JP2023115436A - Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future - Google Patents

Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future Download PDF

Info

Publication number
JP2023115436A
JP2023115436A JP2022017637A JP2022017637A JP2023115436A JP 2023115436 A JP2023115436 A JP 2023115436A JP 2022017637 A JP2022017637 A JP 2022017637A JP 2022017637 A JP2022017637 A JP 2022017637A JP 2023115436 A JP2023115436 A JP 2023115436A
Authority
JP
Japan
Prior art keywords
power generation
blades
wind
wind power
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022017637A
Other languages
Japanese (ja)
Inventor
太 松山
Futoshi Matsuyama
デラクルーズ エリノア デュモン
Cruz Ellynor Dumon Dela
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022017637A priority Critical patent/JP2023115436A/en
Publication of JP2023115436A publication Critical patent/JP2023115436A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

To provide an auxiliary power generation device in which double blades, a bidirectional lens type small generator, a hydraulic, flat spiral spring are combined to increase efficiency of wind power generation.SOLUTION: A wind power generation apparatus and facility with a plurality of blades, such as double blades (or triple blades, etc.) are configured such that in order to increase power generation efficiency of a large-scale onshore or offshore wind power generation facility, small blades (rotary vanes) are attached to the tip or back of a hub portion, or to the terminal, top, or side of a nacelle, to create double large and small blades, and light and small blades to rotate and generate power even at a wind speed of 1 to 3 m/s.SELECTED DRAWING: None

Description

本発明の技術分野は[風力][発電][物理学][電気工学]「電流工学」[地学][天文学][通信][光学][通信][送電][電子工学][再生エネルギー]である。 The technical fields of the present invention are [wind power] [power generation] [physics] [electrical engineering] [current engineering] [geology] [astronomy] [communications] [optics] [communications] [power transmission] [electronics] [renewable energy] is.

本発明の応用技術分野は[送電][発電][環境][蓄電][金属][発条][物理][繊維][プラスティック][建設][鋼管][モーター][土木][海洋土木][高速道路]などある。 The applied technical fields of the present invention are [power transmission] [power generation] [environment] [storage] [metal] [spring] [physics] [fiber] [plastic] [construction] [steel pipe] [motor] [civil engineering] [marine engineering] [Highway] and so on.

本発明の応用製品化分野アプリケーションは、[風力発電][弾性バネ][合成繊維][綱(つな)状金属ロープ][編みたて繊維業][プラスティック][発電機][加速器][歯車][重工業][機械工業][機械組み立て][防蝕][AI][家電][弾性コイル]などがある。 Applications of the present invention include [wind power generation] [elastic springs] [synthetic fibers] [tethered metal rope] [woven textiles] [plastics] [generators] [accelerators] [ gear] [heavy industry] [machine industry] [machine assembly] [corrosion protection] [AI] [household appliances] [elastic coil].

電気エネルギーは、1発電量、2発電コスト、3施設耐用年数、4メンテナンスのコストと簡易性、5環境へ負荷、6供給の安定性という6つの角度から比較し議論されればならないだろう。地域にもよるが多くの発電方法の中で、最もバランスが取れた発電は風力発電と言えるだろう。
風力発電には陸上や洋上の大型風力発電設備が代表的である。近年、地球温暖化対策への関心が世界的に高まっており、カーボンニュートラルやSDG‘s投資に関する取り組みが世界各地で行われている。2020年10月、日本は2050年までにカーボンニュートラルになることを宣言した。
海に囲まれた日本やイギリス、オーストラリア、ニュージーランド、フィリピン、インドネシアなどの島国には洋上の風力発電が適していることは言うまでもない。一方広大な国土や海岸線を有するアメリカ、中国、ロシア、南米諸国、アフリカ諸国においても風力発電は最も経済的でSDG‘sにも配慮した持続可能なエネルギー源であると言える。
Electric energy must be compared and discussed from six angles: 1 power generation amount, 2 power generation cost, 3 facility life, 4 maintenance cost and simplicity, 5 environmental impact, and 6 supply stability. Although it depends on the region, wind power generation can be said to be the most well-balanced power generation among many power generation methods.
Onshore and offshore large-scale wind power generation facilities are typical examples of wind power generation. In recent years, interest in global warming countermeasures has been increasing worldwide, and initiatives related to carbon neutrality and SDGs investment are being carried out all over the world. In October 2020, Japan declared that it would become carbon neutral by 2050.
It goes without saying that offshore wind power generation is suitable for island countries such as Japan, the United Kingdom, Australia, New Zealand, the Philippines, and Indonesia, which are surrounded by the sea. On the other hand, even in the United States, China, Russia, South American countries, and African countries, which have vast lands and coastlines, wind power generation can be said to be the most economical and sustainable energy source that takes SDGs into consideration.

2011年に東日本大震災に見舞われた日本においては、原子力発電の割合がほぼゼロにまで減り、その減少分の大半をLNGがカバーしている。2019年時点で、割合が最も大きなものがLNGで37.1%、その他、石炭と石油を合わせた火力発電で75.7%を占めている。
2018年度と比べてLNGと石油等のシェアが低減する一方で、新エネ等が増大してきた。2015年度から前述の原子力発電所の再稼働が始まったことで、2019年度の発電量は638億kWhと増加した。石炭火力発電所の2019年度の発電量は、前年度比1.9%減の3262億kWhとなった。2015年末の気候変動枠組み条約パリ条約で化石燃料、とりわけ石炭火力発電からの脱却が世界的なトレンドとなる中、日本では石炭火力発電の割合が2012年の31.0%から2019年の31.8%へと増加したことにも注目だろう。
日本の電力消費量は世界第三位でありながら化石燃料(LNG/液化天然ガス、石炭、石油)の割合がずば抜けて多いのも特徴である。化石燃料が殆ど生産できない国にも拘わらず化石燃料に頼っているのは極めてリスクの高い選択(政策)であると言える。
In Japan, which was hit by the Great East Japan Earthquake in 2011, the share of nuclear power generation decreased to almost zero, and LNG covered most of the decrease. As of 2019, LNG accounted for the largest share at 37.1%, and thermal power generation, which combined coal and oil, accounted for 75.7%.
Compared to FY2018, the share of LNG and petroleum has decreased, while the share of new energy has increased. With the restart of the aforementioned nuclear power plants starting in FY2015, the amount of power generated in FY2019 increased to 63.8 billion kWh. Coal-fired power plants generated 326.2 billion kWh in FY2019, down 1.9% from the previous year. At the end of 2015, the Paris Convention on Climate Change has set a global trend to move away from fossil fuels, especially coal-fired power generation. Note also that it has increased to 8%.
Although Japan's electricity consumption is the third largest in the world, it is also characterized by its remarkably large proportion of fossil fuels (LNG/liquefied natural gas, coal, and petroleum). It can be said that relying on fossil fuels is an extremely risky choice (policy) in a country that can hardly produce fossil fuels.

日本の電源構成においては化石燃料の占める割合は大きく、2020年度の年間発電電力量全体の約4分の3にあたる75.1%に達するが、その割合は前年度から微増している。2020年度の内訳は天然ガス(LNG)が35.9%と最も割合が高く横ばいであるが、石炭は26.7%を占めており減少する傾向である。
地球温暖化防止の世界的潮流から、石炭火力については効率の悪い発電設備を全て廃止する必要があり、政府(経産省)によりその検討が始まったが、高効率の石炭火力発電設備が2030年度以降も残ることになり、長期的にロックインすることが懸念される。
パリ協定に整合するエネルギー政策としては、欧州各国のように全ての石炭火力を2030年に向けて如何に早くフェイドアウトできるかが課題であるだろう。
Fossil fuels account for a large proportion of Japan's power supply mix, reaching 75.1%, or about three-fourths of the total annual power generation in FY2020, but the proportion has increased slightly from the previous year. The breakdown for fiscal 2020 shows that natural gas (LNG) has the highest share at 35.9% and remains flat, but coal accounts for 26.7% and is on a downward trend.
Due to the global trend to prevent global warming, it is necessary to abolish all inefficient coal-fired power generation facilities. It will remain after the fiscal year, and there is concern that it will be locked in for a long time.
As for energy policies that are consistent with the Paris Agreement, the challenge is how quickly all coal-fired power plants can be phased out by 2030, as in European countries.

エネルギーに関する発明であっても国の政策や、世界の潮流を無視できない。なぜならエネルギーのインフラには国や地方、各種団体(林業組合、漁業組合など)、NGO(自然保護団体)、地域住民などなど配慮しなければならないことが極めて多いからである。
経済産業省が16日に公表した2030年に向けた新しいエネルギー基本計画の素案は、将来の電源構成を決める際に大前提となる各電源のコスト推計には、近年の原発建設費の高騰を正確に反映させていない。
Even with inventions related to energy, national policies and global trends cannot be ignored. This is because there are a great many things that need to be considered for energy infrastructure, such as national and local governments, various organizations (forestry associations, fishery associations, etc.), NGOs (nature conservation organizations), and local residents.
The draft of the new Strategic Energy Plan for 2030 announced by the Ministry of Economy, Trade and Industry on the 16th, estimates the cost of each power source, which is a major premise when deciding on the future power source mix, taking into account the recent surge in nuclear power plant construction costs. not accurately reflected.

原発の建設費は政府が4年前に前回計画を策定した際に前提とした「1基4400億円」に対し、原発メーカーや商社によると倍の1兆円以上になっている。だが、経産省は「最も安い電源」とした前回推計は堅持。電源構成に占める原発の割合を現状の2%弱から30年度に20~22%に拡大する方針をそのまま踏襲しようとしている。 According to nuclear power plant manufacturers and trading companies, nuclear power plant construction costs have doubled to more than 1 trillion yen, compared to the "440 billion yen per unit" that the government assumed when it formulated its previous plan four years ago. However, the Ministry of Economy, Trade and Industry has maintained its previous estimate of "the cheapest power source." It is trying to follow the policy of increasing the ratio of nuclear power generation in the power supply mix from the current level of less than 2% to 20-22% in FY2030.

二酸化炭素を出さない発電と言えども、原子力発電はプルトニュウムという廃棄物(人間や生物に対して極めて危険な放射能を出し続けるゴミ)の処理方法がないという厄介な発電方法であり、風力、太陽光、水力のエコロジーとは全く比較できないリスクの高い発電方法である。しかも上記のようにコストが高く、そのカバー方法として耐用年数を40年から、40年も延長して稼働させないと他のエネルギーとの競合に勝てないというのでは国民生活の安定と安全のためにも衰退を国の政策として進めなければならないだろう。 Even though it is a power generation that does not emit carbon dioxide, nuclear power generation is a troublesome power generation method because there is no method for disposing of the waste called plutonium (garbage that continues to emit radiation that is extremely dangerous to humans and living things). It is a high-risk power generation method that cannot be compared with the ecology of light and hydropower. Moreover, as mentioned above, the cost is high, and as a way to compensate for this, it is necessary to extend the service life from 40 years to 40 years in order to win the competition with other energy sources. We will have to promote the decline as a national policy.

では一瞬たりとも欠かせない電気はどこから得るのか?とい問題である。海に囲まれ、国土が狭い日本にとって、洋上風力発電がもつ可能性は大きい。それにもかかわらず実用化が少ないのは、企業が風力発電事業をはじめるにあたって、2つの参入障壁が存在している。しかしその風力の洋上発電にも追い風が吹き始めた。 So where do we get the electricity that we need even for a moment? This is the problem. For Japan, which is surrounded by the sea and has a small land area, the potential for offshore wind power generation is great. Nevertheless, there are two barriers to entry for companies to start the wind power generation business. However, a tailwind began to blow for offshore wind power generation.

「再エネ海域利用法(正式名称:海洋再生可能エネルギー発電設備の整備に係る海域の利用の促進に関する法律)」が2019年11月末に国会で可決され、12月7日、早くも公布されたのだ。洋上風力発電の事業化に、同法が大きなインパクトを与えることは間違いないだろう。洋上風力発電は、海外では急激にコスト低下が進み、大規模な開発も行われている。欧州における累計導入量は16000MWにも及んでいる。 The Renewable Energy Sea Area Utilization Act (official name: Act on Promotion of Use of Sea Areas for Development of Marine Renewable Energy Power Generation Facilities) was passed by the Diet at the end of November 2019, and was promulgated as early as December 7. Noda. There is no doubt that this law will have a major impact on the commercialization of offshore wind power generation. The cost of offshore wind power generation is rapidly declining overseas, and large-scale development is underway. The cumulative installed capacity in Europe has reached 16,000 MW.

一方、日本においては、まだまだ実用化されているとは言い難く、ほとんどが実証実験段階に止まっている。現在、日本の洋上風力発電の導入量は「僅か20MW」に過ぎず、そのすべてが国の実証事業だ。とはいえ、民間の取り組みも少しずつ進んでおり、環境アセスメントの手続き段階にある案件は5400MWほど存在する。 On the other hand, in Japan, it is hard to say that they have been put to practical use yet, and most of them are still at the demonstration experiment stage. Currently, the amount of offshore wind power generation introduced in Japan is "only 20 MW", all of which are national demonstration projects. Nonetheless, efforts by the private sector are progressing little by little, and there are about 5,400 MW of projects at the stage of environmental assessment procedures.

本発明は、この状態を打破するものである。
先ずは本発明を使った風力発電のコストをすべての発電の中で最低にできる。これは水力や太陽光発電のみならず、LNG、石炭、石油、バイオマス、原子力、地熱の発電コストを下回れることを意味する。しかも太陽光発電のように30年後のパネル劣化の大量の廃棄ゴミ発生もない。脱Co2は言うまでもなく地球環境に最も優しい発電である。
The present invention overcomes this situation.
First, the cost of wind power generation using the present invention can be the lowest among all power generation. This means that the cost of generating electricity from LNG, coal, oil, biomass, nuclear power and geothermal power, as well as hydropower and solar power, can be undercut. Moreover, unlike solar power generation, there is no large amount of waste generated due to panel deterioration after 30 years. Needless to say, Co2 removal is the most eco-friendly power generation.

2020年12月日本政府が掲げた数字に、エネルギー業界で衝撃が走った。洋上風力発電が“原発45基分の発電量”をもたらす? 日本のエネルギー会社が見せたかつてない“本気”日本に突如生まれた巨大市場が「洋上風力発電」である。
10月のカーボンニュートラル宣言を受け、「グリーン成長戦略」の策定を担っていた官民協議会が、洋上風力発電の規模を2030年までに1000万、2040年までに3000万~4500万キロワットまで引き上げるという目標を発表したのだ。
The figures announced by the Japanese government in December 2020 shocked the energy industry. Offshore wind power generation brings "power generation for 45 nuclear power plants"? Japan's energy companies showed unprecedented "seriousness" A gigantic market that suddenly appeared in Japan is "offshore wind power generation".
In response to the declaration of carbon neutrality in October, the public-private council, which was responsible for formulating the "Green Growth Strategy," will increase the scale of offshore wind power generation to 10 million kilowatts by 2030 and 30 million to 45 million kilowatts by 2040. announced the goal.

原発1基を100万キロワットとして換算すると、発電能力だけでみれば最大で45基分になる。これまで日本がほとんど洋上風力に手をつけていなかったことを考えると、とてつもなく野心的な目標だということがわかるだろう。 If one nuclear power plant is converted to 1 million kilowatts, the power generation capacity alone will be equivalent to 45 units at maximum. Given that Japan has had little to do with offshore wind so far, you can see that this is a hugely ambitious goal.

風力発電は発電機たるタービンが大きくなるほど、風からより多くのエネルギーを取り込める。ローターを大きくすれば出力MWも大きくなり、ブレードも長くなるからだ。
高度が高い風の動きが速くなるので、支柱をさらに高くするのも有利になる。イギリスの企業があらたに設置した新しいタービンは、ブレードローターの直径が164m、ブレードの長さが80m、頂上部の高さが187mだという。3月に発表されたGEの「Haliade X」は、ローターの直径が220m、ブレード先端の高さは260m。このような風力発電の性能向上には、数多くの革新的な技術が関与している。つまり世界最高出力9MWの風力発電機、1基で2万1600世帯分の電力を作ることができるのである。
Wind power can capture more energy from the wind as the turbines that make up the generators get bigger. This is because the larger the rotor, the larger the output MW and the longer the blades.
Higher stanchions are also advantageous, as wind moves faster at higher altitudes. The new turbine installed by a British company has a blade rotor diameter of 164m, a blade length of 80m and a top height of 187m. GE's "Haliade X" announced in March has a rotor diameter of 220m and a blade tip height of 260m. Many innovative technologies are involved in improving the performance of such wind power generation. In other words, one wind power generator with the world's highest output of 9 MW can generate electricity for 21,600 households.

欧米、中国が圧倒的に先行している風力発電で資源のない日本が追いつくには新技術の開発以外にはないだろう。風力発電は土木建設、鋼管の製造加工、海中土木や基礎工事のほかに、「ブレード、ナセル、発電機、タワー、電力変換装置、制御装置、ハブ、ロータ軸、増速機、動力伝達軸、発電機、風光・風速計、ブレーキ装置、発電機、ヨー駆動装置、タワー、ケーブル、ワイヤー」など多岐の技術の組み合わせてある。 The development of new technologies is the only way for Japan, which lacks natural resources, to catch up in wind power generation, where Europe, the United States and China are overwhelmingly ahead. In addition to civil engineering construction, manufacturing and processing of steel pipes, underwater civil engineering and foundation work, wind power generation includes blades, nacelles, generators, towers, power converters, control devices, hubs, rotor shafts, gearboxes, power transmission shafts, It is a combination of various technologies such as generators, wind and anemometers, braking devices, generators, yaw drives, towers, cables, and wires.

本発明はその一端を担うものでターゲットは陸上や洋上の大型風力発電設備の発電効率を上げる方法の具体的機器と設置方法、ならびに設備である。つまり巨大化した風力発電には巨大なブレード(3枚羽)があり弱い風では動かすことはできない。大きいタービンを回せば回すほど大きな電力が得られるからである。 The present invention plays a part in this, and targets are specific equipment, installation methods, and equipment for methods of increasing the power generation efficiency of large-scale wind power generation equipment on land or offshore. In other words, the gigantic wind power generator has huge blades (three blades) and cannot be moved by weak winds. This is because the more you turn a large turbine, the more power you get.

一方、強い風が吹かなければ大型のブレードは動かない。風力発電が山頂や海岸に設置されるのはこれが一番大きな理由である。風力発電機は沿岸に設置されることが多く、強い海風を受けて発電する。これも海中の下、風力発電機が設置されている海底に海底送電線・通信ケーブルがあり、そこを通って発電された直流電気が途中で洋上変電所を通り、港湾施設にある運転監視施設と陸上変電所に送られ、交流となった電気が私たちの元に送られるのである。 On the other hand, the large blades do not move unless a strong wind blows. This is the main reason why wind farms are installed on mountain tops and coasts. Wind power generators are often installed on the coast and generate electricity by receiving strong sea breezes. Under the sea, there are submarine transmission lines and communication cables on the seabed where wind power generators are installed. Then it is sent to an onshore substation, and the alternating current electricity is sent to us.

風力発電の仕組みは、風力発電は簡単に言えば、風で風車を回し、回転エネルギーを電気エネルギーに変える仕組みである。風を受けると、ブレードと呼ばれる風車の羽根が回転し、ブレードが回転する動きを利用して発電機を回すと、電気を生み出すことができるのだ。風車と発電機の間には、増速機というギアのような機械があり、回転エネルギーを増幅させ、効率よく発電させる役割を持っている。増速機と発電機は、ナセルという風車の裏にある収納スペースに置かれている。 Simply put, wind power generation is a mechanism that rotates a windmill with the wind and converts rotational energy into electrical energy. Wind turbine blades, called blades, rotate when exposed to the wind, and the rotating movement of the blades can be used to turn a generator to generate electricity. Between the windmill and the generator, there is a gear-like machine called a gearbox, which amplifies the rotational energy and has the role of efficiently generating electricity. The gearbox and generator are placed in a storage space behind the windmill called a nacelle.

つまり風力発電設備は巨大化せざるを得ない反面、微風時にはただ立っているだけの存在なのである。建設費用やメンテナンス費用は発電量に拘わらず決まった費用が発生する。本発明は風力発電のデメリット部分をカバーしてトータルの発電コストを下げようとするものである。風力発電の一番のデメリットは、風の状況により発電量が不安定になることであり、当然ながら、無風の状態で風車が回らなければ、電気をつくることができない。 In other words, while the wind power generation facilities have no choice but to grow in size, they just stand there when the wind is light. Construction costs and maintenance costs are fixed regardless of the amount of power generation. The present invention aims to cover the disadvantages of wind power generation and reduce the total power generation cost. The biggest disadvantage of wind power generation is that the amount of power generated is unstable depending on the wind conditions. Of course, electricity cannot be generated if the windmills do not rotate in calm conditions.

一例であるが、本発明の「ダブルブレード」は工場で生産する際、小型軽量ブレードをハブに2重に取り付けロータ軸をパイプ状にし内部を貫通させ、別の増速機にコネクトし、別の動力伝達軸から小型の発電機に接続するが電力変換装置、制御装置は当然ながら共用される。全体として巨大風力発電を支えるものとなる。 As an example, when the "double blade" of the present invention is produced at a factory, the small and light blades are attached to the hub in two layers, the rotor shaft is made into a pipe shape and penetrated inside, connected to another gearbox, and The power transmission shaft is connected to a small generator, but the power conversion device and control device are of course shared. As a whole, it will support a huge wind power generation.

風車は、自然環境の厳しい場所での運転に耐えられるようにIEC(International Electrotechnical Commission)などの国際規格に基づいて設計・製作されている。また、日本特有の地震や台風にも耐えられるように建築基準法など国内関係法規に基づいて設計した上で許可を取得、建設して強度や安全性の問題はない。この発明が具体化されれば国際基準として同じ製品が世界の標準品としてダブルブレードのみならずタリプルブレードなどが生まれる可能性もあるだろう。 Wind turbines are designed and manufactured based on international standards such as IEC (International Electrotechnical Commission) so that they can withstand operation in harsh natural environments. In addition, there are no problems with strength or safety as the building is designed in accordance with domestic laws and regulations, such as the Building Standards Act, to withstand earthquakes and typhoons unique to Japan. If this invention is embodied, there is a possibility that the same product as an international standard will be produced not only as a double blade but also as a tuliple blade as a world standard product.

風力発電や太陽光発電のように自然エネルギーから電気エネルギーを作り出す発電にとって最大の課題はコストパフォーマンスである。その中には設備費、建設費のコストダウンが含まれることは当然である。本発明はその両方を実現させるものである。 The biggest issue for power generation that produces electric energy from natural energy, such as wind power generation and solar power generation, is cost performance. Naturally, this includes cost reductions in equipment and construction costs. The present invention accomplishes both.

本発明のダブルブレードは基本的には大型ブレードの前に取り付けるものであり、動きは大型のメインブレードとは全く関係なく回わり発電し弾性バネを巻き上げるものである。その司令塔は、タワーもしくはナセルの上に立つ風力計と風向計である。その情報はAIで解析されダブルブレードと共に管理センターはもちろん、ダブルブレードにも指令として送られ連動し風を捉え回転羽(ブレード)の向きを変えることが可能である。この小型発電機は、陸上や洋上の大型風力発電設備以外にも利用可能である。設置場所としては、高速道路の中央分離帯や橋梁の欄干や橋下にも取り付け可能である。
従来の電線やインフラを利用してメンテナンスがしやすく連続して多くの発電機が設置できることがポイントである。
The double blades of the present invention are basically installed in front of the large blades, and the movement is completely independent of the large main blades, and it generates electricity and winds up the elastic spring. The conning tower is an anemometer and wind vane on top of a tower or nacelle. The information is analyzed by AI and sent to the control center along with the double blade as a command, and it is interlocked and it is possible to change the direction of the rotating blade (blade) by capturing the wind. This small generator can be used in addition to large-scale wind power generation facilities on land and offshore. It can be installed on the median strip of highways, railings of bridges, and under bridges.
The point is that it is easy to maintain using conventional electric wires and infrastructure, and many generators can be installed in succession.

この風力計と風向計の情報と指示は双方向レンズ型小型発電機においても同様である。双方向レンズ型発電機の回転羽(ブレード)を風を捉えやすいように反転する。使用方法や利用場所はダブルブレードと同じである。ダブルブレードのアイデアは将来的には家庭用に応用されるだろう。太陽光発電同様に屋根や屋上に取り付けられる。 This anemometer and wind vane information and indication is the same for bi-directional lens miniature generators. The rotating blades of the bi-directional lens generator are reversed so that they can easily catch the wind. The method and place of use are the same as the Double Blade. The idea of double blades will have domestic applications in the future. It can be installed on the roof or roof like a solar power system.

発電量を最大化するために陸上や洋上の大型風力発電設備はますます巨大化する。通常の2メガワットの風力発電設備(風車)の高さは100メートルであり、10メガワット風車の高さは300メートルにもなる。8メガワットのベスタス製風車の高さは195メートルである。従来は実験や補助金頼みの風力発電であったが設備のコストダウンと発電技術の進歩により事業としても十分成り立つようになるだろう。 In order to maximize the amount of power generation, large-scale onshore and offshore wind power generation facilities are becoming larger and larger. A typical 2 megawatt wind turbine is 100 meters high and a 10 megawatt wind turbine can be as high as 300 meters. The 8-megawatt Vestas turbine is 195 meters high. In the past, wind power generation relied on experiments and subsidies, but with the cost reduction of equipment and advances in power generation technology, it will become fully viable as a business.

巨大化する陸上や洋上の大型風力発電設備は上記のごとくペンシルビルディングやパリのエッフェル塔のようにそそり立つ。しかも風を受けるために設計させているから空気抵抗はMAXとなる。ポールの鋼材、ブレード、ナセルの重さを支える基礎も台風を想定した風圧以上のもので備えなければならないだろう。従ってその圧力を分散するか、逃すように設計しなければならない。また日本においては地震も想定されいる。その場合基準以上の風圧を逃すために建物全体の工夫が必要であり特に基礎部分が重要である。 Large-scale onshore and offshore wind power generation facilities will rise like the above-mentioned Pencil Building or the Eiffel Tower in Paris. Moreover, it is designed to receive the wind, so the air resistance is MAX. The steel materials of the poles, the blades, and the foundations that support the weight of the nacelle will also have to be prepared with a level of wind pressure greater than that of a typhoon. Therefore, it must be designed to dissipate or relieve that pressure. An earthquake is also expected in Japan. In that case, it is necessary to devise the whole building in order to escape the wind pressure exceeding the standard, especially the foundation part is important.

本発明は巨大な陸上や洋上の大型風力発電設備の基礎にバネ(スプリング又は湾曲した鋼)の弾性(反動力)を利用し油圧にパワーを備蓄しゼンマイバネを巻いたり戻したりして発電機の回転軸を回転させ発電をカバーに全体としての発電効率を上げるものである。風圧は必ず基礎部分に伝わる。
ましてや巨大風力発電装置は頂上部分にウエイトがかかる機械部分が集中しているため「てこの原理」からも一番下の基礎部分に大きな荷重がかかる。その圧力を弾性バネにより免制震し、油圧タンクにて備蓄し微風や無風時でブレードが止まっている時に回転運動に変換し発電するものである。
The present invention utilizes the elasticity (reaction force) of a spring (spring or curved steel) in the foundation of a huge onshore or offshore large-scale wind power generation facility to store power in hydraulic pressure and wind and unwind the spiral spring to operate the power generator. By rotating the rotary shaft, the power generation efficiency is increased as a whole. Wind pressure is always transmitted to the foundation.
Furthermore, since the mechanical parts that bear the weight are concentrated on the top of the huge wind power generator, a large load is applied to the bottom part of the base part due to the "lever principle". The pressure is isolated by an elastic spring, stored in a hydraulic tank, and converted into rotational motion to generate power when the blade is stationary in light or no wind.

一方、原油価格やLNG価格の高騰、建設技術と浮体構造風力発電など技術革新も目覚ましく風力発電がコスト的にも十分な競争力を持って来た。処理場所も方法もないプルトニュウムを出し続ける原発、30年で発電モジュールの交換と膨大なゴミを出す太陽光発電、Co2を出し続け地球を温暖化する化石燃料発電を考慮すると現状、風力発電にまさる発電はない。電気自動車(EV)と言えども電力なしでは単なるゴミの一種となってしまうのである。社会の基盤は食料とエネルギーである。 On the other hand, soaring crude oil and LNG prices, as well as remarkable technological innovations in construction technology and floating structure wind power generation, have made wind power generation sufficiently cost-competitive. Considering nuclear power plants that continue to emit plutonium, which has no place or method to dispose of it, solar power generation that replaces power generation modules every 30 years and produces a huge amount of waste, and fossil fuel power generation that continues to emit Co2 and causes global warming, it currently surpasses wind power generation. No power generation. Even an electric vehicle (EV) is just a kind of garbage without electricity. The foundation of society is food and energy.

世界電力消費量 Top10は、第1位中国/4,600TWh、第2位アメリカ/3,819TWh、第3位日本/923TWh、第4位インド/857TWh、第5位ロシア/856TWh、第6位カナダ/559TWh、第7位ドイツ/525TWh、第8位ブラジル/509TWh、第9位韓国/503TWh、第10位フランス/464TWhである。(TWhはテラワットアワー)
テラワットは1,000,000,000,000ワットである。日本は3位で、世界でも非常に多く電力を消費している国の一つである。一方、国民一人当たりの電力消費量では2010年の段階で中国は2,958kWh。ちなみに同年で日本の国民一人当たりの電力消費量は8,399kWh。他の先進国はアメリカ/13,361kWh、フランス/7,756kWh、ドイツ/7,217kWh、イギリス/5,741kWhである。
The world's top 10 electricity consumption is China/4,600 TWh, America/3,819 TWh, Japan/923 TWh, India/857 TWh, Russia/856 TWh, Canada/559 TWh. , 7th Germany/525TWh, 8th Brazil/509TWh, 9th South Korea/503TWh, 10th France/464TWh. (TWh is terawatt hour)
A terawatt is 1,000,000,000,000 watts. Japan ranks third and is one of the world's largest consumers of electricity. On the other hand, per capita electricity consumption in China in 2010 was 2,958 kWh. By the way, the electricity consumption per capita in Japan in the same year was 8,399 kWh. Other developed countries are US/13,361 kWh, France/7,756 kWh, Germany/7,217 kWh, UK/5,741 kWh.

これまで、日本は洋上風力の導入に消極的だった。その理由として挙げられていたのは「遠浅の海が少ない」「風況が欧州ほどよくない」ということだったが、そもそも福島原発事故後の日本政府の主な関心は、原発再稼働やLNG(液化天然ガス)の輸入、高効率な石炭火力発電所の新設であり、再エネ自体への関心が薄かった。 Until now, Japan has been reluctant to introduce offshore wind power. The reasons cited were that "there are few shallow seas" and "wind conditions are not as good as in Europe", but after the Fukushima nuclear accident, the main concern of the Japanese government was the restart of nuclear power plants and LNG. (liquefied natural gas) imports and the construction of highly efficient coal-fired power plants, interest in renewable energy itself was weak.

2‌0‌1‌2年に、「再エネ特措法」で太陽光発電だけは強力な促進策を打ちだしたが、高い買取価格がバブルを引き起こしたことの反動もあって、再エネの優先順位は低いままだった。政府は2‌0‌1‌8年になって、再エネを「主力電源化」する方針を決定し、洋上風力を活用する法整備は2‌0‌1‌9年にようやく始まった。また電力のトータルコストも他の発電に比べ高いと考えられてきた。しかし近年、SDG‘sがCOP20で審議され日本が不名誉な賞まで寿命書するまでに至り自然エネルギーの見直しが始まった。 2‌0‌1‌ , renewable energy remained a low priority. In 2‌0‌1‌8, the government decided to make renewable energy "the main power source", and the legislation to utilize offshore wind power was 2‌0‌ It finally started in 1‌9. In addition, the total cost of electric power has been considered to be higher than that of other types of power generation. However, in recent years, the SDGs have been deliberated at COP20, and Japan has even been awarded an infamous award for its longevity, and a review of renewable energy has begun.

それにもかかわらず、2‌0‌1‌9年から日本の名だたるH製作所が風力発電事業から撤退。さらに洋上風力世界2位のメーカー、V社(デンマーク)と合弁会社を設立していたM重工業も、2‌0‌2‌0年にその提携を解消している。M重工はそのかわり、アジアでのV社の風車販売に特化することになったが、これはつまり、日本で洋上風力のコア技術を持つ企業は名実ともになくなった、ということを意味するのが現状である。新技術で巻き返す以外に方法はない。 Nevertheless, from 2‌0‌1‌9, Japan's famous H Seisakusho withdrew from the wind power business. In addition, M Heavy Industries, which had established a joint venture with Danish company V, the world's second largest manufacturer of offshore wind power, dissolved the partnership in 2‌0‌2‌0. Instead, M Heavy Industries decided to specialize in the sales of Company V's wind turbines in Asia. is the current situation. There is no other way but to catch up with new technology.

ぜんまいばねの製造方法
出願人 株式会社TJMデザイン
発明者 後藤章夫 、佐藤昭仁
出願日 2017年2月10日 (5年0ヶ月経過) 出願番号 2017-023401
公開日 2018年8月16日 (3年6ヶ月経過) 公開番号 2018-126981
状態 特許登録済
技術分野 曲げ・直線化成形、管端部の成形、表面成形 、 プラスチック等のその他の成形、複合成形(変更なし) 、 ばね
Method for manufacturing a spiral spring Applicant TJM Design Inc. Inventors Akio Goto and Akihito Sato Application date February 10, 2017 (5 years and 0 months passed) Application number 2017-023401
Publication date August 16, 2018 (3 years and 6 months passed) Publication number 2018-126981
State Patented technical field Bending/straightening molding, tube end molding, surface molding, other molding such as plastics, composite molding (no change), springs

出願人 有限会社四国度器
発明者 露口典之
出願日 2011年11月22日 (10年3ヶ月経過)
出願番号 2011-254769
公開日 2013年6月6日 (8年9ヶ月経過)
公開番号 2013-108869
状態 未査定
技術分野 巻尺
Applicant: Shikoku Kiki Co., Ltd. Inventor: Noriyuki Tsuyuguchi Filing date: November 22, 2011 (10 years and 3 months passed)
Application number 2011-254769
Release date June 6, 2013 (8 years and 9 months passed)
Publication number 2013-108869
State Unassessed technical field Tape measure

ダブルブレードスケート
出願人: 佐藤 哲生
発明者: 佐藤 哲生
出願 2003-436012 (2003/11/26) 公開 2005-152566 (2005/06/16)
国際特許分類(IPC): A63C1/32 A63C1/36
double blade skates
Applicant: Tetsuo Sato Inventor: Tetsuo Sato Application 2003-436012 (2003/11/26) Publication 2005-152566 (2005/06/16)
International Patent Classification (IPC): A63C1/32 A63C1/36

二重ナイフゲート弁を有する熱分解廃棄物処理システム
審査請求:有 審査最終処分:取下
出願人: インターナシヨナル・エンバイロンメンタル・ソリユーシヨンズ・コーポレイシヨン
発明者: コール,キヤメロン, コール,トビー・エル, ギヤラテイン,ヘンリー・マイケル, ソレル,マイケル・スコツト
出願 2008-547191 (2005/12/22) 公開 2009-521310 (2009/06/04)
国際特許分類(IPC): B09B3/00 F23G5/027
Request for Examination of Thermal Decomposition Waste Treatment System with Double Knife Gate Valve: Yes Final Disposition: Withdrawn Applicant: International Environmental Solutions Corporation Inventor: Cole, Cameron, Cole, Toby El, Gyratin, Henry Michael, Sorrell, Michael Scott Application 2008-547191 (2005/12/22) Published 2009-521310 (2009/06/04)
International Patent Classification (IPC): B09B3/00 F23G5/027

垂直軸タービン及びこれを備える両方向積層式垂直軸タービン
審査請求:有 審査最終処分:特許登録
出願人: ファシン マシーナリ カンパニー リミテッド
発明者: ジュン、キ−ハン, リ、スン−ホ, エヒム、ジョン−ビン
出願 2013-531496 (2011/09/29) 公開 2013-542362 (2013/11/21)
国際特許分類(IPC): F03D3/06 F03D11/00 F03D7/06
Vertical axis turbine and bi-directionally stacked vertical axis turbine equipped with the same
Request for Examination: Yes Final Disposition of Examination: Patent Registration Applicant: Hwashin Machinery Company Limited Inventor: Jun, Ki− Han, Li, Sun− Ho, Ehim, John− (2011/09/29) Published 2013-542362 (2013/11/21)
International Patent Classification (IPC): F03D3/06 F03D11/00 F03D7/06

効率が最適化されたタービン
審査請求:有
出願人: サーブ インジェニエリー
発明者: ペリエール,ベルナルド
出願 2014-510845 (2012/05/03) 公開 2014-513776 (2014/06/05)
国際特許分類(IPC): F03D7/04
Efficiency Optimized Turbine Claim: Yes
Applicant: Saab Ingenierie Inventor: Perrière, Bernard Application 2014-510845 (05/03/2012) Publication 2014-513776 (05/06/2014)
International Patent Classification (IPC): F03D7/04

発電システム
審査最終処分:未審査請求によるみなし取下
出願人: 葛谷 進
発明者: 葛谷 進
出願 2013-092244 (2013/04/25) 公開 2014-214662 (2014/11/17)
国際特許分類(IPC): F03D1/06 F03D1/04 F03D11/02
Power generation system examination final disposition: Deemed withdrawal due to unexamined request Applicant: Susumu Kuzuya Inventor: Susumu Kuzuya Application 2013-092244 (2013/04/25) Published 2014-214662 (2014/11/17)
International Patent Classification (IPC): F03D1/06 F03D1/04 F03D11/02

双方向流入可能且つ過負荷時受動防護具を有する水平タービン
出願人: フォイト・パテント・ゲーエムベーハー
発明者: ゾマーコーン,クラウス, ビスカップ,フランク, アーリット,ラファエル
出願 2015-049428 (2015/03/12) 公開 2015-180817 (2015/10/15)
国際特許分類(IPC): F03B13/10 F03B13/26 F03B3/14 F03B3/04
Horizontal turbine with bidirectional flow and passive overload protection
Applicant: Voith Patent GmbH Inventors: Sommerkorn, Krauss, Biskap, Frank, Arlit, Raphael Application 2015-049428 (2015/03/12) Publication 2015-180817 (2015/10/15)
International Patent Classification (IPC): F03B13/10 F03B13/26 F03B3/14 F03B3/04

ダブルブレードの風力発電装置。
発明者: 菅原 道夫
出願人/特許権者: 株式会社マック
公報種別:公開公報
出願番号(国際出願番号):特願2002-082062
公開番号(公開出願番号):特開2003-214316
出願日: 2002年01月24日
公開日(公表日): 2003年07月30日
Double-bladed wind turbine.
Inventor: Michio Sugawara Applicant/Patent holder: Mac Co., Ltd. Publication type: Publication number (International application number): Patent application 2002-082062
Publication number (publication application number): JP 2003-214316
Application date: January 24, 2002 Publication date: July 30, 2003

直径10m以上のプロペラ型風力発電機のブレード減音の形状形態
審査最終処分:未審査請求によるみなし取下
出願人: 福島 徹
発明者: 福島 徹
出願 2011-123064 (2011/06/01) 公開 2012-251448 (2012/12/20)
国際特許分類(IPC): F03D11/00
Final disposition of shape and form examination for blade sound reduction of propeller type wind power generator with diameter of 10 m or more: Deemed withdrawal due to unexamined request Applicant: Toru Fukushima Inventor: Toru Fukushima Application 2011-123064 (2011/06/01) Published 2012 -251448 (2012/12/20)
International Patent Classification (IPC): F03D11/00

ラージエディシミュレーションモデルに基づく二重翼を持つ高出力風力タービンのための騒音の数値シミュレーションと応用
Numerical simulation and application of noise for high-power wind turbines with double blades based on large eddy simulation model
著者: Li Jian
資料: Renewable Energy 2020
Numerical Simulation and Application of Noise for High Power Wind Turbine with Double Blades Based on Large Eddy Simulation Model
Numerical simulation and application of noise for high-power wind turbines with double blades based on large eddy simulation model
Author: Li Jian
Source: Renewable Energy 2020

Fresnelレンズ集光器と一体化したアクティブハイブリッドソーラーパネル
The Active Hybrid Solar Panel integrated with Fresnel Lens Concentrator
著者: Indrasari Widyaningrum
資料: Journal of Physics: Conference Series 2020
Active hybrid solar panel integrated with Fresnel lens concentrator
The Active Hybrid Solar Panel integrated with Fresnel Lens Concentrator
Author: Indrasari Widyaningrum
Source: Journal of Physics: Conference Series 2020

金属管型超音波モータ(MTTUSM)に関する研究
A Study on the Metal Tube Type Ultrasonic Motor (MTTUSM)
著者: JOU Jwo Ming (Cheng Shiu Univ., Kaohsiung County, TWN)
資料: Proceedings of the IEEE International Frequency Control Symposium 2009
Research on metal tube type ultrasonic motor (MTTUSM)
A Study on the Metal Tube Type Ultrasonic Motor (MTTUSM)
Author: JOU Jwo Ming (Cheng Shiu Univ., Kaohsiung County, TWN)
Source: Proceedings of the IEEE International Frequency Control Symposium 2009

風力発電全体の構造図と名称Structural drawing and name of the entire wind power generation ナセルと呼ばれる頭部に取り付けられたブレード(羽根)部分と発電部分A blade (wing) part attached to the head called a nacelle and a power generation part 応用の設置場所の高速道路や橋梁のイメージ写真Image photos of highways and bridges where the application is installed 発電量を上げるためにますます巨大化する風力発電Wind power generation is getting bigger and bigger to increase the amount of power generation 洋上風力発電の設置モデル図面Installation model drawing for offshore wind power generation 風の強い山頂に設置された陸上の風力発電Onshore wind farms installed on windy mountaintops 巨大なポール部分を重圧、風圧、台風、地震などから支える鋼のスプリングダンパーA steel spring damper that supports a huge pole from heavy pressure, wind pressure, typhoons, earthquakes, etc. パワーを備蓄し反動力をえる理論図Theoretical diagram of stockpiling power and gaining reaction force 油圧パワーによる逆回転発電のイメージ図Image diagram of reverse rotation power generation using hydraulic power パワーを備蓄する油圧とは:その1What is hydraulic pressure that stores power: Part 1 パワーを備蓄する油圧とは:その2Hydraulics that store power: Part 2 補助発電の回転を生むゼンマイバネMainspring that produces rotation of auxiliary power generation 双方向のレンズ型発電機のイメージ図(本写真は単方向のみ)Image of a bi-directional lens-type generator (this photo shows only one direction) 双方向レンズ型小型発電機の集風枠のイメージ図(本発明は表裏に付く)Image diagram of the wind collection frame of the bi-directional lens type compact generator (this invention is attached to the front and back) 風向計(風見鶏)と風力計のイメージ図Image of wind vane (weather vane) and anemometer

2012年に、「再エネ特措法」で太陽光発電だけは強力な促進策を打ちだしたが、高い買取価格がバブルを引き起こしたことの反動もあって、再エネの優先順位は低いままだった。政府は2018年になって、再エネを「主力電源化」する方針を決定し、洋上風力を活用する法整備は2019年にようやく始まった。また電力のトータルコストも他の発電に比べ高いと考えられてきた。しかし近年、SDG‘sがCOP20で審議され日本が不名誉な賞まで寿命書するまでに至り自然エネルギーの見直しが始まった。 In 2012, the “Renewable Energy Special Measures Law” came up with strong measures to promote only solar power generation, but partly because the high purchase price triggered a bubble, renewable energy remained a low priority. In 2018, the government decided to make renewable energy a “main power source,” and legislation to utilize offshore wind power finally began in 2019. In addition, the total cost of electric power has been considered to be higher than that of other types of power generation. However, in recent years, the SDGs have been deliberated at COP20, and Japan has even been awarded an infamous award for its longevity, and a review of renewable energy has begun.

それにもかかわらず、2019年から日本の名だたるH製作所が風力発電事業から撤退。さらに洋上風力世界2位のメーカー、V社(デンマーク)と合弁会社を設立していたM重工業も、2020年にその提携を解消している。M重工はそのかわり、アジアでのV社の風車販売に特化することになったが、これはつまり、日本で洋上風力のコア技術を持つ企業は名実ともになくなった、ということを意味するのが現状である。新技術で巻き返す以外に方法はない。 Nevertheless, from 2019, Japan's famous H factory withdrew from the wind power business. In addition, M Heavy Industries, which had established a joint venture with V (Denmark), the world's second largest manufacturer of offshore wind power, dissolved the partnership in 2020. Instead, M Heavy Industries decided to specialize in the sales of Company V's wind turbines in Asia. is the current situation. There is no other way but to catch up with new technology.

本発明は、風力発電を効率化するものである。巨大化する風力発電機の弱点とデメリットとされる、設置場所/山頂や洋上の特殊性、基層工時/地盤や浅瀬の難しさ、騒音・危険の住民対策、各種利害関係者への対応、台風や地震リスク、莫大なコスト、重い機器類の運搬と組み立て、電力供給の安定性、電力総量などなどの一部をカバーしコストをかけずに現存技術の組み合わせだけで風力発電の効率を向上させ、更に高速道路や橋梁などの公共立地で発電出来たり家庭や会社においても太陽光発電に代わるコストパフォーマンスを実現するものである。 The present invention makes wind power generation more efficient. Weaknesses and demerits of gigantic wind power generators, such as installation location/specialty on top of mountain and offshore, difficulty of base layer construction/ground and shallow water, noise and danger measures for residents, response to various stakeholders, Typhoon and earthquake risks, huge costs, transport and assembly of heavy equipment, stability of power supply, total power consumption, etc. are partially covered, and the efficiency of wind power generation is improved by combining existing technologies without incurring costs. Furthermore, it can generate electricity in public places such as highways and bridges, and realizes cost performance as an alternative to solar power generation in homes and companies.

風力発電全体の構造図と名称Structural drawing and name of the entire wind power generation ナセルと呼ばれる頭部に取り付けられたブレード(羽根)部分と発電部分A blade (wing) part attached to the head called a nacelle and a power generation part 応用の設置場所の高速道路や橋梁のイメージ写真Image photos of highways and bridges where the application is installed 発電量を上げるためにますます巨大化する風力発電Wind power generation is getting bigger and bigger to increase the amount of power generation 洋上風力発電の設置モデル図面Installation model drawing for offshore wind power generation 風の強い山頂に設置された陸上の風力発電Onshore wind farms installed on windy mountaintops 巨大なポール部分を重圧、風圧、台風、地震などから支える鋼のスプリングダンパーA steel spring damper that supports a huge pole from heavy pressure, wind pressure, typhoons, earthquakes, etc. パワーを備蓄し反動力をえる理論図Theoretical diagram of stockpiling power and gaining reaction force 油圧パワーによる逆回転発電のイメージ図Image diagram of reverse rotation power generation using hydraulic power パワーを備蓄する油圧とは:その1What is hydraulic pressure that stores power: Part 1 パワーを備蓄する油圧とは:その2Hydraulics that store power: Part 2 補助発電の回転を生むゼンマイバネMainspring that produces rotation of auxiliary power generation 双方向のレンズ型発電機のイメージ図(本写真は単方向のみ)Image of a bi-directional lens-type generator (this photo shows only one direction) 双方向レンズ型小型発電機の集風枠のイメージ図(本発明は表裏に付く)Image diagram of the wind collection frame of the bi-directional lens type compact generator (this invention is attached to the front and back) 風向計(風見鶏)と風力計のイメージ図Image of wind vane (weather vane) and anemometer 本発明のゼンマイバネの反発力と発電モーターの発電の説明Description of the repulsive force of the spiral spring of the present invention and the power generation of the power generation motor 本発明の基礎ダンパーと油圧と大型弾性ゼンマイバネと発電の説明Explanation of the basic damper, hydraulic pressure, large elastic spiral spring and power generation of the present invention 本発明のダブルブレードと双方向レンズ型小型発電機の取り付け発電の説明Description of installation power generation of the double blade and bi-directional lens type miniature generator of the present invention 本発明の双方向レンズ型小型発電機の構造の説明Description of the structure of the bidirectional lens type compact generator of the present invention

2012年に、「再エネ特措法」で太陽光発電だけは強力な促進策を打ちだしたが、高い買取価格がバブルを引き起こしたことの反動もあって、再エネの優先順位は低いままだった。政府は2018年になって、再エネを「主力電源化」する方針を決定し、洋上風力を活用する法整備は2019年にようやく始まった。また電力のトータルコストも他の発電に比べ高いと考えられてきた。しかし近年、SDG‘sがCOP20で審議され日本が不名誉な賞まで受賞するまでに至り自然エネルギーの見直しが始まった。 In 2012, the “Renewable Energy Special Measures Law” came up with strong measures to promote only solar power generation, but partly because the high purchase price triggered a bubble, renewable energy remained a low priority. In 2018, the government decided to make renewable energy a “main power source,” and legislation to utilize offshore wind power finally began in 2019. In addition, the total cost of electric power has been considered to be higher than that of other types of power generation. However, in recent years, the SDGs have been deliberated at COP20, and Japan has even been awarded a disgraceful award, and a review of renewable energy has begun.

本発明は、風力発電を効率化するものである。巨大化する風力発電機の弱点とデメリットとされる、1.設置場所/山頂や洋上の特殊性、2.基層工事/地盤や浅瀬の難しさ、3.騒音や危険に対する住民対策、4.漁業・山林業・農業・海運など各種利害関係者への対応、5.台風や地震リスク対策、6.莫大なコスト、7.重い機器類の運搬とクレーン組み立て、8.電力供給の安定性とケーブル、9.供給電力の総量などの課題の一部を、コストをかけずに現在ある技術の組み合わせで、風力発電全体の効率を向上させるものである。更にこのアイデアを発展させ高速道路や橋梁などの公共立地で発電し、家庭や会社においても太陽光発電や化石発電に代わり、更に良いコストパフォーマンスを実現させるものである。 The present invention makes wind power generation more efficient. The weak points and demerits of the growing wind power generator are: 1. 2. Specificity of installation location/top of mountain or offshore; 2.Difficulty of base layer construction/ground and shallow water; 4. Residents' measures against noise and danger; 5. Dealing with various stakeholders such as fisheries, forestry, agriculture, and shipping; 6. Typhoon and earthquake risk countermeasures; 7. huge cost; 8. Transporting heavy equipment and assembling cranes; 8. Stability of power supply and cables; Some of the issues, such as the total amount of power supplied, can be combined with existing technologies to improve the overall efficiency of wind power generation at low cost. This idea is further developed to generate electricity in public places such as highways and bridges, and to replace solar power generation and fossil power generation in homes and companies to realize even better cost performance.

風力発電全体の構造図と名称Structural drawing and name of the entire wind power generation ナセルと呼ばれる頭部に取り付けられたブレード(羽根)部分と発電部分A blade (wing) part attached to the head called a nacelle and a power generation part 応用の設置場所の高速道路や橋梁のイメージ写真Image photos of highways and bridges where the application is installed 発電量を上げるためにますます巨大化する風力発電Wind power generation is getting bigger and bigger to increase the amount of power generation 洋上風力発電の設置モデル図面Installation model drawing for offshore wind power generation 風の強い山頂に設置された陸上の風力発電Onshore wind farms installed on windy mountaintops 巨大なポール部分を重圧、風圧、台風、地震などから支える鋼のスプリングダンパーA steel spring damper that supports a huge pole from heavy pressure, wind pressure, typhoons, earthquakes, etc. パワーを備蓄し反動力をえる理論図Theoretical diagram of stockpiling power and gaining reaction force 油圧パワーによる逆回転発電のイメージ図Image diagram of reverse rotation power generation using hydraulic power パワーを備蓄する油圧とは:その1What is hydraulic pressure that stores power: Part 1 パワーを備蓄する油圧とは:その2Hydraulics that store power: Part 2 補助発電の回転を生むゼンマイバネMainspring that produces rotation of auxiliary power generation 双方向のレンズ型発電機のイメージ図(本写真は単方向のみ)Image of a bi-directional lens-type generator (this photo shows only one direction) 双方向レンズ型小型発電機の集風枠のイメージ図(本発明は表裏に付く)Image diagram of the wind collection frame of the bi-directional lens type compact generator (this invention is attached to the front and back) 風向計(風見鶏)と風力計のイメージ図Image of wind vane (weather vane) and anemometer 本発明のゼンマイバネの反発力と発電モーターの発電の説明Description of the repulsive force of the spiral spring of the present invention and the power generation of the power generation motor 本発明の基礎ダンパーと油圧と大型弾性ゼンマイバネと発電の説明Explanation of the basic damper, hydraulic pressure, large elastic spiral spring and power generation of the present invention 本発明のダブルブレードと双方向レンズ型小型発電機の取り付け発電の説明Description of installation power generation of the double blade and bi-directional lens type miniature generator of the present invention 本発明の双方向レンズ型小型発電機の構造の説明Description of the structure of the bidirectional lens type compact generator of the present invention 本発明の「ダブルブレード」のイメージ図Image diagram of the "double blade" of the present invention

Claims (10)

陸上や洋上の大型風力発電設備の発電効率を上げるためにハブ部分の先端または裏側に、或いはナセルの末端、上部、側部により小型のブレード(回転羽)を取り付け大小2重のダブル・ブレードとし風速1~3m/秒でも軽量小型ブレードが回転し発電するダブルブレード(またはトリプルブレードなど)の複数ブレードによる風力発電機器と設備 In order to increase the power generation efficiency of large-scale wind power generation facilities on land or offshore, small blades (rotary blades) are attached to the tip or back of the hub, or to the end, top, or side of the nacelle to form a large and small double blade. Wind power generation equipment and facilities with multiple blades such as double blades (or triple blades, etc.) that generate electricity by rotating small lightweight blades even at a wind speed of 1 to 3 m / sec. 陸上や洋上の大型風力発電設備の発電効率を上げるためにナセルのブレード側もしくはナセルテール側、ナセルの上部、側部に取り付け可能で、風力の弱い時でも作動し発電し今まで用いられなかった大型ブレードのバックサイド流体気流を生かし、前後から羽を回転させ風力を効率よく取り込み補助発電が可能な丸型換気扇の枠型を前後に生かした双方向レンズ式風力発電機器と装置 It can be installed on the blade side of the nacelle, the nacelle tail side, the upper part of the nacelle, or the side part to increase the power generation efficiency of large-scale wind power generation facilities on land or offshore. Bi-directional lens type wind power generation equipment and equipment that utilizes the back side fluid airflow of the blades and utilizes the frame shape of a round ventilation fan that can efficiently capture wind power and generate auxiliary power by rotating the blades from the front and back. 陸上や洋上の大型風力発電設備の発電効率を上げるために上記の小型複数ブレード装置または双方向レンズ式発電装置の回転力を用いて細い糸状又はテープ状の弾性ゼンマイバネを筒状に巻き、風のない時にもゼンマイバネ弾性の反動力で動力伝達軸を回転させ発電する風力発電装置と方法 In order to increase the power generation efficiency of large-scale wind power generation facilities on land and offshore, the rotational force of the above-mentioned small multiple blade device or bidirectional lens type power generation device is used to wind a thin thread-like or tape-like elastic spiral spring into a cylindrical shape, Wind power generator and method for generating power by rotating the power transmission shaft with the reaction force of the spring spring elasticity even when the wind power generator is not 陸上や洋上の大型風力発電設備の発電効率を上げるために上記のゼンマイバネ弾性の反動力を用いて大型ブレードの初作動をサポートし風力の弱い時でも発電できるように、クルマや電車のセルモーターのように大型ブレードをスムーズに回転させる弾性ゼンマイバネ巻き取りと巻き戻し装置とそのエネルギーを供給する小型ブレードとレンズ集風型風力発電機器と装置 In order to increase the power generation efficiency of large-scale wind power generation facilities on land and offshore, the recoil force of the mainspring spring mentioned above is used to support the initial operation of the large blades, so that power can be generated even when the wind is weak. An elastic mainspring winding and unwinding device that smoothly rotates a large blade, and a small blade and lens that supply its energy. 陸上や洋上の大型風力発電設備の発電効率を上げるために基礎基盤、タワー、ナセル、発電機、制御装置など設備全体にかかる圧力インフラを生かし油圧装置や免震プレートなどを新たなパワー備蓄装置として利用しその復元パワーによりゼンマイバネや反発力を利用し大型ブレードの初作動装置や発電装置として利用する免震基盤、油圧装置、ばね機器、ゼンマイバネ装置を使用した風力発電機器類と設備類 In order to increase the power generation efficiency of large-scale wind power generation facilities on land and offshore, we utilize the pressure infrastructure that affects the entire facility, such as foundations, towers, nacelles, generators, and control devices, and use hydraulic devices and seismic isolation plates as new power storage devices. Seismic isolation bases, hydraulic systems, spring devices, wind power generation equipment and facilities using spiral spring devices, which are used as the first operating device for large blades and power generation devices by using spring springs and repulsive force due to their restoring power. 陸上や洋上の大型風力発電設備の安全を守るために基礎部分に使用可能な免振支承と滅衰機能装置、台風強風への強度補完装置を生かし作用反作用の理論を生かした安全強度保持と同時に反動エネルギーの備蓄と再生が可能な大型金属弾性バネあるいはエネルギー備蓄のための油圧機器と装置 In order to protect the safety of large-scale wind power generation facilities on land and offshore, it is possible to use seismic isolation bearings and damping function devices that can be used in the foundation, and strength supplementary devices for strong typhoon winds. Large elastic metal springs capable of storing and regenerating recoil energy or hydraulic devices and devices for storing energy 大型風力発電の設備のために必要な地権者、環境保護、地域住民並びに広域に及ぶ山林、漁業、鳥類、観光などの地権者、保護団体、利権団体等々同意の困難な立地ではなく、既存の高速道路、橋梁の上部・下部の構造物や照明ポールに取り付け可能且つ照明器具などとの併設が可能な上記請求項1,2に示された小型ブレードとレンズ型の水平及び垂直型風力発電機器と装置 It is not a location that is difficult to agree with, such as land owners, environmental protection, local residents, forests, fisheries, birds, tourism, etc., conservation groups, interest groups, etc. necessary for large-scale wind power generation facilities. Horizontal and vertical wind power generators of small blade and lens type as described in claims 1 and 2, which can be attached to structures on the upper and lower parts of highways and bridges, lighting poles, and can be installed together with lighting fixtures. and equipment 上記請求項7に示された垂直型小型風力発電機器に用いられる双方向から風力エネルギーを取り込める表裏の枠に付けられたダブル・レンズ型形状の集風枠、ならびに回転を生みやすく合成繊維を使って織ったものあるいはプラスティック製の鳥または昆虫の羽根型のブレードと落下や離剥の危険防止用安全玉付き綱(つな)ステンレスワイヤーとそれが設置された風力発電機器と装置 Double lens-shaped wind collecting frame attached to the front and back frames capable of taking in wind energy from both directions used for the vertical small wind power generator shown in claim 7, and synthetic fibers that are easy to generate rotation are used. woven or plastic bird or insect wing-shaped blades and safety tethers for fall and detachment safety tether stainless steel wires and installed wind power equipment and devices 高速道路の中央分離帯や橋の橋梁などに設置し上記請求項7に示された軽量水平又は垂直型小型風力発電機で、昆虫や鳥の羽根にヒントを得た騒音と落下防止に配慮された風力エネルギーを効率的に取り込むため合成繊維の編み物あるいはプラスティック製の鳥・昆虫の羽根型のブレードと、風向計に連動した集風竹団扇型のステンレス骨つきブレード並びに落下や離剥防止の玉付きステンレスワイヤーがついた風力発電機器と装置 It is a lightweight horizontal or vertical small wind power generator installed on the median strip of highways and bridges of bridges, etc., and is designed for noise and fall prevention inspired by insects and bird feathers. In order to efficiently capture wind energy, synthetic fiber knitted or plastic bird/insect wing-shaped blades, bamboo fan-shaped stainless steel blades linked to the wind vane, and balls to prevent falling and peeling. Wind power equipment and devices with stainless steel wire 上記の小型発電機をさらに小型化して、家庭や会社、自治体などに使用される風力計と風向計のセットになった小型化したダブルブレード発電機と双方向レンズ型家庭用小型風力発電機器と装置類







A miniaturized double-blade generator and a two-way lens type small wind power generator for home use, which is a set of an anemometer and anemometer used in homes, companies, local governments, etc. Equipment







JP2022017637A 2022-02-08 2022-02-08 Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future Pending JP2023115436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022017637A JP2023115436A (en) 2022-02-08 2022-02-08 Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022017637A JP2023115436A (en) 2022-02-08 2022-02-08 Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future

Publications (1)

Publication Number Publication Date
JP2023115436A true JP2023115436A (en) 2023-08-21

Family

ID=87576379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022017637A Pending JP2023115436A (en) 2022-02-08 2022-02-08 Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future

Country Status (1)

Country Link
JP (1) JP2023115436A (en)

Similar Documents

Publication Publication Date Title
Earnest et al. Wind power technology
US8894348B2 (en) Wind turbine
Ghenai Life cycle analysis of wind turbine
Konstantinidis et al. Wind turbines: current status, obstacles, trends and technologies
CN101915218B (en) Wind power generating set with vertical shaft
EP1952016A1 (en) A wind turbine
CN201794718U (en) Vertical-axis wind power generation device
CN102192101A (en) Device for raising and converting fluid energy
GB2460389A (en) Drum shaped wind turbine with solar panels
US20130119662A1 (en) Wind turbine control
Ahmed et al. Utilization of wind energy in green buildings
Awasthi Wind power: practical aspects
JP2023115436A (en) Power generation and spring device for generating power during breeze at which large blades do not generate power by mounting double large and small blades and bidirectional lens type small generator to hub or nacelle portion in order to increase power generation efficiency of large-scale onshore or offshore large wind power generation facility, and for activating large blades during weak wind by applying elastic sparing like cell motor, and power generation efficiency with energy accumulation linked to seismic isolation facility and reaction energy, as well as small, inexpensive and powerful urban wind power generation device capable of being easily installed even on median strip and above or below bridge and capable of being used even in home and company in future
Aziz Feasibility Study on Development of a Wind Turbine Energy Generation System for Community Requirements of Pulau Banggi Sabah
CN211852049U (en) Rotary ball wind power generation independent operation system and power generation device with same
Khrisanov et al. Marine electrical power industry with renewable energy carriers. Part 1. Wind and wave turbines of offshore power plants
JP5662611B1 (en) Vertical wind power generator rotation suppression mechanism
KR101124172B1 (en) Wind and solar hybrid power system
Kashem et al. A Comprehensive Review and the Efficiency Analysis of Horizontal and Vertical Axis Wind Turbines
RU2365781C1 (en) Self-controlled wind-powered generator
Usman et al. Wind Power Generation in Sudano-Sahelian Region of Nigeria: A Review
CN201582060U (en) Double-head wind driven generator
Patil Experimental work on horizontal axis PVC turbine blade of power wind mill
Goffman Capturing the Wind: Power for the 21 st Century
Bajaro Horizontal and Vertical Axis Wind Turbines

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220212

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220423