JP2023118753A - Motor-operated valve and refrigeration cycle system - Google Patents

Motor-operated valve and refrigeration cycle system Download PDF

Info

Publication number
JP2023118753A
JP2023118753A JP2023097543A JP2023097543A JP2023118753A JP 2023118753 A JP2023118753 A JP 2023118753A JP 2023097543 A JP2023097543 A JP 2023097543A JP 2023097543 A JP2023097543 A JP 2023097543A JP 2023118753 A JP2023118753 A JP 2023118753A
Authority
JP
Japan
Prior art keywords
valve
diameter
space
port
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023097543A
Other languages
Japanese (ja)
Other versions
JP7509961B2 (en
Inventor
一也 小林
Kazuya Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2023097543A priority Critical patent/JP7509961B2/en
Priority claimed from JP2023097543A external-priority patent/JP7509961B2/en
Publication of JP2023118753A publication Critical patent/JP2023118753A/en
Application granted granted Critical
Publication of JP7509961B2 publication Critical patent/JP7509961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

To provide a motor-operated valve and a refrigeration cycle system which are capable of reducing noise caused by a fluid flow.SOLUTION: A valve port 14 comprises a first port 14a as a valve mouth having a circumferential surface having a center at an axis L, a larger-diameter space 151 that is larger in diameter than the first port 14a, and a smaller-diameter space 152 that is smaller in diameter than the larger-diameter space 151. A valve body 1 has a cylindrical rectifying member 15 that is connected to the first port 14a to constitute a portion of the valve port 14. An inner surface of the rectifying member 15 is reduced in diameter in a plurality of steps and extends to the opposite side of the valve chamber 1C. A part of the plurality of steps that is the closest to the first port 14a constitutes at least a portion of the larger-diameter space 151, and a smallest-diameter part constitutes the smaller-diameter space 152.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁及び冷凍サイクルシステムに関する。 TECHNICAL FIELD The present invention relates to an electrically operated valve and a refrigeration cycle system used in a refrigeration cycle system and the like.

近年、例えば、空気調和機では、ファンや圧縮機等の静音化が進み、更に、空気調和機の冷凍サイクルの配管内を流れる流体としての冷媒の騒音、特に膨張弁に用いられる電動弁における騒音を低減させる技術も開発され、実施に供されている(例えば、特許文献1等を参照)。 In recent years, for example, in air conditioners, the noise of fans and compressors has been reduced, and the noise of the refrigerant as a fluid flowing in the piping of the refrigeration cycle of the air conditioner, especially the noise in the electric valve used for the expansion valve. A technique for reducing is also developed and put into practice (see, for example, Patent Document 1, etc.).

国際公開第2018/230159号公報International Publication No. 2018/230159

本願の発明者は、研究の中で、電動弁における流体の流れに起因する騒音は、特に微開状態時には、弁口と連続する弁ポートの形状の他に弁口から入り込む弁体のニードル部の長さにも依存することを判明させ、弁口から入り込む弁体のニードル部の長さの特徴に合わせて弁口と連続する弁ポートの形状を工夫することで、騒音の低減が図れる可能性があることを見出した。 The inventors of the present application have found in their studies that the noise caused by the flow of fluid in an electrically operated valve, especially in the slightly opened state, is caused by the shape of the valve port that is continuous with the valve opening and the needle portion of the valve body that enters from the valve opening. It is possible to reduce noise by devising the shape of the valve port that is continuous with the valve port according to the characteristics of the length of the needle part of the valve body that enters from the valve port. found that there is a gender.

なお、特許文献1に開示された発明をはじめとする従来技術では、弁口から入り込む弁体のニードル部の長さの特徴に合わせて弁口と連続する弁ポートの形状を工夫することで騒音を低減させるという思想の技術は未だ見聞されない。 In addition, in the prior art including the invention disclosed in Patent Document 1, noise is generated by devising the shape of the valve port, which is continuous with the valve opening, according to the characteristics of the length of the needle portion of the valve body that enters from the valve opening. There is still no technology with the idea of reducing the

そこで、本発明の目的は、弁口から入り込む弁体のニードル部の長さの特徴に合わせて弁口と連続する弁ポートの形状を工夫することで、流体の流れに起因する騒音を低減させることができる電動弁及び冷凍サイクルシステムを提供することである。 Accordingly, an object of the present invention is to reduce noise caused by the flow of fluid by devising the shape of a valve port that is continuous with the valve opening according to the characteristics of the length of the needle portion of the valve body that enters from the valve opening. An object of the present invention is to provide a motor-operated valve and a refrigeration cycle system.

本発明の電動弁は、弁室及び弁座部を構成する弁本体と、前記弁座部に開口して弁体が移動する軸線方向に延びる弁ポートと、前記弁座部と接離して前記弁ポートの開度を変更するニードル部を有する前記弁体と、前記弁体を前記軸線方向に駆動させる駆動部と、を備えた電動弁であって、前記弁ポートは、前記軸線を中心とした円周面を有する弁口と、前記弁口よりも拡径された拡径空間と、前記拡径空間よりも縮径された縮径空間と、を備え、前記弁本体には、内部が前記弁口に連通して前記弁ポートの一部を構成する筒状の整流部材が設けられ、前記整流部材の内周面は、複数段に縮径されて前記弁室とは反対側に延びて設けられ、前記複数段のうちの最も前記弁口側の部分は、前記拡径空間の少なくとも一部を構成するとともに、最も縮径された部分は、前記縮径空間を構成し、前記弁口の直径をD1とし、前記弁体が前記弁座部に着座した状態で前記弁座部の着座部から前記ニードル部の先端までの長さをL1とした場合、L1/D1≧1であることを特徴とする。 A motor-driven valve according to the present invention includes a valve main body that forms a valve chamber and a valve seat, a valve port that opens in the valve seat and extends in an axial direction in which the valve body moves, and a valve that contacts and separates from the valve seat. A motor-operated valve comprising: the valve body having a needle portion for changing the degree of opening of the valve port; and a driving portion for driving the valve body in the axial direction, wherein the valve port is centered on the axis. a valve port having a circular circumferential surface, a diameter-enlarged space having a diameter larger than that of the valve port, and a diameter-reduced space having a diameter smaller than that of the diameter-enlarged space; A cylindrical rectifying member is provided that communicates with the valve port and constitutes a part of the valve port, and the inner peripheral surface of the rectifying member is reduced in diameter in a plurality of steps and extends to the side opposite to the valve chamber. A portion of the plurality of stages closest to the valve port constitutes at least a portion of the diameter-enlarged space, and a portion with the smallest diameter constitutes the diameter-reduced space, and the valve L1/D1≧1, where D1 is the diameter of the port, and L1 is the length from the seating portion of the valve seat portion to the tip of the needle portion with the valve body seated on the valve seat portion. It is characterized by

この際、前記整流部材における前記拡径空間と前記縮径空間との間には、前記拡径空間よりも内径が小さく、かつ、前記縮径空間よりも内径が大きい第2の拡径空間が形成されていることが好ましい。 At this time, a second diameter expansion space having an inner diameter smaller than that of the diameter expansion space and larger than that of the diameter reduction space is provided between the diameter expansion space and the diameter reduction space in the straightening member. is preferably formed.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、前記いずれかの電動弁が、前記膨張弁として用いられていることを特徴とする。 A refrigerating cycle system of the present invention is a refrigerating cycle system including a compressor, a condenser, an expansion valve, and an evaporator, and any one of the motor-operated valves is used as the expansion valve. characterized by

本発明の電動弁および冷凍サイクルシステムによれば、弁ポートにおける流体の流れに起因する騒音を低減させることができる。 According to the electric valve and the refrigeration cycle system of the present invention, it is possible to reduce noise caused by fluid flow at the valve port.

本発明の第1実施形態に係る電動弁を示す縦断面図である。1 is a longitudinal sectional view showing an electrically operated valve according to a first embodiment of the invention; FIG. 前記電動弁の要部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the principal part of the said motor-operated valve. 前記電動弁を微開状態として、冷媒の流れを説明するための説明図である。FIG. 4 is an explanatory diagram for explaining the flow of refrigerant with the motor-operated valve in a slightly open state; 本発明の第2実施形態に係る電動弁の要部を拡大して示す縦断面図である。FIG. 7 is a vertical cross-sectional view showing an enlarged main part of an electrically operated valve according to a second embodiment of the present invention; 本発明の第3実施形態に係る電動弁の要部を拡大して示す縦断面図である。FIG. 11 is a longitudinal sectional view showing an enlarged main part of a motor-operated valve according to a third embodiment of the present invention; 本発明の冷凍サイクルシステムの一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the refrigerating-cycle system of this invention.

本発明の第1実施形態に係る電動弁を図1~図3に基づいて説明する。図1に示すように、本実施形態の電動弁10Aは、弁本体1と、弁体2と、駆動部としてのステッピングモータ3と、弁ポート14と、を備えている。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 A motor operated valve according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. As shown in FIG. 1, an electrically operated valve 10A of this embodiment includes a valve body 1, a valve body 2, a stepping motor 3 as a drive section, and a valve port . Note that the concept of "up and down" in the following description corresponds to up and down in the drawing of FIG.

弁本体1は、筒状の弁ハウジング部材1Aと、弁ハウジング部材1Aの内部に固定される弁ガイド部材1Bと、弁ハウジング1Aの上部に固定される円筒状のケース4と、ケース4の上端開口部に固定される支持部材5と、を有している。 The valve body 1 includes a cylindrical valve housing member 1A, a valve guide member 1B fixed inside the valve housing member 1A, a cylindrical case 4 fixed to the upper portion of the valve housing 1A, and an upper end of the case 4. and a support member 5 fixed to the opening.

弁ハウジング部材1Aは、その内部に略円筒状の弁室1Cが形成され、側面側から弁室1Cに連通する第1の継手管11が取り付けられている。また、弁ハウジング部材1Aには、弁座部13の中央部に円柱状の弁口である第1ポート14a(図2参照)が形成されている。また、弁ハウジング部材1Aの上端部には、下記の弁ガイド部材1Bを囲うようにリム1bが形成されている。さらに、弁ハウジング部材1Aの底面側にリング状のフラ
ンジ部15aを有する略円筒状の整流部材15が取り付けられている。そして、弁室1Cに連通する第2の継手管12が、整流部材15のフランジ部15aに当接するとともに、弁ハウジング部材1Aの底部にろう付けにより取り付けられている。第1の継手管11から流体としての冷媒が流入した場合には、弁室1Cを介して第2の継手管12から冷媒が流出される。なお、弁ハウジング部材1Aの第1ポート14aと、整流部材15の円筒状の内周面とが連続することで弁ポート14が形成され、この弁ポート14の詳細については後述する。
A substantially cylindrical valve chamber 1C is formed in the interior of the valve housing member 1A, and a first joint pipe 11 communicating with the valve chamber 1C from the side surface side is attached. A first port 14a (see FIG. 2), which is a cylindrical valve port, is formed in the central portion of the valve seat portion 13 of the valve housing member 1A. A rim 1b is formed at the upper end of the valve housing member 1A so as to surround a valve guide member 1B described below. Further, a substantially cylindrical straightening member 15 having a ring-shaped flange portion 15a is attached to the bottom surface of the valve housing member 1A. A second joint pipe 12 communicating with the valve chamber 1C abuts against the flange portion 15a of the rectifying member 15 and is attached to the bottom portion of the valve housing member 1A by brazing. When the refrigerant as a fluid flows from the first joint pipe 11, the refrigerant flows out from the second joint pipe 12 through the valve chamber 1C. A valve port 14 is formed by connecting the first port 14a of the valve housing member 1A and the cylindrical inner peripheral surface of the straightening member 15, and the details of the valve port 14 will be described later.

弁ガイド部材1Bは、弁ハウジング部材1Aの上部から弁室1C内に挿通されるように圧入して取り付けられており、この弁ガイド部材1Bには、軸線Lを中心として弁ガイド孔16が形成されている。ケース4は、弁ハウジング部材1Aのリム1bの外周に嵌合するように組み付けられ、リム1bをかしめるとともに、底部外周をろう付けすることにより弁ハウジング部材1Aに固着されている。 The valve guide member 1B is press-fitted so as to be inserted into the valve chamber 1C from the upper portion of the valve housing member 1A. It is The case 4 is assembled so as to fit on the outer circumference of the rim 1b of the valve housing member 1A, and is fixed to the valve housing member 1A by crimping the rim 1b and brazing the outer circumference of the bottom portion.

支持部材5は、ケース4の上端開口部に固定金具41を介して溶接固定されている。この支持部材5の中心には、弁ポート14等の軸線Lと同軸に形成された雌ねじ部5aと、雌ねじ部5aの下側に形成されたねじ溝がない軸受部5bと、が設けられており、下方に雌ねじ部5a及び軸受部5bの外周よりも径の大きな円筒状のガイド孔5cが形成されている。さらに、支持部材5の上部外周には、螺旋状のガイド溝5dが形成されている。 The support member 5 is welded and fixed to the upper end opening of the case 4 via a fixing metal fitting 41 . At the center of the support member 5, a female threaded portion 5a formed coaxially with the axis L of the valve port 14, etc., and a bearing portion 5b without a thread groove formed below the female threaded portion 5a are provided. A cylindrical guide hole 5c having a larger diameter than the outer circumferences of the female screw portion 5a and the bearing portion 5b is formed below. Further, a spiral guide groove 5d is formed in the upper outer periphery of the support member 5. As shown in FIG.

弁体2は、下側先端にニードル部21が設けられたロッド軸22と、ロッド軸22の上端部を保持する弁ホルダ6と、を有している。 The valve body 2 has a rod shaft 22 having a needle portion 21 at its lower tip, and a valve holder 6 that holds the upper end portion of the rod shaft 22 .

ロッド軸22は、弁ガイド部材1Bの弁ガイド孔16内に軸線L方向に摺動可能に挿入されている。また、ロッド軸22の上端部には、フランジ部23が形成されている。なお、ロッド軸22に設けられたニードル部21は、弁体2が最下方に移動した全閉状態時に弁座部13に着座するニードル部21の着座面部21aに連なって、その先端側に向かうに従い縮径するように多段に面取りされたイコールパーセント特性を有する形状である。また、後述するように、本実施形態では、ニードル部21は、着座した状態で弁座部13の弁座面13aに位置するニードル部21の着座面部21aが当接する弁座部13の着座部131からこのニードル部21の先端までの長さL1と、第1ポート14aの径D1と、がL1/D1≒1.8の関係を有するものである。 The rod shaft 22 is slidably inserted in the direction of the axis L in the valve guide hole 16 of the valve guide member 1B. A flange portion 23 is formed at the upper end portion of the rod shaft 22 . The needle portion 21 provided on the rod shaft 22 is connected to the seating surface portion 21a of the needle portion 21 that is seated on the valve seat portion 13 when the valve body 2 is in the fully closed state where the valve body 2 is moved to the lowest position, and extends toward the tip side thereof. It is a shape with an equal percentage characteristic chamfered in multiple stages so that the diameter decreases according to . As will be described later, in the present embodiment, the needle portion 21 is a seat portion of the valve seat portion 13 with which the seat surface portion 21a of the needle portion 21 positioned on the valve seat surface 13a of the valve seat portion 13 abuts in a seated state. The length L1 from 131 to the tip of the needle portion 21 and the diameter D1 of the first port 14a have a relation of L1/D1≈1.8.

弁ホルダ6は、筒状の円筒部61の下端にボス部62が固着されるとともに、円筒部61内にバネ受け63と圧縮コイルバネ64とワッシャ65とを備えている。そして、弁ホルダ6は、ボス部62の挿通孔62a内にロッド軸22の上端部が挿通されるとともに、フランジ部23をボス部62に当接させてロッド軸22の上端部を保持している。さらに、弁ホルダ6は、支持部材5のガイド孔5cに挿通され、軸線L方向に摺動可能に支持されている。 The valve holder 6 has a boss portion 62 fixed to the lower end of a cylindrical portion 61 , and has a spring receiver 63 , a compression coil spring 64 and a washer 65 inside the cylindrical portion 61 . The upper end portion of the rod shaft 22 is inserted through the insertion hole 62a of the boss portion 62 of the valve holder 6, and the flange portion 23 is brought into contact with the boss portion 62 to hold the upper end portion of the rod shaft 22. there is Further, the valve holder 6 is inserted through the guide hole 5c of the support member 5 and supported so as to be slidable in the axis L direction.

駆動部としてのステッピングモータ3は、キャン7と、キャン7内に設けられたマグネットロータ31と、ロータ軸32と、不図示のステータコイルと、ステッピングモータ3の回転ストッパ機構と、を有している。 The stepping motor 3 as a drive unit has a can 7, a magnet rotor 31 provided in the can 7, a rotor shaft 32, a stator coil (not shown), and a rotation stopper mechanism for the stepping motor 3. there is

キャン7は、ケース4の上端に溶接などによって気密に固定され、支持部材5、及び後述するマグネットロータ31を収納している。マグネットロータ31は、外周部を多極に着磁されており、その中心にロータ軸32が固定されている。ロータ軸32は、その下端部が、弁ホルダ6の円筒部61の上端部を貫通し、バネ受け63の上面に当接するとともに、抜け止め用のフランジ部32cが、ワッシャ65を介して円筒部61内に保持されている。また、ロータ軸32は、中間部に縮径部32bが形成され、その上側表面に雄ねじ
部32aが形成されている。この雄ねじ部32aは、支持部材5の雌ねじ部5aに螺合され、これらの雄ねじ部32a及び雌ねじ部5aによって、駆動部のネジ送り機構が構成され、弁体2が軸線L方向に進退駆動されるようになっている。ステータコイルは、キャン7の外周に配設されており、このステータコイルにパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ31が回転されてロータ軸32が回転するようになっている。
The can 7 is hermetically fixed to the upper end of the case 4 by welding or the like, and accommodates the support member 5 and a magnet rotor 31, which will be described later. The magnet rotor 31 has its outer peripheral portion magnetized to have multiple poles, and a rotor shaft 32 is fixed at its center. The lower end portion of the rotor shaft 32 passes through the upper end portion of the cylindrical portion 61 of the valve holder 6 and abuts on the upper surface of the spring bearing 63. 61. Further, the rotor shaft 32 has a reduced diameter portion 32b formed in an intermediate portion, and a male screw portion 32a formed on the upper surface thereof. The male threaded portion 32a is screwed into the female threaded portion 5a of the support member 5. The male threaded portion 32a and the female threaded portion 5a constitute a screw feeding mechanism of the driving portion, and the valve body 2 is driven forward and backward in the direction of the axis L. It has become so. The stator coil is arranged on the outer periphery of the can 7, and when a pulse signal is applied to the stator coil, the magnet rotor 31 is rotated according to the number of pulses, and the rotor shaft 32 is rotated. there is

ステッピングモータ3の回転ストッパ機構は、半径方向外向きに突出する爪部81を有するコイル状の従動スライダ8を有し、この従動スライダ8が支持部材5のガイド溝5d内に螺合されて構成されている。マグネットロータ31が回転すると、マグネットロータ31の内側の突出部が爪部81に当接し、従動スライダ8は、マグネットロータ31の回転に追従して回転するとともに、ガイド溝5dに案内されて上下動し、ガイド溝5dの最下部又は最上部に追従スライダ8の端部が当接すると、マグネットロータ31の回転が強制的に停止されるようになっている。 The rotation stopper mechanism of the stepping motor 3 has a coil-shaped driven slider 8 having claws 81 protruding radially outward. It is When the magnet rotor 31 rotates, the protruding portion inside the magnet rotor 31 comes into contact with the claw portion 81, and the driven slider 8 rotates following the rotation of the magnet rotor 31 and moves up and down while being guided by the guide groove 5d. When the end of the follow-up slider 8 comes into contact with the bottom or top of the guide groove 5d, the rotation of the magnet rotor 31 is forcibly stopped.

弁ポート14は、図2に示すように、軸線Lを中心とした円周面を有する弁口としての第1ポート14aと、第1ポート14aの下流側に連続し、第1ポート14aよりも拡径された円周面を有する拡径空間151と、拡径空間151の下流側に連続し、拡径空間151よりも縮径された円周面を有する縮径空間152と、を有して構成されている。 As shown in FIG. 2, the valve port 14 is continuous with a first port 14a as a valve opening having a circumferential surface centered on the axis L, and a downstream side of the first port 14a. A diameter-enlarged space 151 having a diameter-enlarged circumferential surface, and a diameter-reduced space 152 continuing downstream of the diameter-expanded space 151 and having a circumferential surface with a diameter smaller than that of the diameter-expanded space 151 . configured as follows.

弁口としての第1ポート14aは、直径がD1で軸線L方向の長さがL0であり、拡径空間151は、直径がD2で軸線L方向の長さがL2であり、縮径空間152は、直径がD3で軸線方向の長さがL3である。そして、本実施形態では、弁体2が弁座部13の着座部131に着座した状態で弁座部13の着座部131からニードル部21の先端までの長さL1は、L1/D1≒1.8の関係を有し、L1/D1≧1の関係を満たし、拡径空間151の直径D2と長さL2とが、L2/D2≒4の関係を有し、L2/D2≧1の関係を満たしている。 The first port 14a as a valve port has a diameter of D1 and a length of L0 in the direction of the axis L. The diameter expansion space 151 has a diameter of D2 and a length of L2 in the direction of the axis L. has a diameter of D3 and an axial length of L3. In this embodiment, the length L1 from the seating portion 131 of the valve seat portion 13 to the tip of the needle portion 21 in a state where the valve body 2 is seated on the seating portion 131 of the valve seat portion 13 is L1/D1≈1. .8, satisfies the relationship of L1/D1≧1, the diameter D2 and the length L2 of the expanded diameter space 151 have the relationship of L2/D2≈4, and the relationship of L2/D2≧1 meets

ここで、弁口としての第1ポート14aは、弁座13に軸線Lを中心として形成されている。拡径空間151で直ちに冷媒の流速を減速させる必要があることから、第1ポート14aの長さL0は、その直径D1よりも小さいことが好ましい。そこで、本実施形態では、第1弁ポート14aの軸線L方向の長さL0が、約0.25D1とされている。 Here, the first port 14a as a valve opening is formed on the valve seat 13 with the axis L as the center. The length L0 of the first port 14a is preferably smaller than the diameter D1 because it is necessary to immediately reduce the flow velocity of the refrigerant in the expanded diameter space 151 . Therefore, in this embodiment, the length L0 of the first valve port 14a in the direction of the axis L is approximately 0.25D1.

拡径空間151は、軸線Lを中心として、弁座13に設けられた第1テーパ部14bと、弁座部13と整流部材15とに連続して設けられた第2ポート14cとにより形成されている。そして、本実施形態では、拡径空間151の軸線L方向の長さL2は、約5D1である。なお、長さL2は、L1-L0≦L2≦8D1の関係を満たすことが好ましい。すなわち、長さL2は、少なくとも弁体2が着座部131に着座した状態でニードル部21の先端が拡径空間151内に位置する長さであればよく、弁口の直径D1の8倍以下であることが好ましい。縮径空間152は、整流部材15に設けられた第3ポート14dと、第2テーパ部14eとにより形成されている。そして、本実施形態では、縮径空間152の軸線L方向の長さL3は、約0.5L2である。なお、長さL3は、0.3L2≦L3≦6.5L2の関係を満たすことが好ましい。 The expanded diameter space 151 is formed around the axis L by a first tapered portion 14b provided on the valve seat 13 and a second port 14c provided continuously between the valve seat portion 13 and the rectifying member 15. ing. Further, in this embodiment, the length L2 of the expanded diameter space 151 in the direction of the axis L is approximately 5D1. The length L2 preferably satisfies the relationship L1-L0≤L2≤8D1. That is, the length L2 is at least a length that allows the tip of the needle portion 21 to be positioned within the expanded diameter space 151 when the valve body 2 is seated on the seat portion 131, and is eight times or less the diameter D1 of the valve port. is preferred. The diameter-reduced space 152 is formed by the third port 14d provided in the straightening member 15 and the second tapered portion 14e. In this embodiment, the length L3 of the reduced diameter space 152 in the direction of the axis L is approximately 0.5L2. The length L3 preferably satisfies the relationship of 0.3L2≤L3≤6.5L2.

また、本実施形態では、拡径空間151の直径D2は、約1.3D1である。なお、直径D2は、1.1D1≦D2≦1.4D1の関係を満たすことが好ましい。本実施形態では、縮径空間152の直径D3は、D1と同一である。なお、直径D3は、D3≦D1の関係を満たすことが好ましい。 Further, in this embodiment, the diameter D2 of the expanded diameter space 151 is approximately 1.3D1. The diameter D2 preferably satisfies the relationship of 1.1D1≤D2≤1.4D1. In this embodiment, the diameter D3 of the reduced diameter space 152 is the same as D1. Note that the diameter D3 preferably satisfies the relationship D3≦D1.

以上の本実施形態によれば、着座した状態でニードル部21の着座面部21aが当接す
る弁座部13の着座部131からニードル部21の先端までの長さL1がL1/D1≧1の関係を有するニードル部21の場合、図3に示すように、ニードル部21を微小に離座させて微開状態のときに、第1ポート14aとニードル部21との間の隙間から流入した冷媒は、実線の矢印で表したように、ニードル部21に沿うような偏った流れが多く生じるが、拡径空間151の直径D2と長さL2とがL2/D2≧1の関係を有することで、ニードル部21と第1ポート14aとの間の隙間を通過直後の最も乱れた冷媒の流速が減速されやすくなることから冷媒が整流化され、また、拡径空間151で整流された冷媒は、縮径空間152内では、縮径空間152の内周面に沿った流れになることにより一層整流化されるので、騒音をさらに低減させることができる。
According to the present embodiment described above, the length L1 from the seat portion 131 of the valve seat portion 13 against which the seat surface portion 21a of the needle portion 21 abuts in the seated state to the tip of the needle portion 21 satisfies the relationship of L1/D1≧1. As shown in FIG. 3, when the needle portion 21 is slightly separated from the needle portion 21 and is in a slightly open state, the coolant that flows through the gap between the first port 14a and the needle portion 21 is , As indicated by the solid-line arrows, a large amount of biased flow along the needle portion 21 occurs. Since the flow velocity of the most turbulent refrigerant immediately after passing through the gap between the needle portion 21 and the first port 14a is easily decelerated, the refrigerant is rectified, and the refrigerant rectified in the expanded diameter space 151 is contracted. In the diameter space 152, the flow is further rectified by flowing along the inner peripheral surface of the diameter-reduced space 152, so noise can be further reduced.

本実施形態では、各数値が、好ましい数値範囲内にあるため、上記した効果を十分に奏することができる。例えば、縮径空間152の長さL3が、上記した数値範囲以内になく、0.3L2未満の場合、騒音が発生する場合があるが、本実施形態によれば、その虞を低減することできる。 In this embodiment, each numerical value is within a preferable numerical range, so the above-described effects can be sufficiently achieved. For example, if the length L3 of the diameter-reduced space 152 is not within the numerical range described above and is less than 0.3L2, noise may be generated, but according to the present embodiment, it is possible to reduce this possibility. .

次に、図4に基づき、本発明の第2実施形態に係る電動弁10Bについて説明する。本実施形態の電動弁10Bは、第1実施形態の電動弁10Aと同様に、弁本体1と、弁体2と、駆動部としてのステッピングモータ3と、弁ポート14と、を備えている。電動弁10Bでは、弁ポート14の一部構成が電動弁10Aと相違している。以下、相違点について詳しく説明する。 Next, a motor operated valve 10B according to a second embodiment of the present invention will be described with reference to FIG. A motor-operated valve 10B of the present embodiment includes a valve main body 1, a valve body 2, a stepping motor 3 as a drive section, and a valve port 14, similarly to the motor-operated valve 10A of the first embodiment. The motor-operated valve 10B differs from the motor-operated valve 10A in a partial configuration of the valve port 14 . The differences will be described in detail below.

本実施形態の電動弁10Bでは、弁ポート14により、軸線Lを中心として、拡径空間151と、拡径空間151の下流側に連続し、拡径空間151よりも若干縮径された第2の拡径空間151Aと、第2の拡径空間151Aの下流側に連続し、第2の拡径空間151Aよりも縮径された縮径空間152と、が形成されている。すなわち、弁ポート14は、拡径空間151と、第2の拡径空間151Aと、縮径空間152と、の3段階で内径が変化し、この点が電動弁10Aと相違している。 In the electrically operated valve 10B of the present embodiment, the valve port 14 is connected to the enlarged diameter space 151 centered on the axis L, and the second diameter expansion space 151 is connected to the downstream side of the enlarged diameter space 151 and has a diameter slightly smaller than that of the enlarged diameter space 151. and a diameter-reduced space 152 that continues to the downstream side of the second diameter-expanded space 151A and has a smaller diameter than the second diameter-expanded space 151A. That is, the valve port 14 is different from the electric valve 10A in that the inner diameter of the valve port 14 changes in three stages: the enlarged diameter space 151, the second enlarged diameter space 151A, and the reduced diameter space 152.

以上の電動弁10Bの弁ポート14において、拡径空間151の直径D2と、拡径空間151と第2の拡径空間151Aの合計の長さL2との関係は、L2/D2≒2.6となっており、L2/D2≧1の関係を満たしている。また、第2の拡径空間151Aの直径D2aと、拡径空間151と第2の拡径空間151Aの合計の長さL2との関係も、L2/D2a≒2.8となっており、L2/D2≧1の関係を満たしている。さらに、縮径空間152の長さL3は、約0.6L2となっており、0.3L2≦L3≦6.5L2の関係を満たしている。このように本実施形態の電動弁10Bにおいても、第1実施形態の電動弁10Aと略同様の条件を満足することから、第1実施形態と同様の作用効果を奏することができる。 In the valve port 14 of the electric valve 10B described above, the relationship between the diameter D2 of the diameter expansion space 151 and the total length L2 of the diameter expansion space 151 and the second diameter expansion space 151A is L2/D2≈2.6. and satisfies the relationship of L2/D2≧1. Further, the relationship between the diameter D2a of the second diameter expansion space 151A and the total length L2 of the diameter expansion space 151 and the second diameter expansion space 151A is also L2/D2a≈2.8. /D2≧1. Furthermore, the length L3 of the reduced diameter space 152 is approximately 0.6L2, satisfying the relationship of 0.3L2≤L3≤6.5L2. As described above, the motor-operated valve 10B of the present embodiment also satisfies substantially the same conditions as the motor-operated valve 10A of the first embodiment, so that the same effects as those of the first embodiment can be obtained.

次に、図5に基づき、本発明の第3実施形態に係る電動弁10Cについて説明する。本実施形態の電動弁10Cは、第1実施形態の電動弁10Aと同様に、弁本体1と、弁体2と、駆動部としてのステッピングモータ3と、弁ポート14と、を備えている。電動弁10Cでは、弁ポート14の一部構成が第1実施形態の電動弁10Aと相違している。以下、相違点について詳しく説明する。 Next, a motor operated valve 10C according to a third embodiment of the present invention will be described with reference to FIG. A motor-operated valve 10C of the present embodiment includes a valve main body 1, a valve body 2, a stepping motor 3 as a drive section, and a valve port 14, similarly to the motor-operated valve 10A of the first embodiment. The motor-operated valve 10C differs from the motor-operated valve 10A of the first embodiment in a partial configuration of the valve port 14. As shown in FIG. The differences will be described in detail below.

本実施形態の電動弁10Cでは、弁ポート14で形成される拡径空間151の軸線L方向の長さL2よりも、縮径空間152の軸線L方向の長さL3の方が長く設定されており、第1実施形態の電動弁10Aとは逆となっている。 In the motor operated valve 10C of the present embodiment, the length L3 of the reduced diameter space 152 in the direction of the axis L is set longer than the length L2 of the expanded diameter space 151 formed by the valve port 14 in the direction of the axis L. , which is the opposite of the motor operated valve 10A of the first embodiment.

本実施形態、すなわち、この電動弁10Cの弁ポート14において、拡径空間151の直径D2と、その長さL2との関係は、L2/D2≒1.5となっており、L2/D2≧
1の関係を満たし、また、縮径空間152の長さL3は、約0.5L2となっており、0.3L2≦L3≦6.5L2の関係を満たしている。このように本実施形態の電動弁10Cにおいても、第1実施形態の電動弁10Aと略同様の条件を満足することから、第1実施形態と同様の作用効果を奏することができる。
In this embodiment, that is, in the valve port 14 of the motor-operated valve 10C, the relationship between the diameter D2 of the diameter expansion space 151 and its length L2 is L2/D2≈1.5, and L2/D2≧
1, and the length L3 of the reduced diameter space 152 is about 0.5L2, satisfying the relationship 0.3L2≤L3≤6.5L2. As described above, the electrically operated valve 10C of the present embodiment also satisfies substantially the same conditions as the electrically operated valve 10A of the first embodiment, so that the same effects as those of the first embodiment can be achieved.

次に、本発明の冷凍サイクルシステムを図6に基づいて説明する。図6は、本発明の冷凍サイクルシステムの一例を示す図である。図6において、符号100は前記各実施形態の電動弁10A~10Cを用いた膨張弁であり、200は室外ユニットに搭載された室外熱交換器、300は室内ユニットに搭載された室内熱交換器、400は四方弁を構成する流路切換弁、500は圧縮機である。電動弁100、室外熱交換器200、室内熱交換器300、流路切換弁400、および圧縮機500は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルを構成している。なお、アキュムレータ、圧力センサ、温度センサ等は図示を省略してある。 Next, the refrigerating cycle system of the present invention will be explained with reference to FIG. FIG. 6 is a diagram showing an example of the refrigeration cycle system of the present invention. In FIG. 6, reference numeral 100 denotes an expansion valve using the motor-operated valves 10A to 10C of each embodiment, 200 denotes an outdoor heat exchanger mounted on the outdoor unit, and 300 denotes an indoor heat exchanger mounted on the indoor unit. , 400 is a channel switching valve forming a four-way valve, and 500 is a compressor. The electric valve 100, the outdoor heat exchanger 200, the indoor heat exchanger 300, the flow path switching valve 400, and the compressor 500 are connected by conduits as shown in the figure to form a heat pump refrigeration cycle. Note that the accumulator, pressure sensor, temperature sensor, etc. are omitted from the drawing.

冷凍サイクルの流路は、流路切換弁400により冷房運転時の流路と暖房運転時の流路の2通りに切換えられる。冷房運転時には、図6に実線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室外熱交換器200に流入され、この室外熱交換器200は凝縮器として機能し、室外熱交換器200から流出された液冷媒は膨張弁100を介して室内熱交換器300に流入され、この室内熱交換器300は蒸発器として機能する。 The flow path of the refrigeration cycle is switched by a flow path switching valve 400 between two flow paths for cooling operation and for heating operation. During cooling operation, as indicated by solid arrows in FIG. 6, the refrigerant compressed by the compressor 500 flows from the flow path switching valve 400 into the outdoor heat exchanger 200, and the outdoor heat exchanger 200 functions as a condenser. The liquid refrigerant discharged from the outdoor heat exchanger 200 flows into the indoor heat exchanger 300 through the expansion valve 100, and the indoor heat exchanger 300 functions as an evaporator.

一方、暖房運転時には、図6に破線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室内熱交換器300、膨張弁100、室外熱交換器200、流路切換弁400、そして、圧縮機500の順に循環され、室内熱交換器300が凝縮器として機能し、室外熱交換器200が蒸発器として機能する。膨張弁100は、冷房運転時に室外熱交換器200から流入する液冷媒、または暖房運転時に室内熱交換器300から流入する液冷媒を、それぞれ減圧膨張し、さらにその冷媒の流量を制御する。なお、図6においては、冷房運転時に室外熱交換器200から液冷媒が膨張弁100の第1の101に流入し、暖房運転時には、室内熱交換器300からの液冷媒が膨張弁100の第2の継手管102に流入するように冷凍サイクルに膨張弁100を設けているが、これに限らず、冷房運転時に室外熱交換器200からの液冷媒が膨張弁100の第2の継手管102に流入し、暖房運転時には室内熱交換器300からの液冷媒が膨張弁100の第1の継手管101に流入するように膨張弁100を冷凍サイクルに設けてもよい。 On the other hand, during heating operation, as indicated by the dashed arrow in FIG. The path switching valve 400 and the compressor 500 are circulated in this order, the indoor heat exchanger 300 functions as a condenser, and the outdoor heat exchanger 200 functions as an evaporator. The expansion valve 100 decompresses and expands the liquid refrigerant flowing from the outdoor heat exchanger 200 during cooling operation or the liquid refrigerant flowing from the indoor heat exchanger 300 during heating operation, and further controls the flow rate of the refrigerant. 6, the liquid refrigerant flows from the outdoor heat exchanger 200 into the first 101 of the expansion valve 100 during cooling operation, and the liquid refrigerant from the indoor heat exchanger 300 flows into the first 101 of the expansion valve 100 during heating operation. Although the expansion valve 100 is provided in the refrigerating cycle so as to flow into the second joint pipe 102 of the expansion valve 100, the liquid refrigerant from the outdoor heat exchanger 200 is not limited to this and flows into the second joint pipe 102 of the expansion valve 100 during cooling operation. , and during heating operation, the expansion valve 100 may be provided in the refrigeration cycle so that the liquid refrigerant from the indoor heat exchanger 300 flows into the first joint pipe 101 of the expansion valve 100 .

以上の本発明の冷凍サイクルシステムによれば、上記したように、本実施形態の電動弁10A,10B,10Cは、流体としての冷媒の流れに起因する騒音を低減させることができるので、運転時により静音化された冷凍システムとすることができる。 According to the refrigeration cycle system of the present invention, as described above, the motor-operated valves 10A, 10B, and 10C of the present embodiment can reduce noise caused by the flow of refrigerant as a fluid. The refrigeration system can be made quieter.

以上、図面を参照して、本発明を実施するための形態を第1~3実施形態に基づいて詳述してきたが、具体的な構成は、これらの実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 As described above, the mode for carrying out the present invention has been described in detail based on the first to third embodiments with reference to the drawings, but the specific configuration is not limited to these embodiments, and the gist of the present invention Design changes that do not deviate from are included in the present invention.

例えば、上記した第1~3実施形態では、弁体2のニードル部21の形状を、下側先端に向かうに従い縮径するように多段に面取りをしたイコールパーセント特性を有する形状としたが、これに限定されず、ニードル部21を、先端に向かうに従い縮径する曲面や円錐などの形状にして実施してもよい。 For example, in the above-described first to third embodiments, the shape of the needle portion 21 of the valve body 2 is chamfered in multiple stages so that the diameter decreases toward the lower tip, and the shape has an equal percentage characteristic. , and the needle portion 21 may be formed in a curved surface or a conical shape, the diameter of which decreases toward the tip.

また、上記した第1~3実施形態では、整流部材15を用いて弁ポート14を形成したが、これに限定されず、整流部材15の部分を、弁本体1と一体成型して弁ポート14を形成するようにして実施してもよい。 In addition, in the first to third embodiments described above, the valve port 14 is formed using the rectifying member 15. However, the present invention is not limited to this. may be carried out so as to form

さらに、上記した第1~3実施形態では、電動弁10A,10B,10Cを、冷凍サイクルシステムの膨張弁として使用したが、これに限定されず、例えば、ビル用のマルチエアコン等の室内機側の絞り装置等、他のシステムにも適用することができる。 Furthermore, in the above-described first to third embodiments, the motor-operated valves 10A, 10B, and 10C are used as expansion valves of a refrigeration cycle system, but the present invention is not limited to this. It can also be applied to other systems, such as a diaphragm device.

10A,10B,10C 電動弁
1 弁本体
1A 弁ハウジング部材
1B 弁ガイド部材
1C 弁室
2 弁体
21 ニードル部
21a 着座面部
3 ステッピングモータ(駆動部)
13 弁座部
131 着座部
13a 弁座面
14 弁ポート
14a 第1ポート(弁口)
14b 第1テーパ部
14c 第2ポート
14d 第3ポート
14e 第2テーパ部
151 拡径空間
151A 第2の拡径空間
152 縮径空間
100 膨張弁
200 室外熱交換器(凝縮器、蒸発器)
300 室内熱交換器(凝縮器、蒸発器)
400 流路切換弁
500 圧縮機
Reference Signs List 10A, 10B, 10C Motor operated valve 1 Valve body 1A Valve housing member 1B Valve guide member 1C Valve chamber 2 Valve body 21 Needle portion 21a Seating surface portion 3 Stepping motor (driving portion)
13 Valve seat portion 131 Seat portion 13a Valve seat surface 14 Valve port 14a First port (valve opening)
14b First tapered portion 14c Second port 14d Third port 14e Second tapered portion 151 Diameter expansion space 151A Second diameter expansion space 152 Diameter reduction space 100 Expansion valve 200 Outdoor heat exchanger (condenser, evaporator)
300 indoor heat exchanger (condenser, evaporator)
400 flow path switching valve 500 compressor

Claims (3)

弁室及び弁座部を構成する弁本体と、前記弁座部に開口して弁体が移動する軸線方向に延びる弁ポートと、前記弁座部と接離して前記弁ポートの開度を変更するニードル部を有する前記弁体と、前記弁体を前記軸線方向に駆動させる駆動部と、を備えた電動弁であって、
前記弁ポートは、前記軸線を中心とした円周面を有する弁口と、前記弁口よりも拡径された拡径空間と、前記拡径空間よりも縮径された縮径空間と、を備え、
前記弁本体には、内部が前記弁口に連通して前記弁ポートの一部を構成する筒状の整流部材が設けられ、
前記整流部材の内周面は、複数段に縮径されて前記弁室とは反対側に延びて設けられ、前記複数段のうちの最も前記弁口側の部分は、前記拡径空間の少なくとも一部を構成するとともに、最も縮径された部分は、前記縮径空間を構成し、
前記弁口の直径をD1とし、前記弁体が前記弁座部に着座した状態で前記弁座部の着座部から前記ニードル部の先端までの長さをL1とした場合、L1/D1≧1であることを特徴とする電動弁。
A valve body that forms a valve chamber and a valve seat, a valve port that opens in the valve seat and extends in an axial direction in which the valve body moves, and a valve port that contacts and separates from the valve seat to change the opening degree of the valve port. and a drive unit for driving the valve body in the axial direction, wherein
The valve port includes a valve opening having a circumferential surface centered on the axis, an enlarged diameter space having a diameter larger than that of the valve opening, and a reduced diameter space having a diameter smaller than that of the enlarged diameter space. prepared,
The valve body is provided with a tubular rectifying member whose inside communicates with the valve port and constitutes a part of the valve port,
The inner peripheral surface of the rectifying member is provided so as to extend in a direction opposite to the valve chamber by being reduced in diameter in a plurality of steps, and a portion of the plurality of steps, which is closest to the valve opening, is at least part of the diameter-enlarged space. The part that constitutes a part and has the most reduced diameter constitutes the reduced diameter space,
When the diameter of the valve port is D1 and the length from the seating portion of the valve seat to the tip of the needle portion is L1 when the valve body is seated on the valve seat, L1/D1≧1 A motor-operated valve characterized by:
前記整流部材における前記拡径空間と前記縮径空間との間には、前記拡径空間よりも内径が小さく、かつ、前記縮径空間よりも内径が大きい第2の拡径空間が形成されていることを特徴とする請求項1に記載の電動弁。 A second expanded space having an inner diameter smaller than that of the expanded diameter space and larger than that of the reduced diameter space is formed between the expanded diameter space and the reduced diameter space in the straightening member. 2. The motor-operated valve according to claim 1, wherein: 圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1または2に記載の電動弁が、前記膨張弁として用いられていることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the motor-operated valve according to claim 1 is used as the expansion valve. refrigeration cycle system.
JP2023097543A 2023-06-14 Motor-operated valve and refrigeration cycle system Active JP7509961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023097543A JP7509961B2 (en) 2023-06-14 Motor-operated valve and refrigeration cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020016898A JP7299177B2 (en) 2020-02-04 2020-02-04 Electric valve and refrigeration cycle system
JP2023097543A JP7509961B2 (en) 2023-06-14 Motor-operated valve and refrigeration cycle system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020016898A Division JP7299177B2 (en) 2020-02-04 2020-02-04 Electric valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2023118753A true JP2023118753A (en) 2023-08-25
JP7509961B2 JP7509961B2 (en) 2024-07-02

Family

ID=

Also Published As

Publication number Publication date
JP2021124153A (en) 2021-08-30
JP7299177B2 (en) 2023-06-27
CN113217639B (en) 2023-01-10
CN113217639A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
JP6740179B2 (en) Motorized valve and refrigeration cycle system
JP5395775B2 (en) Motorized valve
JP6738775B2 (en) Motorized valve and refrigeration cycle system
JP6479648B2 (en) Motorized valve
JP6659624B2 (en) Motorized valve and refrigeration cycle system
JP2013234726A (en) Electric valve
JP2019044880A (en) Motor valve and refrigeration cycle system
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP7123020B2 (en) Electric valve and refrigeration cycle system
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
JP7299177B2 (en) Electric valve and refrigeration cycle system
JP7299178B2 (en) Electric valve and refrigeration cycle system
JP7474892B2 (en) Motor-operated valve and refrigeration cycle system
JP7509961B2 (en) Motor-operated valve and refrigeration cycle system
JP7509962B2 (en) Motor-operated valve and refrigeration cycle system
JP7199335B2 (en) Electric valve and refrigeration cycle system
JP7107881B2 (en) Electric valve and refrigeration cycle system
JP7317191B2 (en) Electric valve and refrigeration cycle system
JP7341280B2 (en) Electric valve and refrigeration cycle system
JP2019070449A (en) Motor valve and refrigeration cycle system
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system
JP2023084804A (en) Motor-operated valve and refrigeration cycle system
JP2021131121A (en) Electric valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240620