JP2023128922A - Plate, joint body, joining method of plate, and production method of plate - Google Patents

Plate, joint body, joining method of plate, and production method of plate Download PDF

Info

Publication number
JP2023128922A
JP2023128922A JP2022033611A JP2022033611A JP2023128922A JP 2023128922 A JP2023128922 A JP 2023128922A JP 2022033611 A JP2022033611 A JP 2022033611A JP 2022033611 A JP2022033611 A JP 2022033611A JP 2023128922 A JP2023128922 A JP 2023128922A
Authority
JP
Japan
Prior art keywords
plate material
joined
plate
laser beam
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022033611A
Other languages
Japanese (ja)
Inventor
圭一郎 泊
Keiichiro Tomari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2022033611A priority Critical patent/JP2023128922A/en
Priority to PCT/JP2023/006083 priority patent/WO2023167045A1/en
Priority to TW112107308A priority patent/TW202346775A/en
Publication of JP2023128922A publication Critical patent/JP2023128922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a plate which can be joined smoothly by performing laser welding while preventing occurrences of defects, such as blow holes and burn-through, sufficiently, and to provide a joint body in which the plate is joined to a joined side plate, a joining method of the plate, and a production method of the plate.SOLUTION: A plate 11 formed of copper or copper alloy to be laser welded is overlapped with a joined side plate 13 formed of copper or copper alloy. Multiple groove parts 21 intersecting with a scanning direction A of a laser beam L are provided spaced apart from each other along the scanning direction A of the laser beam L on a surface of the plate 11 to which the laser beam L is radiated.SELECTED DRAWING: Figure 1

Description

本発明は、板材、接合体、板材の接合方法及び板材の製造方法に関する。 The present invention relates to a plate material, a joined body, a method for joining plate materials, and a method for manufacturing a plate material.

例えば、銅合金板同士を接合し、べーパーチャンバ等の放熱部材や電子部品等を作製する場合、ろう付けやかしめによって銅合金板同士を接合している。しかし、これらの接合方法は、生産性が低く、また、設備費が嵩張ってしまう。これに対して、銅合金板同士をレーザ溶接する接合方法によれば、コストを抑えつつ高い生産性が得られる。 For example, when copper alloy plates are bonded together to produce heat dissipating members such as vapor chambers, electronic components, etc., the copper alloy plates are bonded together by brazing or caulking. However, these joining methods have low productivity and require high equipment costs. On the other hand, according to a joining method in which copper alloy plates are laser welded together, high productivity can be obtained while keeping costs down.

特許文献1には、一方の板状部材と他方の板状部材とを溶接して構成されたべーパーチャンバが示されている。このべーパーチャンバでは、一方の板状部材の溶融部における板厚が、他方の板状部材の溶融部における板厚よりも薄くされていることが示されている。 Patent Document 1 shows a vapor chamber configured by welding one plate member and the other plate member. In this vapor chamber, it is shown that the thickness of one plate-like member at the melting part is thinner than the thickness of the other plate-like member at the melting part.

また、特許文献2には、互いに重ね合わされた金属部材の一方の表面に、レーザ光の吸収率が高くかつ金属材料よりも破断強度が高い金属材料からなる表面層を形成し、表面層上からレーザ光を照射することで、表面層の表面から金属部材の内部まで再凝固部を形成して、双方の金属部材を接合することが示されている。 Furthermore, in Patent Document 2, a surface layer made of a metal material that has a high laser beam absorption rate and a higher breaking strength than the metal material is formed on one surface of metal members stacked on top of each other, and It has been shown that by irradiating laser light, a resolidified portion is formed from the surface of the surface layer to the inside of the metal member, thereby joining both metal members.

国際公開第2018/147283号International Publication No. 2018/147283 国際公開第2012/124255号International Publication No. 2012/124255

レーザ溶接は高速で溶接できるため生産性高く、板材同士の隙間を封止する接合方法として関心が高まっている。
ところで、放熱部材等に使われる銅又は銅合金板は小型軽量化の観点から、例えば、合計肉厚が0.3mm以下となるような薄肉化が求められている。また、銅の特性として、固体状態でレーザ光の吸収率が低く、溶融状態になるとレーザ光の吸収率が急激に高まることが知られている。このため、レーザ溶接によって銅又は銅合金板同士を接合させる場合、溶融池が安定せず、ブローホール等の欠陥が発生しやすい。特に、極薄板では溶け落ち等の欠陥が発生するおそれがある。
Laser welding is highly productive because it can perform high-speed welding, and is attracting increasing interest as a joining method for sealing gaps between plates.
Incidentally, from the viewpoint of reducing size and weight, copper or copper alloy plates used for heat dissipation members and the like are required to be made thinner, for example, with a total wall thickness of 0.3 mm or less. Furthermore, it is known that copper has a low absorption rate for laser light in a solid state, and that the absorption rate for laser light increases rapidly when it becomes molten. Therefore, when copper or copper alloy plates are joined together by laser welding, the molten pool is not stable and defects such as blowholes are likely to occur. In particular, in extremely thin plates, defects such as burn-through may occur.

特許文献1のように、薄板の銅又は銅合金の板材同士をレーザ溶接する場合、単に、一部の板厚を厚くしたり、特許文献2のように、レーザ光の照射面に表面層を形成したりするだけでは、ブローホール、溶け落ち等の欠陥の発生を十分に抑制できない。しかも、特許文献1の技術では、一方の板状部材の溶融部における板厚を増やすため、重量が増加してしまう。また、特許文献2の技術では、表面層をめっきできない部材の接合は困難である。 When laser welding thin copper or copper alloy plates to each other as in Patent Document 1, it is necessary to simply increase the thickness of some of the plates, or to add a surface layer to the laser beam irradiation surface as in Patent Document 2. Mere formation cannot sufficiently suppress the occurrence of defects such as blowholes and burn-through. Moreover, in the technique of Patent Document 1, the thickness of one of the plate-shaped members at the fused portion is increased, resulting in an increase in weight. Furthermore, with the technique of Patent Document 2, it is difficult to join members whose surface layers cannot be plated.

そこで本発明は、ブローホール、溶け落ち等の欠陥の発生を十分に抑えつつ、円滑にレーザ溶接して接合できる板材、この板材が被接合側板材に接合された接合体、板材の接合方法及び板材の製造方法を提供することを目的とする。 Therefore, the present invention provides a plate material that can be smoothly joined by laser welding while sufficiently suppressing the occurrence of defects such as blowholes and burn-through, a joined body in which this plate material is joined to a side plate material to be joined, a method for joining plate materials, and The purpose of this invention is to provide a method for manufacturing plate materials.

本発明は下記構成からなる。
(1) 銅又は銅合金からなる被接合側板材に重ね合わされてレーザ溶接される銅又は銅合金からなる板材であって、
レーザ光が照射される面に、前記レーザ光の走査方向に交差する複数の溝部が前記レーザ光の走査方向に沿って間隔をあけて付与されている、
板材。
(2) (1)に記載の板材が、前記溝部と交差する方向に形成されたビードによって、前記被接合側板材に接合されている、
接合体。
(3) (1)に記載の板材を被接合側板材に重ね合わせ、
前記板材に形成された複数の溝部と交差する方向に沿ってレーザ光を照射させて前記板材を前記被接合側板材にレーザ溶接する、
板材の接合方法。
(4) 銅又は銅合金からなる被接合側板材に重ね合わされてレーザ溶接される銅又は銅合金からなる板材の製造方法であって、
レーザ溶接時にレーザ光が照射される被照射部に、前記レーザ光の走査方向に交差する複数の溝部を、レーザ加工、圧延加工又はプレス加工によって前記レーザ光の走査方向に沿って間隔をあけて付与する、
板材の製造方法。
The present invention consists of the following configuration.
(1) A plate material made of copper or copper alloy that is overlapped with a side plate material to be joined made of copper or copper alloy and laser welded,
A plurality of grooves intersecting the scanning direction of the laser beam are provided on the surface to be irradiated with the laser beam at intervals along the scanning direction of the laser beam,
Board material.
(2) The plate material according to (1) is joined to the to-be-joined side plate material by a bead formed in a direction intersecting the groove.
zygote.
(3) Overlap the plate material described in (1) on the side plate material to be joined,
laser welding the plate material to the to-be-joined side plate material by irradiating a laser beam along a direction intersecting a plurality of grooves formed in the plate material;
How to join plate materials.
(4) A method for manufacturing a plate material made of copper or copper alloy that is superimposed on a side plate material to be joined made of copper or copper alloy and laser welded, comprising:
A plurality of grooves intersecting the scanning direction of the laser beam are formed at intervals along the scanning direction of the laser beam by laser processing, rolling processing, or press processing in the irradiated part to be irradiated with the laser beam during laser welding. Give,
Method of manufacturing plate materials.

本発明によれば、ブローホール、溶け落ち等の欠陥の発生を十分に抑えつつ、円滑にレーザ溶接して板材同士を接合できる。 According to the present invention, plates can be joined together by laser welding smoothly while sufficiently suppressing the occurrence of defects such as blowholes and burn-through.

板材と被接合側の板材とをレーザ溶接する様子を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing how a plate material and a plate material on the side to be joined are laser welded. 板材に形成した溝部を示す平面図である。It is a top view which shows the groove part formed in the board material. 板材に形成した溝部を示す板材の一部拡大平面図である。FIG. 3 is a partially enlarged plan view of the plate showing grooves formed in the plate. 板材と被接合側の板材とをレーザ溶接する様子を示す平面図である。FIG. 3 is a plan view illustrating how a plate material and a plate material on the side to be joined are laser welded. 板材と被接合側の板材とをレーザ溶接した接合体の平面図である。FIG. 2 is a plan view of a joined body obtained by laser welding a plate material and a plate material on the side to be joined. 他の形状の溝部を形成してレーザ溶接した接合体の一部の平面図である。FIG. 7 is a plan view of a part of a joined body in which grooves of other shapes are formed and laser welded. 溝部を形成した板材の画像である。This is an image of a plate material with grooves formed therein. 板材と被接合側の板材とを接合させた接合体におけるレーザ光の照射側の画像である。It is an image of the laser beam irradiation side of the joined body in which the plate material and the plate material on the side to be joined are joined. 板材と被接合側の板材とを接合させた接合体におけるレーザ光の照射側と反対側の画像である。This is an image of the side opposite to the laser beam irradiation side of the joined body in which the plate material and the plate material on the side to be joined are joined. 板材と被接合側の板材とを接合させた接合体における接合箇所の断面の画像である。It is an image of a cross section of a joint in a joined body in which a plate material and a plate material on the side to be joined are joined. レーザ光による板材の溶融が不十分な非貫通状態の板材の裏面側の画像である。This is an image of the back side of a plate material in a non-penetrating state where the laser beam has not sufficiently melted the plate material. レーザ光によって溶け落ちが生じた状態の板材の裏面側の画像である。This is an image of the back side of a plate material in a state where burn-through has occurred due to laser light. 実施例及び比較例におけるレーザ光の適正出力範囲を示すグラフである。It is a graph showing the appropriate output range of laser light in Examples and Comparative Examples. 実施例における下限出力でレーザ光を照射した板材の照射側の画像である。It is an image of the irradiation side of the plate material irradiated with laser light at the lower limit output in the example. 実施例における下限出力でレーザ光を照射した板材の照射側と反対側の画像である。It is an image of the side opposite to the irradiation side of the plate material irradiated with laser light at the lower limit output in the example. 比較例における下限出力でレーザ光を照射した板材の照射側の画像である。It is an image of the irradiation side of the plate material irradiated with laser light at the lower limit output in a comparative example. 比較例における下限出力でレーザ光を照射した板材の照射側と反対側の画像である。This is an image of the side opposite to the irradiation side of a plate material irradiated with laser light at the lower limit output in a comparative example.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は、板材11と被接合側の板材13とをレーザ溶接する様子を模式的に示す斜視図である。
Embodiments of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a perspective view schematically showing how a plate material 11 and a plate material 13 on the side to be joined are laser welded.

本実施形態に係る板材11は、他の板材である被接合側の板材(被接合側板材)13にレーザ溶接によって接合される。板材11,13は、それぞれの一部が互いに重ね合わされ、この重ね合わせた部分が被照射部15となる。そして、この被照射部15にレーザ照射装置100によってレーザ光Lが照射されることで、板材11と被接合側の板材13とがレーザ溶接される。レーザ光Lは、上記した被照射部15の少なくとも一部の範囲に照射され、被照射部15からはみ出すことはない。 The plate material 11 according to the present embodiment is joined to a plate material 13 on the side to be joined (side plate material to be joined), which is another plate material, by laser welding. Parts of the plate materials 11 and 13 are overlapped with each other, and this overlapped portion becomes the irradiated portion 15. Then, by irradiating the irradiated portion 15 with the laser beam L by the laser irradiation device 100, the plate material 11 and the plate material 13 on the side to be joined are laser welded. The laser beam L is irradiated onto at least a part of the irradiated portion 15 described above, and does not extend beyond the irradiated portion 15 .

板材11,13は、銅又は銅合金からなる板材である。銅合金の場合、銅(Cu)に含まれる成分としては、錫(Sn)、ニッケル(Ni)、亜鉛(Zn)、マグネシウム(Mg)又はリン(P)等である。板材11,13としては、厚さ0.10mm~1.0mmの薄板が用いられる。なお、板材11,13の板厚は等しくてもよく、いずれか一方が他方より厚くてもよい。 The plates 11 and 13 are plates made of copper or copper alloy. In the case of a copper alloy, components contained in copper (Cu) include tin (Sn), nickel (Ni), zinc (Zn), magnesium (Mg), or phosphorus (P). As the plate materials 11 and 13, thin plates having a thickness of 0.10 mm to 1.0 mm are used. Note that the plate materials 11 and 13 may have the same thickness, or one may be thicker than the other.

図2は、板材11に形成した溝部21を示す平面図である。図3は、板材11に形成した溝部21を示す板材11の一部拡大平面図である。
図2及び図3に示すように、板材11の被照射部15におけるレーザ光Lが照射される面には、複数の溝部21がレーザ光Lの走査方向Aに沿って間隔をあけて配置されている。
FIG. 2 is a plan view showing the groove portion 21 formed in the plate material 11. As shown in FIG. FIG. 3 is a partially enlarged plan view of the plate material 11 showing the groove portion 21 formed in the plate material 11. As shown in FIG.
As shown in FIGS. 2 and 3, a plurality of grooves 21 are arranged at intervals along the scanning direction A of the laser beam L on the surface of the irradiated portion 15 of the plate material 11 that is irradiated with the laser beam L. ing.

各溝部21は、幅寸法Wが板材11の板厚の1倍~2倍であり、深さ寸法Dが板材11の板厚の1/3以下であり、ピッチPが板材11の板厚の2倍~4倍である。 Each groove 21 has a width W that is 1 to 2 times the thickness of the plate 11, a depth D that is 1/3 or less of the thickness of the plate 11, and a pitch P that is equal to or less than the thickness of the plate 11. It is 2 times to 4 times.

レーザ溶接のために被照射部15にレーザ光Lを照射するレーザ照射装置100としては、ガルバノスキャナユニットを備えたものを例示できる。ガルバノスキャナユニットを備えたレーザ照射装置100では、ファイバレーザ発振器からのレーザをガルバノミラーで反射させ、レンズによって集光させて被照射部15へ照射する。このレーザ照射装置100によれば、回転軸に取り付けられたガルバノミラーの角度を制御することにより、レーザ光Lを高速かつ高精度に走査できる。ただし、レーザ照射装置100は、これに限らず他の方式の照射装置であってもよい。 An example of the laser irradiation device 100 that irradiates the irradiated portion 15 with the laser beam L for laser welding is one that includes a galvano scanner unit. In a laser irradiation device 100 equipped with a galvano scanner unit, a laser beam from a fiber laser oscillator is reflected by a galvanometer mirror, focused by a lens, and irradiated onto an irradiated portion 15 . According to this laser irradiation device 100, the laser beam L can be scanned at high speed and with high precision by controlling the angle of the galvanometer mirror attached to the rotating shaft. However, the laser irradiation device 100 is not limited to this, and may be an irradiation device of another type.

次に、本実施形態に係る板材11と被接合側の板材13とをレーザ溶接する接合方法について説明する。
(溝部の形成)
板材11に複数の溝部21を形成する。この溝部21はレーザ加工によって成形する。具体的には、被照射部15において、レーザ照射装置100を走査方向Aに沿って移動させながらレーザ光Lをウォブリング動作させる。これにより、レーザ光Lが周期的に旋回しながら間欠的に被照射部15に照射され、走査方向Aに沿って間隔あけて配置された複数の溝部21が形成される。このように、レーザ加工によって板材11に溝部21を形成すれば、溝部21の加工後に実施する被接合側の板材13へのレーザ溶接を、一括して行うことができ、製造工程を簡略化できる。
Next, a joining method of laser welding the plate material 11 and the plate material 13 on the side to be joined according to the present embodiment will be described.
(Formation of groove)
A plurality of grooves 21 are formed in the plate material 11. This groove portion 21 is formed by laser processing. Specifically, in the irradiated portion 15, the laser beam L is wobbled while the laser irradiation device 100 is moved along the scanning direction A. As a result, the laser beam L rotates periodically and is intermittently irradiated onto the irradiated portion 15, thereby forming a plurality of groove portions 21 arranged at intervals along the scanning direction A. In this way, by forming the groove portion 21 in the plate material 11 by laser processing, the laser welding to the plate material 13 on the side to be joined, which is performed after processing the groove portion 21, can be performed all at once, and the manufacturing process can be simplified. .

溝部21は、レーザ照射装置100によるレーザ加工に限らず、圧延加工やプレス加工によって形成してもよい。圧延加工やプレス加工によって溝部21を形成する場合、一般的な製造ラインを流用でき、製造コストの増加が抑えられる。 The groove portion 21 may be formed not only by laser processing using the laser irradiation device 100 but also by rolling processing or press processing. When forming the groove portion 21 by rolling or pressing, a general manufacturing line can be used, and an increase in manufacturing costs can be suppressed.

(レーザ溶接による接合)
次に、溝部21を形成した板材11を被接合側の板材13に重ね合わせる。そして、板材13に重ね合わせた板材11の被照射部15に対して、レーザ照射装置100からのレーザ光Lを被照射部15の一端15aから他端15bへ向けて走査する。これにより、図4に示すように、板材11の複数の溝部21と交差する走査方向Aに沿ってレーザ光Lが照射され、板材11と板材13とがレーザ溶接されたビード23が形成される。
(Joining by laser welding)
Next, the plate material 11 in which the groove portion 21 has been formed is stacked on the plate material 13 on the side to be joined. Then, the laser beam L from the laser irradiation device 100 is scanned from one end 15a of the irradiated part 15 to the other end 15b of the irradiated part 15 of the plate material 11 superimposed on the plate material 13. As a result, as shown in FIG. 4, the laser beam L is irradiated along the scanning direction A intersecting the plurality of grooves 21 of the plate material 11, and a bead 23 is formed by laser welding the plate material 11 and the plate material 13. .

レーザ照射装置100のレーザ光Lによってレーザ溶接を行うと、板材11と被接合側の板材13との接合部(被照射部15)におけるレーザ光Lの照射箇所は溶融して、照射面側からレーザ光Lの照射側と反対側の被接合側の板材13の裏面までが溶融する。この溶融部分が冷却されて凝固・硬化することで、図5に示すように、溝部21と交差する方向にビード23が連続して形成される。これにより、板材11と被接合側の板材13とが良好に接合された接合体25が得られる。 When laser welding is performed using the laser beam L of the laser irradiation device 100, the irradiated portion of the laser beam L at the joint (irradiated portion 15) between the plate material 11 and the plate material 13 on the side to be welded is melted, and from the irradiated surface side Even the back surface of the plate material 13 on the side to be joined opposite to the side irradiated with the laser beam L is melted. When this molten portion is cooled and solidified and hardened, beads 23 are formed continuously in the direction intersecting the groove portion 21, as shown in FIG. Thereby, a joined body 25 is obtained in which the plate material 11 and the plate material 13 on the side to be joined are well joined.

以上、説明したように、本構成の板材11によれば、複数の溝部21に交差するようにレーザ光Lを照射させることにより、溝部21を有する板厚の薄い部分から入熱が促進される。これにより、低出力で溶融池を形成でき、ブローホール、溶け落ち等の欠陥の発生を十分に抑えつつ、被接合側の板材13とのレーザ溶接を円滑に行える。また、被接合側の板材13にレーザ溶接する際に、溶接可能となるレーザ光Lの出力範囲が拡大して、板材11と被接合側の板材13とを高品質、かつ容易に接合できる。 As described above, according to the plate material 11 of this configuration, by irradiating the laser beam L so as to intersect the plurality of grooves 21, heat input is promoted from the thin part of the plate having the grooves 21. . Thereby, a molten pool can be formed with low power, and the laser welding with the plate material 13 on the side to be joined can be performed smoothly while sufficiently suppressing the occurrence of defects such as blowholes and burn-through. Further, when laser welding the plate material 13 on the side to be joined, the output range of the laser beam L that can be used for welding is expanded, and the plate material 11 and the plate material 13 on the side to be welded can be easily joined with high quality.

特に、銅又は銅合金においては、固体状態におけるレーザ光の吸収率が5%以下と低く、溶融状態となると数十%以上に急激に高まる。そのため、一旦溶融すると溶融池が安定せず、スパッタやブローホール等の欠陥が発生しやすく、薄肉板では溶け落ちが生じやすくなる。しかし、上記のように板材11に予め複数の溝部21を形成し、溝部21に交差するようにレーザ光を照射することで、急激な溶融が抑制される。つまり、本構成では、レーザ光Lの走査方向Aに沿って適度に肉厚の薄い部分が混在して配置される。これにより、熱伝導によって溝部21における薄肉部分から溶融が始まり、形成される溶融池の周囲に向けて熱伝導され、その結果、レーザ照射域よりも広い範囲が加熱される。溶融部分では、レーザ光のエネルギ吸収が高まるが、周囲への熱拡散と相まって、急激な溶融の進行が抑制される。よって、レーザ光の出力が低くても溶融が開始され、出力が高くても先に溶融開始した部分の熱拡散により、過度な入熱が生じることが抑えられる。こうして、溶接可能なレーザ光の出力範囲を拡大できる。 In particular, copper or a copper alloy has a low absorption rate of laser light of 5% or less in a solid state, but rapidly increases to several tens of percent or more in a molten state. Therefore, once melted, the molten pool is not stable and defects such as spatter and blowholes are likely to occur, and thin plates are likely to burn through. However, by forming a plurality of grooves 21 in the plate material 11 in advance as described above and irradiating the laser beam so as to intersect the grooves 21, rapid melting can be suppressed. That is, in this configuration, along the scanning direction A of the laser beam L, moderately thin portions are arranged in a mixed manner. As a result, melting starts from the thin walled portion of the groove portion 21 due to heat conduction, and heat is conducted toward the periphery of the formed molten pool, and as a result, a wider area than the laser irradiation area is heated. In the melted part, energy absorption of the laser beam increases, but combined with heat diffusion to the surroundings, rapid progress of melting is suppressed. Therefore, even if the output of the laser beam is low, melting starts, and even if the output is high, excessive heat input can be suppressed due to thermal diffusion in the portion where the melting starts first. In this way, the output range of laser light that can be used for welding can be expanded.

そして、溝部21の幅寸法を板厚の1倍~2倍、溝部21の深さ寸法Dを板厚の1/3以下、溝部21のピッチを板厚の2倍~4倍として最適化することで、上記の効果が顕著に現れる。 Then, the width of the groove 21 is optimized to be 1 to 2 times the plate thickness, the depth D of the groove 21 is 1/3 or less of the plate thickness, and the pitch of the groove 21 is set to 2 to 4 times the plate thickness. As a result, the above effect becomes noticeable.

このように板材11と被接合側の板材13とをレーザ溶接することで、溝部21と交差する方向に形成されたビード23によって板材11と被接合側の板材13とが高品質に接合された接合体25が得られる。 By laser welding the plate material 11 and the plate material 13 on the side to be joined in this way, the plate material 11 and the plate material 13 on the side to be joined are joined with high quality by the bead 23 formed in the direction intersecting the groove 21. A joined body 25 is obtained.

また、本構成の板材の接合方法によれば、板材11を被接合側の板材13に重ね合わせ、複数の溝部21と交差する方向に沿ってレーザ光Lを照射させることにより、板材11と被接合側の板材13とを、溶け落ちを抑えつつ良好に接合できる。 Further, according to the method for joining plate materials of this configuration, the plate material 11 is overlapped with the plate material 13 on the side to be joined, and the laser beam L is irradiated along the direction intersecting the plurality of grooves 21, thereby bonding the plate material 11 and the plate material 13 to be joined. The plate material 13 on the joining side can be joined well while suppressing burn-through.

さらに、複数の溝部21が付与された板材11を製造する際、レーザ加工による溝部21の形成と、被接合側の板材13とのレーザ溶接とを一括して実施でき、製造工程を簡略化できる。また、圧延加工又はプレス加工によって溝部21を形成する場合、一般的な圧延又はプレスの製造ラインを流用することで、溝部21を有する銅又は銅合金からなる板材11を、製造コストを抑えて製造できる。 Furthermore, when manufacturing the plate material 11 provided with a plurality of grooves 21, the formation of the grooves 21 by laser processing and the laser welding to the plate material 13 on the side to be joined can be performed at the same time, simplifying the manufacturing process. . In addition, when forming the groove part 21 by rolling or pressing, the plate material 11 made of copper or copper alloy having the groove part 21 can be manufactured at a reduced manufacturing cost by using a general rolling or pressing production line. can.

なお、上記構成例では、レーザ照射装置100を走査方向Aに沿って移動させながらレーザ光Lをウォブリング動作させることにより、湾曲状の複数の溝部21を形成した場合を例示したが、レーザ光Lの走査形態は任意である。例えば、図6に示すように、溝部21の形状は、直線状でもよい。板材11を被接合側の板材13と接合する際は、直線状の複数の溝部21と交差する走査方向Aに沿ってレーザ光Lを照射させ、板材11と被接合側の板材13とをレーザ溶接してもよい。この場合も、ブローホール、溶け落ち等の欠陥の発生を十分に抑えつつ、板材11と被接合側の板材13とのレーザ溶接を円滑に行える。また、被接合側の板材13にレーザ溶接する際に、溶接可能なレーザ光Lの出力範囲が拡大され、双方の溶接を容易に実施できる。 Note that in the above configuration example, a case is illustrated in which the plurality of curved grooves 21 are formed by wobbling the laser beam L while moving the laser irradiation device 100 along the scanning direction A. The scanning form of is arbitrary. For example, as shown in FIG. 6, the groove portion 21 may have a linear shape. When joining the plate material 11 to the plate material 13 on the side to be joined, the laser beam L is irradiated along the scanning direction A intersecting the plurality of linear grooves 21, and the plate material 11 and the plate material 13 on the side to be joined are May be welded. In this case as well, laser welding between the plate material 11 and the plate material 13 on the side to be joined can be performed smoothly while sufficiently suppressing the occurrence of defects such as blowholes and burn-through. Further, when laser welding the plate material 13 on the side to be joined, the output range of the laser beam L that can be welded is expanded, and welding on both sides can be easily performed.

レーザ加工によって溝部21を付与した板材11を被接合側の板材13に重ね合わせてレーザ溶接して接合体25を作製し、作製した接合体25における溶接個所の表面、裏面及び断面を観察して評価した。板材11及び被接合側の板材13としては、板厚0.15mmの銅合金板を用いた。 The plate material 11 provided with grooves 21 by laser processing is superimposed on the plate material 13 on the side to be joined and laser welded to produce a joined body 25, and the front surface, back surface, and cross section of the welded part of the manufactured joined body 25 are observed. evaluated. As the plate material 11 and the plate material 13 on the side to be joined, copper alloy plates with a plate thickness of 0.15 mm were used.

(溝部の形成)
図7は、溝部21を形成した板材11の画像である。
図7に示すように、板材11に複数の溝部21を形成した。溝部21のレーザ加工は、レーザ光の走査パターンを、直径1.6mm、周波数100Hzの円形ウォブリングとし、出力3kW、溶接速度7m/minの条件で行った。
(Formation of groove)
FIG. 7 is an image of the plate material 11 in which the groove portion 21 is formed.
As shown in FIG. 7, a plurality of grooves 21 were formed in the plate material 11. The laser processing of the groove portion 21 was performed under the conditions that the scanning pattern of the laser beam was circular wobbling with a diameter of 1.6 mm and a frequency of 100 Hz, an output of 3 kW, and a welding speed of 7 m/min.

(レーザ溶接)
溝部21を付与した板材11を被接合側の板材13に重ね合わせ、出力3kW、溶接速度10m/minの条件でレーザ溶接を行った。
(laser welding)
The plate material 11 provided with the groove portion 21 was superimposed on the plate material 13 on the side to be joined, and laser welding was performed under conditions of an output of 3 kW and a welding speed of 10 m/min.

(評価結果)
図8A~図8Cは、板材11と板材13とを接合させた接合体25の画像であり、図8Aはレーザ光の照射側の画像、図8Bはレーザ光の照射側と反対側の画像、図8Cは接合箇所における断面の画像である。
(Evaluation results)
8A to 8C are images of the joined body 25 made by joining the plate material 11 and the plate material 13, FIG. 8A is an image on the laser beam irradiation side, FIG. 8B is an image on the opposite side to the laser beam irradiation side, FIG. 8C is a cross-sectional image at the joint.

図8Aに示すように、レーザ光Lの照射側の板材11の表面では、レーザ溶接によって溝部21と交差する方向に直線状のビード23が形成された。また、図8Bに示すように、レーザ光Lの照射側と反対側の被接合側の板材13の表面においても、直線状のビード23が形成され、そのビード幅は、長手方向にわたってばらつきが抑えられて略均一であり、溶け落ちが生じた形跡もなかった。また、図8Cに示すように、板材11と被接合側の板材13との接合箇所では、板厚方向にわたって偏りなく貫通したビード23が形成されていた。このように、外観及び断面のいずれも安定した溶接個所を有する接合体25が得られた。 As shown in FIG. 8A, on the surface of the plate material 11 on the irradiation side of the laser beam L, a linear bead 23 was formed in a direction intersecting the groove 21 by laser welding. Further, as shown in FIG. 8B, a linear bead 23 is also formed on the surface of the plate material 13 on the side to be joined opposite to the side irradiated with the laser beam L, and the bead width has a uniform variation in the longitudinal direction. The coating was almost uniform, and there was no evidence of burn-through. Moreover, as shown in FIG. 8C, at the joining location between the plate material 11 and the plate material 13 on the side to be joined, a bead 23 was formed that penetrated uniformly in the thickness direction. In this way, a joined body 25 having stable welded parts both in appearance and cross section was obtained.

銅合金板からなる板材P1,P2に対して直線状にレーザ光を照射した。そして、レーザ光の照射個所の表面及び裏面を観察し、溶接可能なレーザ光の出力範囲を調査した。 A laser beam was irradiated linearly onto plate materials P1 and P2 made of copper alloy plates. Then, the front and back surfaces of the area irradiated with the laser beam were observed, and the output range of the laser beam that could be welded was investigated.

図9A及び図9Bは、レーザ光を照射したベア材からなる板材Pbの裏面側の画像であり、図9Aは、レーザ光による板材Pbの溶融が不十分な非貫通状態の画像、図9Bは、板材Pbに溶け落ちが生じた状態の画像である。 9A and 9B are images of the back side of the plate material Pb made of bare material irradiated with laser light, FIG. 9A is an image of the non-penetrating state in which the plate material Pb is insufficiently melted by the laser light, and FIG. 9B is , is an image of a state in which burn-through has occurred on the plate material Pb.

レーザ光の適正出力範囲の調査としては、レーザ光の照射箇所の裏面における非貫通(図9A参照)及び溶け落ち(図9B参照)の有無を調査し、非貫通及び溶け落ちが生じない出力を溶接可能な出力範囲とした。 To investigate the appropriate output range of the laser beam, check for non-penetration (see Figure 9A) and burn-through (see Figure 9B) on the back side of the laser beam irradiation area, and determine the output that does not cause non-penetration or burn-through. The output range was set to allow welding.

<板材>
(実施例)
板材P1:溝幅190μm、ピッチ420μmで複数の直線状の溝部Nを付与した板厚0.2mmの銅合金板
(比較例)
板材P2:溝部を付与しないベア材からなる板厚0.2mmの銅合金板
<Plate material>
(Example)
Plate material P1: 0.2 mm thick copper alloy plate provided with a plurality of linear grooves N with a groove width of 190 μm and a pitch of 420 μm (comparative example)
Plate material P2: 0.2 mm thick copper alloy plate made of bare material without grooves

<レーザ光の照射条件>
(実施例)
走査速度10m/minで、複数の溝部Nと交差する走査方向に沿って直線的にレーザ光を照射させた。
(比較例)
走査速度10m/minで直線的にレーザ光を照射させた。
<Laser light irradiation conditions>
(Example)
Laser light was applied linearly along the scanning direction intersecting the plurality of grooves N at a scanning speed of 10 m/min.
(Comparative example)
Laser light was applied linearly at a scanning speed of 10 m/min.

<評価結果> <Evaluation results>

図10は、実施例及び比較例におけるレーザ光の出力範囲を示すグラフである。 FIG. 10 is a graph showing the output range of laser light in Examples and Comparative Examples.

(実施例)
図10に示すように、実施例では、2.0kW~2.6kWの範囲の出力でレーザ光を照射した際に、非貫通及び溶け落ちを生じることがなかった。
(Example)
As shown in FIG. 10, in the example, no non-penetration or burn-through occurred when laser light was irradiated with an output in the range of 2.0 kW to 2.6 kW.

図11A及び図11Bは、実施例における下限出力でレーザ光を照射した際の照射箇所の外観の画像であり、図11Aはレーザ光の照射側の画像、図11Bはレーザ光の照射側と反対側の画像である。 11A and 11B are images of the appearance of the irradiated area when the laser beam is irradiated at the lower limit output in the example, FIG. 11A is an image of the side irradiated with the laser beam, and FIG. 11B is the image opposite to the side irradiated with the laser beam. This is a side image.

実施例では、レーザ出力2.0kWにおいて、図11Aに示すように、レーザ光の照射側に複数の溝部Nと交差する直線状のビードBが形成され、図11Bに示すように、レーザ光の照射側と反対側に、ブローホール、溶け落ち等の欠陥のない直線状のビードBが形成された。 In the example, at a laser output of 2.0 kW, a linear bead B intersecting with a plurality of grooves N is formed on the laser beam irradiation side as shown in FIG. 11A, and as shown in FIG. 11B, the laser beam A straight bead B without defects such as blowholes and burn-through was formed on the side opposite to the irradiated side.

(比較例)
図10に示すように、比較例では、2.2kW~2.6kWの範囲の出力でレーザ光を照射した際に、非貫通及び溶け落ちを生じることがなかった。
(Comparative example)
As shown in FIG. 10, in the comparative example, no non-penetration or burn-through occurred when laser light was irradiated with an output in the range of 2.2 kW to 2.6 kW.

図12A及び図12Bは、比較例における下限出力でレーザ光を照射した際の照射箇所の外観の画像であり、図12Aはレーザ光の照射側の画像、図12Bはレーザ光の照射側と反対側の画像である。 12A and 12B are images of the appearance of the irradiated area when the laser beam is irradiated at the lower limit output in a comparative example, and FIG. 12A is an image of the side irradiated with the laser beam, and FIG. 12B is the image opposite to the side irradiated with the laser beam. This is a side image.

比較例では、レーザ出力2.2kWにおいて、図12Aに示すように、レーザ光の照射側に直線状のビードBが形成された。また、図12Bに示すように、レーザ光の照射側と反対側にブローホール、溶け落ち等の欠陥のない直線状のビードBが形成された。 In the comparative example, at a laser output of 2.2 kW, a linear bead B was formed on the laser beam irradiation side, as shown in FIG. 12A. Moreover, as shown in FIG. 12B, a straight bead B without defects such as blowholes and burn-through was formed on the side opposite to the laser beam irradiation side.

このように、レーザ光を照射する板材の表面に複数の溝部を形成し、これらの溝部に交差するようにレーザ光を照射することにより、溝部を付与しない場合と比べ、レーザ溶接する際のレーザ光の溶接可能な出力範囲が拡大され、容易に接合可能となることがわかった。 In this way, by forming multiple grooves on the surface of the plate material to be irradiated with a laser beam and irradiating the laser beam so as to intersect these grooves, the laser beam during laser welding can be made faster than when no grooves are provided. It was found that the weldable output range of light has been expanded, making it easier to join.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the embodiments described above, and those skilled in the art can combine the configurations of the embodiments with each other, modify and apply them based on the description of the specification and well-known techniques. It is also contemplated by the present invention to do so, and is within the scope for which protection is sought.

以上の通り、本明細書には次の事項が開示されている。
(1) 銅又は銅合金からなる被接合側板材に重ね合わされてレーザ溶接される銅又は銅合金からなる板材であって、
レーザ光が照射される面に、前記レーザ光の走査方向に交差する複数の溝部が前記レーザ光の走査方向に沿って間隔をあけて付与されている、板材。
この板材によれば、複数の溝部に交差するようにレーザ光を照射させることにより、溝部を有する板厚の薄い部分から入熱が促進される。これにより、低出力で溶融池を形成し、ブローホール、溶け落ち等の欠陥の発生を十分に抑えつつ、被接合側板材とのレーザ溶接を円滑に行える。また、被接合側板材にレーザ溶接する際のレーザ光の溶接可能な出力範囲を拡大して、容易に接合させることができる。
As mentioned above, the following matters are disclosed in this specification.
(1) A plate material made of copper or copper alloy that is overlapped with a side plate material to be joined made of copper or copper alloy and laser welded,
A plate material, wherein a plurality of grooves intersecting with the scanning direction of the laser beam are provided at intervals along the scanning direction of the laser beam on a surface irradiated with the laser beam.
According to this plate material, by irradiating the laser beam so as to cross the plurality of grooves, heat input is promoted from the thinner part of the plate having the grooves. Thereby, a molten pool is formed with low power, and the laser welding with the side plate material to be joined can be performed smoothly while sufficiently suppressing the occurrence of defects such as blowholes and burn-through. Moreover, the weldable output range of laser light when laser welding to the side plate material to be joined can be expanded, and joining can be easily performed.

(2) 前記溝部は、幅寸法が板厚の1倍~2倍であり、深さ寸法が板厚の1/3以下であり、ピッチが板厚の2倍~4倍である、(1)に記載の板材。
この板材によれば、溝部の幅寸法、深さ寸法及びピッチを最適化することで、レーザ光の走査方向に沿って適度に肉厚の大きい部分が配置される。これにより、熱伝導によって溝部を有する薄肉部分への過度な入熱を抑え、板材を被接合側板材に溶接する際の溶け落ちを抑制できる。
(2) The groove portion has a width dimension of 1 to 2 times the plate thickness, a depth dimension of 1/3 or less of the plate thickness, and a pitch of 2 to 4 times the plate thickness, (1 ).
According to this plate material, by optimizing the width, depth, and pitch of the groove portions, appropriately thick portions are arranged along the scanning direction of the laser beam. Thereby, excessive heat input to the thin wall portion having the groove can be suppressed by heat conduction, and burn-through can be suppressed when the plate material is welded to the side plate material to be joined.

(3) (1)又は(2)に記載の板材が、前記溝部と交差する方向に形成されたビードによって、前記被接合側板材に接合されている、接合体。
この接合体によれば、溝部と交差する方向に形成されたビードによって、板材と被接合側板材とが良好に接合された接合体が得られる。
(3) A joined body in which the plate material according to (1) or (2) is joined to the to-be-joined side plate material by a bead formed in a direction intersecting the groove.
According to this joined body, it is possible to obtain a joined body in which the plate material and the side plate material to be joined are satisfactorily joined by the bead formed in the direction intersecting the groove.

(4) (1)又は(2)に記載の板材を被接合側板材に重ね合わせ、
前記板材に形成された複数の溝部と交差する方向に沿ってレーザ光を照射させて前記板材を前記被接合側板材にレーザ溶接する、板材の接合方法。
この板材の接合方法によれば、板材を被接合側板材に重ね合わせ、複数の溝部と交差する方向に沿ってレーザ光を照射させることにより、板材と被接合側板材とを、溶け落ちを抑えつつ良好に接合できる。
(4) Overlap the plate material described in (1) or (2) on the side plate material to be joined,
A method for joining plate materials, the method comprising laser welding the plate material to the side plate material to be joined by irradiating laser light along a direction intersecting a plurality of grooves formed in the plate material.
According to this method of joining plate materials, the plate material is overlapped with the side plate material to be joined, and a laser beam is irradiated along the direction intersecting the plurality of grooves, thereby preventing the plate material and the side plate material being joined from melting through. Good bonding can be achieved.

(5) 銅又は銅合金からなる被接合側板材に重ね合わされてレーザ溶接される銅又は銅合金からなる板材の製造方法であって、
レーザ溶接時にレーザ光が照射される被照射部に、前記レーザ光の走査方向に交差する複数の溝部を、レーザ加工、圧延加工又はプレス加工によって前記レーザ光の走査方向に沿って間隔をあけて付与する、板材の製造方法。
この板材の製造方法によれば、レーザ加工によって溝部を形成する場合、溝部の加工及び被接合側板材へのレーザ溶接を一括して実施でき、製造工程を簡略化できる。また、圧延加工やプレス加工によって溝部を形成する場合に、一般的な製造ラインを流用できるため、溝部を有する銅又は銅合金からなる板材を、製造コストを抑えて製造できる。
(5) A method for manufacturing a plate material made of copper or copper alloy that is superimposed on a side plate material to be joined made of copper or copper alloy and laser welded, comprising:
A plurality of grooves intersecting the scanning direction of the laser beam are formed at intervals along the scanning direction of the laser beam by laser processing, rolling processing, or press processing in the irradiated part to be irradiated with the laser beam during laser welding. A method for manufacturing plate materials.
According to this method of manufacturing a plate material, when the groove portion is formed by laser machining, processing of the groove portion and laser welding to the side plate material to be joined can be performed at once, and the manufacturing process can be simplified. Further, when forming the grooves by rolling or press working, a general manufacturing line can be used, so a plate material made of copper or copper alloy having grooves can be manufactured at low manufacturing cost.

11 板材
13 板材(被接合側板材)
21 溝部
23 ビード
25 接合体
A 走査方向
L レーザ光
P ピッチ
W 幅寸法
11 Plate material 13 Plate material (side plate material to be joined)
21 Groove 23 Bead 25 Joined body A Scanning direction L Laser beam P Pitch W Width dimension

Claims (5)

銅又は銅合金からなる被接合側板材に重ね合わされてレーザ溶接される銅又は銅合金からなる板材であって、
レーザ光が照射される面に、前記レーザ光の走査方向に交差する複数の溝部が前記レーザ光の走査方向に沿って間隔をあけて付与されている、
板材。
A plate material made of copper or copper alloy that is overlapped with a side plate material to be joined made of copper or copper alloy and laser welded,
A plurality of grooves intersecting the scanning direction of the laser beam are provided on the surface to be irradiated with the laser beam at intervals along the scanning direction of the laser beam,
Board material.
前記溝部は、幅寸法が板厚の1倍~2倍であり、深さ寸法が板厚の1/3以下であり、ピッチが板厚の2倍~4倍である、
請求項1に記載の板材。
The groove portion has a width dimension of 1 to 2 times the plate thickness, a depth dimension of 1/3 or less of the plate thickness, and a pitch of 2 to 4 times the plate thickness.
The plate material according to claim 1.
請求項1又は請求項2に記載の板材が、前記溝部と交差する方向に形成されたビードによって、前記被接合側板材に接合されている、
接合体。
The plate material according to claim 1 or 2 is joined to the to-be-joined side plate material by a bead formed in a direction intersecting the groove.
zygote.
請求項1又は請求項2に記載の板材を被接合側板材に重ね合わせ、
前記板材に形成された複数の溝部と交差する方向に沿ってレーザ光を照射させて前記板材を前記被接合側板材にレーザ溶接する、
板材の接合方法。
Overlapping the plate material according to claim 1 or claim 2 on the side plate material to be joined,
laser welding the plate material to the to-be-joined side plate material by irradiating a laser beam along a direction intersecting a plurality of grooves formed in the plate material;
How to join plate materials.
銅又は銅合金からなる被接合側板材に重ね合わされてレーザ溶接される銅又は銅合金からなる板材の製造方法であって、
レーザ溶接時にレーザ光が照射される被照射部に、前記レーザ光の走査方向に交差する複数の溝部を、レーザ加工、圧延加工又はプレス加工によって前記レーザ光の走査方向に沿って間隔をあけて付与する、
板材の製造方法。
A method for manufacturing a plate material made of copper or copper alloy that is superimposed on a side plate material to be joined made of copper or copper alloy and laser welded, the method comprising:
A plurality of grooves intersecting the scanning direction of the laser beam are formed at intervals along the scanning direction of the laser beam by laser processing, rolling processing, or press processing in the irradiated part to be irradiated with the laser beam during laser welding. Give,
Method of manufacturing plate materials.
JP2022033611A 2022-03-04 2022-03-04 Plate, joint body, joining method of plate, and production method of plate Pending JP2023128922A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022033611A JP2023128922A (en) 2022-03-04 2022-03-04 Plate, joint body, joining method of plate, and production method of plate
PCT/JP2023/006083 WO2023167045A1 (en) 2022-03-04 2023-02-20 Sheet material, bonded body, method for bonding sheet material, and method for manufacturing sheet material
TW112107308A TW202346775A (en) 2022-03-04 2023-03-01 Sheet material, bonded body, method for bonding sheet material, and method for manufacturing sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022033611A JP2023128922A (en) 2022-03-04 2022-03-04 Plate, joint body, joining method of plate, and production method of plate

Publications (1)

Publication Number Publication Date
JP2023128922A true JP2023128922A (en) 2023-09-14

Family

ID=87883542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022033611A Pending JP2023128922A (en) 2022-03-04 2022-03-04 Plate, joint body, joining method of plate, and production method of plate

Country Status (3)

Country Link
JP (1) JP2023128922A (en)
TW (1) TW202346775A (en)
WO (1) WO2023167045A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410590B2 (en) * 1995-10-13 2003-05-26 松下電工株式会社 Laser welding method
JP4743985B2 (en) * 2001-03-30 2011-08-10 三洋電機株式会社 Battery manufacturing method
JP2011025260A (en) * 2009-07-22 2011-02-10 Honda Motor Co Ltd Laser lap welding method for plated steel sheet and plated steel sheet for laser lap welding
JP2012179631A (en) * 2011-03-01 2012-09-20 Kobe Steel Ltd Method of welding edge of copper plate

Also Published As

Publication number Publication date
TW202346775A (en) 2023-12-01
WO2023167045A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP5531623B2 (en) Laser lap welding method of galvanized steel sheet
JP5873658B2 (en) Hybrid laser arc welding process and apparatus
JP6159147B2 (en) Hybrid laser arc welding process and apparatus
JP5941252B2 (en) Hybrid laser arc welding process and apparatus
JP2009262186A (en) Method of laser welding metal plated plate
JP2010240741A (en) High-powered laser beam welding and assembly therefor
CN110392620B (en) Method for laser welding light metal workpieces comprising a surface oxide coating
JPH09201687A (en) Narrow gap laser beam welding method
JPH0732180A (en) Laser beam welding method for galvanized steel sheets
CN108463308A (en) The method of laser spot welding coated steel
KR20210089680A (en) Splash-free welding method, especially with solid-state lasers
RU2547987C1 (en) Laser welding method
JP2007307591A (en) Method for manufacturing building member
JP4335819B2 (en) Metal processing method
JP2012223799A (en) Method of manufacturing welded joint
JP5177745B2 (en) Laminated laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
JP2023128922A (en) Plate, joint body, joining method of plate, and production method of plate
WO2023223797A1 (en) Plate material, joined body, plate material joining method, and plate material manufacturing method
JP2005199287A (en) Weld bead structure and welding method
JP2020093285A (en) Method of joining dissimilar metals
JP2022127158A (en) Joining method for copper alloy plate and joint body of copper alloy plate
JP4998634B1 (en) Laser welding method
JP2006334641A (en) Method for laser-beam-welding edge joint of steel sheets
Katayama et al. Fundamentals and Features of Laser Welding
JP7443661B2 (en) Laser welding method and laser welding device