown in FIG. The relationship between the stress width σa and the dissipated energy q is calculated for each part. However, the present invention is not limited to this, and the relationship may be calculated for four or more sites, or the relationship may be calculated for two sites. Figure 4(a) shows the relationship calculated for Area-1, Figure 4(b) shows the relationship calculated for Area-2, and Figure 4(c) shows the relationship calculated for Area-3. show. The relationship shown in Fig. 4 is calculated by calculating the dissipated energy distribution shown in Fig. 3 for each repeated load (for each different stress width σa that is increased stepwise), and the representative dissipated energy in Area-1 to Area-3 is calculated. The values (specifically, the average values) are plotted for each repeated load. Note that the representative value is not limited to the average value, and for example, the maximum value may also be used.

[2階微分値算出ステップST2]
図4に示す応力幅σaと散逸エネルギーqとの関係は、ノイズによってプロットした点が上下に振動しており、急増点が明確ではない。
そこで、2階微分値算出ステップST2では、関係算出ステップST1で算出した関係を応力幅σaで2階微分して得られる応力幅σa毎の2階微分値d2を、複数の部位(Area-1、Area-2、Area-3)毎に算出する。
[Second-order differential value calculation step ST2]
In the relationship between the stress width σa and the dissipated energy q shown in FIG. 4, the plotted points oscillate up and down due to noise, and the sharp increase point is not clear.
Therefore, in the second-order differential value calculation step ST2, the second-order differential value d2 for each stress width σa obtained by second-order differentiating the relationship calculated in the relationship calculation step ST1 with respect to the stress width σa is calculated for a plurality of parts (Area-1 , Area-2, Area-3).

2階微分値d2を算出する際には、まず1階微分値dを算出する。1階微分値dは、応力幅σaと散逸エネルギーqとの関係を応力幅σaで1階微分して得られる値である。図4(a)に示すように、1階微分値dは、隣り合うプロット点の応力幅σaの変化量をΔσaとし、隣り合うプロット点の散逸エネルギーの変化量をΔqとすると、以下の式(3)で算出される。
d=Δq/Δσa ・・・(3)
すなわち、小さい方からn番目のプロット点の1階微分値dをdとし、小さい方からn番目のプロット点の応力幅σaをσ、散逸エネルギーqをqとし、小さい方からn-1番目のプロット点の応力幅σaをσn-1、散逸エネルギーqをqn-1とすれば、1階微分値dは、例えば、以下の式(3)’で算出される。
=(q-qn-1)/(σ-σn-1) ・・・(3)’
When calculating the second-order differential value d2, first the first-order differential value d is calculated. The first-order differential value d is a value obtained by first-order differentiating the relationship between the stress width σa and the dissipated energy q with the stress width σa. As shown in FIG. 4(a), the first-order differential value d is calculated by the following formula, where Δσa is the amount of change in stress width σa of adjacent plot points, and Δq is the amount of change in dissipated energy of adjacent plot points. Calculated in (3).
d=Δq/Δσa...(3)
That is, let d n be the first-order differential value d of the nth plot point from the smallest one, let σ n be the stress width σa of the nth plot point from the smallest one, let q n be the dissipated energy q, and let n− If the stress width σa at the first plot point is σ n-1 and the dissipated energy q is q n-1 , the first-order differential value d n is calculated, for example, by the following equation (3)'.
d n =(q n -q n-1 )/(σ nn-1 ) ...(3)'

2階微分値d2は、隣り合うプロット点の1階微分値dの変化量をΔdとすれば、図4(a)に示すように、以下の式(4)で算出される。
d2=Δd/Δσa ・・・(4)
すなわち、小さい方からn番目のプロット点の2階微分値d2をd2とし、小さい方からn-1番目のプロット点の1階微分値dをdn-1とすれば、2階微分値d2は、例えば、以下の式(4)’で算出される。
d2=(d-dn-1)/(σ-σn-1)={(q-qn-1)/(σ-σn-1)-(qn-1-qn-2)/(σn-1-σn-2)}/(σ-σn-1)・・・(4)’
上記の式(4)’において、qn-2は小さい方からn-2番目のプロット点の散逸エネルギーqであり、σn-2は小さい方からn-2番目のプロット点の応力幅σaである。
The second-order differential value d2 is calculated by the following equation (4), as shown in FIG. 4(a), assuming that the amount of change in the first-order differential value d of adjacent plot points is Δd.
d2=Δd/Δσa...(4)
That is, if the second-order differential value d2 of the n-th plot point from the smallest one is d2 n , and the first-order differential value d of the n-1st plot point from the smallest one is d n-1 , then the second-order differential value d2n is calculated, for example, using the following equation (4)'.
d2 n = (d n - d n-1 )/(σ n - σ n-1 ) = {(q n - q n-1 )/(σ n - σ n-1 ) - (q n-1 - q n-2 )/(σ n-1n-2 )}/(σ nn-1 )...(4)'
In the above equation (4)', q n-2 is the dissipated energy q of the n-2nd plot point from the smallest one, and σ n-2 is the stress width σa of the n-2nd plot point from the smallest one. It is.

図5は、図4に示す応力幅σaと散逸エネルギーqとの関係と、この関係から算出した2階微分値d2と、を示す図である。図5において、2階微分値d2は「+」でプロットしている。図5(a)はArea-1に対して算出したものを、図5(b)はArea-2に対して算出したものを、図5(c)はArea-3に対して算出したものを示す。
図5(a)に示すように、Area-1では、応力幅σaがσのときに2階微分値d2が最大値になっている。図5(b)に示すように、Area-2でも、応力幅σaがσのときに2階微分値d2が最大値になっているが、応力幅σaがσのときにも2階微分値d2が最大値に近い値になっている。図5(c)に示すように、Area-3では、応力幅σaがσ10のときに2階微分値d2が最大値になっている。そして、Area-1~Area-3の各部位における2階微分値d2の最大値を比較すると、Area-1における応力幅σaがσのときの2階微分値d2が、全ての部位Area-1~Area-3における2階微分値d2の最大値になっている。このため、仮に、全ての部位Area-1~Area3における2階微分値d2の最大値が得られた部位を、被測定物の疲労破壊起点と推定し、全ての部位Area-1~Area3における2階微分値d2の最大値が得られた応力幅σaを、被測定物の疲労限度と推定するのであれば、図5に示す例では、疲労破壊起点がArea-1であり、疲労限度が応力幅σになる。しかしながら、本発明者らの知見によれば、この結果は、疲労試験を行って確認される疲労破壊起点や、疲労試験から得られるS-N線図から求められる疲労限度と合致しない。このため、第1実施形態に係る推定方法では、以下に述べるように、疲労限度がビッカース硬さに比例することを利用して2階微分値d2を補正した2階微分補正値d2’を用いて推定する。
FIG. 5 is a diagram showing the relationship between the stress width σa and the dissipated energy q shown in FIG. 4, and the second-order differential value d2 calculated from this relationship. In FIG. 5, the second-order differential value d2 is plotted as "+". Figure 5(a) shows what is calculated for Area-1, Figure 5(b) shows what is calculated for Area-2, and Figure 5(c) shows what is calculated for Area-3. show.
As shown in FIG. 5(a), in Area-1, when the stress width σa is σ7 , the second-order differential value d2 is the maximum value. As shown in Figure 5(b), in Area-2 as well, the second-order differential value d2 reaches its maximum value when the stress width σa is σ 7 , but it also reaches the second-order differential value when the stress width σa is σ 9 . The differential value d2 is close to the maximum value. As shown in FIG. 5(c), in Area-3, when the stress width σa is σ10 , the second-order differential value d2 is the maximum value. Then, when comparing the maximum value of the second-order differential value d2 in each part of Area-1 to Area-3, it is found that the second-order differential value d2 when the stress width σa in Area-1 is σ 7 is the same in all parts Area-1. This is the maximum value of the second-order differential value d2 in Areas 1 to 3. For this reason, it is assumed that the part where the maximum value of the second-order differential value d2 in all parts Area-1 to Area-3 is obtained is the fatigue fracture origin of the measured object, and If the stress width σa at which the maximum value of the floor differential value d2 is obtained is estimated as the fatigue limit of the measured object, in the example shown in FIG. 5, the fatigue fracture origin is Area-1, and the fatigue limit is The width becomes σ 7 . However, according to the findings of the present inventors, this result does not match the fatigue fracture origin confirmed by conducting a fatigue test or the fatigue limit determined from the SN diagram obtained from the fatigue test. For this reason, the estimation method according to the first embodiment uses a second-order differential correction value d2' that corrects the second-order differential value d2 by utilizing the fact that the fatigue limit is proportional to Vickers hardness, as described below. Estimate.

[2階微分補正値算出ステップST3]
2階微分補正値算出ステップST3では、2階微分値算出ステップST2で算出した2階微分値d2を補正する際に、疲労限度分散度Rを用いる。
非特許文献3には、疲労限度がビッカース硬さに比例することが記載されている。したがって、被測定物のビッカース硬さをHVとし、所定の定数をαとすれば、疲労限度は、α・HVで推定される。すなわち、疲労限度推定値をσa_stdとすれば、疲労限度推定値σa_stdは、以下の式(5)で表される。
σa_std=α・HV ・・・(5)
そして、2階微分補正値算出ステップST3では、疲労限度分散度Rとして、疲労限度推定値σa_stdを基準とし、応力幅σaがこの基準から離れるに従って、その値が小さくなるパラメータを用いる。具体的には、以下の式(6)で表される疲労限度分散度Rを用いる。
R=1-abs(1-σa/σa_std) ・・・(6)
上記の式(5)を式(6)に代入することにより、以下の式(A)が得られる。
R=1-abs(1-σa/(α・HV)) ・・・(A)
上記の式(A)において、σaは応力幅[MPa]であり、HVは前記被測定物のビッカース硬さ[HV]であり、αは定数である。また、abs(・)は括弧内の絶対値を意味する。ビッカース硬さHVは、例えば、繰り返し負荷を付加する前の被測定物に対して、公知のビッカース硬さ試験機を用いて測定すればよい。
図6は、図5に示す応力幅σa毎に算出した疲労限度分散度Rの一例を示す。図6から分かるように、疲労限度推定値σa_stdを基準とし、応力幅σaがこの基準から離れるに従って、疲労限度分散度Rの値が小さくなっている。
[Second-order differential correction value calculation step ST3]
In the second-order differential correction value calculation step ST3, the fatigue limit dispersion degree R is used when correcting the second-order differential value d2 calculated in the second-order differential value calculation step ST2.
Non-Patent Document 3 describes that the fatigue limit is proportional to Vickers hardness. Therefore, if the Vickers hardness of the object to be measured is HV and the predetermined constant is α, the fatigue limit is estimated as α·HV. That is, if the fatigue limit estimated value is σa _std , the fatigue limit estimated value σa _std is expressed by the following equation (5).
σa_std = α・HV...(5)
Then, in the second-order differential correction value calculation step ST3, a parameter is used as the degree of fatigue limit dispersion R, which uses the estimated fatigue limit value σa_std as a reference, and whose value decreases as the stress width σa departs from this reference. Specifically, the fatigue limit dispersion R expressed by the following equation (6) is used.
R=1-abs(1-σa/ σa_std )...(6)
By substituting the above equation (5) into equation (6), the following equation (A) is obtained.
R=1-abs(1-σa/(α・HV))...(A)
In the above formula (A), σa is the stress width [MPa], HV is the Vickers hardness [HV] of the object to be measured, and α is a constant. Moreover, abs(.) means the absolute value in parentheses. The Vickers hardness HV may be measured, for example, using a known Vickers hardness tester on the object before being subjected to repeated loads.
FIG. 6 shows an example of fatigue limit dispersion R calculated for each stress width σa shown in FIG. As can be seen from FIG. 6, with the fatigue limit estimated value σa_std as a reference, the value of the fatigue limit dispersion R becomes smaller as the stress width σa moves away from this reference.

そして、2階微分補正値算出ステップST3では、2階微分値算出ステップST2で算出した応力幅σa毎の2階微分値d2に応力幅σa毎の疲労限度分散度Rを乗算して得られる応力幅σa毎の2階微分補正値d2’を、複数の部位(Area-1、Area-2、Area-3)毎に算出する。
図7は、図4に示す応力幅σaと散逸エネルギーqとの関係と、図5に示す応力幅σa毎の2階微分値d2に図6に示す応力幅σa毎の疲労限度分散度Rを乗算して得られる2階微分補正値d2’と、を示す図である。図7において、2階微分補正値d2’は「×」でプロットしている。図7(a)はArea-1に対して算出したものを、図7(b)はArea-2に対して算出したものを、図7(c)はArea-3に対して算出したものを示す。
Then, in the second-order differential correction value calculation step ST3, the stress obtained by multiplying the second-order differential value d2 for each stress width σa calculated in the second-order differential value calculation step ST2 by the fatigue limit dispersion R for each stress width σa A second-order differential correction value d2' for each width σa is calculated for each of a plurality of parts (Area-1, Area-2, Area-3).
FIG. 7 shows the relationship between the stress width σa and the dissipated energy q shown in FIG. 4, and the fatigue limit dispersion degree R for each stress width σa shown in FIG. It is a figure which shows the second-order differential correction value d2' obtained by multiplication. In FIG. 7, the second-order differential correction value d2' is plotted as "x". Figure 7(a) shows what is calculated for Area-1, Figure 7(b) shows what is calculated for Area-2, and Figure 7(c) shows what is calculated for Area-3. show.

[疲労破壊起点推定ステップST4]
疲労破壊起点推定ステップST4では、複数の部位(Area-1、Area-2、Area-3)のうち、複数の部位に対して算出した全ての2階微分補正値d2’の最大値d2’maxが得られた部位を、被測定物の疲労破壊起点として推定する。
図7に示す例では、Area-3において、全ての2階微分補正値d2’の最大値d2’maxが得られているため、Area-3が被測定物の疲労破壊起点として推定されることになる。
[Fatigue fracture origin estimation step ST4]
In the fatigue fracture origin estimation step ST4, the maximum value d2' max of all second-order differential correction values d2' calculated for a plurality of parts (Area-1, Area-2, Area-3) is calculated. The location where is obtained is estimated as the starting point of fatigue failure of the object to be measured.
In the example shown in FIG. 7, since the maximum value d2' max of all second-order differential correction values d2' is obtained in Area-3, Area-3 is estimated to be the fatigue fracture origin of the measured object. become.

[疲労限度推定ステップST5]
疲労限度推定ステップST5では、最大値d2’maxが得られた応力幅σaを被測定物の疲労限度として推定する。
図7に示す例では、Area-3におけるσ10において最大値d2’maxが得られているため、σ10が被測定物の疲労限度として推定されることになる。
[Fatigue limit estimation step ST5]
In the fatigue limit estimation step ST5, the stress width σa from which the maximum value d2' max is obtained is estimated as the fatigue limit of the object to be measured.
In the example shown in FIG. 7, the maximum value d2' max is obtained at σ 10 in Area-3, so σ 10 is estimated as the fatigue limit of the object to be measured.

以上に説明した第1実施形態に係る疲労限度推定方法によれば、関係算出ステップST1において、被測定物の複数の部位(図3に示す例では、Area-1~Area-3の3箇所の部位)に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出し、2階微分値算出ステップST2において、この関係を応力幅σaで2階微分して得られる応力幅σa毎の2階微分値d2を、複数の部位毎に算出する。そして、2階微分補正値算出ステップST3において、応力幅σa毎の2階微分値d2に応力幅σa毎の疲労限度分散度Rを乗算して得られる応力幅σa毎の2階微分補正値d2’を、複数の部位毎に算出する。被測定物のビッカース硬さHVに比例する疲労限度推定値σa_std(σa_std=α・HV)を基準とし、応力幅σaがこの基準である疲労限度推定値σa_stdに等しい場合に、疲労限度分散度Rは最大値である1となり、応力幅σaが疲労限度推定値σa_stdから離れるに従って、疲労限度分散度Rは小さな値となる。このため、本発明者らが知見した通り、疲労破壊起点推定ステップST4において、複数の部位のうち、複数の部位に対して算出した全ての2階微分補正値d2’の最大値d2’maxが得られた部位を、被測定物の疲労破壊起点として精度良く推定可能である。また、疲労限度推定ステップST5において、最大値d2’maxが得られた応力幅σaを被測定物の疲労限度として精度良く推定可能である。 According to the fatigue limit estimation method according to the first embodiment described above, in the relationship calculation step ST1, a plurality of parts of the object to be measured (in the example shown in FIG. 3, three parts Area-1 to Area-3) For each stress width σa, the relationship between the stress width σa and the dissipated energy q is calculated for each part), and in the second-order differential value calculation step ST2, this relationship is second-order differentiated by the stress width σa. A floor differential value d2 is calculated for each of the plurality of parts. Then, in the second-order differential correction value calculation step ST3, the second-order differential correction value d2 for each stress width σa is obtained by multiplying the second-order differential value d2 for each stress width σa by the degree of fatigue limit dispersion R for each stress width σa. ' is calculated for each of multiple parts. Based on the estimated fatigue limit value σa _std (σa _std = α・HV) which is proportional to the Vickers hardness HV of the measured object, when the stress width σa is equal to the estimated fatigue limit value σa _std which is this standard, the fatigue limit is determined. The degree of dispersion R has a maximum value of 1, and as the stress width σa moves away from the estimated fatigue limit value σa_std , the degree of fatigue limit dispersion R becomes a smaller value. Therefore, as found by the present inventors, in the fatigue fracture origin estimation step ST4, the maximum value d2' max of all second-order differential correction values d2' calculated for a plurality of parts among the plurality of parts is The obtained location can be accurately estimated as the starting point of fatigue fracture of the object to be measured. Furthermore, in the fatigue limit estimation step ST5, the stress width σa from which the maximum value d2' max is obtained can be accurately estimated as the fatigue limit of the object to be measured.

<第2実施形態>
図8は、第2実施形態に係る疲労破壊起点及び疲労限度推定方法のステップを概略的に示すフロー図である。
本発明者らの知見によれば、2階微分値d2に代えて、1階微分値dを用いても、被測定物の疲労破壊起点及び疲労限度を精度良く推定可能である。第2実施形態に係る推定方法は、1階微分値dを用いる点のみが第1実施形態に係る推定方法と異なり、その他の部分は第1実施形態に係る推定方法と同様であるため、以下、第1実施形態と異なる点についてのみ簡単に説明し、同様の部分については説明を省略する。
<Second embodiment>
FIG. 8 is a flow diagram schematically showing the steps of the fatigue fracture origin and fatigue limit estimation method according to the second embodiment.
According to the findings of the present inventors, even if the first-order differential value d is used instead of the second-order differential value d2, the fatigue fracture origin and fatigue limit of the object to be measured can be estimated with high accuracy. The estimation method according to the second embodiment differs from the estimation method according to the first embodiment only in that the first differential value d is used, and the other parts are the same as the estimation method according to the first embodiment. , only the points that are different from the first embodiment will be briefly described, and the description of the similar parts will be omitted.

図8に示すように、第2実施形態に係る推定方法は、関係算出ステップST1と、1階微分値算出ステップST2’と、1階微分補正値算出ステップST3’と、疲労破壊起点推定ステップST4’と、疲労限度推定ステップST5’と、を有する。以下、各ステップST1~ST5’について順に説明する。 As shown in FIG. 8, the estimation method according to the second embodiment includes a relationship calculation step ST1, a first-order differential value calculation step ST2', a first-order differential correction value calculation step ST3', and a fatigue fracture origin estimation step ST4. ', and a fatigue limit estimation step ST5'. Below, each step ST1 to ST5' will be explained in order.

[関係算出ステップST1]
関係算出ステップST1で実行する内容は、図2に示す第1実施形態に係る推定方法の関係算出ステップST1と同様である。
[Relationship calculation step ST1]
The content executed in the relationship calculation step ST1 is the same as the relationship calculation step ST1 of the estimation method according to the first embodiment shown in FIG.

[1階微分値算出ステップST2’]
1階微分値算出ステップST2’では、関係算出ステップST1で算出した関係を応力幅σaで1階微分して得られる応力幅σa毎の1階微分値dを、複数の部位(例えば、Area-1、Area-2、Area-3)毎に算出する。
第1実施形態に係る推定方法の2階微分値算出ステップST2では、前述の式(4)(より具体的には、式(4)’)を用いて2階微分値d2を算出したが、1階微分値算出ステップST2’では、前述の式(3)(より具体的には、式(3)’)を用いて1階微分値dを算出する。
[First-order differential value calculation step ST2']
In the first-order differential value calculation step ST2', the first-order differential value d for each stress width σa obtained by first-order differentiation of the relationship calculated in the relationship calculation step ST1 with respect to the stress width σa is applied to multiple parts (for example, Area- 1, Area-2, Area-3).
In the second-order differential value calculation step ST2 of the estimation method according to the first embodiment, the second-order differential value d2 was calculated using the above-mentioned formula (4) (more specifically, formula (4)'). In the first-order differential value calculation step ST2', the first-order differential value d is calculated using the above-mentioned equation (3) (more specifically, equation (3)').

[1階微分補正値算出ステップST3’]
1階微分補正値算出ステップST3’でも、1階微分値算出ステップST2’で算出した1階微分値dを補正する際に、疲労限度分散度Rを用いる。この疲労限度分散度Rは、第1実施形態に係る推定方法の2階微分補正値算出ステップST3で用いるものと同様(図6参照)である。
そして、1階微分補正値算出ステップST3’では、1階微分値算出ステップST2’で算出した応力幅σa毎の1階微分値dに応力幅σa毎の疲労限度分散度Rを乗算して得られる応力幅σa毎の1階微分補正値d’を、複数の部位毎に算出する。
[First-order differential correction value calculation step ST3']
In the first-order differential correction value calculation step ST3', the fatigue limit dispersion degree R is also used when correcting the first-order differential value d calculated in the first-order differential value calculation step ST2'. This fatigue limit dispersion degree R is the same as that used in the second-order differential correction value calculation step ST3 of the estimation method according to the first embodiment (see FIG. 6).
In the first-order differential correction value calculation step ST3', the first-order differential value d for each stress width σa calculated in the first-order differential value calculation step ST2' is multiplied by the fatigue limit dispersion R for each stress width σa. A first-order differential correction value d' for each stress width σa is calculated for each of the plurality of parts.

[疲労破壊起点推定ステップST4’]
疲労破壊起点推定ステップST4’では、複数の部位のうち、複数の部位に対して算出した全ての1階微分補正値d’の最大値d’maxが得られた部位を、被測定物の疲労破壊起点として推定する。
[Fatigue fracture origin estimation step ST4']
In the fatigue fracture origin estimation step ST4', the part for which the maximum value d' max of all the first-order differential correction values d' calculated for the plurality of parts is obtained is determined as the fatigue of the measured object. Estimated as the starting point of failure.

[疲労限度推定ステップST5’]
疲労限度推定ステップST5’では、最大値d’maxが得られた応力幅σaを被測定物の疲労限度として推定する。
[Fatigue limit estimation step ST5']
In the fatigue limit estimation step ST5', the stress width σa from which the maximum value d' max is obtained is estimated as the fatigue limit of the object to be measured.

以上に説明した第2実施形態に係る疲労限度推定方法によっても、疲労破壊起点推定ステップST4’において、複数の部位のうち、複数の部位に対して算出した全ての1階微分補正値d’の最大値d’maxが得られた部位を、被測定物の疲労破壊起点として精度良く推定可能である。また、疲労限度推定ステップST5’において、最大値d’maxが得られた応力幅σaを被測定物の疲労限度として精度良く推定可能である。 Also in the fatigue limit estimation method according to the second embodiment described above, in the fatigue fracture origin estimation step ST4', all the first-order differential correction values d' calculated for a plurality of parts among the plurality of parts are The location where the maximum value d' max is obtained can be accurately estimated as the fatigue fracture origin of the object to be measured. Furthermore, in the fatigue limit estimation step ST5', the stress width σa from which the maximum value d' max is obtained can be accurately estimated as the fatigue limit of the object to be measured.

<実施例>
以下、本発明の実施形態(第1実施形態及び第2実施形態)に係る推定方法を実行した実施例について説明する。
図9は、本実施例の概要を説明する説明図である。図9(a)は、本実施例で用いた被測定物としての試験片1を模式的に示す図である。試験片1としては、SCM鋼の焼入れ材を用いた。図9(b)は、図9(a)に示す試験片1の破線2で囲った領域について、関係算出ステップST1で算出された散逸エネルギー分布の一例を示す図である。
<Example>
Hereinafter, an example in which the estimation method according to the embodiments (first embodiment and second embodiment) of the present invention is executed will be described.
FIG. 9 is an explanatory diagram illustrating the outline of this embodiment. FIG. 9(a) is a diagram schematically showing the test piece 1 as the object to be measured used in this example. As test piece 1, a hardened SCM steel material was used. FIG. 9(b) is a diagram showing an example of the dissipated energy distribution calculated in the relationship calculation step ST1 for the area surrounded by the broken line 2 of the test piece 1 shown in FIG. 9(a).

本実施例では、試験片1の複数の部位(後述のArea-1~Area-3)近傍の部位について、公知のビッカース硬さ試験機を用いて、ビッカース硬さHVを予め測定した。測定したビッカース硬さHVは、300[HV]であった。
そして、本実施例の関係算出ステップST1では、試験片1を、繰り返し負荷を付加する疲労試験機に取り付け、応力幅σa=250~600MPa(応力比:-1、繰り返し周波数:7Hz)の範囲で段階的に応力幅σaを増加させ、各応力幅σaの繰り返し負荷を2000サイクルずつ付加した。この状態で、赤外線撮像装置を用いて試験片1を撮像することで、繰り返し負荷毎に試験片1の温度分布の時間的変化を測定した。赤外線撮像装置としては、FLIR社製のX6580シリーズを用い、フレームレートを149Hzに設定して、繰り返し負荷毎に10sec間の測定を行なった(10sec間における温度分布の変化を測定した)。そして、FLIR社製のAltairLIを用いて、散逸エネルギー分布を算出した。図9(b)は、上記の手順で算出した散逸エネルギー分布の一例である。
次に、本実施例の関係算出ステップST1では、図9(b)に示すような散逸エネルギー分布に基づき、試験片1の3箇所の部位(図9(b)に示すArea-1、Area-2、Area-3)に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出した。Area-1~Area-3は、いずれも15×15ピクセル(2mm×2mmに相当)の画素領域である。上記の関係における散逸エネルギーqとしては、Area-1~Area-3における散逸エネルギーの平均値を用いた。
In this example, the Vickers hardness HV was measured in advance at multiple sites (Area-1 to Area-3 described later) of the test piece 1 using a known Vickers hardness tester. The measured Vickers hardness HV was 300 [HV].
Then, in the relationship calculation step ST1 of this example, the test piece 1 is attached to a fatigue testing machine that applies repeated loads, and the test piece 1 is tested in the range of stress width σa = 250 to 600 MPa (stress ratio: -1, repetition frequency: 7 Hz). The stress width σa was increased stepwise, and a repeated load of each stress width σa was applied for 2000 cycles. In this state, the test piece 1 was imaged using an infrared imaging device to measure temporal changes in the temperature distribution of the test piece 1 for each repeated load. As an infrared imaging device, an X6580 series manufactured by FLIR was used, the frame rate was set to 149 Hz, and measurements were performed for 10 seconds for each repeated load (changes in temperature distribution were measured for 10 seconds). Then, the dissipated energy distribution was calculated using AltairLI manufactured by FLIR. FIG. 9(b) is an example of the dissipated energy distribution calculated by the above procedure.
Next, in the relationship calculation step ST1 of this example, based on the dissipated energy distribution as shown in FIG. 9(b), three parts of the test piece 1 (Area-1, Area- 2, Area-3), the relationship between the stress width σa and the dissipated energy q was calculated. Area-1 to Area-3 are all pixel areas of 15×15 pixels (equivalent to 2 mm×2 mm). As the dissipated energy q in the above relationship, the average value of the dissipated energy in Area-1 to Area-3 was used.

本実施例の2階微分値算出ステップST2では、関係算出ステップST1で算出した関係を応力幅σaで2階微分して得られる応力幅σa毎の2階微分値d2を、Area-1~Area-3毎に算出した。
図10は、本実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、この関係から2階微分値算出ステップST2で算出した2階微分値d2と、を示す図である。図10において、2階微分値d2は「+」でプロットしている。図10(a)はArea-1に対して算出したものを、図10(b)はArea-2に対して算出したものを、図10(c)はArea-3に対して算出したものを示す。
同様に、本実施例の1階微分値算出ステップST2’では、関係算出ステップST1で算出した関係を応力幅σaで1階微分して得られる応力幅σa毎の1階微分値dを、Area-1~Area-3毎に算出した。
図11は、本実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、この関係から1階微分値算出ステップST2’で算出した1階微分値dと、を示す図である。図11において、1階微分値dは「+」でプロットしている。図11(a)はArea-1に対して算出したものを、図11(b)はArea-2に対して算出したものを、図11(c)はArea-3に対して算出したものを示す。
In the second-order differential value calculation step ST2 of this embodiment, the second-order differential value d2 for each stress width σa obtained by second-order differentiation of the relationship calculated in the relationship calculation step ST1 with respect to the stress width σa is calculated from Area-1 to Area-1. Calculated every -3.
FIG. 10 is a diagram showing the relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of this embodiment, and the second-order differential value d2 calculated from this relationship in the second-order differential value calculation step ST2. It is. In FIG. 10, the second-order differential value d2 is plotted as "+". Figure 10(a) shows what is calculated for Area-1, Figure 10(b) shows what is calculated for Area-2, and Figure 10(c) shows what is calculated for Area-3. show.
Similarly, in the first-order differential value calculation step ST2' of this embodiment, the first-order differential value d for each stress width σa obtained by first-order differentiating the relationship calculated in the relationship calculation step ST1 with respect to the stress width σa is Calculated for each area from -1 to Area-3.
FIG. 11 shows the relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of this embodiment, and the first-order differential value d calculated from this relationship in the first-order differential value calculation step ST2'. It is a diagram. In FIG. 11, the first-order differential value d is plotted as "+". Figure 11(a) shows what is calculated for Area-1, Figure 11(b) shows what is calculated for Area-2, and Figure 11(c) shows what is calculated for Area-3. show.

本実施例の2階微分補正値算出ステップST3及び1階微分補正値算出ステップST3’では、前述のように予め測定した試験片1のビッカース硬さHVを用いて、疲労限度推定値σa_stdを算出した。具体的には、前述の式(5)の右辺に、α=1.6、HV=300[HV]を代入することで、疲労限度推定値σa_std=480[MPa]を算出した。そして、このσa_std=480[MPa]を前述の式(6)の右辺に代入することにより、疲労限度分散度Rを算出した。
図12は、図10及び図11に示す応力幅σa毎に算出した疲労限度分散度Rを示す。
In the second-order differential correction value calculation step ST3 and the first-order differential correction value calculation step ST3' of this embodiment, the estimated fatigue limit value σa_std is calculated using the Vickers hardness HV of the test piece 1 measured in advance as described above. Calculated. Specifically, the estimated fatigue limit value σa _std =480 [MPa] was calculated by substituting α=1.6 and HV=300 [HV] into the right side of the above equation (5). Then, the fatigue limit dispersion degree R was calculated by substituting this σa _std =480 [MPa] into the right side of the above-mentioned equation (6).
FIG. 12 shows the fatigue limit dispersion R calculated for each stress width σa shown in FIGS. 10 and 11.

そして、本実施例の2階微分補正値算出ステップST3では、図10に示す応力幅σa毎の2階微分値d2に、図12に示す応力幅σa毎の疲労限度分散度Rを乗算して得られる応力幅σa毎の2階微分補正値d2’を、Area-1、Area-2、Area-3毎に算出した。
図13は、本実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、図10に示す応力幅σa毎の2階微分値d2に図12に示す応力幅σa毎の疲労限度分散度Rを乗算して得られた2階微分補正値d2’と、を示す図である。図13において、2階微分補正値d2’は「×」でプロットしている。図13(a)はArea-1に対して算出したものを、図13(b)はArea-2に対して算出したものを、図13(c)はArea-3に対して算出したものを示す。
同様に、本実施例の1階微分補正値算出ステップST3’では、図11に示す応力幅σa毎の1階微分値dに、図12に示す応力幅σa毎の疲労限度分散度Rを乗算して得られる応力幅σa毎の1階微分補正値d’を、Area-1、Area-2、Area-3毎に算出した。
図14は、本実施例の関係算出ステップST1で算出した応力幅σaと散逸エネルギーqとの関係と、図11に示す応力幅σa毎の1階微分値dに図12に示す応力幅σa毎の疲労限度分散度Rを乗算して得られた1階微分補正値d’と、を示す図である。図14において、1階微分補正値d’は「×」でプロットしている。図14(a)はArea-1に対して算出したものを、図14(b)はArea-2に対して算出したものを、図14(c)はArea-3に対して算出したものを示す。
In the second-order differential correction value calculation step ST3 of this embodiment, the second-order differential value d2 for each stress width σa shown in FIG. 10 is multiplied by the fatigue limit dispersion R for each stress width σa shown in FIG. The second-order differential correction value d2' for each obtained stress width σa was calculated for each Area-1, Area-2, and Area-3.
FIG. 13 shows the relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of this embodiment, the second-order differential value d2 for each stress width σa shown in FIG. 10, and the relationship for each stress width σa shown in FIG. 12. It is a figure which shows the second-order differential correction value d2' obtained by multiplying the fatigue limit dispersion degree R of. In FIG. 13, the second-order differential correction value d2' is plotted as "x". Figure 13(a) shows what is calculated for Area-1, Figure 13(b) shows what is calculated for Area-2, and Figure 13(c) shows what is calculated for Area-3. show.
Similarly, in the first-order differential correction value calculation step ST3' of this embodiment, the first-order differential value d for each stress width σa shown in FIG. 11 is multiplied by the fatigue limit dispersion R for each stress width σa shown in FIG. The first-order differential correction value d' for each stress width σa was calculated for each Area-1, Area-2, and Area-3.
FIG. 14 shows the relationship between the stress width σa and the dissipated energy q calculated in the relationship calculation step ST1 of this embodiment, the first-order differential value d for each stress width σa shown in FIG. 11, and the relationship for each stress width σa shown in FIG. 12. It is a figure which shows the first-order differential correction value d' obtained by multiplying the fatigue limit dispersion degree R of. In FIG. 14, the first-order differential correction value d' is plotted as "x". Figure 14(a) shows what is calculated for Area-1, Figure 14(b) shows what is calculated for Area-2, and Figure 14(c) shows what is calculated for Area-3. show.

図13から分かるように、本実施例では、Area-3において、全ての2階微分補正値d2’の最大値d2’maxが得られ、この最大値d2’maxが得られた応力幅σaは525MPaであった。このため、本実施例では、2階微分補正値d2’を用いる場合(第1実施形態に係る推定方法を用いる場合)、Area-3が被測定物の疲労破壊起点として推定され、525MPaが被測定物の疲労限度として推定されることになる。
また、図14から分かるように、本実施例では、Area-3において、全ての1階微分補正値d’の最大値d’maxが得られ、この最大値d’maxが得られた応力幅σaは525MPaであった。このため、本実施例では、1階微分補正値d’を用いる場合(第2実施形態に係る推定方法を用いる場合)も同様に、Area-3が被測定物の疲労破壊起点として推定され、525MPaが被測定物の疲労限度として推定されることになる。
本発明者らは、上記の推定結果が、試験片1に実際に疲労試験を行い、疲労試験を行って確認された疲労破壊起点や、疲労試験から得られるS-N線図から求められた疲労限度と良く一致することを確認できた。したがって、本発明に係る推定方法によれば、赤外線撮像装置を用いて測定した被測定物の散逸エネルギー分布に基づき、被測定物の疲労破壊起点及び疲労限度を精度良く推定可能であるといえる。
As can be seen from FIG. 13, in this example, the maximum value d2' max of all second-order differential correction values d2' is obtained in Area-3, and the stress width σa at which this maximum value d2' max is obtained is It was 525 MPa. Therefore, in this example, when using the second-order differential correction value d2' (when using the estimation method according to the first embodiment), Area-3 is estimated as the starting point of fatigue failure of the measured object, and 525 MPa is the fatigue fracture origin of the measured object. This is estimated as the fatigue limit of the object to be measured.
Furthermore, as can be seen from FIG. 14, in this example, the maximum value d' max of all first-order differential correction values d' is obtained in Area-3, and the stress width at which this maximum value d' max is obtained is σa was 525 MPa. Therefore, in this example, when using the first-order differential correction value d' (when using the estimation method according to the second embodiment), Area-3 is similarly estimated as the fatigue fracture origin of the object to be measured, 525 MPa is estimated as the fatigue limit of the object to be measured.
The present inventors found that the above estimation results were obtained from the fatigue fracture origin confirmed by actually performing a fatigue test on test piece 1 and the S-N diagram obtained from the fatigue test. It was confirmed that the results were in good agreement with the fatigue limit. Therefore, according to the estimation method according to the present invention, it is possible to accurately estimate the fatigue fracture origin and fatigue limit of the measured object based on the dissipated energy distribution of the measured object measured using an infrared imaging device.

d・・・1階微分値
d’・・・1階微分補正値
d1’max・・・最大値
d2・・・2階微分値
d2’・・・2階微分補正値
d2’max・・・最大値
q・・・散逸エネルギー
ST1・・・関係算出ステップ
ST2・・・2階微分値算出ステップ
ST2’・・・1階微分値算出ステップ
ST3・・・2階微分補正値算出ステップST3
ST4、ST4’・・・疲労破壊起点推定ステップ
ST5、ST5’・・・疲労限度推定ステップ
σa・・・応力幅
d...1st order differential value d'...1st order differential correction value d1' max ...Maximum value d2...2nd order differential value d2'...2nd order differential correction value d2' max ... Maximum value q...Dissipated energy ST1...Relationship calculation step ST2...Second-order differential value calculation step ST2'...First-order differential value calculation step ST3...Second-order differential correction value calculation step ST3
ST4, ST4'...Fatigue fracture origin estimation step ST5, ST5'...Fatigue limit estimation step σa...Stress width

Claims (2)

被測定物に応力幅σaの異なる繰り返し負荷を順次付加しながら、赤外線撮像装置を用いて前記被測定物を撮像することで、前記繰り返し負荷毎に前記被測定物の温度分布の時間的変化を測定し、前記繰り返し負荷毎に測定した前記被測定物の温度分布の時間的変化に基づき、前記繰り返し負荷毎に前記被測定物の散逸エネルギー分布を算出し、前記繰り返し負荷毎に算出した前記被測定物の散逸エネルギー分布に基づき、前記被測定物の複数の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出する関係算出ステップと、
算出した前記関係を前記応力幅σaで2階微分して得られる前記応力幅σa毎の2階微分値d2を、前記複数の部位毎に算出する2階微分値算出ステップと、
算出した前記応力幅σa毎の2階微分値d2に前記応力幅σa毎の疲労限度分散度Rを乗算して得られる前記応力幅σa毎の2階微分補正値d2’を、前記複数の部位毎に算出する2階微分補正値算出ステップと、
前記複数の部位のうち、前記複数の部位に対して算出した全ての前記2階微分補正値d2’の最大値d2’maxが得られた部位を、前記被測定物の疲労破壊起点として推定する疲労破壊起点推定ステップと、
前記最大値d2’maxが得られた前記応力幅σaを前記被測定物の疲労限度として推定する疲労限度推定ステップと、を有し、
前記疲労限度分散度Rは、以下の式(A)で表される、
疲労破壊起点及び疲労限度推定方法。
R=1-abs(1-σa/(α・HV)) ・・・(A)
上記の式(A)において、σaは応力幅[MPa]であり、HVは前記被測定物のビッカース硬さ[HV]であり、αは定数である。また、abs(・)は括弧内の絶対値を意味する。
By sequentially applying repeated loads with different stress widths σa to the measured object and imaging the measured object using an infrared imaging device, temporal changes in the temperature distribution of the measured object can be observed for each repeated load. and calculate the dissipated energy distribution of the measured object for each repeated load based on the temporal change in the temperature distribution of the measured object measured for each repeated load, and calculate the dissipated energy distribution of the measured object for each repeated load. a relationship calculation step of calculating the relationship between the stress width σa and the dissipated energy q for each of the plurality of parts of the measured object based on the dissipated energy distribution of the measured object;
a second-order differential value calculation step of calculating, for each of the plurality of parts, a second-order differential value d2 for each of the stress widths σa obtained by second-order differentiating the calculated relationship with the stress width σa;
The second-order differential correction value d2' for each stress width σa obtained by multiplying the calculated second-order differential value d2 for each stress width σa by the degree of fatigue limit dispersion R for each stress width σa is calculated for each of the plurality of parts. a step of calculating a second-order differential correction value for each time;
Among the plurality of parts, a part where a maximum value d2' max of all the second-order differential correction values d2' calculated for the plurality of parts is obtained is estimated as a fatigue fracture origin of the object to be measured. a fatigue fracture origin estimation step;
a fatigue limit estimating step of estimating the stress width σa from which the maximum value d2' max is obtained as the fatigue limit of the object to be measured;
The fatigue limit dispersion R is expressed by the following formula (A):
Fatigue fracture origin and fatigue limit estimation method.
R=1-abs(1-σa/(α・HV))...(A)
In the above formula (A), σa is the stress width [MPa], HV is the Vickers hardness [HV] of the object to be measured, and α is a constant. Moreover, abs(.) means the absolute value in parentheses.
被測定物に応力幅σaの異なる繰り返し負荷を順次付加しながら、赤外線撮像装置を用いて前記被測定物を撮像することで、前記繰り返し負荷毎に前記被測定物の温度分布の時間的変化を測定し、前記繰り返し負荷毎に測定した前記被測定物の温度分布の時間的変化に基づき、前記繰り返し負荷毎に前記被測定物の散逸エネルギー分布を算出し、前記繰り返し負荷毎に算出した前記被測定物の散逸エネルギー分布に基づき、前記被測定物の複数の部位に対して、それぞれ応力幅σaと散逸エネルギーqとの関係を算出する関係算出ステップと、
算出した前記関係を前記応力幅σaで1階微分して得られる前記応力幅σa毎の1階微分値dを、前記複数の部位毎に算出する1階微分値算出ステップと、
算出した前記応力幅σa毎の1階微分値dに前記応力幅σa毎の疲労限度分散度Rを乗算して得られる前記応力幅σa毎の1階微分補正値d’を、前記複数の部位毎に算出する1階微分補正値算出ステップと、
前記複数の部位のうち、前記複数の部位に対して算出した全ての前記1階微分補正値d’の最大値d’maxが得られた部位を、前記被測定物の疲労破壊起点として推定する疲労破壊起点推定ステップと、
前記最大値d’maxが得られた前記応力幅σaを前記被測定物の疲労限度として推定する疲労限度推定ステップと、を有し、
前記疲労限度分散度Rは、以下の式(A)で表される、
疲労破壊起点及び疲労限度推定方法。
R=1-abs(1-σa/(α・HV)) ・・・(A)
上記の式(A)において、σaは応力幅[MPa]であり、HVは前記被測定物のビッカース硬さ[HV]であり、αは定数である。また、abs(・)は括弧内の絶対値を意味する。
By sequentially applying repeated loads with different stress widths σa to the measured object and imaging the measured object using an infrared imaging device, temporal changes in the temperature distribution of the measured object can be observed for each repeated load. and calculate the dissipated energy distribution of the measured object for each repeated load based on the temporal change in the temperature distribution of the measured object measured for each repeated load, and calculate the dissipated energy distribution of the measured object for each repeated load. a relationship calculation step of calculating the relationship between the stress width σa and the dissipated energy q for each of the plurality of parts of the measured object based on the dissipated energy distribution of the measured object;
a first-order differential value calculating step of calculating, for each of the plurality of parts, a first-order differential value d for each of the stress widths σa obtained by first-order differentiating the calculated relationship with the stress width σa;
The first-order differential correction value d' for each stress width σa obtained by multiplying the calculated first-order differential value d for each stress width σa by the fatigue limit dispersion R for each stress width σa is calculated for each of the plurality of parts. a step of calculating a first-order differential correction value for each time;
Among the plurality of parts, a part where a maximum value d' max of all the first-order differential correction values d' calculated for the plurality of parts is obtained is estimated as a fatigue fracture origin of the object to be measured. a fatigue fracture origin estimation step;
a fatigue limit estimating step of estimating the stress width σa from which the maximum value d' max is obtained as a fatigue limit of the object to be measured;
The fatigue limit dispersion R is expressed by the following formula (A):
Fatigue fracture origin and fatigue limit estimation method.
R=1-abs(1-σa/(α・HV))...(A)
In the above formula (A), σa is the stress width [MPa], HV is the Vickers hardness [HV] of the object to be measured, and α is a constant. Moreover, abs(.) means the absolute value in parentheses.
JP2022039658A 2022-03-14 2022-03-14 Fatigue breakdown starting point and fatigue limit estimation method Pending JP2023134245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022039658A JP2023134245A (en) 2022-03-14 2022-03-14 Fatigue breakdown starting point and fatigue limit estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022039658A JP2023134245A (en) 2022-03-14 2022-03-14 Fatigue breakdown starting point and fatigue limit estimation method

Publications (1)

Publication Number Publication Date
JP2023134245A true JP2023134245A (en) 2023-09-27

Family

ID=88143536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022039658A Pending JP2023134245A (en) 2022-03-14 2022-03-14 Fatigue breakdown starting point and fatigue limit estimation method

Country Status (1)

Country Link
JP (1) JP2023134245A (en)

Similar Documents

Publication Publication Date Title
US7472603B2 (en) Evaluating method of the residual stress determining method using the continuous indentation method
JP6397678B2 (en) Fatigue limit stress identification system and fatigue limit stress identification method
JP5411020B2 (en) Fatigue limit identification system, fatigue fracture location identification method, and fatigue limit identification method
Koohbor et al. Analysis of dynamic bending test using ultra high speed DIC and the virtual fields method
KR101373059B1 (en) Residual stress estimation method using instrumented indentation technique
Lee et al. Validation of homogeneous anisotropic hardening model using non-linear strain path experiments
JP6718160B2 (en) Residual thermal strain measuring method, residual thermal strain measuring device, and program thereof
Zhu et al. In situ near‐tip normal strain evolution of a growing fatigue crack
JP5710997B2 (en) Fatigue limit identification system and fatigue limit identification method
Díaz et al. Experimental evaluation of effective stress intensity factor using thermoelastic stress analysis and digital image correlation
Rigon et al. Analysis of dissipated energy and temperature fields at severe notches of AISI 304L stainless steel specimens
JP4610955B2 (en) Method and apparatus for measuring thermal influence due to plastic deformation
Nowell et al. Investigation of fatigue crack models by micro-scale measurement of crack tip deformation
US11275005B2 (en) Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
JP4578384B2 (en) Stress measurement method and strength evaluation method using infrared imaging device
Galietti et al. Fatigue limit evaluation of martensitic steels with thermal methods
JP2023134245A (en) Fatigue breakdown starting point and fatigue limit estimation method
Park et al. Characterization of dynamic hardening behavior at intermediate strain rates using the virtual fields method
JP7469661B2 (en) Method for estimating load value applied to spot welded joints
JP6223294B2 (en) Correction method of stress value in infrared stress measurement system and infrared stress measurement system using the method
JP2023044265A (en) Fatigue limit estimation method
JP2017215258A (en) Method for measuring stress distribution
Medgenberg et al. Detection of localized fatigue damage in steel by thermography
JP7229731B2 (en) Fatigue limit estimation device, fatigue limit estimation method and fatigue limit estimation program
Zhang et al. Quantification and characterization of full field ductile damage evolution for sheet metals using an improved direct current potential drop method