JP2023128418A - Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell - Google Patents

Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell Download PDF

Info

Publication number
JP2023128418A
JP2023128418A JP2022032756A JP2022032756A JP2023128418A JP 2023128418 A JP2023128418 A JP 2023128418A JP 2022032756 A JP2022032756 A JP 2022032756A JP 2022032756 A JP2022032756 A JP 2022032756A JP 2023128418 A JP2023128418 A JP 2023128418A
Authority
JP
Japan
Prior art keywords
fuel cell
platinum
electrode layer
olc
nanodiamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022032756A
Other languages
Japanese (ja)
Inventor
寛久 田中
Hirohisa Tanaka
剛史 近藤
Takashi Kondo
真 湯浅
Makoto Yuasa
敏史 東條
Toshifumi TOJO
貴寛 鄭
Takahiro Tei
祐未 坂田
Yumi Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Tokyo University of Science
Original Assignee
Daicel Corp
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Tokyo University of Science filed Critical Daicel Corp
Priority to JP2022032756A priority Critical patent/JP2023128418A/en
Publication of JP2023128418A publication Critical patent/JP2023128418A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a platinum-supported onion-like carbonized nanodiamond, a fuel cell catalyst, a fuel cell electrode layer forming material, a fuel cell electrode layer, and a fuel cell.SOLUTION: The present disclosure relates to a platinum-supported onion-like carbonized nanodiamond containing platinum in an aggregate of the onion-like carbonized nanodiamond, and a fuel cell catalyst containing the platinum-supported onion-like carbonized nanodiamond. The onion-like carbonized nanodiamond has nanodiamond as a nucleus and a plurality of graphene layers on its surface.SELECTED DRAWING: None

Description

本開示は、白金担持オニオンライクカーボン化ナノダイヤモンドと、これを含む燃料電池用触媒、これを含む燃料電池用電極層形成材料、これが担持されてなる燃料電池用電極層、及び、前記電極層を備えた燃料電池に関する。 The present disclosure provides a platinum-supported onion-like carbonized nanodiamond, a fuel cell catalyst containing the same, a fuel cell electrode layer forming material containing the same, a fuel cell electrode layer supported with the same, and the electrode layer. The present invention relates to a fuel cell equipped with a fuel cell.

固体高分子形燃料電池では、従来、電極層に使用されるカソード触媒として、白金をカーボン担体に担持したPt/Cが用いられてきた(例えば、特許文献1)。 In polymer electrolyte fuel cells, Pt/C in which platinum is supported on a carbon carrier has conventionally been used as a cathode catalyst used in an electrode layer (for example, Patent Document 1).

しかし、Pt/Cをカソード触媒として使用した場合、燃料電池の起動時や停止時に、電位が上昇することで、白金は担体表面上を移動して、凝集・離脱し易い。また、カーボン担体は、電解液によって腐食し易い。そのため、経時的に触媒活性が低下し、燃料電池の発電性能が低下することが問題であった。 However, when Pt/C is used as a cathode catalyst, platinum moves on the surface of the carrier and tends to aggregate and separate due to an increase in potential when starting or stopping the fuel cell. Furthermore, carbon carriers are easily corroded by electrolytes. Therefore, there has been a problem that the catalyst activity decreases over time and the power generation performance of the fuel cell decreases.

特開2003-142112号公報Japanese Patent Application Publication No. 2003-142112

従って、本開示の目的は、耐久性に優れた燃料電池用触媒として有用な、白金担持オニオンライクカーボン化ナノダイヤモンドを提供することにある。
本開示の他の目的は、耐久性に優れた燃料電池用触媒を提供することにある。
本開示の他の目的は、耐久性に優れた燃料電池用触媒を含む燃料電池用電極層形成材料を提供することにある。
本開示の他の目的は、耐久性に優れた燃料電池用触媒を含む、燃料電池用電極層を提供することにある。
本開示の他の目的は、前記燃料電池用電極層を備えた燃料電池を提供することにある。
Therefore, an object of the present disclosure is to provide platinum-supported onion-like carbonized nanodiamonds that are useful as fuel cell catalysts with excellent durability.
Another object of the present disclosure is to provide a fuel cell catalyst with excellent durability.
Another object of the present disclosure is to provide a fuel cell electrode layer forming material containing a fuel cell catalyst with excellent durability.
Another object of the present disclosure is to provide a fuel cell electrode layer containing a fuel cell catalyst with excellent durability.
Another object of the present disclosure is to provide a fuel cell including the fuel cell electrode layer.

本発明者らは上記課題を解決するため鋭意検討した結果、ナノダイヤモンドの表面にグラファイト層が積層されてなるオニオンライクカーボン化ナノダイヤモンドのグラフェン層間に白金を担持させると、燃料電池の起動時や停止時にも、白金が担体表面上を移動して、凝集・離脱するのを抑制することができ、触媒活性を長期に亘って高く維持することができることを見出した。本開示はこれらの知見に基づいて完成させたものである。 The present inventors conducted intensive studies to solve the above problems, and found that when platinum is supported between the graphene layers of onion-like carbonized nanodiamonds, which are made by stacking graphite layers on the surface of nanodiamonds, it is possible to It has been found that even when stopped, platinum can be prevented from moving on the surface of the carrier, agglomerating and separating, and the catalyst activity can be maintained at a high level over a long period of time. The present disclosure has been completed based on these findings.

すなわち、本開示は、下記オニオンライクカーボン化ナノダイヤモンドの凝集体中に白金を含む、白金担持オニオンライクカーボン化ナノダイヤモンドを提供する。
オニオンライクカーボン化ナノダイヤモンド:ナノダイヤモンドを核とし、その表面に複数のグラフェン層を有する
That is, the present disclosure provides a platinum-supported onion-like carbonized nanodiamond that contains platinum in the aggregate of the onion-like carbonized nanodiamond described below.
Onion-like carbonized nanodiamond: nanodiamond as a core with multiple graphene layers on its surface

本開示は、また、前記白金担持オニオンライクカーボン化ナノダイヤモンドを含む燃料電池用触媒を提供する。 The present disclosure also provides a fuel cell catalyst including the platinum-supported onion-like carbonized nanodiamond.

本開示は、また、前記白金担持オニオンライクカーボン化ナノダイヤモンドと、バインダーとを含む、燃料電池用電極層形成材料を提供する。 The present disclosure also provides a material for forming an electrode layer for a fuel cell, which includes the platinum-supported onion-like carbonized nanodiamond and a binder.

本開示は、また、前記白金担持オニオンライクカーボン化ナノダイヤモンドを含む燃料電池用電極層を提供する。 The present disclosure also provides a fuel cell electrode layer including the platinum-supported onion-like carbonized nanodiamond.

本開示は、また、前記燃料電池用電極層を備えた燃料電池を提供する。 The present disclosure also provides a fuel cell including the fuel cell electrode layer.

本開示は、また、固体高分子形燃料電池である前記燃料電池を提供する。 The present disclosure also provides the fuel cell, which is a polymer electrolyte fuel cell.

本開示の白金担持オニオンライクカーボン化ナノダイヤモンド(Pt/OLC-ND)は、オニオンライクカーボン化ナノダイヤモンドの凝集体中に、白金を三次元的に固定した構成を有する。そのため、耐久性に優れ、燃料電池の起動時や停止時にも、白金が担体表面上を移動して、凝集・離脱するのが抑制され、長期に亘って優れた触媒活性を安定的に発揮することができる。従って、前記白金担持オニオンライクカーボン化ナノダイヤモンドを用いて得られた燃料電池用電極層を備える燃料電池(例えば、固体高分子形燃料電池)は、高い初期発電性能を長期間維持することができる。 The platinum-supported onion-like carbonized nanodiamond (Pt/OLC-ND) of the present disclosure has a structure in which platinum is three-dimensionally fixed in an aggregate of onion-like carbonized nanodiamonds. Therefore, it has excellent durability and prevents platinum from moving on the carrier surface and agglomerating and detaching even when the fuel cell is started or stopped, and it stably exhibits excellent catalytic activity over a long period of time. be able to. Therefore, a fuel cell (for example, a polymer electrolyte fuel cell) equipped with a fuel cell electrode layer obtained using the platinum-supported onion-like carbonized nanodiamond can maintain high initial power generation performance for a long period of time. .

Pt/ND(ζ+)複合体(1)のSEM像である。It is a SEM image of Pt/ND(ζ+) composite (1). Pt/ND(ζ+)複合体(1)のTEM像である。It is a TEM image of Pt/ND(ζ+) composite (1). Pt/ND(ζ+)複合体(1)からPEG除去して得たPt/ND(ζ+)複合体(1’)のXPSスペクトルデータである。It is XPS spectrum data of Pt/ND(ζ+) complex (1') obtained by removing PEG from Pt/ND(ζ+) complex (1). Pt/OLC-ND(ζ+)(1)のSEM像である。This is a SEM image of Pt/OLC-ND(ζ+) (1). Pt/OLC-ND(ζ+)(1)のTEM像である。This is a TEM image of Pt/OLC-ND(ζ+) (1). Pt/OLC-ND(ζ+)(1)のTEM EDS像である。This is a TEM EDS image of Pt/OLC-ND(ζ+) (1). Pt/OLC-ND(ζ+)(1)のラマンスペクトルである。This is a Raman spectrum of Pt/OLC-ND(ζ+) (1). Pt/OLC-ND(ζ+)(1)のXPSスペクトルデータである。This is XPS spectrum data of Pt/OLC-ND(ζ+) (1). Pt/OLC-ND(ζ+)(1)のXRD測定結果を示す図である。FIG. 2 is a diagram showing the XRD measurement results of Pt/OLC-ND(ζ+) (1). Pt/OLC-ND(ζ+)(1)の窒素吸着等温線を示す図である。FIG. 3 is a diagram showing the nitrogen adsorption isotherm of Pt/OLC-ND(ζ+) (1). 電極層(1)の、0.1MのHClO4中でのCV測定結果を示す図である。It is a figure which shows the CV measurement result of an electrode layer (1) in 0.1M HClO4 . 電極層(1)の、酸素飽和0.1MのHClO4中でのCV測定結果を示す図である。It is a figure which shows the CV measurement result of an electrode layer (1) in HClO4 of oxygen saturation 0.1M. Pt/OLC-ND(ζ+)(1)を含む電極層(1)とPt/Cを含む電極層(x)の、水素脱着の電荷維持率とサイクル数の関係性を比較する図である。FIG. 3 is a diagram comparing the relationship between the charge retention rate of hydrogen desorption and the number of cycles between an electrode layer (1) containing Pt/OLC-ND(ζ+) (1) and an electrode layer (x) containing Pt/C. Pt/ND(ζ-)複合体(2)のSEM像である。This is a SEM image of Pt/ND(ζ-) composite (2). Pt/ND(ζ-)複合体(2)からPEG除去して得たPt/ND(ζ-)複合体(2’)のXPSスペクトルデータである。This is XPS spectrum data of Pt/ND(ζ-) complex (2') obtained by removing PEG from Pt/ND(ζ-) complex (2). Pt/OLC-ND(ζ-)(2)のSEM像である。This is a SEM image of Pt/OLC-ND(ζ-) (2). Pt/OLC-ND(ζ-)(2)のTEM像である。This is a TEM image of Pt/OLC-ND(ζ-) (2). Pt/OLC-ND(ζ-)(2)のXPSスペクトルデータである。This is XPS spectrum data of Pt/OLC-ND(ζ-) (2).

[白金担持オニオンライクカーボン化ナノダイヤモンド]
本開示の白金担持オニオンライクカーボン化ナノダイヤモンド(Pt/OLC-ND)は、ナノダイヤモンドを核とし、その表面に複数のグラフェン層を有するオニオンライクカーボン化ナノダイヤモンドの凝集体(好ましくは、球状凝集体)中に白金を含む。好ましくは、前記凝集体中に白金を三次元的に分散し、固定化した構成を有する。
[Platinum-supported onion-like carbon nanodiamond]
The platinum-supported onion-like carbonized nanodiamonds (Pt/OLC-ND) of the present disclosure are aggregates (preferably spherical aggregates) of onion-like carbonized nanodiamonds having a nanodiamond as a core and a plurality of graphene layers on its surface. Contains platinum in the aggregate). Preferably, platinum is three-dimensionally dispersed and immobilized in the aggregate.

前記グラフェン層は、ナノダイヤモンド表面の少なくとも一部を被覆しておればよい。 The graphene layer only needs to cover at least a portion of the nanodiamond surface.

前記凝集体中に含有する白金の態様は特に限定されることがなく、例えば、白金単体、白金合金、白金塩、白金酸化物、白金水酸化物、又は白金錯体等を挙げることができる。 The form of platinum contained in the aggregate is not particularly limited, and examples thereof include simple platinum, platinum alloy, platinum salt, platinum oxide, platinum hydroxide, and platinum complex.

前記Pt/OLC-NDの白金担持量は、炭素元素に対して例えば0.1~10質量%、好ましくは0.5~3.0質量%である。前記Pt/OLC-NDが前記範囲で白金を含有すると、優れた導電性を発揮することができる。 The amount of platinum supported on the Pt/OLC-ND is, for example, 0.1 to 10% by mass, preferably 0.5 to 3.0% by mass, based on the carbon element. When the Pt/OLC-ND contains platinum in the above range, it can exhibit excellent conductivity.

前記Pt/OLC-NDの比表面積は110m2/g以上であり、好ましくは150m2/g以上、より好ましくは200m2/g以上、更に好ましくは300m2/g以上、更に好ましくは400m2/g以上、特に好ましくは500m2/g以上、最も好ましくは600m2/g以上である。尚、比表面積の上限は、例えば1500m2/gである。 The specific surface area of the Pt/OLC-ND is 110 m 2 /g or more, preferably 150 m 2 /g or more, more preferably 200 m 2 /g or more, even more preferably 300 m 2 /g or more, even more preferably 400 m 2 / g. g or more, particularly preferably 500 m 2 /g or more, most preferably 600 m 2 /g or more. Note that the upper limit of the specific surface area is, for example, 1500 m 2 /g.

前記Pt/OLC-NDの粒子径(D50、メディアン径)は、例えば0.1~10μmである。前記粒子径は、TEM観察や画像解析で求めることができる。 The particle diameter (D50, median diameter) of the Pt/OLC-ND is, for example, 0.1 to 10 μm. The particle size can be determined by TEM observation or image analysis.

前記Pt/OLC-NDのコア部を形成するNDの粒子径(D50、メディアン径)は、例えば50nm以下であり、好ましくは30nm以下、特に好ましくは20nm以下、最も好ましくは10nm以下である。前記粒子径の下限値は、例えば1nmである。 The particle diameter (D50, median diameter) of the ND forming the core portion of the Pt/OLC-ND is, for example, 50 nm or less, preferably 30 nm or less, particularly preferably 20 nm or less, and most preferably 10 nm or less. The lower limit of the particle size is, for example, 1 nm.

前記Pt/OLC-NDのグラフェン層の総厚みは、例えば10~1000nmである。また、グラフェン層の層間距離は、例えば0.50nm以下である。 The total thickness of the graphene layer of the Pt/OLC-ND is, for example, 10 to 1000 nm. Further, the interlayer distance between the graphene layers is, for example, 0.50 nm or less.

担体であるOLC-NDのコア部を形成するナノダイヤモンド(ND)としては、例えば、爆轟法ND(すなわち、爆轟法によって生成したND)や、高温高圧法ND(すなわち、高温高圧法によって生成したND)を使用することができる。本開示においては、なかでも、より比表面積が大きい点で爆轟法NDが好ましい。 The nanodiamonds (NDs) that form the core part of OLC-ND, which is a carrier, are, for example, NDs produced by detonation method (i.e., NDs produced by detonation method), NDs produced by high temperature and high pressure method (i.e., NDs produced by high temperature and high pressure method). generated ND) can be used. In the present disclosure, detonation method ND is particularly preferred because it has a larger specific surface area.

NDは、水中においてプラスのゼータ電位を有するものであっても、マイナスの電荷を有するものであっても良い。 The ND may have a positive zeta potential in water or may have a negative charge.

前記Pt/OLC-NDは、白金が凝集体中において、オニオンライクカーボン化ナノダイヤモンドと三次元的に接触した構成を有するため、白金は安定的に凝集体中に固定されており、白金が凝集・離脱するのを抑制することができ、触媒の有効面積が低下するのを抑制することができる。そのため、前記Pt/OLC-NDは、燃料電池用電極層を形成するための燃料電池用触媒(特に、酸素還元用触媒)として好適に使用することができる。 The Pt/OLC-ND has a structure in which platinum is in three-dimensional contact with onion-like carbonized nanodiamonds in the aggregate, so platinum is stably fixed in the aggregate, and platinum is not aggregated. - It is possible to suppress separation, and it is possible to suppress a decrease in the effective area of the catalyst. Therefore, the Pt/OLC-ND can be suitably used as a fuel cell catalyst (particularly an oxygen reduction catalyst) for forming a fuel cell electrode layer.

前記Pt/OLC-NDは、例えば、NDと白金とバインダーと含むスラリーを、スプレードライ処理に付して、白金担持ナノダイヤモンドの凝集体(Pt/ND)を作成し、得られた白金担持ナノダイヤモンドの凝集体(Pt/ND)に真空中で熱処理(アニーリング)を施して製造することができる。そして、前記熱処理を例えば900~1600℃(好ましくは900~1400℃)で行うと、中心にダイヤモンド構造を残して、外側の層をグラファイト化することができる。熱処理終了後は、必要に応じて水素還元処理を行っても良い。 The Pt/OLC-ND is produced by subjecting a slurry containing NDs, platinum, and a binder to a spray-drying process to create an aggregate of platinum-supported nanodiamonds (Pt/ND), and using the resulting platinum-supported nanodiamonds. It can be manufactured by subjecting a diamond aggregate (Pt/ND) to heat treatment (annealing) in a vacuum. If the heat treatment is performed at, for example, 900 to 1600°C (preferably 900 to 1400°C), the outer layer can be graphitized while leaving a diamond structure in the center. After the heat treatment is completed, hydrogen reduction treatment may be performed as necessary.

前記バインダーとしては、例えば、ポリエチレングリコール、ポリグリセリン等を使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 As the binder, for example, polyethylene glycol, polyglycerin, etc. can be used. These can be used alone or in combination of two or more.

スラリー中における白金の含有量は、NDの含有量の例えば0.1~10質量%、好ましくは1~5質量%である。 The platinum content in the slurry is, for example, 0.1 to 10% by mass, preferably 1 to 5% by mass of the ND content.

スラリー中におけるバインダーの含有量は、NDの含有量の例えば3~20質量%、好ましくは5~20質量%である。 The binder content in the slurry is, for example, 3 to 20% by mass, preferably 5 to 20% by mass of the ND content.

[燃料電池用触媒]
本開示の燃料電池用触媒は、前記Pt/OLC-NDを含む。前記Pt/OLC-NDは、オニオンライクカーボン化ナノダイヤモンドの凝集体中に白金を含有する。前記白金は、凝集体中において安定的に固定されており、凝集・離脱するのが抑制されるため、耐久性に優れる。
[Fuel cell catalyst]
The fuel cell catalyst of the present disclosure includes the Pt/OLC-ND. The Pt/OLC-ND contains platinum in aggregates of onion-like carbonized nanodiamonds. The platinum is stably fixed in the aggregate and is inhibited from agglomerating and separating, resulting in excellent durability.

本開示の燃料電池用触媒は、前記Pt/OLC-NDを含むため、燃料電池用電極層(好ましくは、固体高分子形燃料電池用電極層)を形成する触媒として好適に使用することができる。 Since the fuel cell catalyst of the present disclosure contains the Pt/OLC-ND, it can be suitably used as a catalyst for forming a fuel cell electrode layer (preferably a polymer electrolyte fuel cell electrode layer). .

[燃料電池用電極層形成材料]
本開示の燃料電池用電極層形成材料は、前記Pt/OLC-NDとバインダーを少なくとも含む。その他、分散媒等も必要に応じて含有することができる。
[Fuel cell electrode layer forming material]
The fuel cell electrode layer forming material of the present disclosure includes at least the Pt/OLC-ND and a binder. In addition, a dispersion medium etc. can also be contained as needed.

前記バインダーとしては、例えば、高いプロトン導電性を有する高分子化合物(特に、スルホン酸基を有する高分子化合物)が挙げられる。本開示では、例えば、商品名「ナフィオン」(SIGMA-ALDRICH 社製)等の市販品を使用することができる。 Examples of the binder include a polymer compound having high proton conductivity (particularly a polymer compound having a sulfonic acid group). In the present disclosure, for example, commercially available products such as the trade name "Nafion" (manufactured by SIGMA-ALDRICH) can be used.

前記バインダーの使用量としては、前記Pt/OLC-ND1質量部に対して、例えば0.1~5質量部程度、好ましくは0.5~2質量部である。 The amount of the binder used is, for example, about 0.1 to 5 parts by mass, preferably 0.5 to 2 parts by mass, per 1 part by mass of the Pt/OLC-ND.

前記分散媒としては、エタノール等のアルコールが好ましい。 The dispersion medium is preferably alcohol such as ethanol.

前記電極層形成材料は、例えば、前記Pt/OLC-NDとバインダーとを混合することにより製造することができる。 The electrode layer forming material can be manufactured, for example, by mixing the Pt/OLC-ND and a binder.

[燃料電池用電極層]
本開示の燃料電池用電極層は、前記Pt/OLC-NDを含む。前記燃料電池用電極層は、好ましくは固体高分子形燃料電池用電極層である。
[Fuel cell electrode layer]
The fuel cell electrode layer of the present disclosure includes the Pt/OLC-ND. The fuel cell electrode layer is preferably a polymer electrolyte fuel cell electrode layer.

前記燃料電池用電極層は、前記Pt/OLC-NDと共にバインダーを含んでいても良い。 The fuel cell electrode layer may contain a binder together with the Pt/OLC-ND.

前記電極層は、例えば、基材又は高分子電解質膜に燃料電池用電極層形成材料を塗工し、塗工によって形成された膜を乾燥することによって製造することができる。 The electrode layer can be manufactured, for example, by coating a fuel cell electrode layer forming material on a base material or a polymer electrolyte membrane, and drying the membrane formed by coating.

前記電極層は耐久性に優れ、白金が凝集・離脱するのを抑制することができる。そのため、高い初期発電性能を長期間維持することができる。 The electrode layer has excellent durability and can suppress aggregation and separation of platinum. Therefore, high initial power generation performance can be maintained for a long period of time.

[燃料電池]
本開示の燃料電池は、上記燃料電池用電極層を備える。前記燃料電池は、好ましくは固体高分子形燃料電池である。
[Fuel cell]
A fuel cell of the present disclosure includes the fuel cell electrode layer described above. The fuel cell is preferably a polymer electrolyte fuel cell.

固体高分子形燃料電池は、中心に電解質となる固体高分子膜を有し、その両面に負極層と正極層を有し、さらにその外側にガス拡散層を有する膜-電極層接合体が、セパレータを介して積層された構造を有する。そして、前記負極層及び/又は正極層として、上記燃料電池用電極層を備える。 A polymer electrolyte fuel cell is a membrane-electrode layer assembly that has a solid polymer membrane as an electrolyte in the center, a negative electrode layer and a positive electrode layer on both sides, and a gas diffusion layer on the outside. It has a laminated structure with a separator in between. The fuel cell electrode layer is provided as the negative electrode layer and/or the positive electrode layer.

前記固体高分子膜、ガス拡散層、及びセパレータとしては周知慣用のものを特に制限なく採用することができる。 As the solid polymer membrane, gas diffusion layer, and separator, well-known and commonly used materials can be used without particular limitation.

本開示の燃料電池は、耐久性に優れた電極層を備える。そのため、充放電サイクル寿命に優れる。本開示の燃料電池は、例えば、自動車等の代替動力源や家庭用コジェネレーションシステム、携帯用発電機として有用である。 The fuel cell of the present disclosure includes an electrode layer with excellent durability. Therefore, it has excellent charge/discharge cycle life. The fuel cell of the present disclosure is useful, for example, as an alternative power source for automobiles and the like, a home cogeneration system, and a portable power generator.

以上、本開示の各構成及びそれらの組み合わせ等は一例であって、本開示の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。また、本開示は、実施形態によって限定されることはなく、特許請求の範囲の記載によってのみ限定される。 The above configurations and combinations thereof of the present disclosure are merely examples, and additions, omissions, substitutions, and changes to the configurations can be made as appropriate without departing from the gist of the present disclosure. Furthermore, the present disclosure is not limited by the embodiments, but only by the claims.

以下、実施例により本開示をより具体的に説明するが、本開示はこれらの実施例により限定されるものではない。 EXAMPLES Hereinafter, the present disclosure will be described in more detail with reference to Examples, but the present disclosure is not limited to these Examples.

実施例1
(スラリーの調製)
2.86質量%のζ+ND水分散液(商品名「ディノベア」、(株)ダイセル製、ND粒子径:4~6nm)35.0g(ND含有量:1g)と、ポリエチレングリコール(PEG;数平均分子量400、シグマ-アルドリッチ社製)0.178mLと、10mMナノ白金分散液(ルネッサンス・エナジー・リサーチ社製、粒子径:4~6nm)15.4mLを混合し、超音波照射によって分散させて、スラリー1(ND:PEG=5:1、Pt含有量はNDの3質量%)を調製した。
Example 1
(Preparation of slurry)
35.0 g (ND content: 1 g) of 2.86% by mass ζ + ND aqueous dispersion (trade name "Dinobear", manufactured by Daicel Corporation, ND particle size: 4 to 6 nm) and polyethylene glycol (PEG; number average 0.178 mL of molecular weight 400, manufactured by Sigma-Aldrich) and 15.4 mL of 10 mM nanoplatinum dispersion (manufactured by Renaissance Energy Research, particle size: 4 to 6 nm) were mixed and dispersed by ultrasonic irradiation. Slurry 1 (ND:PEG=5:1, Pt content 3% by mass of ND) was prepared.

(スプレードライ法によるPt/ND/PEGの調製)
得られたスラリー1を、下記条件下において、撹拌しながら送液、噴霧し、噴霧した液滴を乾燥させて、Pt/ND(ζ+)/PEG複合体(1)を得た。得られたPt/ND(ζ+)/PEG複合体(1)のSEM像を図1、TEM像を図2に示す。図1から、真球状の粒子が得られていることが分かる。また、図2から、白金が分散してNDに担持されていることが分かる。
スプレードライ条件
噴霧部温度:180℃
乾燥空気量:0.73m3/分
スラリー送液ポンプ流量:1200mL/h
噴霧空気圧力:200kPa
(Preparation of Pt/ND/PEG by spray drying method)
The obtained slurry 1 was fed and sprayed while stirring under the following conditions, and the sprayed droplets were dried to obtain a Pt/ND(ζ+)/PEG composite (1). An SEM image of the obtained Pt/ND(ζ+)/PEG composite (1) is shown in FIG. 1, and a TEM image is shown in FIG. It can be seen from FIG. 1 that perfectly spherical particles were obtained. Moreover, from FIG. 2, it can be seen that platinum is dispersed and supported on the ND.
Spray drying conditions Spraying part temperature: 180℃
Dry air amount: 0.73 m 3 /min Slurry liquid feed pump flow rate: 1200 mL/h
Spraying air pressure: 200kPa

尚、SEM測定は下記条件下にて行った。尚、Pt/NDは、金スパッタリング(Au20nm)を施してから測定した。
<測定条件>
測定装置:電界放出型走査電子顕微鏡(JSM-7600M、日本電子(株)製)
加速電圧:10kV
照射電流:8A
Note that the SEM measurement was performed under the following conditions. Note that Pt/ND was measured after gold sputtering (Au 20 nm) was performed.
<Measurement conditions>
Measuring device: Field emission scanning electron microscope (JSM-7600M, manufactured by JEOL Ltd.)
Acceleration voltage: 10kV
Irradiation current: 8A

また、TEM測定は下記条件下にて行った。
<測定条件>
測定装置:高温ガス環境制御型透過型電子顕微鏡(JEM-2100F、日本電子(株)製)
加速電圧:200kV
波長:2.50pm
カメラ長:300nm
溶媒:エタノール
グリッド:コロジオン支持膜
Moreover, TEM measurement was performed under the following conditions.
<Measurement conditions>
Measuring device: High temperature gas environment controlled transmission electron microscope (JEM-2100F, manufactured by JEOL Ltd.)
Acceleration voltage: 200kV
Wavelength: 2.50pm
Camera length: 300nm
Solvent: Ethanol Grid: Collodion support membrane

(PEG除去)
その後、噴霧乾燥機スプレードライヤーSD-1010型(東京理化機械(株)製)を使用して、得られたPt/ND(ζ+)/PEG複合体(1)を、大気雰囲気下、昇温速度3℃/分で300℃まで昇温し、300℃で1時間保持した。その後、自然冷却した。これにより、Pt/ND(ζ+)複合体(1’)を得た。Pt/ND(ζ+)複合体(1’)のXPSスペクトルデータを図3と表1に示す。図3より、明瞭なPt 4fピークが確認できたことから、Ptが存在していることが分かる。
(PEG removal)
Thereafter, using a spray dryer spray dryer model SD-1010 (manufactured by Tokyo Rika Kikai Co., Ltd.), the obtained Pt/ND(ζ+)/PEG composite (1) was heated at a rate of The temperature was raised to 300°C at a rate of 3°C/min and held at 300°C for 1 hour. After that, it was naturally cooled. Thereby, a Pt/ND(ζ+) complex (1') was obtained. XPS spectrum data of Pt/ND(ζ+) complex (1') are shown in FIG. 3 and Table 1. From FIG. 3, a clear Pt 4f peak was confirmed, indicating the presence of Pt.

Figure 2023128418000001
Figure 2023128418000001

尚、XPS測定は下記条件下にて行った。
<測定条件>
測定装置:X線光電子分光装置(AXIS Nova、(株)島津製作所製)
X線源:AlKα
励起エネルギー:1487eV
分解能:0.1eV
アノードHT:15kV
エミッション電流:10mA
パスエネルギー:Wide 160eV
Narrow 40eV
Note that the XPS measurement was performed under the following conditions.
<Measurement conditions>
Measuring device: X-ray photoelectron spectrometer (AXIS Nova, manufactured by Shimadzu Corporation)
X-ray source: AlKα
Excitation energy: 1487eV
Resolution: 0.1eV
Anode HT: 15kV
Emission current: 10mA
Pass energy: Wide 160eV
Narrow 40eV

(Pt/NDのDLS測定)
Pt/ND(ζ+)複合体(1’)と水を混合し、超音波照射を施して、分散液を得た。
得られた分散液について、全透明4面セルを用い下記条件下にて、DLS測定を行った。その結果、平均粒子径は1.2μmであった。
<測定条件>
測定装置:動的光散乱粒度分布測定装置(Nicomp380、Particle Sizing Systems社製)
光源:ヘリウムネオンレーザー
光源波長:632.8nm
光路長:10mm
散乱角:90度
(DLS measurement of Pt/ND)
Pt/ND(ζ+) composite (1') and water were mixed and subjected to ultrasonic irradiation to obtain a dispersion liquid.
DLS measurements were performed on the obtained dispersion using a completely transparent four-sided cell under the following conditions. As a result, the average particle diameter was 1.2 μm.
<Measurement conditions>
Measuring device: Dynamic light scattering particle size distribution measuring device (Nicomp380, manufactured by Particle Sizing Systems)
Light source: Helium neon laser light source Wavelength: 632.8nm
Optical path length: 10mm
Scattering angle: 90 degrees

(OLC-ND化)
その後、Pt/ND(ζ+)複合体球状粒子(1’)を、アルミナ製ボードに入れ、真空アニール炉(商品名「超小型高温真空雰囲気電気炉」、フルテック(株)製)の炉心管内に静置し、炉心管内を真空にした後、設定温度を1400℃に上昇させた。処理時間は3時間とした。このようにして、Pt/OLC(ζ+)(1)[Pt:C=1.3:98.7]を得た。
(OLC-ND conversion)
Thereafter, the Pt/ND(ζ+) composite spherical particles (1') were placed in an alumina board and placed in the core tube of a vacuum annealing furnace (trade name: "Ultra-small high-temperature vacuum atmosphere electric furnace", manufactured by Furutech Co., Ltd.). After the reactor was left standing and the inside of the reactor tube was evacuated, the set temperature was raised to 1400°C. The treatment time was 3 hours. In this way, Pt/OLC(ζ+) (1) [Pt:C=1.3:98.7] was obtained.

得られたPt/OLC-ND(ζ+)(1)のSEM像を図4、TEM像を図5、TEM EDS像を図6に示す。これらの図より、Pt/OLC-ND(ζ+)(1)は真球状であることが分かる。また、ND(ζ+)の表層がOLC化していること、表層がOLC化したNDが凝集体を形成し、その凝集体中に、白金が、高分散して担持されていることが分かる。 The SEM image of the obtained Pt/OLC-ND(ζ+) (1) is shown in FIG. 4, the TEM image in FIG. 5, and the TEM EDS image in FIG. 6. From these figures, it can be seen that Pt/OLC-ND(ζ+) (1) has a true spherical shape. It can also be seen that the surface layer of ND(ζ+) has become OLC, and that the ND whose surface layer has become OLC forms an aggregate, and platinum is supported in a highly dispersed manner in the aggregate.

尚、SEM測定、TEM測定は前記条件下にて行った。 Incidentally, the SEM measurement and TEM measurement were performed under the above conditions.

得られたPt/OLC-ND(ζ+)(1)のDLS測定を、水に替えてエタノールに分散させた以外はPt/NDのDLSと同様の方法で行った。その結果、平均粒子径は0.86μmであった。 The DLS measurement of the obtained Pt/OLC-ND(ζ+) (1) was performed in the same manner as the DLS of Pt/ND except that it was dispersed in ethanol instead of water. As a result, the average particle diameter was 0.86 μm.

(ラマン測定)
得られたPt/OLC-ND(ζ+)(1)のラマンスペクトルを下記条件下に測定した。結果を図7に示す。図7より、1330cm-1付近に構造欠陥に由来するD-band、1570cm-1付近にグラファイト構造に由来するG-bandが観察できた。このことからもNDのOLC化が確認できた。
<測定条件>
測定装置:ラマン分光器(NRS-5100、日本分光(株)製)
レーザー波長:532nm
レーザー強度:9.8mW
スリット幅:200×1000μm
グレーティング:1800L/mm
対物レンズ:UMPLFL20×
アパーチャ:φ4000μm
露光時間:30秒
積算回数:3回
(Raman measurement)
The Raman spectrum of the obtained Pt/OLC-ND(ζ+) (1) was measured under the following conditions. The results are shown in FIG. From FIG. 7, a D-band originating from structural defects was observed near 1330 cm -1 and a G-band originating from a graphite structure was observed near 1570 cm -1 . This also confirmed the conversion of ND to OLC.
<Measurement conditions>
Measuring device: Raman spectrometer (NRS-5100, manufactured by JASCO Corporation)
Laser wavelength: 532nm
Laser intensity: 9.8mW
Slit width: 200 x 1000μm
Grating: 1800L/mm
Objective lens: UMPLFL20×
Aperture: φ4000μm
Exposure time: 30 seconds Total number of times: 3 times

(XPS測定)
得られたPt/OLC-ND(ζ+)(1)のXPS測定を行った。
XPSスペクトルデータを図8と表1に示す。図8より、明瞭なPt 4fピークが確認できたことから、Ptが存在していることが分かる。また、表1,2から、OLC化後もPt担持量が維持されていることが分かる。
(XPS measurement)
The obtained Pt/OLC-ND(ζ+) (1) was subjected to XPS measurement.
The XPS spectral data are shown in FIG. 8 and Table 1. From FIG. 8, a clear Pt 4f peak was confirmed, which indicates that Pt is present. Moreover, from Tables 1 and 2, it can be seen that the amount of Pt supported is maintained even after OLC conversion.

Figure 2023128418000002
Figure 2023128418000002

(XRD測定)
得られたPt/OLC-ND(ζ+)(1)について、下記条件下にてXRD測定を行った。結果を図9に示す。Pt/ND(ζ+)ではダイヤモンド由来のピークに加え、Pt由来の(111)、(200)、(220)回折ピークが観測された。Pt/ND(ζ+)をOLC化することでダイヤモンド由来のピーク強度は小さくなり、(220)回折ピークは観測されなかった。一方、グラファイト由来の(002)回折ピークが出現し、OLC-ND(ζ+)と同様の炭素由来のピークが観測された。これによりPt/ND(ζ+)のOLC化が確認できた。またOLC化後もPt由来の(111)回折ピークが確認できた。
<測定条件>
測定装置:オールインワンX線回折装置(Empyrean、PANalytical社製)
X線源:CuKα
励起エネルギー:8.04KeV
管電圧:45kV
管電流:40mA
(XRD measurement)
The obtained Pt/OLC-ND(ζ+) (1) was subjected to XRD measurement under the following conditions. The results are shown in FIG. In Pt/ND(ζ+), in addition to diamond-derived peaks, Pt-derived (111), (200), and (220) diffraction peaks were observed. By converting Pt/ND(ζ+) into OLC, the peak intensity derived from diamond became smaller, and no (220) diffraction peak was observed. On the other hand, a graphite-derived (002) diffraction peak appeared, and a carbon-derived peak similar to OLC-ND (ζ+) was observed. This confirmed the OLC formation of Pt/ND(ζ+). Furthermore, a (111) diffraction peak derived from Pt was confirmed even after OLC conversion.
<Measurement conditions>
Measuring device: All-in-one X-ray diffraction device (Empyrean, manufactured by PANalytical)
X-ray source: CuKα
Excitation energy: 8.04KeV
Tube voltage: 45kV
Tube current: 40mA

(窒素吸脱着法による細孔特性評価)
得られたPt/OLC-ND(ζ+)(1)について、下記条件下にて細孔特性を評価した。図10にPt/OLC-ND(ζ+)(1)の窒素吸着等温線を示す。得られた窒素吸着等温線はメソ孔多孔質体に典型的に見られるヒステリシスループをもっており、IUPAC分類のIV型であることが示された。よって、粒子間空隙由来のメソ孔が多く存在していることが分かった。また、表3にPt/OLC-NDの細孔特性を示す。
(Evaluation of pore characteristics by nitrogen adsorption/desorption method)
The pore characteristics of the obtained Pt/OLC-ND(ζ+) (1) were evaluated under the following conditions. FIG. 10 shows the nitrogen adsorption isotherm of Pt/OLC-ND(ζ+) (1). The obtained nitrogen adsorption isotherm had a hysteresis loop typically seen in mesoporous materials, and was shown to be of type IV according to IUPAC classification. Therefore, it was found that there were many mesopores derived from interparticle voids. Furthermore, Table 3 shows the pore characteristics of Pt/OLC-ND.

Figure 2023128418000003
Figure 2023128418000003

<測定条件>
測定装置:高精度ガス/蒸気吸着量測定装置(BELSORP Max、マイクロトラック・ベル(株)製
前処理条件:真空(200℃、2時間)
測定モード:高精度(AFSM)
吸着物質:N2
吸着温度:77k
吸着断面積:0.162nm2
<Measurement conditions>
Measuring device: High-precision gas/vapor adsorption amount measuring device (BELSORP Max, manufactured by Microtrac Bell Co., Ltd. Pretreatment conditions: Vacuum (200°C, 2 hours)
Measurement mode: High precision (AFSM)
Adsorbed substance: N2
Adsorption temperature: 77k
Adsorption cross section: 0.162nm 2

(導電性評価)
得られたPt/OLC-ND(ζ+)(1)を、内径1mmのガラス管に詰めた後、集電体として用いた銅線(直径0.9mm)で挟み込み、電気化学測定を行った。結果を下記表4に示す。
(Conductivity evaluation)
The obtained Pt/OLC-ND(ζ+) (1) was packed in a glass tube with an inner diameter of 1 mm, and then sandwiched between copper wires (diameter 0.9 mm) used as current collectors, and electrochemical measurements were performed. The results are shown in Table 4 below.

Figure 2023128418000004
Figure 2023128418000004

得られた電流/電圧直線の傾きから導電率を算出した。絶縁体であるND(ζ+)にPtを担持した場合は、NDのみと同程度の導電率であったが、NDをOLC化することにより導電率は大幅に向上した。 The conductivity was calculated from the slope of the obtained current/voltage straight line. When Pt was supported on ND (ζ+), which is an insulator, the conductivity was comparable to that of ND alone, but by converting the ND to OLC, the conductivity was significantly improved.

(電気化学特性評価)
続いて、得られたPt/OLC-ND(ζ+)(1)に水素還元処理を行った。
すなわち、Pt/OLC-ND(ζ+)(1)0.01gに、4%H2と96%N2の混合ガス雰囲気下において200℃で2時間の熱処理を行い、続いて空気雰囲気下において200℃で1時間加熱処理を行った。
(Electrochemical property evaluation)
Subsequently, the obtained Pt/OLC-ND(ζ+) (1) was subjected to hydrogen reduction treatment.
That is, 0.01 g of Pt/OLC-ND(ζ+) (1) was heat-treated at 200°C for 2 hours in a mixed gas atmosphere of 4% H 2 and 96% N 2 , and then heat-treated for 2 hours in an air atmosphere. Heat treatment was performed at ℃ for 1 hour.

水素還元処理後のPt/OLC-ND(ζ+)(1)1mgに、35質量%エタノール溶液0.5mL、5質量%のナフィオン(疎水性テフロン(登録商標)骨格にスルホン酸基を持つパーフルオロ側鎖が結合した構成を有するパーフルオロカーボン)を添加して、超音波分散処理を3時間行って電極層形成材料(1)を得た。
尚、前記ナフィオンの添加量は、下記式から算出した。
ナフィオン添加量(μL)=[Pt/OLC-ND(1mg)×(1-白金担持率)×(ナフィオン/担体;質量比)]/[ナフィオン密度(0.874g/cm3)×0.05]
To 1 mg of Pt/OLC-ND(ζ+) (1) after hydrogen reduction treatment, 0.5 mL of 35% by mass ethanol solution, 5% by mass of Nafion (a perfluorinated material having a sulfonic acid group in the hydrophobic Teflon (registered trademark) skeleton) A perfluorocarbon having a structure in which side chains are bonded was added thereto, and ultrasonic dispersion treatment was performed for 3 hours to obtain an electrode layer forming material (1).
The amount of Nafion added was calculated from the following formula.
Amount of Nafion added (μL) = [Pt/OLC-ND (1 mg) × (1-Platinum support rate) × (Nafion/carrier; mass ratio)] / [Nafion density (0.874 g/cm 3 ) × 0.05 ]

得られた電極層形成材料(1)を、GC電極(電極半径:0.15cm、ビー・エー・エス(株)製)上にキャストし乾燥させて、電極層(1)を得た。
尚、前記電極層形成材料(1)のキャスト量は、下記式から算出した。
電極層形成材料(1)のキャスト量=[20μg-pt/cm2×GC電極表面積(0.152×πcm2)×(500+ナフィオン添加量(μL))]/[Pt/OLC-ND(1mg)×白金担持率×1000(μg/mg)]
The obtained electrode layer forming material (1) was cast on a GC electrode (electrode radius: 0.15 cm, manufactured by BAS Corporation) and dried to obtain an electrode layer (1).
Incidentally, the cast amount of the electrode layer forming material (1) was calculated from the following formula.
Cast amount of electrode layer forming material (1) = [20 μg -pt / cm 2 × GC electrode surface area (0.15 2 × πcm 2 ) × (500 + amount of Nafion added (μL))] / [Pt/OLC-ND ( 1mg) x platinum loading rate x 1000 (μg/mg)]

3電極式セルを用いて、起動/停止試験を800サイクル行って、得られた電極層(1)の、0.1MのHClO4中でのCV測定(cyclic voltammetry、走査速度:100mV/s)を行った。結果を図11に示す。水素脱着ピークが観測されたことから、Pt/OLC-ND(ζ+)(1)のPt粒子が触媒として機能していることが分かる。 CV measurement (cyclic voltammetry, scanning speed: 100 mV/s) of the obtained electrode layer (1) in 0.1 M HClO 4 after 800 cycles of start/stop tests using a 3-electrode cell. I did it. The results are shown in FIG. The observation of a hydrogen desorption peak indicates that the Pt particles of Pt/OLC-ND(ζ+) (1) function as a catalyst.

(酸素還元用触媒としての有用性評価)
3電極式セルを用い、得られた電極層(1)の、酸素飽和0.1MのHClO4(O2バブリング)中でのCV測定(cyclic voltammetry、走査速度:50mV/s)を行った。結果を図12に示す。図12から、Pt/OLC-ND(ζ+)(1)が酸素還元反応触媒活性を有していることが確認できた。この結果より、Pt/OLC-ND(ζ+)(1)は酸素還元用触媒として有用であることがわかる。
(Evaluation of usefulness as a catalyst for oxygen reduction)
CV measurement (cyclic voltammetry, scanning speed: 50 mV/s) of the obtained electrode layer (1) in HClO 4 (O 2 bubbling) with an oxygen saturation of 0.1 M was performed using a three-electrode cell. The results are shown in FIG. From FIG. 12, it was confirmed that Pt/OLC-ND(ζ+) (1) had oxygen reduction reaction catalytic activity. This result shows that Pt/OLC-ND(ζ+) (1) is useful as a catalyst for oxygen reduction.

(長期サイクル起動停止耐久試験)
前記電極層(1)について、ポテンショスタット(HZ-7000、北斗電工(株)製)を使用し、起動停止を模した加速劣化試験を行った。
3電極式セルを用いて、起動/停止試験を繰り返し行って、得られた電極層(1)の、0.1MのHClO4中でのCV測定(cyclic voltammetry、走査速度:50mV/s)を行った。
また、Pt/OLC-ND(ζ+)(1)に替えて標準触媒40質量%Pt/C(IFPC40-II)を使用して得られた電極層(x)を比較例として使用した。
その結果、水素脱着の電荷維持率が初期値の50%となるまでのサイクル数は、電極層(1)では27000サイクルであったのに対し、電極層(x)では15500サイクルであり、電極層(1)は電極層(x)に比べて約1.7倍の耐久性を有することが分かった。結果を図13に示す。
(Long term cycle start/stop durability test)
The electrode layer (1) was subjected to an accelerated deterioration test simulating starting and stopping using a potentiostat (HZ-7000, manufactured by Hokuto Denko Co., Ltd.).
Using a three-electrode cell, the start/stop test was repeated, and the CV measurement (cyclic voltammetry, scanning speed: 50 mV/s) of the obtained electrode layer (1) in 0.1 M HClO 4 was carried out. went.
Further, an electrode layer (x) obtained by using a standard catalyst of 40% by mass Pt/C (IFPC40-II) in place of Pt/OLC-ND(ζ+) (1) was used as a comparative example.
As a result, the number of cycles until the charge retention rate of hydrogen desorption reached 50% of the initial value was 27,000 cycles for electrode layer (1), while it was 15,500 cycles for electrode layer (x). It was found that the layer (1) had about 1.7 times the durability as the electrode layer (x). The results are shown in FIG.

実施例2
3.06質量%のζ-ND水分散液(商品名「ディノベア」、(株)ダイセル製)32.7g(ND含有量:1g)と、ポリエチレングリコール(PEG)0.178mLと、10mM白金分散液15.4mL(Ptの使用量は、NDに対して3質量%)を含むスラリー2を調製した。
Example 2
32.7 g (ND content: 1 g) of 3.06% by mass ζ-ND aqueous dispersion (trade name "Dinobear", manufactured by Daicel Corporation), 0.178 mL of polyethylene glycol (PEG), and 10 mM platinum dispersion. Slurry 2 containing 15.4 mL of liquid (the amount of Pt used was 3% by mass based on ND) was prepared.

スラリー1に替えてスラリー2を使用した以外は実施例1と同様にして、Pt/ND複合体(2)を乾燥粉体として得た。得られたPt/ND(ζ-)複合体(2)のSEM像を図14に示す。 A Pt/ND composite (2) was obtained as a dry powder in the same manner as in Example 1 except that Slurry 2 was used instead of Slurry 1. A SEM image of the obtained Pt/ND(ζ-) composite (2) is shown in FIG.

また、Pt/ND(ζ-)複合体(2)について、実施例1と同様の方法でPEGを除去してPt/ND(ζ-)複合体(2’)を得た。Pt/ND(ζ-)複合体(2’)のXPSスペクトルデータを図15に示す。図15より、明瞭なPt 4fピークが確認できたことから、Ptが存在していることが分かる。 Further, regarding Pt/ND(ζ-) composite (2), PEG was removed in the same manner as in Example 1 to obtain Pt/ND(ζ-) composite (2'). FIG. 15 shows XPS spectrum data of Pt/ND(ζ-) complex (2'). From FIG. 15, a clear Pt 4f peak was confirmed, indicating the presence of Pt.

その後、Pt/ND(ζ-)複合体(2’)を、実施例1と同様の方法でOLC化して、Pt/OLC-ND(ζ-)(2)を得た。得られたPt/OLC-ND(ζ-)(2)のSEM像を図16、TEM像を図17に示す。これらの図より、ND(ζ-)の表層がOLC化していること、白金が分散して担持されていることが分かる。 Thereafter, the Pt/ND(ζ-) complex (2') was converted into OLC in the same manner as in Example 1 to obtain Pt/OLC-ND(ζ-) (2). The SEM image of the obtained Pt/OLC-ND(ζ-) (2) is shown in FIG. 16, and the TEM image is shown in FIG. 17. From these figures, it can be seen that the surface layer of ND(ζ-) is converted into OLC and that platinum is supported in a dispersed manner.

続いて、得られたPt/OLC-ND(ζ-)(2)に水素還元処理を行い、水素還元処理後のPt/OLC-ND(ζ-)(2)を得た。水素還元処理後のPt/OLC-ND(ζ-)(2)のXPSスペクトルデータを図18と表5に示す。図18より、明瞭なPt 4fピークが確認できたことから、Ptが存在していることが分かる。 Subsequently, the obtained Pt/OLC-ND(ζ-) (2) was subjected to hydrogen reduction treatment to obtain Pt/OLC-ND(ζ-) (2) after the hydrogen reduction treatment. XPS spectrum data of Pt/OLC-ND(ζ-) (2) after hydrogen reduction treatment is shown in FIG. 18 and Table 5. From FIG. 18, a clear Pt 4f peak was confirmed, indicating the presence of Pt.

Figure 2023128418000005
Figure 2023128418000005

Claims (6)

下記オニオンライクカーボン化ナノダイヤモンドの凝集体中に白金を含む、白金担持オニオンライクカーボン化ナノダイヤモンド。
オニオンライクカーボン化ナノダイヤモンド:ナノダイヤモンドを核とし、その表面に複数のグラフェン層を有する
A platinum-supported onion-like carbonized nanodiamond containing platinum in the aggregate of the following onion-like carbonized nanodiamond.
Onion-like carbonized nanodiamond: nanodiamond as a core with multiple graphene layers on its surface
請求項1に記載の白金担持オニオンライクカーボン化ナノダイヤモンドを含む燃料電池用触媒。 A fuel cell catalyst comprising the platinum-supported onion-like carbonized nanodiamond according to claim 1. 請求項1に記載の白金担持オニオンライクカーボン化ナノダイヤモンドと、バインダーとを含む、燃料電池用電極層形成材料。 A material for forming an electrode layer for a fuel cell, comprising the platinum-supported onion-like carbonized nanodiamond according to claim 1 and a binder. 請求項1に記載の白金担持オニオンライクカーボン化ナノダイヤモンドを含む燃料電池用電極層。 An electrode layer for a fuel cell comprising the platinum-supported onion-like carbonized nanodiamond according to claim 1. 請求項4に記載の燃料電池用電極層を備えた燃料電池。 A fuel cell comprising the fuel cell electrode layer according to claim 4. 固体高分子形燃料電池である、請求項5に記載の燃料電池。 The fuel cell according to claim 5, which is a polymer electrolyte fuel cell.
JP2022032756A 2022-03-03 2022-03-03 Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell Pending JP2023128418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022032756A JP2023128418A (en) 2022-03-03 2022-03-03 Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022032756A JP2023128418A (en) 2022-03-03 2022-03-03 Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell

Publications (1)

Publication Number Publication Date
JP2023128418A true JP2023128418A (en) 2023-09-14

Family

ID=87972974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022032756A Pending JP2023128418A (en) 2022-03-03 2022-03-03 Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell

Country Status (1)

Country Link
JP (1) JP2023128418A (en)

Similar Documents

Publication Publication Date Title
Zhang et al. Metal‐organic framework‐derived Fe/Cu‐substituted Co nanoparticles embedded in CNTs‐grafted carbon polyhedron for Zn‐air batteries
JP6198810B2 (en) Carbon material for catalyst support
Zhu et al. Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as an oxygen reduction electrocatalyst for zinc–air batteries
JP6370467B2 (en) Carbon material for catalyst carrier, catalyst for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing carbon material for catalyst carrier
Yu et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction
Zhao et al. One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction
US9735433B2 (en) Fuel cell
JP6802363B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
Hu et al. Reduction free room temperature synthesis of a durable and efficient Pd/ordered mesoporous carbon composite electrocatalyst for alkaline direct alcohols fuel cell
JP2011525468A (en) Controllable synthesis of porous carbon spheres and their electrochemical application
JPWO2008093731A1 (en) Fuel cell electrode catalyst and fuel cell using the same
JP4764866B2 (en) Catalyst carrier, catalyst, method for producing catalyst carrier, and method for producing catalyst
Lu et al. Synthesis of B-doped hollow carbon spheres as efficient non-metal catalyst for oxygen reduction reaction
WO2016141414A1 (en) Electrocatalysts and electrochemical cells
JP2018098196A (en) Electrode catalyst for fuel cell
Fujigaya et al. Interfacial engineering of platinum catalysts for fuel cells: Methanol oxidation is dramatically improved by polymer coating on a platinum catalyst
JP2018012626A (en) Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
JP2015188808A (en) Oxidation-reduction catalyst, electrode material, electrode, solar battery, membrane battery assembly for fuel battery, and fuel battery
KR102187859B1 (en) Basic electrocatalyst for producing ethylene through electrochemically reduction of carbon dioxide, electrode and device including the same, and a method for producing the electrode
Kumar et al. Transforming NiCo 2 O 4 nanorods into nanoparticles using citrus lemon juice enhancing electrochemical properties for asymmetric supercapacitor and water oxidation
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP7110377B2 (en) CARBON MATERIAL FOR CATALYST CARRIER FOR PROTEIN POLYMER FUEL CELL AND METHOD FOR MANUFACTURING THE SAME
JP6802362B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
JP2023128418A (en) Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell
JP6854685B2 (en) A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.