JP2023131718A - Polyphase transformer and power converter - Google Patents

Polyphase transformer and power converter Download PDF

Info

Publication number
JP2023131718A
JP2023131718A JP2022036618A JP2022036618A JP2023131718A JP 2023131718 A JP2023131718 A JP 2023131718A JP 2022036618 A JP2022036618 A JP 2022036618A JP 2022036618 A JP2022036618 A JP 2022036618A JP 2023131718 A JP2023131718 A JP 2023131718A
Authority
JP
Japan
Prior art keywords
winding
phase
winding part
phase winding
wrapped around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022036618A
Other languages
Japanese (ja)
Inventor
彰訓 加藤
Akikuni Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Electric Inc
Original Assignee
Kawamura Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Electric Inc filed Critical Kawamura Electric Inc
Priority to JP2022036618A priority Critical patent/JP2023131718A/en
Publication of JP2023131718A publication Critical patent/JP2023131718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

To provide a polyphase transformer that can easily set the number of turns of a third winding to a second winding constituting a secondary side, and to provide a power converter that can generate two types of DC voltages.SOLUTION: A polyphase transformer 1 includes a first winding 11 on a primary side to which three-phase power is connected, and a second winding 12 and a third winding 13 that constitute a secondary side, and the first winding 11 is delta-connected while the second winding 12 and the third winding 13 are both star-connected with the same number of turns, and the second winding 12 and the third winding 13 have a common neutral point. A full-wave rectifier circuit 2 includes a neutral terminal 22 connected to a common neutral point Q of the second winding 12 and the third winding 13, in addition to output terminals of a positive terminal 21a and a negative terminal 21b.SELECTED DRAWING: Figure 1

Description

本発明は、三相交流電力を直流に変換するための多相変圧器、及びこの多相変圧器を使用した電力変換装置に関する。 The present invention relates to a polyphase transformer for converting three-phase AC power to DC power, and a power conversion device using this polyphase transformer.

三相交流電力を直流に変換するための多相変圧器として、本発明者は特許文献1に記載の電力変換装置の多相変圧器を提案した。
この変圧器は、2次側を構成する第2巻線及び第3巻線の双方をスター結線すると共に、第3巻線を第2巻線より巻数を減らすことで、変圧器の小型化を可能とした。
As a polyphase transformer for converting three-phase AC power into DC, the present inventor proposed a polyphase transformer for a power conversion device described in Patent Document 1.
This transformer uses a star connection for both the second and third windings that make up the secondary side, and reduces the number of turns in the third winding compared to the second winding, thereby reducing the size of the transformer. made possible.

特開2020-198776号公報Japanese Patent Application Publication No. 2020-198776

しかしながら、上記従来の多相変圧器は、第3巻線の巻回数が第2巻線の√3-1倍であるため調整が難しく、変圧器の作成に技術を要した。また、単相3線式電路においては100/200Vの電圧を容易に選択できるのに対して、直流電源の場合、異なる直流電圧を得たい場合はDC/DCコンバータを必要とし、電圧の変更は簡単ではなかった。 However, in the conventional polyphase transformer, since the number of turns of the third winding is √3-1 times that of the second winding, adjustment is difficult and technology is required to create the transformer. Also, in a single-phase three-wire circuit, you can easily select a voltage of 100/200V, but in the case of a DC power supply, if you want to obtain a different DC voltage, you need a DC/DC converter, and you cannot change the voltage. It wasn't easy.

そこで、本発明はこのような問題点に鑑み、2次側を構成する第2巻線に対する第3巻線の巻数を簡易な巻数比にできる多相変圧器を提供すること、また2種類の電圧の直流電圧を生成できる電力変換装置を提供することを目的としている。 Therefore, in view of these problems, the present invention provides a polyphase transformer in which the number of turns of the third winding to the second winding constituting the secondary side can be set to a simple turns ratio, and two types of transformers are provided. It is an object of the present invention to provide a power conversion device that can generate a direct current voltage.

上記課題を解決する為に、請求項1の発明は、三相電力を直流電力に変換するために、三相電力が接続される1次側の第1巻線と、2次側を構成する第2巻線、第3巻線とが共通の鉄心に巻回されて多相の交流電力を出力する多相変圧器であって、
第1巻線はデルタ結線或いはスター結線される一方、第2巻線及び第3巻線は共に同一巻数でスター結線されると共に、第2巻線と第3巻線とは共通の中性点を有し、
第2巻線は、120度ずつ異なる位相の電圧を生成するR相巻回部,S相巻回部,T相巻回部を有する一方、
第3巻線は、R相巻回部の位相と逆相の電圧を生成するU相巻回部,S相巻回部の位相と逆相の電圧を生成するV相巻回部、T相巻回部と逆相の電圧を生成するW相巻回部を有し、
第2巻線と第3巻線とで、60度ずつ位相の異なる全6相の電圧を生成して出力することを特徴とする。
この構成によれば、同一電圧値の6相の交流電圧を得ることができる。しかも、第2巻線と第3巻線とは同一巻回数であるため、巻数に注意を払う必要が無い。そして、全波整流することで、12相の直流電圧となるため、リップルの小さな直流電圧を得ることが可能となる。
In order to solve the above problem, the invention of claim 1 configures a first winding on the primary side to which the three-phase power is connected and a secondary side in order to convert the three-phase power into DC power. A multi-phase transformer in which a second winding and a third winding are wound around a common iron core to output multi-phase AC power,
The first winding is delta-connected or star-connected, while the second and third windings are both star-connected with the same number of turns, and the second and third windings have a common neutral point. has
The second winding has an R-phase winding part, an S-phase winding part, and a T-phase winding part that generate voltages with phases different by 120 degrees.
The third winding includes a U-phase winding section that generates a voltage with a phase opposite to that of the R-phase winding section, a V-phase winding section that generates a voltage with a phase opposite to that of the S-phase winding section, and a T-phase winding section. It has a W-phase winding part that generates a voltage in the opposite phase to the winding part,
The second winding and the third winding generate and output a total of six phase voltages whose phases differ by 60 degrees.
According to this configuration, six-phase AC voltages having the same voltage value can be obtained. Moreover, since the second winding and the third winding have the same number of turns, there is no need to pay attention to the number of turns. Then, full-wave rectification results in a 12-phase DC voltage, making it possible to obtain a DC voltage with small ripples.

請求項2の発明は、請求項1に記載の構成において、3相を形成するための3つの巻回部をそれぞれ有する第4~7巻線を備え、
第2巻線の各巻回部の端部には、第4,第5巻線のそれぞれ1つの巻回部が分岐接続されると共に、第3巻線の各巻回部の端部には、第6、第7巻線のそれぞれ1つの巻回部が分岐接続され、
第4巻線の第1巻回部は、第2巻線のS相巻回部の端部に一端が接続されて、第2巻線のR相巻回部に連続するよう鉄心に巻回され、
第4巻線の第2巻回部は、第2巻線のR相巻回部の端部に一端が接続されて、第2巻線のS相巻回部に連続するよう鉄心に巻回され、
第4巻線の第3巻回部は、第2巻線のR相巻回部の端部に一端が接続されて、第2巻線のT相巻回部に連続するよう鉄心に巻回され、
第5巻線の第1巻回部は、第2巻線のT相巻回部の端部に一端が接続されて、第2巻線のR相巻回部に連続するよう鉄心に巻回され、
第5巻線の第2巻回部は、第2巻線のT相巻回部の端部に一端が接続されて、第2巻線のS相巻回部に連続するよう鉄心に巻回され、
第5巻線の第3巻回部は、第2巻線のS相巻回部の端部に一端が接続されて、第2巻線のT相巻回部に連続するよう鉄心に巻回され、
第6巻線の第1巻回部は、第3巻線のV相巻回部の端部に一端が接続されて、第3巻線のU相巻回部に連続する鉄心に巻回され、
第6巻線の第2巻回部は、第3巻線のU相巻回部の端部に一端が接続されて、第3巻線のV相巻回部に連続するよう鉄心に巻回され、
第6巻線の第3巻回部は、第3巻線のU相巻回部の端部に一端が接続されて、第3巻線のW相巻回部に連続する鉄心に巻回され、
第7巻線の第1巻回部は、第3巻線のW相巻回部の端部に一端が接続されて、第3巻線のU相巻回部に連続するよう鉄心に巻回され、
第7巻線の第2巻回部は、第3巻線のW相巻回部の端部に一端が接続されて、第3巻線のV相巻回部に連続するよう鉄心に巻回され、
第7巻線の第3巻回部は、第3巻線のV相巻回部の端部に一端が接続されて、第3巻線のW相巻回部に連続するよう鉄心に巻回されて成り、
且つ第4~7巻線は、第2巻線及び第3巻線の0.36倍の巻き数で巻回され、
第4~7巻線のそれぞれの他端が2次側出力端子であり、30度ずつ位相の異なる全12相の電圧を出力することを特徴とする。
この構成によれば、同一電圧値の12相の交流電圧を得ることができる。よって、全波整流することで、24相から成る直流電圧となるため、更にリップルの小さな直流電圧を得ることが可能となる。
The invention according to claim 2 is the configuration according to claim 1, comprising fourth to seventh windings each having three winding portions for forming three phases,
One winding part of each of the fourth and fifth windings is branch-connected to the end of each winding part of the second winding, and one winding part of each winding part of the third winding is branch-connected. 6. Each one winding part of the seventh winding is branch-connected,
The first winding part of the fourth winding is connected to the end of the S-phase winding part of the second winding at one end, and is wound around the iron core so as to be continuous with the R-phase winding part of the second winding. is,
The second winding part of the fourth winding is wound around the iron core so that one end is connected to the end of the R-phase winding part of the second winding and is continuous with the S-phase winding part of the second winding. is,
The third winding part of the fourth winding is connected at one end to the end of the R-phase winding part of the second winding, and is wound around the iron core so as to be continuous with the T-phase winding part of the second winding. is,
The first winding part of the fifth winding is connected at one end to the end of the T-phase winding part of the second winding, and is wound around the iron core so as to be continuous with the R-phase winding part of the second winding. is,
The second winding part of the fifth winding is wound around the iron core so that one end is connected to the end of the T-phase winding part of the second winding and is continuous with the S-phase winding part of the second winding. is,
The third winding part of the fifth winding is connected to the end of the S-phase winding part of the second winding at one end, and is wound around the iron core so as to be continuous with the T-phase winding part of the second winding. is,
The first winding part of the sixth winding has one end connected to the end of the V-phase winding part of the third winding, and is wound around the iron core that is continuous with the U-phase winding part of the third winding. ,
The second winding part of the sixth winding is connected at one end to the end of the U-phase winding part of the third winding, and is wound around the iron core so as to be continuous with the V-phase winding part of the third winding. is,
The third winding part of the sixth winding has one end connected to the end of the U-phase winding part of the third winding, and is wound around the iron core that is continuous with the W-phase winding part of the third winding. ,
The first winding part of the seventh winding is connected at one end to the end of the W-phase winding part of the third winding, and is wound around the iron core so as to be continuous with the U-phase winding part of the third winding. is,
The second winding part of the seventh winding is connected at one end to the end of the W-phase winding part of the third winding, and is wound around the iron core so as to be continuous with the V-phase winding part of the third winding. is,
The third winding part of the seventh winding is connected to the end of the V-phase winding part of the third winding at one end, and is wound around the iron core so as to be continuous with the W-phase winding part of the third winding. It has been done,
The fourth to seventh windings are wound with a number of turns 0.36 times that of the second winding and the third winding,
The other end of each of the fourth to seventh windings is a secondary output terminal, and is characterized by outputting voltages of a total of 12 phases whose phases differ by 30 degrees.
According to this configuration, 12-phase AC voltages having the same voltage value can be obtained. Therefore, full-wave rectification results in a DC voltage consisting of 24 phases, making it possible to obtain a DC voltage with even smaller ripples.

請求項3の発明に係る電力変換装置は、請求項1又は2に記載の多相変圧器と、多相変圧器の出力を整流する全波整流回路とを有し、
全波整流回路は、正極側端子、負極側端子の出力端子に加えて、第2巻線、第3巻線の共通する中性点に接続された中性極端子を有することを特徴とする。
この構成によれば、直流電力を出力する端子が、正極側端子と負極側端子に加えて中性極端子を備えるため、2種類の直流電圧を出力できる。よって、負荷に供給する直流電圧を容易に変更できる。
A power conversion device according to the invention of claim 3 includes the polyphase transformer according to claim 1 or 2, and a full-wave rectifier circuit that rectifies the output of the polyphase transformer,
The full-wave rectifier circuit is characterized by having a neutral terminal connected to a common neutral point of the second winding and the third winding, in addition to the output terminals of the positive terminal and the negative terminal. .
According to this configuration, since the terminal for outputting DC power includes a neutral terminal in addition to a positive terminal and a negative terminal, two types of DC voltages can be output. Therefore, the DC voltage supplied to the load can be easily changed.

本発明によれば、同一電圧値の6相の交流電圧を得ることができる。しかも、第2巻線と第3巻線とは同一巻回数であるため、巻数に注意を払う必要が無い。そして、全波整流することで、12相の直流電圧となるため、リップルの小さな直流電圧を得ることが可能となる。 According to the present invention, six-phase AC voltages having the same voltage value can be obtained. Moreover, since the second winding and the third winding have the same number of turns, there is no need to pay attention to the number of turns. Then, full-wave rectification results in a 12-phase DC voltage, making it possible to obtain a DC voltage with small ripples.

本発明に係る多相変圧器及び電力変換装置の一例を示す結線説明図である。FIG. 2 is a wiring diagram illustrating an example of a polyphase transformer and a power conversion device according to the present invention. 図1の多相変圧器の2次側で生成される電圧のベクトル図である。FIG. 2 is a vector diagram of voltages generated on the secondary side of the polyphase transformer of FIG. 1; 多相変圧器及び電力変換装置の他の例を示す結線説明図である。FIG. 7 is a wiring diagram illustrating another example of a polyphase transformer and a power conversion device. 図3の多相変圧器で生成される電圧のベクトル図であり、(a)は全体図、(b)は説明図である。4 is a vector diagram of voltages generated by the polyphase transformer of FIG. 3, in which (a) is an overall diagram and (b) is an explanatory diagram.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る多相変圧器の一例を示す結線説明図でり、1は多相変圧器、2は整流回路、3は三相電源であり、多相変圧器1と整流回路2とで電力変換装置10が構成されている。
多相変圧器1は、1次側を構成する第1巻線11、2次側を構成する第2巻線12と第3巻線13とを有し、3端子(Rin、Sin、Tin)からなる1次側端子5と、6端子(R,S,T,U,V,W)からなる2次側端子6を有している。
Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory wiring diagram showing an example of a polyphase transformer according to the present invention, in which 1 is a polyphase transformer, 2 is a rectifier circuit, and 3 is a three-phase power supply. A power conversion device 10 is configured with these.
The polyphase transformer 1 has a first winding 11 constituting a primary side, a second winding 12 and a third winding 13 constituting a secondary side, and has three terminals (Rin, Sin, Tin). It has a primary side terminal 5 consisting of 6 terminals (R, S, T, U, V, W) and a secondary side terminal 6 consisting of 6 terminals (R, S, T, U, V, W).

第1~3巻線11~13は、何れも三相電力に対応するための3つの巻回部(11a~11c,12a~12c,13a~13c)を有している。また、第1巻線11はデルタ結線され、第2巻線12及び第3巻線13はスター結線され、第2巻線12と第3巻線13とは同一巻数である。また、中性点同士は連結され、共通の中性点Qを備えている。こうして、6相の電圧を出力する6相変圧器を形成している。
尚、鉄心4も3相に対応する3つの鉄心脚4a,4b,4cを有している。また、1次側と2次側との巻数比は、生成する直流電圧に応じて任意に設定される。
The first to third windings 11 to 13 each have three winding portions (11a to 11c, 12a to 12c, and 13a to 13c) to accommodate three-phase power. Further, the first winding 11 is delta connected, the second winding 12 and the third winding 13 are star connected, and the second winding 12 and the third winding 13 have the same number of turns. Further, the neutral points are connected to each other and have a common neutral point Q. In this way, a 6-phase transformer that outputs 6-phase voltages is formed.
Incidentally, the iron core 4 also has three iron core legs 4a, 4b, and 4c corresponding to three phases. Further, the turns ratio between the primary side and the secondary side is arbitrarily set according to the generated DC voltage.

整流回路2は、6相の電圧を全波整流して出力する正極側端子21a、負極側端子21bに加え、多相変圧器1の2次側の中性点Qに接続された中性極端子22を有している。 The rectifier circuit 2 includes a positive terminal 21a and a negative terminal 21b that full-wave rectify and output six-phase voltages, as well as a neutral terminal connected to a neutral point Q on the secondary side of the polyphase transformer 1. It has a child 22.

ここで、第2巻線12と第3巻線13の個々の巻回部の関係を説明する。第2巻線12のR端子を有する第1巻回部(R相巻回部)12aと第3巻線13のU端子を有する第1巻回部(U相巻回部)13aとは、共通する鉄心脚4aに互いに逆巻になるよう巻回されている。
第2巻線12のS端子を有する第2巻回部(S相巻回部)12bと第3巻線13のV端子を有する第2巻回部(V相巻回部)13bとは、共通する鉄心脚4bに互いに逆巻になるよう巻回されている。
第2巻線12のT端子を有する第3巻回部(T相巻回部)12cと第3巻線のW端子を有する第3巻回部(W相巻回部)13cとは、共通する鉄心脚4cに互いに逆巻になるよう巻回されている。
Here, the relationship between the individual winding portions of the second winding 12 and the third winding 13 will be explained. The first winding part (R-phase winding part) 12a having the R terminal of the second winding 12 and the first winding part (U-phase winding part) 13a having the U terminal of the third winding 13 are as follows: They are wound around a common core leg 4a in opposite directions.
The second winding part (S phase winding part) 12b having the S terminal of the second winding 12 and the second winding part (V phase winding part) 13b having the V terminal of the third winding 13 are as follows. They are wound around a common core leg 4b in opposite directions.
The third winding part (T-phase winding part) 12c having the T terminal of the second winding 12 and the third winding part (W-phase winding part) 13c having the W terminal of the third winding are common. The iron core legs 4c are wound in opposite directions to each other.

図2は、このような巻回された各2次側端子6から出力される電圧のベクトル図を示している。
第2巻線12の3端子R,S,Tから出力される電圧は、入力される三相電圧に対応して互いに120度の位相差を有する3相の電圧となる。また、第3巻線13の3端子U,V,Wから出力される電圧も、互いに120度の位相差を有する3相電圧となる。
そして、第2巻線12と第3巻線13とは、個々の巻回部が逆巻であるため、互いに180度の位相差を有する電圧が生成される。結果、2次側から出力される電圧は、図2に示すように、各相が同一電圧値で60度ずつ位相の異なる6相の電圧となる。
そして、この各電圧が整流回路2で全波整流されると、12相から成る直流電圧が生成される。
FIG. 2 shows a vector diagram of the voltage output from each of the wound secondary terminals 6.
The voltages output from the three terminals R, S, and T of the second winding 12 are three-phase voltages having a phase difference of 120 degrees, corresponding to the input three-phase voltages. Furthermore, the voltages output from the three terminals U, V, and W of the third winding 13 are also three-phase voltages having a phase difference of 120 degrees.
Since the individual winding portions of the second winding 12 and the third winding 13 are reversely wound, voltages having a phase difference of 180 degrees are generated. As a result, as shown in FIG. 2, the voltage output from the secondary side becomes six-phase voltages in which each phase has the same voltage value but differs in phase by 60 degrees.
Then, when each voltage is full-wave rectified by the rectifier circuit 2, a DC voltage consisting of 12 phases is generated.

このように、二次側の第2巻線12及び第3巻線13を同一巻数でスター結線することで、同一電圧値の6相の交流電圧を得ることができる。しかも、第2巻線12と第3巻線13とは同一巻回数であるため、巻数に注意を払う必要が無い。そして、全波整流することで、12相の直流電圧となるため、リップルの小さな直流電圧を得ることが可能となる。
また出力端子が、正極側端子21a、負極側端子21bに加えて中性極端子22を備えるため、2種類の直流電圧を出力できる。よって、負荷に供給する直流電圧を容易に変更できる。
In this way, by star-connecting the second winding 12 and the third winding 13 on the secondary side with the same number of turns, it is possible to obtain six-phase AC voltages with the same voltage value. Moreover, since the second winding 12 and the third winding 13 have the same number of turns, there is no need to pay attention to the number of turns. Then, full-wave rectification results in a 12-phase DC voltage, making it possible to obtain a DC voltage with small ripples.
Furthermore, since the output terminal includes a neutral terminal 22 in addition to the positive terminal 21a and the negative terminal 21b, two types of DC voltages can be output. Therefore, the DC voltage supplied to the load can be easily changed.

図3は電力変換装置10の他の例を示している。図3に示すように、電力変換装置10は多相変圧器1aと整流回路2aとを有している。上記形態とは多相変圧器1aの巻線数が大きく異なっている。2次側を構成する巻線が、第2巻線12、第3巻線13に加えて、第4巻線14、第5巻線15、第6巻線16、第7巻線17を備えている。そして、これらの巻数は同一巻数の第2巻回部、第3巻回部とは異なり、それらの0.36倍となっている。
尚、この第4~7巻線14~17も、第1~第3巻線11~13と同様に3相を形成するための3つの巻回部(第1~3巻回部)を有して構成されている。
FIG. 3 shows another example of the power conversion device 10. As shown in FIG. 3, the power converter 10 includes a multiphase transformer 1a and a rectifier circuit 2a. The number of windings of the polyphase transformer 1a differs greatly from the above embodiment. The windings constituting the secondary side include, in addition to the second winding 12 and the third winding 13, a fourth winding 14, a fifth winding 15, a sixth winding 16, and a seventh winding 17. ing. The number of turns is 0.36 times that of the second and third turns, which have the same number of turns.
Note that the fourth to seventh windings 14 to 17 also have three winding parts (first to third winding parts) for forming three phases, similarly to the first to third windings 11 to 13. It is configured as follows.

以下、多相変圧器1aの図1との相違点を中心に説明する。
第4巻線14の第1巻回部14aは、第2巻線12の第2巻回部(S相巻回部)12bの先端に一端が接続され、第2巻線12の第1巻回部(R相巻回部)12aと同相で連続するよう鉄心脚4aに巻回されている。
第4巻線の第2巻回部14bは、第2巻線12の第1巻回部(R相巻回部)12aの先端に一端が接続され、第2巻線12の第2巻回部(S相巻回部)12bと同相で連続するよう鉄心脚4bに巻回されている。
第4巻線の第3巻回部14cは、第2巻線12の第1巻回部(R相巻回部)12aの先端に一端が接続され、第2巻線12の第3巻回部(T相巻回部)12cと同相で連続するよう鉄心脚4cに巻回されている。
The following will mainly explain the differences between the polyphase transformer 1a and FIG. 1.
The first winding part 14a of the fourth winding 14 has one end connected to the tip of the second winding part (S phase winding part) 12b of the second winding 12, and the first winding part 14a of the second winding 14 It is wound around the core leg 4a so as to be continuous in the same phase as the winding part (R-phase winding part) 12a.
The second winding part 14b of the fourth winding has one end connected to the tip of the first winding part (R-phase winding part) 12a of the second winding 12, and the second winding part 14b of the second winding 12 It is wound around the iron core leg 4b so as to be continuous in the same phase as the part (S phase winding part) 12b.
The third winding part 14c of the fourth winding has one end connected to the tip of the first winding part (R phase winding part) 12a of the second winding 12, and the third winding part 14c of the second winding 12 It is wound around the iron core leg 4c so as to be continuous in the same phase as the part (T-phase winding part) 12c.

第5巻線15の第1巻回部15aは、第2巻線12の第3巻回部(T相巻回部)12cの先端に一端が接続され、第2巻線の第1巻回部(R相巻回部)12aと同相で連続するよう鉄心脚4aに巻回されている。
第5巻線15の第2巻回部15bは、第2巻線12の第3巻回部(T相巻回部)12cの先端に一端が接続され、第2巻線12の第2巻回部(S相巻回部)12bと同相で連続するよう鉄心脚4bに巻回されている。
第5巻線15の第3巻回部15cは、第2巻線12の第2巻回部(S相巻回部)12bの先端に一端が接続され、第2巻線12の第3巻回部(W相巻回部)12cと同相で連続するよう鉄心脚4cに巻回されている。
One end of the first winding part 15a of the fifth winding 15 is connected to the tip of the third winding part (T-phase winding part) 12c of the second winding 12, and the first winding part 15a of the second winding 15 is (R phase winding part) 12a and is wound around the core leg 4a so as to be continuous and in the same phase as the R phase winding part 12a.
The second winding part 15b of the fifth winding 15 has one end connected to the tip of the third winding part (T-phase winding part) 12c of the second winding 12, and the second winding part 15b of the second winding 15 It is wound around the core leg 4b so as to be continuous in the same phase as the winding part (S phase winding part) 12b.
The third winding part 15c of the fifth winding 15 has one end connected to the tip of the second winding part (S phase winding part) 12b of the second winding 12, and the third winding part 15c of the second winding 15 It is wound around the core leg 4c so as to be continuous in the same phase as the winding part (W-phase winding part) 12c.

第6巻線16の第1巻回部16aは、第3巻線13の第2巻回部(V相巻回部)13bの先端に一端が接続され、第3巻線13の第1巻回部(U相巻回部)13aと同相で連続するよう鉄心脚4aに巻回されている。
第6巻線16の第2巻回部16bは、第3巻線13の第1巻回部(U相巻回部)13aの先端に一端が接続され、第3巻線13の第2巻回部(V相巻回部)13bと同相で連続するよう鉄心脚4bに巻回されている。
第6巻線16の第3巻回部16cは、第3巻線13の第1巻回部(U相巻回部)13aの先端に一端が接続され、第3巻線13の第3巻回部(W相巻回部)13cと同相で連続するよう鉄心脚4cに巻回されている。
One end of the first winding part 16a of the sixth winding 16 is connected to the tip of the second winding part (V-phase winding part) 13b of the third winding 13, and the first winding part 16a of the third winding 13 is It is wound around the core leg 4a so as to be continuous in the same phase as the winding part (U-phase winding part) 13a.
One end of the second winding part 16b of the sixth winding 16 is connected to the tip of the first winding part (U-phase winding part) 13a of the third winding 13, and the second winding part 16b of the third winding 13 is It is wound around the core leg 4b so as to be continuous in the same phase as the winding part (V-phase winding part) 13b.
One end of the third winding part 16c of the sixth winding 16 is connected to the tip of the first winding part (U-phase winding part) 13a of the third winding 13, and the third winding part 16c of the third winding 16 is It is wound around the core leg 4c so as to be continuous in the same phase as the winding part (W-phase winding part) 13c.

第7巻線17の第1巻回部17aは、第3巻線13の第3巻回部(W相巻回部)13cの先端に一端が接続され、第3巻線13の第1巻回部(U相巻回部)13aと同相で連続するよう鉄心脚4aに巻回されている。
第7巻線17の第2巻回部17bは、第3巻線13の第3巻回部(W相巻回部)13cの先端に一端が接続され、第3巻線13の第2巻回部(V相巻回部)13bと同相で連続するよう鉄心脚4bに巻回されている。
第7巻線17の第3巻回部17cは、第3巻線13の第2巻回部(V相巻回部)13bの先端に一端接続され、第3巻線13の第3巻回部(W相巻回部)13cと同相で連続するよう鉄心脚4cに巻回されている。
One end of the first winding part 17a of the seventh winding 17 is connected to the tip of the third winding part (W-phase winding part) 13c of the third winding 13, and the first winding part 17a of the third winding 17 is It is wound around the core leg 4a so as to be continuous in the same phase as the winding part (U-phase winding part) 13a.
One end of the second winding part 17b of the seventh winding 17 is connected to the tip of the third winding part (W-phase winding part) 13c of the third winding 13, and the second winding part 17b of the third winding 17 is It is wound around the core leg 4b so as to be continuous in the same phase as the winding part (V-phase winding part) 13b.
The third winding part 17c of the seventh winding 17 is connected at one end to the tip of the second winding part (V-phase winding part) 13b of the third winding 13, and the third winding part 17c of the third winding 13 is It is wound around the core leg 4c so as to be continuous in the same phase as the part (W-phase winding part) 13c.

図4は、このように巻回された各2次側端子6から出力される電圧のベクトル図を示している。(a)は全体図、(b)は一部を抜き出した説明図であり、中性点Qを基準とした2次側各巻線の電圧ベクトルを示している。r4,s4,t4は第4巻線14の出力端子、r5,s5,t5は第5巻線15の出力端子、r6,s6,t6は第6巻線16の出力端子、r7,s7,t7は第7巻線の出力端子を示している。
図4(a)に示すように、第2巻線12により生成されるR,S,Tの3相、第3巻線13により生成されるU,V,Wの3相の計6相の生成電圧に対して、そのそれぞれから分岐した形で、第4~第7巻線による電圧が生成され、全12相の電圧が出力される。
FIG. 4 shows a vector diagram of voltages output from each of the secondary terminals 6 wound in this manner. (a) is an overall view, and (b) is a partially extracted explanatory view, which shows the voltage vector of each winding on the secondary side with the neutral point Q as a reference. r4, s4, t4 are the output terminals of the fourth winding 14, r5, s5, t5 are the output terminals of the fifth winding 15, r6, s6, t6 are the output terminals of the sixth winding 16, r7, s7, t7 indicates the output terminal of the seventh winding.
As shown in FIG. 4(a), there are 6 phases in total: 3 phases R, S, and T generated by the second winding 12 and 3 phases U, V, and W generated by the third winding 13. With respect to the generated voltage, voltages are generated by the fourth to seventh windings in a form branched from each of them, and voltages of all 12 phases are output.

ここで、第4~7巻線14~17の巻数を、第2,3巻線12,13の巻数の0.36倍とした理由を明する。
例えば、直流出力電圧VDCを750Vとすると、
多相変圧器1aの2次側の中性点Qを基準に12個の出力端子までの電圧V1は、
V1=VDC/√2=530.33V
となる。そして、図4(b)に示すように、X,Y,Zを設定すると、
X=A・cos15°=512.26V
Y=A・sin15°=137.26V
Z=Y/tan60°=79.247V
となる。これらの結果から、
B=X-Z=512.26-79.247=433.01V
C=Y・sin30°=137.26・sin30°=158.49V
従って、
B:C=433.01:158.49=1:0.366
となり、CはBの0.366倍となる。
即ち第2、3巻線12,13に対して第4~7巻線は0.366倍の巻数となる。
Here, the reason why the number of turns of the fourth to seventh windings 14 to 17 is set to 0.36 times the number of turns of the second and third windings 12 and 13 will be explained.
For example, if the DC output voltage VDC is 750V,
The voltage V1 from the neutral point Q of the secondary side of the polyphase transformer 1a to the 12 output terminals is as follows:
V1=VDC/√2=530.33V
becomes. Then, as shown in FIG. 4(b), when X, Y, and Z are set,
X=A・cos15°=512.26V
Y=A・sin15°=137.26V
Z=Y/tan60°=79.247V
becomes. From these results,
B=X-Z=512.26-79.247=433.01V
C=Y・sin30°=137.26・sin30°=158.49V
Therefore,
B:C=433.01:158.49=1:0.366
Therefore, C is 0.366 times B.
That is, the number of turns of the fourth to seventh windings is 0.366 times that of the second and third windings 12 and 13.

こうして、2次側の12個の出力端子r4~r7,s4~s7,t4~t7から、30度毎位相の異なる同一電圧値の全12相の電圧が出力される。
そして、整流回路2aで整流されることで、24相の直流が生成されて出力される。
In this way, the 12 output terminals r4 to r7, s4 to s7, and t4 to t7 on the secondary side output voltages of a total of 12 phases having the same voltage value and differing in phase by 30 degrees.
Then, by being rectified by the rectifier circuit 2a, 24-phase direct current is generated and output.

このように、同一電圧値の12相の交流電圧を得ることができ、全波整流することで、24相から成る直流電圧となるため、更にリップルの小さな直流電圧を得ることが可能となる。 In this way, it is possible to obtain 12-phase AC voltage with the same voltage value, and by performing full-wave rectification, it becomes a DC voltage consisting of 24 phases, making it possible to obtain a DC voltage with even smaller ripples.

尚、上記実施形態では、第1巻線11をデルタ結線としているがスター結線しても良い。また、多相変圧器1、1aの2次側の構成を、6相或いは12相の電圧を出力する構成としているが、2次側巻線に中性極を有するよう構成すれば、他の形態で巻回しても中性極端子を備えることができ、容易に2種類の電圧を出力できる。 In the above embodiment, the first winding 11 is connected in a delta connection, but it may be connected in a star connection. Furthermore, although the secondary side configuration of the polyphase transformers 1 and 1a is configured to output 6-phase or 12-phase voltage, if the secondary winding is configured to have a neutral pole, other Even if the wire is wound in the same way, it can be provided with a neutral terminal and can easily output two types of voltages.

1,1a・・多相変圧器、2,2a・・整流回路(全波整流回路)、10・・電力変換装置、11・・第1巻線、12・・第2巻線、13・・第3巻線、14・・第4巻線、15・・第5巻線、16・・第6巻線、17・・第7巻線、12a・・R相巻回部、12b・・S相巻回部、12c・・T相巻回部、13a・・U相巻回部、13b・・V相巻回部、13c・・W相巻回部、21a・・正極側端子、22b・・負極側端子、23・・中性極端子。 1, 1a... polyphase transformer, 2, 2a... rectifier circuit (full wave rectifier circuit), 10... power converter, 11... first winding, 12... second winding, 13... 3rd winding, 14...4th winding, 15...5th winding, 16...6th winding, 17...7th winding, 12a...R phase winding section, 12b...S Phase winding part, 12c...T phase winding part, 13a...U phase winding part, 13b...V phase winding part, 13c...W phase winding part, 21a...positive terminal, 22b...・Negative terminal, 23... Neutral terminal.

Claims (3)

三相電力を直流電力に変換するために、三相電力が接続される1次側の第1巻線と、2次側を構成する第2巻線、第3巻線とが共通の鉄心に巻回されて多相の交流電力を出力する多相変圧器であって、
前記第1巻線はデルタ結線或いはスター結線される一方、前記第2巻線及び前記第3巻線は共に同一巻数でスター結線されると共に、前記第2巻線と前記第3巻線とは共通の中性点を有し、
前記第2巻線は、120度ずつ異なる位相の電圧を生成するR相巻回部,S相巻回部,T相巻回部を有する一方、
前記第3巻線は、前記R相巻回部の位相と逆相の電圧を生成するU相巻回部,前記S相巻回部の位相と逆相の電圧を生成するV相巻回部、前記T相巻回部と逆相の電圧を生成するW相巻回部を有し、
前記第2巻線と前記第3巻線とで、60度ずつ位相の異なる全6相の電圧を生成して出力することを特徴とする多相変圧器。
In order to convert three-phase power to DC power, the first winding on the primary side, to which the three-phase power is connected, and the second and third windings that make up the secondary side are connected to a common iron core. A polyphase transformer that is wound and outputs polyphase alternating current power,
The first winding is delta-connected or star-connected, the second winding and the third winding are both star-connected with the same number of turns, and the second winding and the third winding are have a common neutral point,
The second winding has an R-phase winding part, an S-phase winding part, and a T-phase winding part that generate voltages with phases different by 120 degrees,
The third winding includes a U-phase winding section that generates a voltage that is in phase opposite to the phase of the R-phase winding section, and a V-phase winding section that generates a voltage that is opposite in phase to the phase of the S-phase winding section. , has a W-phase winding part that generates a voltage of opposite phase to the T-phase winding part,
A polyphase transformer characterized in that the second winding and the third winding generate and output a total of six phase voltages whose phases differ by 60 degrees.
3相を形成するための3つの巻回部をそれぞれ有する第4~7巻線を備え、
前記第2巻線の各巻回部の端部には、前記第4,第5巻線のそれぞれ1つの巻回部が分岐接続されると共に、前記第3巻線の各巻回部の端部には、前記第6、第7巻線のそれぞれ1つの巻回部が分岐接続され、
前記第4巻線の第1巻回部は、前記第2巻線のS相巻回部の端部に一端が接続されて、前記第2巻線のR相巻回部に連続するよう鉄心に巻回され、
前記第4巻線の第2巻回部は、前記第2巻線のR相巻回部の端部に一端が接続されて、前記第2巻線のS相巻回部に連続するよう鉄心に巻回され、
前記第4巻線の第3巻回部は、前記第2巻線のR相巻回部の端部に一端が接続されて、前記第2巻線のT相巻回部に連続するよう鉄心に巻回され、
前記第5巻線の第1巻回部は、前記第2巻線のT相巻回部の端部に一端が接続されて、前記第2巻線のR相巻回部に連続するよう鉄心に巻回され、
前記第5巻線の第2巻回部は、前記第2巻線のT相巻回部の端部に一端が接続されて、前記第2巻線のS相巻回部に連続するよう鉄心に巻回され、
前記第5巻線の第3巻回部は、前記第2巻線のS相巻回部の端部に一端が接続されて、前記第2巻線のT相巻回部に連続するよう鉄心に巻回され、
前記第6巻線の第1巻回部は、前記第3巻線のV相巻回部の端部に一端が接続されて、前記第3巻線のU相巻回部に連続する鉄心に巻回され、
前記第6巻線の第2巻回部は、前記第3巻線のU相巻回部の端部に一端が接続されて、前記第3巻線のV相巻回部に連続するよう鉄心に巻回され、
前記第6巻線の第3巻回部は、前記第3巻線のU相巻回部の端部に一端が接続されて、前記第3巻線のW相巻回部に連続する鉄心に巻回され、
前記第7巻線の第1巻回部は、前記第3巻線のW相巻回部の端部に一端が接続されて、前記第3巻線のU相巻回部に連続するよう鉄心に巻回され、
前記第7巻線の第2巻回部は、前記第3巻線のW相巻回部の端部に一端が接続されて、前記第3巻線のV相巻回部に連続するよう鉄心に巻回され、
前記第7巻線の第3巻回部は、前記第3巻線のV相巻回部の端部に一端が接続されて、前記第3巻線のW相巻回部に連続するよう鉄心に巻回されて成り、
且つ前記第4~7巻線は、前記第2巻線及び第3巻線の0.36倍の巻き数で巻回され、
前記第4~7巻線のそれぞれの他端が2次側出力端子であり、30度ずつ位相の異なる全12相の電圧を出力することを特徴とする請求項1記載の多相変圧器。
4th to 7th windings each having three winding parts for forming three phases,
One winding part of each of the fourth and fifth windings is branch-connected to the end of each winding part of the second winding, and one winding part of each of the fourth winding is branch-connected to the end of each winding part of the third winding. is, one winding portion of each of the sixth and seventh windings is branch-connected,
The first winding part of the fourth winding has one end connected to the end of the S-phase winding part of the second winding, and is connected to the R-phase winding part of the second winding. wrapped around
The second winding part of the fourth winding has one end connected to the end of the R-phase winding part of the second winding, and is connected to the S-phase winding part of the second winding. wrapped around
The third winding part of the fourth winding has one end connected to the end of the R-phase winding part of the second winding, and is connected to the T-phase winding part of the second winding. wrapped around
The first winding part of the fifth winding has one end connected to the end of the T-phase winding part of the second winding, and the iron core is connected to the R-phase winding part of the second winding. wrapped around
The second winding part of the fifth winding has one end connected to the end of the T-phase winding part of the second winding, and is connected to the S-phase winding part of the second winding. wrapped around
The third winding part of the fifth winding has one end connected to the end of the S-phase winding part of the second winding, and is connected to the T-phase winding part of the second winding. wrapped around
The first winding part of the sixth winding has one end connected to the end of the V-phase winding part of the third winding, and is connected to an iron core that is continuous with the U-phase winding part of the third winding. rolled,
The second winding part of the sixth winding has one end connected to the end of the U-phase winding part of the third winding, and is connected to the V-phase winding part of the third winding. wrapped around
The third winding part of the sixth winding has one end connected to the end of the U-phase winding part of the third winding, and is connected to an iron core that is continuous with the W-phase winding part of the third winding. rolled,
The first winding part of the seventh winding has one end connected to the end of the W-phase winding part of the third winding, and is connected to the U-phase winding part of the third winding. wrapped around
The second winding part of the seventh winding has one end connected to the end of the W-phase winding part of the third winding, and is connected to the V-phase winding part of the third winding. wrapped around
The third winding part of the seventh winding has one end connected to the end of the V-phase winding part of the third winding, and is connected to the W-phase winding part of the third winding. It is wound around the
and the fourth to seventh windings are wound with a number of turns 0.36 times that of the second winding and the third winding,
2. The multiphase transformer according to claim 1, wherein the other ends of each of the fourth to seventh windings are secondary output terminals, and output voltages of a total of 12 phases whose phases differ by 30 degrees.
請求項1又は2に記載の多相変圧器と、前記多相変圧器の出力を整流する全波整流回路とを有し、
前記全波整流回路は、正極側端子、負極側端子の出力端子に加えて、前記第2巻線、第3巻線の共通する前記中性点に接続された中性極端子を有することを特徴とする電力変換装置。
The polyphase transformer according to claim 1 or 2, and a full-wave rectifier circuit that rectifies the output of the polyphase transformer,
The full-wave rectifier circuit has a neutral terminal connected to the common neutral point of the second winding and the third winding, in addition to the output terminals of the positive terminal and the negative terminal. Characteristic power converter.
JP2022036618A 2022-03-09 2022-03-09 Polyphase transformer and power converter Pending JP2023131718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022036618A JP2023131718A (en) 2022-03-09 2022-03-09 Polyphase transformer and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022036618A JP2023131718A (en) 2022-03-09 2022-03-09 Polyphase transformer and power converter

Publications (1)

Publication Number Publication Date
JP2023131718A true JP2023131718A (en) 2023-09-22

Family

ID=88064751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022036618A Pending JP2023131718A (en) 2022-03-09 2022-03-09 Polyphase transformer and power converter

Country Status (1)

Country Link
JP (1) JP2023131718A (en)

Similar Documents

Publication Publication Date Title
US7609536B2 (en) Autotransformer AC/DC converter
US5455759A (en) Symmetrical, phase-shifting, fork transformer
JP4973306B2 (en) Parallel 24 pulse rectifier circuit
US8923024B2 (en) Series connected multi-level power conversion device
US5781428A (en) Transformer for 12-pulse series connection of converters
JPH02228279A (en) Variable speed constant frequency starter/generator system and method of operating the system
JP2008178180A (en) Rectifier circuit
JP2023131718A (en) Polyphase transformer and power converter
JP3801305B2 (en) Rectifier
JP2008278714A (en) Rectifier circuit
JP7419147B2 (en) power converter
JP3696855B2 (en) Rectifier
JP7394714B2 (en) Rectifier polyphase transformer
Ikeda et al. A Study on Efficiency, Output Voltage Ripple and Harmonics of 24-Pulse Converter with Special Winding Structure Transformer
JP2000232786A (en) Twelve-pulse power-converting device
JP7515824B2 (en) Power Conversion Equipment
US5731971A (en) Apparatus for providing multiple, phase-shifted power outputs
JPH10337042A (en) Inverter device
WO2021202212A1 (en) Phase-shift autotransformer, multi-pulse rectifier systems and fast charging
JP2023019118A (en) Power conversion device
JP2023113461A (en) Power conversion device
Roginskaya et al. Installed power of transformers for equivalent multiphase rectification circuits
Buksnaitis Electromagnetical efficiency of the six-phase winding
JP2020022300A (en) Six-phase ac generator, three-phase/six-phase conversion transformer, and dc power supply system
US20240242875A1 (en) Asymmetric delta multi-pulse transformer rectifier unit, and associated systems and methods