JP2023104614A - Stain-proof member and manufacturing method for stain-proof member - Google Patents

Stain-proof member and manufacturing method for stain-proof member Download PDF

Info

Publication number
JP2023104614A
JP2023104614A JP2022005719A JP2022005719A JP2023104614A JP 2023104614 A JP2023104614 A JP 2023104614A JP 2022005719 A JP2022005719 A JP 2022005719A JP 2022005719 A JP2022005719 A JP 2022005719A JP 2023104614 A JP2023104614 A JP 2023104614A
Authority
JP
Japan
Prior art keywords
group
layer
antifouling
fluidized
interfacial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022005719A
Other languages
Japanese (ja)
Inventor
優史 丸山
Yuji Maruyama
俊一郎 信木
Shunichiro Nobuki
洋 佐々木
Hiroshi Sasaki
博之 香川
Hiroyuki Kagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2022005719A priority Critical patent/JP2023104614A/en
Priority to PCT/JP2022/045328 priority patent/WO2023139959A1/en
Publication of JP2023104614A publication Critical patent/JP2023104614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

To provide a stain-proof member that is easier to manufacture than conventional ones and that can sustain a high anti-fouling effect for a long period and a manufacturing method for a stain-proof member.SOLUTION: A stain-proof member 10a according to the present invention is characterized by having a base material 1, a holding layer 2 on the surface of the base material 1 and a fluid member 3 on the surface of the holding layer 2, and containing an interface penetrating component 4 at the interface between the holding layer 2 and the fluid member 3 while penetrating the holding layer 2 and the fluid member 3.SELECTED DRAWING: Figure 1

Description

本発明は、防汚性部材および防汚性部材の製造方法に関する。 TECHNICAL FIELD The present invention relates to an antifouling member and a method for manufacturing the antifouling member.

体外診断装置(生化学自動分析装置、検体前処理装置など)は、生体分子(血清など)やカビ等の付着を抑制するために、装置を構成する部材の表面に防汚性のコーティングが施される。タンパクに代表される巨大生体分子は、分子内に疎水部と親水部を併せ持つ複雑な構造的特徴を有し、部材の表面の単純な親水性/疎水性の制御では、生体分子の吸着抑制が不十分であるおそれがある。これに対し、部材の表面に流動性を有する表面を形成することで、従来技術では困難だった生体分子などの吸着抑制を実現できることが知られている。 In vitro diagnostic devices (automatic biochemical analyzers, sample pretreatment devices, etc.) are coated with an antifouling coating on the surfaces of the components that make up the device to suppress the adhesion of biomolecules (serum, etc.) and molds. be done. Large biomolecules, typified by proteins, have complex structural features that have both hydrophobic and hydrophilic parts within the molecule. It may be inadequate. On the other hand, it is known that by forming a fluid surface on the surface of a member, it is possible to suppress adsorption of biomolecules and the like, which has been difficult with conventional techniques.

例えば、特許文献1には、部材の表面に防汚性を付与する技術として、基材100と、基材100の表面の分子固着層110と、分子固着層110の表面に設けられた潤滑層140を有する構成が開示されている。分子固着層110は、基材100と化学結合する頭部領域120と、潤滑層140側に伸びるテイル領域130を含む。潤滑層140は、基材100の表面へ汚染物質を付着させず、汚染物質の通過を可能にする。 For example, Patent Literature 1 describes a technology for imparting antifouling properties to the surface of a member. A configuration with 140 is disclosed. The molecular anchoring layer 110 includes a head region 120 that chemically bonds with the substrate 100 and a tail region 130 that extends toward the lubricating layer 140 . Lubricating layer 140 keeps contaminants from adhering to the surface of substrate 100 and allows the passage of contaminants.

国際公開第2013/106588号WO2013/106588

しかしながら、上述した特許文献1の技術では、防汚性能を有する潤滑層(流動層)を基材に保持するために、基材の表面に化学修飾を施している。この化学修飾は、基材の種類によっては施工が困難であり(特に、樹脂系の材料では困難)、化学修飾のために必要な工数も増えるため、コストも増大する。また、防汚効果の耐久性に対しても必ずしも十分ではなく、長期使用に課題があった。 However, in the technique of Patent Literature 1 described above, the surface of the substrate is chemically modified in order to retain the lubricating layer (fluidized layer) having antifouling performance on the substrate. This chemical modification is difficult to perform depending on the type of substrate (particularly difficult for resin-based materials), and the number of man-hours required for chemical modification increases, resulting in an increase in cost. In addition, the durability of the antifouling effect is not necessarily sufficient, and there is a problem in long-term use.

本発明は、上記事情に鑑み、従来よりも容易に製造可能であり、かつ、高い防汚効果を長期にわたって持続可能な防汚性部材および防汚性部材の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide an antifouling member which can be manufactured more easily than before and which can maintain a high antifouling effect over a long period of time, and a method for manufacturing the antifouling member. do.

上記目的を達成するための本発明の一態様は、基材と、基材の表面に設けられた保持層と、保持層の表面に設けられた流動層と、を有し、保持層と流動層との界面に、保持層と流動層とを貫通する界面貫通成分を含むことを特徴とする防汚性部材である。 One aspect of the present invention for achieving the above object has a substrate, a retention layer provided on the surface of the substrate, and a fluidized layer provided on the surface of the retention layer, and the retention layer and the fluidized layer are provided on the surface of the substrate. The antifouling member is characterized by containing an interfacial penetrating component penetrating the retaining layer and the fluidized layer at the interface with the layer.

また、上記目的を達成するための本発明の他の態様は、基材の表面に保持層を設ける工程と、保持層の表面に流動層を設ける工程と、を有し、保持層と流動層とを貫通する界面貫通成分を含むことを特徴とする防汚性部材の製造方法である。 Another aspect of the present invention for achieving the above object comprises the steps of providing a retention layer on the surface of a substrate, and providing a fluidized layer on the surface of the retention layer, wherein the retention layer and the fluidized layer are A method for producing an antifouling member characterized by including an interfacial penetrating component penetrating through and.

本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the invention are described in the claims.

本発明によれば、従来よりも容易に製造可能であり、かつ、高い防汚効果を長期にわたって持続可能な防汚性部材および防汚性部材の製造方法を提供できる。 According to the present invention, it is possible to provide an antifouling member and a method for producing the antifouling member, which can be manufactured more easily than before and can sustain a high antifouling effect over a long period of time.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の防汚性部材の第1の例を示す模式図Schematic diagram showing a first example of the antifouling member of the present invention 流動性を有する部材とその表面の汚染物質を示す模式図Schematic diagram showing a fluid component and contaminants on its surface 流動性を有する部材とその表面の汚染物質を示す模式図Schematic diagram showing a fluid component and contaminants on its surface 本発明の防汚性部材の第2の例を示す模式図Schematic diagram showing a second example of the antifouling member of the present invention 本発明の防汚性部材の製造方法の第1の例を示すフロー図Flow chart showing the first example of the method for manufacturing the antifouling member of the present invention 本発明の防汚性部材の製造方法の第2の例を示すフロー図Flow chart showing a second example of the method for manufacturing the antifouling member of the present invention 本発明の防汚性部材の製造方法の第3の例を示すフロー図Flow chart showing a third example of the method for manufacturing the antifouling member of the present invention

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の具体的な実施形態を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 An embodiment of the present invention will be described below with reference to the drawings and the like. The following description shows specific embodiments of the present invention, and the present invention is not limited to these descriptions. changes and modifications are possible. In addition, in all the drawings for explaining the present invention, parts having the same functions are denoted by the same reference numerals, and repeated explanations thereof may be omitted.

図1は本発明の防汚性部材の第1の例を示す模式図である。図1に示すように、本発明の防汚性部材10aは、基材1と、基材1の表面に設けられた保持層2と、保持層2の表面に設けられた流動層3と、を有し、保持層2と流動層3との界面に、保持層2と流動層3とを貫通する界面貫通成分4を含む。 FIG. 1 is a schematic diagram showing a first example of the antifouling member of the present invention. As shown in FIG. 1, the antifouling member 10a of the present invention comprises a substrate 1, a retaining layer 2 provided on the surface of the substrate 1, a fluidized layer 3 provided on the surface of the retaining layer 2, and includes an interfacial penetrating component 4 penetrating the retaining layer 2 and the fluidized layer 3 at the interface between the retaining layer 2 and the fluidized layer 3 .

本発明で本発明の防汚性部材10aは、従来の防汚技術で吸着抑制が困難な巨大生体分子と接触する用途において特に高い防汚効果が得られる、本発明で提供する部材は特に水に対して高い撥液性を示すことから、水系の液体と接触する用途の部材で高い防汚効果が得られる、汚染物質(防汚対象)については限定されないが、例えば、吸着性の成分を含む水溶液(血清、血漿、体液もしくは前処理された体液、培養上清、生体試料やその抽出液、タンパク溶液および水道水など)、細胞や微生物などを含む水(体液もしくは前処理された体液、培養液、環境中の水および微生物やカビ胞子などで汚染させたなど)、が挙げられる。 According to the present invention, the antifouling member 10a of the present invention has a particularly high antifouling effect in applications where it is in contact with large biomolecules that are difficult to suppress adsorption with conventional antifouling techniques. Because it exhibits high liquid repellency against water-based liquids, high antifouling effects can be obtained for members that come into contact with water-based liquids. Contaminants (antifouling targets) are not limited, but for example, adsorptive components Aqueous solutions containing cells (serum, plasma, body fluids or pretreated body fluids, culture supernatants, biological samples and their extracts, protein solutions and tap water, etc.), water containing cells and microorganisms (body fluids or pretreated body fluids, culture medium, environmental water, contaminated with microorganisms, mold spores, etc.).

基材1の材料や形状については特に限定はなく、検体が接触する部位に用いる部材であっても構わないし、環境中の防汚対象が接触する部材であっても構わないし、廃棄物が接触する部材であっても構わないし、水が接触する部材であっても構わない。 The material and shape of the base material 1 are not particularly limited, and it may be a member used for a part that comes into contact with a specimen, a member that comes into contact with an antifouling target in the environment, or a member that comes into contact with waste. It does not matter if it is a member that makes contact with water.

流動層3の材料は、防汚対象によって適したものを選ぶことができる、保持層2の材料は、流動層3の材料と基材1の材料によって適したものを選ぶことができる。流動層3も保持層2も、単一材料から形成されていても構わないし、複数材料から形成されていても構わない、
防汚性部材10aは、流動層3と保持層2の界面に、その界面を貫通する成分(以下、界面貫通成分4)を有することを特徴とする。界面貫通成分4は、流動層3を保持層2の表面に安定に形成させる役割を担う。界面貫通成分4は、保持層2に対して親和性を有する部位(保持層親和部位41)と、流動層3に対して親和性を有する部位(流動層親和部位40)を有する。これらの部位はそれぞれ別の化学構造であっても、同一の化学構造であってもよい。保持層2および流動層3の2つの層に対して親和性を有する界面貫通成分4を備えることで、流動層3が保持層2に対して強い親和性を有するようになり、流動層3が安定に保持される。
A suitable material for the fluidized layer 3 can be selected according to the antifouling object. Both the fluidized layer 3 and the retention layer 2 may be made of a single material, or may be made of a plurality of materials.
The antifouling member 10a is characterized by having, at the interface between the fluidized layer 3 and the retaining layer 2, a component penetrating through the interface (hereinafter referred to as an interfacial penetrating component 4). The interfacial penetrating component 4 plays a role of stably forming the fluidized layer 3 on the surface of the retaining layer 2 . The interfacial penetrating component 4 has a site having affinity for the retention layer 2 (retention layer affinity site 41) and a site having affinity for the fluidized layer 3 (fluidized layer affinity site 40). These moieties may have different chemical structures or may have the same chemical structure. By providing the interfacial penetrating component 4 that has an affinity for the two layers, the support layer 2 and the fluidized layer 3, the fluidized layer 3 has a strong affinity for the support layer 2, and the fluidized layer 3 Remain stable.

上述した特許文献1では、固体表面を化学修飾して潤滑に用いる液体との親和性を向上させている。これに対し、界面貫通成分4を用いる本発明では、流動層3との親和性の向上に化学的に結合された官能基を必要としないため、化学修飾に関わる基材の制限や製造プロセスの制限を受けにくい。基材の制限とは、例えば、表面に官能基を付与しにくい材料を用いる場合や、高い官能基密度を実現しにくい材料を用いる場合に困難を伴うことである。製造プロセスの制限とは、例えば、基材の表面に官能基を付与するプロセスが必要であることや、それによって製造上の困難が生じることである。 In Patent Literature 1 mentioned above, the solid surface is chemically modified to improve the affinity with the liquid used for lubrication. On the other hand, the present invention using the interfacial penetrating component 4 does not require a chemically bonded functional group to improve the affinity with the fluidized bed 3. Therefore, there are restrictions on the base material involved in chemical modification and the manufacturing process. less likely to be restricted. The restrictions on the base material are, for example, difficulties when using a material that is difficult to impart functional groups to the surface or using a material that is difficult to achieve a high functional group density. The limitations of the manufacturing process are, for example, the need for a process to impart functional groups to the surface of the substrate and the resulting manufacturing difficulties.

本発明の界面貫通成分4は流動層3と保持層2の界面に存在することがエネルギー的に十分に安定であり、コーティングなどの単純なプロセスによって自発的に界面に存在させることができる。このことから、本発明の防汚性部材10aを用いることで、防汚性を有する部材を比較的簡便かつ大規模に製造することができる、
界面貫通成分4の化学的な構造に関しては限定されない。界面貫通成分4が流動性を有する場合、界面貫通成分4を流動層3の成分として用いることができる。界面貫通成分4が流動性でない場合、界面貫通成分4を保持層2の成分として用いることができる。流動性を有する界面貫通成分4を流動層3の成分と兼用することが製造上の簡便さの観点からは好ましいが、これに限定されない、
流動層3の成分は、防汚に適した物性を示す限り、化学的な構造に関しては限定されない。防汚に適した物性とは、例えば溶解性や表面エネルギーや流動性や密度などである、溶解性については、防汚対象と流動層3の成分が混和性である場合、流動層3が保持層2から遊離して防汚対象に混和することで防汚効果が得られないため、防汚対象に対して十分に溶解性が低い必要がある。また、混和性でない場合でも物理的な相互作用によって流動層3が防汚対象に混入することもあるため、留意が必要である、流動性や密度については、防汚対象を表面から十分に取り除き得る流動性が得られる限りにおいて限定されないが、様々な要因によって適した範囲が存在する、
図2および図3は流動性を有する部材とその表面の汚染物質を示す模式図である。防汚対象5が保持層2に接触せず、面内方向に移動可能である限り、防汚性・撥液性が発揮される、このとき、流動層3の粘度が低いほど、面内方向での移動が容易であるため、防汚性・撥液性は高い。例えば、下記参考文献1、2では、粘度の低いシリコーンオイル(動粘度として5cSt程度、密度が0、913g/cm程度であるため粘度としては4、6mPa・s程度)を用いることで高い防汚性を実現している、また、上述した特許文献1では、3~15mPa・sの範囲の粘度の潤滑剤を用いて液膜を調製することで効果が得られるとしている、。
The interfacial penetrating component 4 of the present invention is energetically stable enough to exist at the interface between the fluidized layer 3 and the retaining layer 2, and can be spontaneously made to exist at the interface by a simple process such as coating. Therefore, by using the antifouling member 10a of the present invention, a member having antifouling properties can be produced relatively easily and on a large scale.
There are no restrictions regarding the chemical structure of the interfacial penetrating component 4 . When the interfacial penetrating component 4 has fluidity, the interfacial penetrating component 4 can be used as a component of the fluidized bed 3 . The interfacial piercing component 4 can be used as a component of the retention layer 2 if the interfacial piercing component 4 is not flowable. From the viewpoint of manufacturing simplicity, it is preferable to use the interfacial penetrating component 4 having fluidity as a component of the fluidized bed 3, but it is not limited to this.
The components of the fluidized bed 3 are not limited in terms of chemical structure as long as they exhibit physical properties suitable for antifouling. Physical properties suitable for antifouling are, for example, solubility, surface energy, fluidity, density, etc. Regarding solubility, if the antifouling target and the components of the fluidized bed 3 are miscible, the fluidized bed 3 can retain Since the antifouling effect cannot be obtained by being separated from the layer 2 and mixed with the antifouling target, the solubility in the antifouling target must be sufficiently low. In addition, even if it is not miscible, the fluidized layer 3 may mix with the antifouling object due to physical interaction, so it is necessary to pay attention to fluidity and density. Although it is not limited as long as the liquidity obtained can be obtained, there is a suitable range depending on various factors,
2 and 3 are schematic diagrams showing a fluid member and contaminants on its surface. As long as the antifouling object 5 does not contact the holding layer 2 and can move in the in-plane direction, the antifouling property and liquid repellency are exhibited. Because it is easy to move around, it has high antifouling and liquid repellency. For example, in References 1 and 2 below, low-viscosity silicone oil (dynamic viscosity of about 5 cSt, density of about 0,913 g/cm 3 , viscosity of about 4.6 mPa s) is used to achieve high resistance. In addition, the above-mentioned Patent Document 1 states that the effect can be obtained by preparing a liquid film using a lubricant with a viscosity in the range of 3 to 15 mPa·s.

参考文献1:Nature 2011, 477, 443-447
参考文献2:ACS Biomater. Sci. Eng. 2015, 1, 43-51
このように、低い粘度領域での液膜形成に関して従来より検討されている、しかし、我々の検討の結果、必ずしも粘度が低い方が実用上の観点から望ましいとは限らないことが判明した。
Reference 1: Nature 2011, 477, 443-447
Reference 2: ACS Biometer. Sci. Eng. 2015, 1, 43-51
As described above, the formation of a liquid film in the low viscosity range has been conventionally investigated. However, as a result of our investigation, it has been found that a lower viscosity is not necessarily desirable from a practical point of view.

まず、流動層3の粘度が低い場合、防汚対象5が流動層3に接触した際に、保持層2に偶発的に接触する可能性が高いことが判明した(図2)。これは、特に防汚対象5の比重が流動層3の成分の比重より大きいときに顕著である、例えば、防汚対象5が水系で、流動層3の成分が有機系の液体(シリコーン系の液体など)の場合などである、ただし、これは、防汚対象5が一定の速度をもって流動層3に接触する場合などは比重に関係なく発生する現象である。防汚対象5が偶発的に保持層2に接触した場合、防汚対象5やその中の成分が保持層2に吸着され蓄積されることで、保持層2の流動層3に対する保持能が低下したり、蓄積された成分が流動層3より上部の表面に出ることで防汚性が失われたりする。このような現象は防汚性部材の長期的な耐久性を低下させるため、流動層3の成分としては、防汚性と耐久性を両立させる範囲の粘度の液体を用いることが望ましい、
また、流動層3の粘度が低い場合、防汚対象5が流動層3に接触した際に、流動層3の成分が防汚対象5に混入しやすいことが判明した(図3)。例えば、防汚対象5が水系である場合、防汚対象と空気の界面エネルギーが高く(B部分)、流動層の成分と空気の界面エネルギーが低いため(A部分)、エネルギー的に安定化させる方向で流動層の成分が水と空気の界面に入り込みやすい。このようにして流動層の成分が防汚対象に混入すると、部材の表面から流動層の成分が失われることで耐久性が低下したり、混入した流動層の成分が他の場所に移動して汚染となったり、混入した流動層の成分によって装置性能が低下したりする。このような現象を低減するため、流動層の成分としては、防汚性と非混入性を両立させる範囲の粘度の液体を用いることが望ましい。
First, it was found that when the viscosity of the fluidized layer 3 is low, there is a high possibility that when the antifouling object 5 contacts the fluidized layer 3, it accidentally contacts the retaining layer 2 (FIG. 2). This is particularly noticeable when the specific gravity of the antifouling object 5 is greater than the specific gravity of the components of the fluidized bed 3. For example, the antifouling object 5 is water-based and the fluidized bed 3 is composed of an organic liquid (silicone However, this is a phenomenon that occurs regardless of the specific gravity when the antifouling object 5 contacts the fluidized bed 3 at a constant speed. When the antifouling object 5 accidentally contacts the holding layer 2 , the antifouling object 5 and its components are adsorbed and accumulated on the holding layer 2 , thereby reducing the ability of the holding layer 2 to hold the fluidized bed 3 . Otherwise, the accumulated components may come out to the surface above the fluidized bed 3 and the antifouling property may be lost. Since such a phenomenon reduces the long-term durability of the antifouling member, it is desirable to use a liquid having a viscosity within a range that achieves both antifouling properties and durability as a component of the fluidized bed 3.
It was also found that when the viscosity of the fluidized layer 3 is low, the components of the fluidized layer 3 are likely to mix into the antifouling object 5 when the antifouling object 5 comes into contact with the fluidized bed 3 (Fig. 3). For example, when the antifouling target 5 is water-based, the interfacial energy between the antifouling target and air is high (part B), and the interfacial energy between the components of the fluidized bed and air is low (part A). In the direction, the components of the fluidized bed tend to enter the water-air interface. When the components of the fluidized bed are mixed into the antifouling object in this way, the components of the fluidized bed are lost from the surface of the member, resulting in a decrease in durability, or the mixed components of the fluidized bed move to other places. Contamination may occur, or equipment performance may deteriorate due to mixed components of the fluidized bed. In order to reduce such a phenomenon, it is desirable to use a liquid having a viscosity within a range that satisfies both antifouling property and non-mixing property as a component of the fluidized bed.

これらの観点から、流動層の成分の粘度としては、20mPa・s以上20000mPa・s以下であることが好ましく、30mPa・s以上15000mPa・s以下であることがより好ましく、40mPa・s以上10000mPa・s以下であることがさらに好ましい、
界面貫通成分4は、前述の通り、保持層2に対して親和性を有する部位(保持層親和部位)41と、流動3層に対して親和性を有する部位(流動層親和部位)40を有する。簡便に製造でき、防汚性と耐久性を両立可能な構成として、以下に2例を示す、
第1は、界面貫通成分4として、保持層親和部位41と流動層親和部位40の構造が異なる例である、このような例の場合、保持層2と流動層3で成分や物性が大きく異なっていても製膜可能であることから、材料選定の自由度が高い、例えば、保持層2は、製膜性や基材との密着性などの観点から材料を選定し、流動層3は、防汚性や耐久性の観点から材料を選定することが可能である。保持層2の成分としては、例えば、芳香族系ポリエステル樹脂、芳香族-脂肪族混合系ポリエステル樹脂、脂肪族系ポリエステル樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、ポリビニルブチラール樹脂、塩化ビニル/酢酸ビニル共重合物(塩酢ビ樹脂)、ポリ酢酸ビニル樹脂、部分塩素化ポリプロピレン樹脂、部分塩素化ポリエチレン樹脂およびアセチルセルロース樹脂などであるが、これらに限定されない。
From these points of view, the viscosity of the component of the fluidized bed is preferably 20 mPa·s or more and 20000 mPa·s or less, more preferably 30 mPa·s or more and 15000 mPa·s or less, and 40 mPa·s or more and 10000 mPa·s. It is further preferred that
As described above, the interfacial penetrating component 4 has a site (retaining layer affinity site) 41 that has affinity for the retention layer 2 and a site (fluid layer affinity site) 40 that has affinity for the fluid layer 3. . Two examples are shown below as a configuration that can be easily manufactured and can achieve both antifouling properties and durability.
The first example is an example in which the structure of the retention layer-affinity site 41 and the fluidized-layer-affinity site 40 as the interfacial penetrating component 4 are different. Since it is possible to form a film even if the material is thin, there is a high degree of freedom in material selection. Materials can be selected from the viewpoint of antifouling properties and durability. Components of the holding layer 2 include, for example, aromatic polyester resins, aromatic-aliphatic mixed polyester resins, aliphatic polyester resins, acrylic resins, styrene/acrylic resins, urethane resins, silicone resins, fluorine resins, and polyvinyl. butyral resins, vinyl chloride/vinyl acetate copolymers (vinyl chloride resins), polyvinyl acetate resins, partially chlorinated polypropylene resins, partially chlorinated polyethylene resins and acetylcellulose resins, and the like, but are not limited to these.

保持層親和部位41は保持層2の成分に対して適切に選ぶことができるが、例えば、アルキル基、アルキルエーテル基、アミノ基、アミノアルキル基、エチレングリコール基、オリゴエチレングリコール基、エチレンイミン基、オリゴエチレンイミン基、チオール基、スルフィド基、カルボキシル基、アミド基、フェニル基、置換フェニル基、アルキルシリル基、フルオロアルキル基、パーフルオロアルキル基、クロロアルキル基およびブロモアルキル基、などであるが、これらに限定されない。また、これらの中から2種類以上でも構わない、ただし、界面貫通成分4と流動層3の成分を兼用する場合には、保持層親和部位41が流動性や防汚性に与える影響を少なく留めることが望ましいため、流動層親和部位40に対して占有体積が小さい方が好ましい。 The retention layer affinity site 41 can be appropriately selected with respect to the components of the retention layer 2. For example, an alkyl group, an alkyl ether group, an amino group, an aminoalkyl group, an ethylene glycol group, an oligoethylene glycol group, an ethyleneimine group. , oligoethyleneimine groups, thiol groups, sulfide groups, carboxyl groups, amide groups, phenyl groups, substituted phenyl groups, alkylsilyl groups, fluoroalkyl groups, perfluoroalkyl groups, chloroalkyl groups and bromoalkyl groups, etc. , but not limited to. Two or more of these may be used. However, when the interfacial penetrating component 4 and the component of the fluidized layer 3 are used together, the influence of the retention layer affinity portion 41 on the fluidity and antifouling property should be kept to a minimum. Therefore, it is preferable that the volume occupied by the fluidized bed-affinity region 40 is smaller.

流動層3の成分や流動層親和部位40は防汚対象によって適切に選ぶことができる。界面貫通成分4において、保持層親和部位41と流動層親和部位40の位置関係やモル比は限定されない。流動層親和部位としてポリマーやオリゴマーを用いる場合、保持層親和部位41は側鎖として導入されていても構わないし、末端に導入されていても構わない。また、流動層親和部位40は必ずしも直鎖である必要はなく、分岐していても構わない。流動層3の成分は流動性を示す必要があるため、例えば、オリゴ(ジメチルシロキサン)系、ポリ(ジメチルシロキサン)系、置換オリゴ(ジメチルシロキサン)系、置換ポリ(ジメチルシロキサン)系、ポリブテン系、ポリイソブチレン系、炭化水素系、フッ化炭化水素系、ポリエーテル系、フッ化ポリエーテル系およびイオン液体系などから選ばれる部分構造を持つことができるが、これらに限定されない。 The components of the fluidized bed 3 and the fluidized-bed affinity part 40 can be appropriately selected according to the antifouling object. In the interfacial penetrating component 4 , the positional relationship and molar ratio between the retaining layer affinity portion 41 and the fluidized layer affinity portion 40 are not limited. When a polymer or oligomer is used as the fluidized bed affinity site, the retention layer affinity site 41 may be introduced as a side chain or may be introduced at the end. Further, the fluidized bed affinity site 40 does not necessarily have to be a straight chain, and may be branched. Since the components of the fluidized bed 3 need to exhibit fluidity, for example, oligo(dimethylsiloxane)-based, poly(dimethylsiloxane)-based, substituted oligo(dimethylsiloxane)-based, substituted poly(dimethylsiloxane)-based, polybutene-based, It can have a partial structure selected from polyisobutylene, hydrocarbon, fluorinated hydrocarbon, polyether, fluorinated polyether, ionic liquid, and the like, but is not limited to these.

第2は、界面貫通成分4として、保持層親和部位41と流動層親和部位40の構造が同じ例である、このような例の場合、保持層2と流動層3で成分や物性が類似である必要があるため、第1の例と比較して材料選定の自由度は低いが、界面貫通成分4と流動層3の成分を兼用する場合に、異なる構造の保持層親和部位41による防汚性への影響の懸念がない。このような場合、保持層2の成分としては、例えば、架橋ポリ(ジメチルシロキサン)系樹脂、架橋置換ポリ(ジメチルシロキサン)系樹脂、ポリ(ジメチルシロキサン)部分構造を有する樹脂、ポリエチレン樹脂、分岐ポリエチレン樹脂およびフッ素樹脂などから選ぶことができるが、これらに限定されない。 Second, as the interfacial penetrating component 4, there is an example in which the structure of the retaining layer-affinity portion 41 and the fluidized layer-affinity portion 40 are the same. As compared with the first example, the degree of freedom in material selection is lower than in the first example. There is no concern about the effect on sexuality. In such a case, the components of the holding layer 2 include, for example, a crosslinked poly(dimethylsiloxane)-based resin, a crosslinked substituted poly(dimethylsiloxane)-based resin, a resin having a poly(dimethylsiloxane) partial structure, a polyethylene resin, and a branched polyethylene. It can be selected from resins, fluorine resins, and the like, but is not limited to these.

また、流動層3の成分は、例えば、オリゴ(ジメチルシロキサン)系、ポリ(ジメチルシロキサン)系、置換オリゴ(ジメチルシロキサン)系、置換ポリ(ジメチルシロキサン)系、ポリブテン系、ポリイソブチレン系、炭化水素系、フッ化炭化水素系、ポリエーテル系、フッ化ポリエーテル系およびイオン液体系などから選ぶことができるが、これらに限定されない。 The components of the fluidized bed 3 include, for example, oligo(dimethylsiloxane)-based, poly(dimethylsiloxane)-based, substituted oligo(dimethylsiloxane)-based, substituted poly(dimethylsiloxane)-based, polybutene-based, polyisobutylene-based, and hydrocarbons. system, fluorinated hydrocarbon system, polyether system, fluorinated polyether system, ionic liquid system, etc., but not limited to these.

保持層親和部位41と流動層親和部位40の構造が同じ場合、界面貫通成分4が保持層にどこまで深く相互作用するかは組合せにより異なり、界面貫通成分4が保持層の中にほぼ完全に混合するような形式で相互作用することもあるし、混合までしないとしても数原子分程度の深さまで入り込んだ状態で相互作用する場合もある。このような例においても、第1の例と同様に、流動層3の成分は直鎖である必要はなく、分岐していても構わない。 When the structures of the retention layer affinity site 41 and the fluidized bed affinity site 40 are the same, how deep the interface penetrating component 4 interacts with the retention layer depends on the combination, and the interface penetrating component 4 is almost completely mixed in the retention layer. There are cases where they interact in such a way that they do, and even if they do not mix, there are cases where they interact with each other in a state in which they penetrate to a depth of several atoms. Also in such an example, as in the first example, the components of the fluidized bed 3 do not need to be linear, and may be branched.

図5~図7は、それぞれ、本発明の防汚性部材の製造方法の第1の例から第3の例を示すフロー図である。本発明で提供する防汚性を有する部材の製造方法は限定されない。例えば、保持層2と流動層3を同時に形成しても構わないし、保持層2を形成した後に流動層3を形成しても構わない。保持層2の形成に際して、化学的な反応を伴っていても構わないし、伴っていなくても構わない。 5 to 7 are flowcharts showing first to third examples, respectively, of the method for manufacturing the antifouling member of the present invention. The manufacturing method of the member having antifouling properties provided by the present invention is not limited. For example, the retention layer 2 and the fluidized layer 3 may be formed at the same time, or the fluidized layer 3 may be formed after the retention layer 2 is formed. The formation of the retention layer 2 may or may not involve a chemical reaction.

図4は本発明の防汚性部材の第2の例を示す模式図である。保持層2と基材1の間に、保持層2の基材に対する密着性を向上させる補助層6を形成しても構わない、例えば、ポリプロピレンのような基材を用いた際に塩素化ポリプロピレンを補助層として用いるなどが可能である、塗布性を向上させる目的の表面処理は公知技術が多数あるため、それらの中から適切に選ぶことができる、
保持層2の形成には、保持層2の成分に対して適した公知技術を用いることができる、例えば溶媒に可溶の成分を用いる場合は、保持層2の成分を溶媒に溶かしたものを塗布して乾燥することで保持層2とすることができる、また、保持層2の形成の過程で硬化反応などが必要な場合は、例えば保持層2の前駆体を塗布した後に硬化させることで保持層2とすることができる、保持層2の成分と界面貫通成分4の表面エネルギーが適切である場合、このような塗布の際に保持層2の成分に界面貫通成分4をあらかじめ添加しておくことで、形成した保持層2の表面に界面貫通成分4を偏在させることもできる、一方で、例えばフィルム状などにあらかじめ加工した保持層2を基材の上に貼り付けることもできる、
流動層3の形成にも、流動層3の成分に対して適した公知技術を用いることができる、例えば溶媒に可溶の成分を用いる場合は、流動層3の成分を溶媒に溶かしたものを塗布して乾燥することで流動層3とすることができる、流動層3の成分の分配係数次第では、流動層3の成分を溶解させた溶液を表面に接触させるのみでも、溶媒中から表面上に移動して流動層を形成することができる、流動層3の成分を直接接触させることでも流動層を形成することができる。また、適切な蒸気圧を有する場合は、蒸着などの気相系のプロセスを用いることもできる、
界面貫通成分4を流動層3と保持層2の界面に偏在させる手段は限定されない。前述のように、保持層2の成分と界面貫通成分4の混合物を用いてもよいし、保持層2を形成した後に塗布などによって保持層2の表面に偏在させてもよいし、流動層3の成分と界面貫通成分4の混合物を用いてもよい。界面貫通成分4と流動層3の成分を兼用する場合は、界面貫通成分4の保持層2の表面への偏在と流動層3の形成を同時に実施できる、
本発明で提供する防汚性を有する部材は、必ずしも表面の全てが流動層3で覆われている必要はなく、保持層2についても必ずしも平坦である必要はない、上述のような流動層3や保持層2の形成方法に際し、工程中に自発的な相分離などが発生することは十分に考えられることであり、流動層3の被覆率や保持層2の平坦性に影響する。例えば凹凸構造や海島構造の発生によって流動層3に不均一な分布が生じることが考えられる。ただし、流動層3の被覆率が低いことが必ずしも防汚性や耐久性に影響するとは限らず、防汚対象にとって十分な流動性が担保できる限りにおいて、流動層3の被覆率は限定されない、また、保持層2の平坦性が低いことも必ずしも防汚性や耐久性に影響するとは限らないため、十分な防汚性が担保できる限りにおいて、保持層2の平坦性は限定されない、場合によっては流動層3の被覆が完全でないことや、保持層の2平坦性が低い方が防汚性や耐久性に対して有利に影響することも考えられる。
FIG. 4 is a schematic diagram showing a second example of the antifouling member of the present invention. Between the support layer 2 and the substrate 1, an auxiliary layer 6 may be formed to improve the adhesion of the support layer 2 to the substrate, for example chlorinated polypropylene when using a substrate such as polypropylene. can be used as an auxiliary layer, and there are many known techniques for surface treatment for the purpose of improving coatability, so it can be appropriately selected from among them.
For the formation of the retention layer 2, known techniques suitable for the components of the retention layer 2 can be used. The holding layer 2 can be formed by coating and drying. If a curing reaction or the like is required in the process of forming the holding layer 2, for example, the precursor of the holding layer 2 can be applied and then cured. If the surface energies of the components of the retainer layer 2 and the interfacial piercing component 4, which can be the retainer layer 2, are suitable, the interfacial piercing component 4 can be pre-added to the components of the retainer layer 2 during such coating. In this way, the interfacial penetrating component 4 can be unevenly distributed on the surface of the formed holding layer 2. On the other hand, for example, the holding layer 2 pre-processed into a film shape can be pasted on the base material.
For the formation of the fluidized bed 3, known techniques suitable for the components of the fluidized bed 3 can be used. The fluidized bed 3 can be formed by coating and drying. The fluidized bed can also be formed by directly contacting the components of the fluidized bed 3, which can move to form a fluidized bed. Vapor-phase processes such as vapor deposition can also be used if they have the appropriate vapor pressure.
The means for unevenly distributing the interfacial penetrating component 4 at the interface between the fluidized layer 3 and the retaining layer 2 is not limited. As described above, a mixture of the components of the retention layer 2 and the interfacial penetrating component 4 may be used. and interfacial penetrating component 4 may be used. When the interfacial penetrating component 4 and the component of the fluidized layer 3 are used together, the uneven distribution of the interfacial penetrating component 4 on the surface of the retaining layer 2 and the formation of the fluidized layer 3 can be carried out simultaneously.
The member having antifouling properties provided by the present invention does not necessarily have the entire surface covered with the fluidized layer 3, and the holding layer 2 does not necessarily need to be flat. It is quite conceivable that spontaneous phase separation or the like may occur during the process of forming the holding layer 2 , which affects the coverage of the fluidized layer 3 and the flatness of the holding layer 2 . For example, uneven distribution may occur in the fluidized bed 3 due to the occurrence of an uneven structure or a sea-island structure. However, the low coverage of the fluidized bed 3 does not necessarily affect the antifouling property and durability, and the coverage of the fluidized bed 3 is not limited as long as sufficient fluidity can be ensured for the antifouling object. In addition, the low flatness of the holding layer 2 does not necessarily affect the antifouling property and durability. It is conceivable that imperfect coverage of the fluidized layer 3 or lower flatness of the retaining layer 2 may have an advantageous effect on antifouling properties and durability.

以下、本発明について、実施例に基づいてさらに詳細に説明する。 Hereinafter, the present invention will be described in further detail based on examples.

[実施例1の防汚性部材の作製]
実施例例1では、末端修飾PDMS(ジメチルシロキサン、粘度:500mPa・s)を流動層3の成分かつ界面貫通成分4として、ポリエステル樹脂を保持層2の成分として用いる防汚性部材を作製した。
[Preparation of antifouling member of Example 1]
In Example 1, an antifouling member was produced using terminal-modified PDMS (dimethylsiloxane, viscosity: 500 mPa·s) as a component of the fluidized layer 3 and the interfacial penetrating component 4 , and polyester resin as a component of the retaining layer 2 .

末端にアミノプロピル基(-C-NH)を備える末端修飾PDMS(1、5質量%)とポリエステル樹脂(10質量%)のMEK溶液を、PP(ポリプロピレン)製の筒状部材の内壁に塗布し、自然乾燥させた。末端修飾PDMSとポリエステル樹脂は相溶せず、末端修飾PDMSの方が表面エネルギーが低いため、溶媒の乾燥によって相分離し、PP側にポリエステル樹脂が、空気側に末端修飾PDMSが偏在した、また、偏在に際し、一部の末端修飾PDMSは末端部分がポリエステル樹脂側に相溶することで、界面を貫通した成分を含む構造となった。 A MEK solution of end-modified PDMS (1, 5% by mass) having an aminopropyl group (-C 3 H 6 -NH 2 ) at the end and a polyester resin (10% by mass) was applied to a tubular member made of PP (polypropylene). It was applied to the inner wall and allowed to dry naturally. Terminal-modified PDMS and polyester resin are incompatible, and terminal-modified PDMS has a lower surface energy, so phase separation occurs when the solvent is dried, and the polyester resin is unevenly distributed on the PP side, and the terminal-modified PDMS is unevenly distributed on the air side. At the time of uneven distribution, the terminal portion of some of the terminal-modified PDMS became compatible with the polyester resin side, resulting in a structure containing a component penetrating the interface.

[防汚性評価1]
筒状部材の防汚性は、筒状部材の内部にウマ血清を滴下し、その付着物の量から評価した。垂直方向から30度の角度で傾斜をつけたPP製の筒の内側にウマ血清(10mL)を滴下した。滴下終了後に、ウマ血清由来の鱗状付着物の重量を測定した。
[Stain resistance evaluation 1]
The antifouling property of the tubular member was evaluated by dripping horse serum into the inside of the tubular member and evaluating the amount of deposits. Horse serum (10 mL) was dripped inside a PP cylinder inclined at an angle of 30 degrees from the vertical direction. After the dropping was completed, the weight of the horse serum-derived scaly deposit was measured.

上述した実施例1の防汚性部材の構成において、流動層3を備えない構成を有する比較例1の防汚性部材を作製した。比較例1のPP製の筒に対してウマ血清を用いて防汚性を評価したところ、7.2mgの鱗状付着物が確認された。 An antifouling member of Comparative Example 1 having a structure without the fluidized bed 3 in the structure of the antifouling member of Example 1 was produced. When the PP cylinder of Comparative Example 1 was evaluated for antifouling property using horse serum, 7.2 mg of scaly deposits were confirmed.

一方、上述した実施例1の防汚性部材粘度500mPa・sの末端修飾PDMSを用いたところは、鱗状付着物は0、5mg以下であり、比較例1の付着物量の1/14以下であった。 On the other hand, when the end-modified PDMS of Example 1 having a viscosity of 500 mPa·s for the antifouling member was used, the amount of scale-like deposits was 0.5 mg or less, which was 1/14 or less of the amount of deposits in Comparative Example 1. rice field.

上述した実施例1の防汚性部材の構成において、粘度が30000mPa・sより大きい末端修飾PDMSを用いて比較例2の防汚性部材を作製した。比較例2の防汚性部材は、流動性が不十分だったため、付着物量は比較例1とほぼ同等であった。 In the structure of the antifouling member of Example 1 described above, the antifouling member of Comparative Example 2 was produced using terminal-modified PDMS having a viscosity of greater than 30000 mPa·s. Since the antifouling member of Comparative Example 2 had insufficient fluidity, the deposit amount was almost the same as that of Comparative Example 1.

[実施例2の防汚性部材の作製]
実施例2では、シリコーンオイル(粘度:100m・Pa)を流動層3の成分かつ界面貫通成分4として、架橋PDMS樹脂を保持層2の成分として防汚性部材を作製した。
[Preparation of antifouling member of Example 2]
In Example 2, an antifouling member was produced by using silicone oil (viscosity: 100 m·Pa) as a component of fluidized layer 3 and interface penetrating component 4 and using crosslinked PDMS resin as a component of holding layer 2 .

PDMS系接着剤(Silpuran、10質量%)のトルエン溶液をSUS製の板状部材に塗布し、自然乾燥させた。十分に硬化した後に、シリコーンオイルを水/エタノール(体積比1:13混合物)に溶解させた飽和溶液の中に1時間浸漬した。この過程で、水/エタノール混合溶液に溶解していたシリコーンオイルがPDMS系接着剤で形成された保持層に溶解することで界面貫通成分となり、さらにその上にシリコーンオイルによる流動層3が形成された。 A toluene solution of a PDMS-based adhesive (Silpuran, 10% by mass) was applied to a SUS plate-like member and allowed to air dry. After fully cured, it was immersed for 1 hour in a saturated solution of silicone oil in water/ethanol (1:13 by volume mixture). In this process, the silicone oil dissolved in the water/ethanol mixed solution dissolves in the holding layer made of the PDMS-based adhesive to become an interfacial penetrating component, and a fluidized layer 3 made of silicone oil is formed thereon. rice field.

[防汚性評価2]
板状部材の防汚性は、板上にウマ血清を滴下し、その付着物の量から評価した、水平方向から5度の角度で傾斜をつけたSUS製の板に対してウマ血清(0.5mL)を滴下した、滴下終了後に、ウマ血清由来の鱗状付着物の量が確認された、付着物の量はタンパク中のカルボニル伸縮に由来する波数領域におけるIR吸収強度から相対比較した。
[Stain resistance evaluation 2]
The antifouling property of the plate-shaped member was evaluated by dropping horse serum onto the plate and evaluating the amount of deposits. .5 mL) was added dropwise, and after the completion of the dropping, the amount of scale-like deposits derived from horse serum was confirmed.

上述した実施例2の防汚性部材の構成において、SUS製の板状部材に対し、流動性を示さないシリコーン系防汚コーティング(市販品A)を施した比較例3の防汚性部材を作製し、ウマ血清を用いて防汚性を評価した。得られたIR吸収強度を相対評価の基準値とした。
上述した実施例2の防汚性部材は、付着物量は比較例3の約1/50であった。
In the structure of the antifouling member of Example 2 described above, the antifouling member of Comparative Example 3 was obtained by applying a non-fluid silicone-based antifouling coating (commercial product A) to the SUS plate-shaped member. It was prepared and evaluated for antifouling properties using horse serum. The obtained IR absorption intensity was used as a reference value for relative evaluation.
The antifouling member of Example 2 described above had a deposit amount of about 1/50 that of Comparative Example 3.

[実施例3の防汚性部材の作製および評価]
上述した実施例2の防汚性部材において、粘度50mPa・sのシリコーンオイルを用いたところ、付着物量は比較例3の約1/50であった、
上述した実施例2の防汚性部材において、粘度5mPa・sのシリコーンオイルを用いて比較例4の防汚性部材を作製したところ、付着物量は実施例2の約10倍であった。粘度が低いことでウマ血清が保持層と接触しやすく、防汚性が持続しなかったことが示された。
[Preparation and Evaluation of Antifouling Member of Example 3]
When silicone oil with a viscosity of 50 mPa·s was used in the antifouling member of Example 2 described above, the amount of deposit was about 1/50 that of Comparative Example 3.
When a silicone oil having a viscosity of 5 mPa·s was used in the antifouling member of Example 2 described above to produce an antifouling member of Comparative Example 4, the amount of deposit was about 10 times that of Example 2. The low viscosity indicated that the horse serum easily came into contact with the retention layer, and the antifouling properties did not last.

製造例3では、シリコーンオイルを流動層の成分として、末端修飾PDMSを界面貫通成分として、ポリエステル樹脂を保持層の成分として用いる系を検討した、
SUS製の板状部材上に製造例1と同様にして表面に末端修飾PDMSを備えたポリエステルを形成した後に、製造例2と同様にしてシリコーンオイルの層を表面に形成した、
[実施例4の防汚性部材の作製および評価]
上述した実施例3にて、粘度が30000mPa・sより大きい末端修飾PDMSを界面貫通成分4として用い、粘度100mPa・sのシリコーンオイルを流動層3の成分として実施例4の防汚性部材の作製したところ、付着物量は比較例3の約1/50であった。
In Production Example 3, a system using silicone oil as a fluidized layer component, terminal-modified PDMS as an interfacial penetrating component, and polyester resin as a retention layer component was investigated.
After forming polyester with terminal-modified PDMS on the surface in the same manner as in Production Example 1 on a plate-shaped member made of SUS, a layer of silicone oil was formed on the surface in the same manner as in Production Example 2.
[Preparation and Evaluation of Antifouling Member of Example 4]
In Example 3 described above, terminal-modified PDMS with a viscosity of more than 30000 mPa s was used as the interfacial penetrating component 4, and silicone oil with a viscosity of 100 mPa s was used as the component of the fluidized layer 3 to produce the antifouling member of Example 4. As a result, the deposit amount was about 1/50 of that of Comparative Example 3.

[実施例5の防汚性部材の作製及び評価]
実施例5では、ポリブテンを流動層3の成分かつ界面貫通成分4として、分岐ポリエチレン樹脂を保持層2の成分として用いて防汚性部材を作製した。
[Preparation and Evaluation of Antifouling Member of Example 5]
In Example 5, polybutene was used as the component of the fluidized layer 3 and the interfacial penetrating component 4, and a branched polyethylene resin was used as the component of the retaining layer 2 to produce an antifouling member.

具体的には、分岐ポリエチレン樹脂のフィルムを、ポリブテン(10質量%)のトルエン溶液に浸漬した後に空気中に引き上げて自然乾燥させた、分岐ポリエチレン樹脂がトルエンで膨潤した際に隙間にポリブテンが含浸され、界面を貫通する状態となった。自然乾燥させたフィルムを樹脂製の板状部材に貼り付けることで、基材1と保持層2と界面貫通成分4と流動層3を備える状態とした。防汚性は、SUS製の板状部材と同様にして評価し、比較例3に対して比較した(防汚性評価2)。 Specifically, a film of a branched polyethylene resin was immersed in a toluene solution of polybutene (10% by mass), pulled up in the air, and air-dried. and penetrated the interface. By attaching the air-dried film to a plate-like member made of resin, the substrate 1, the holding layer 2, the interfacial penetrating component 4, and the fluidized layer 3 were provided. The antifouling property was evaluated in the same manner as for the SUS plate-shaped member, and compared with Comparative Example 3 (antifouling property evaluation 2).

[実施例6の防汚性部材の作製および評価]
実施例5において、粘度8000mPa・sのポリブテンを用いて実施例6の防汚性部材を作製したところ、付着物量は比較例3の約1/10であった。
[Preparation and Evaluation of Antifouling Member of Example 6]
When the antifouling member of Example 6 was produced using polybutene having a viscosity of 8000 mPa·s in Example 5, the amount of deposit was about 1/10 that of Comparative Example 3.

上述した実施例4にて、粘度が400000mPa・sよりおきいポリブテンを用いたところ、流動性が不十分だったため、付着物量は比較例3とほぼ同等であった。 In Example 4 described above, when polybutene having a viscosity of more than 400000 mPa·s was used, the fluidity was insufficient, so the deposit amount was almost the same as in Comparative Example 3.

[実施例7の体外診断装置への適用]
実施例7では、本発明が提供する部材の体外診断装置への適用を検討した。実施例1でコーティングされた筒状部材を、体外診断装置の試作機に取り付け、模擬検体を通過させた、コーティングのない筒状部材を取り付けて同様に検討した場合と比較して、検体に由来する筒内の詰まり発生の頻度が有意に低下した。
[Application of Embodiment 7 to in-vitro diagnostic apparatus]
In Example 7, application of the member provided by the present invention to an in-vitro diagnostic device was examined. Compared to the case where the tubular member coated in Example 1 was attached to the prototype of the in-vitro diagnostic device, the simulated specimen was passed through, and the uncoated tubular member was attached and examined in the same way, The frequency of occurrence of clogging in the cylinder was significantly reduced.

[実施例8の体外診断装置への適用]
実施例8では、本発明が提供する部材の体外診断装置への適用を検討した。実施例1と同様のプロセスでコーティングされたディスク状部材を、体外診断装置の試作機に取り付け、ディスク状部材に結露水が接触する条件において動作させた、コーティングのないディスク状部材を取り付けて同様に検討した場合と比較して、カビの発生量を有意に低減することができた。
[Application of Embodiment 8 to in-vitro diagnostic apparatus]
In Example 8, application of the member provided by the present invention to an in-vitro diagnostic device was examined. A disk-shaped member coated by the same process as in Example 1 was attached to a prototype of an in-vitro diagnostic device, and the disk-shaped member without coating was operated under the condition that the condensed water was in contact with the disk-shaped member. The amount of mold generated was able to be significantly reduced compared to the case examined in the previous section.

以上、説明した通り、本発明によれば、従来よりも容易に製造可能であり、かつ、高い防汚効果を長期にわたって持続可能な防汚性部材および防汚性部材の製造方法を提供できることが示された。 As described above, according to the present invention, it is possible to provide an antifouling member that can be manufactured more easily than conventional ones and that can maintain a high antifouling effect over a long period of time, and a method for manufacturing the antifouling member. shown.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

1…基材、2…保持層、3…流動層、4…界面貫通成分、6…補助層、40…流動層親和部位、41…保持層親和部位、5…汚染物質、10a,10b…防汚性部材。 REFERENCE SIGNS LIST 1 Base material 2 Retaining layer 3 Fluid layer 4 Interfacial penetrating component 6 Auxiliary layer 40 Fluid layer affinity site 41 Retaining layer affinity site 5 Contaminants 10a, 10b Prevention Dirty parts.

Claims (12)

基材と、前記基材の表面に設けられた保持層と、前記保持層の表面に設けられた流動層と、を有し、
前記保持層と前記流動層との界面に、前記保持層と前記流動層とを貫通する界面貫通成分を含むことを特徴とする防汚性部材。
a substrate, a retention layer provided on the surface of the substrate, and a fluidized layer provided on the surface of the retention layer;
An antifouling member comprising an interface penetrating component penetrating through the retention layer and the fluidized layer at the interface between the retention layer and the fluidized layer.
前記界面貫通成分は、前記流動層と化学結合する流動層親和部位と、前記保持層と化学結合する保持層親和部位とを含むことを特徴とする請求項1に記載の防汚性部材。 2. The antifouling member according to claim 1, wherein the interfacial penetrating component includes a fluidized bed affinity site that chemically bonds with the fluidized bed, and a retention layer affinity site that chemically bonds with the retention layer. 前記流動層の成分の粘度が20mPa・s以上20000mPa・s以下であることを特徴とする請求項2に記載の防汚性部材。 3. The antifouling member according to claim 2, wherein the component of the fluidized bed has a viscosity of 20 mPa.s or more and 20000 mPa.s or less. 前記流動層の成分の粘度が30mPa・s以上15000mPa・s以下であることを特徴とする請求項2に記載の防汚性部材。 3. The antifouling member according to claim 2, wherein the component of the fluidized bed has a viscosity of 30 mPa.s or more and 15000 mPa.s or less. 前記流動層の成分の粘度が40mPa・s以上10000mPa・s以下であることを特徴とする請求項2に記載の防汚性部材。 3. The antifouling member according to claim 2, wherein the component of the fluidized bed has a viscosity of 40 mPa.s or more and 10000 mPa.s or less. 前記保持層が、芳香族系ポリエステル樹脂、芳香族-脂肪族混合系ポリエステル樹脂、脂肪族系ポリエステル樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、ポリビニルブチラール樹脂、塩化ビニル/酢酸ビニル共重合物(塩酢ビ樹脂)、ポリ酢酸ビニル樹脂、部分塩素化ポリプロピレン樹脂、部分塩素化ポリエチレン樹脂およびアセチルセルロース樹脂のうちの少なくとも1つを含むことを特徴とする請求項1から5のいずれか1項に記載の防汚性部材。 The holding layer is made of aromatic polyester resin, aromatic-aliphatic mixed polyester resin, aliphatic polyester resin, acrylic resin, styrene/acrylic resin, urethane resin, silicone resin, fluororesin, polyvinyl butyral resin, vinyl chloride. /vinyl acetate copolymer (vinyl chloride resin), polyvinyl acetate resin, partially chlorinated polypropylene resin, partially chlorinated polyethylene resin and acetylcellulose resin, from claim 1 6. The antifouling member according to any one of 5. 前記界面貫通成分の前記保持層親和部位が、としてアルキル基、アルキルエーテル基、アミノ基、アミノアルキル基、エチレングリコール基、オリゴエチレングリコール基、エチレンイミン基、オリゴエチレンイミン基、チオール基、スルフィド基、カルボキシル基、アミド基、フェニル基、置換フェニル基、アルキルシリル基、フルオロアルキル基、パーフルオロアルキル基、クロロアルキル基、ブロモアルキル基、オリゴ(ジメチルシロキサン)基、ポリ(ジメチルシロキサン)基、オリゴ(イソブチレン)基およびポリ(イソブチレン)基のうちの少なくとも1つを含むことを特徴とする請求項2から5のいずれか1項に記載の防汚性部材。 The retention layer affinity site of the interfacial penetrating component includes an alkyl group, an alkyl ether group, an amino group, an aminoalkyl group, an ethylene glycol group, an oligoethylene glycol group, an ethyleneimine group, an oligoethyleneimine group, a thiol group, and a sulfide group. , carboxyl group, amido group, phenyl group, substituted phenyl group, alkylsilyl group, fluoroalkyl group, perfluoroalkyl group, chloroalkyl group, bromoalkyl group, oligo(dimethylsiloxane) group, poly(dimethylsiloxane) group, oligo 6. The antifouling member according to any one of claims 2 to 5, comprising at least one of an (isobutylene) group and a poly(isobutylene) group. 前記界面貫通成分の前記流動層親和部位が、パーフルオロアルキル基、オリゴ(ジメチルシロキサン)基、ポリ(ジメチルシロキサン)基、オリゴ(イソブチレン)基およびポリ(イソブチレン)基のうちの少なくとも1つを含むことを特徴とする請求項2から5のいずれか1項に記載の防汚性部材。 The fluid bed affinity portion of the interfacial penetrating component comprises at least one of a perfluoroalkyl group, an oligo(dimethylsiloxane) group, a poly(dimethylsiloxane) group, an oligo(isobutylene) group and a poly(isobutylene) group. The antifouling member according to any one of claims 2 to 5, characterized in that: 前記界面貫通成分が前記流動層の成分と異なり、
前記界面貫通成分が、前記保持層と相互作用する部位としてアルキル基、アルキルエーテル基、アミノ基、アミノアルキル基、エチレングリコール基、オリゴエチレングリコール基、エチレンイミン基、オリゴエチレンイミン基、チオール基、スルフィド基、カルボキシル基、アミド基、フェニル基、置換フェニル基、アルキルシリル基、フルオロアルキル基、パーフルオロアルキル基、クロロアルキル基、ブロモアルキル基、オリゴ(ジメチルシロキサン)基、ポリ(ジメチルシロキサン)基、オリゴ(イソブチレン)基、ポリ(イソブチレン)基、から選ばれる1種類以上の部分構造を備え、
さらに、パーフルオロアルキル基、オリゴ(ジメチルシロキサン)基、ポリ(ジメチルシロキサン)基、オリゴ(イソブチレン)基、ポリ(イソブチレン)基、から選ばれる1種類以上の部分構造を、前記界面貫通成分と前記流動層の成分が共通して備えることを特徴とする請求項1から5のいずれか1項に記載の防汚性部材。
the interfacial penetrating component is different from the component of the fluidized bed,
The interfacial penetrating component has an alkyl group, an alkyl ether group, an amino group, an aminoalkyl group, an ethylene glycol group, an oligoethylene glycol group, an ethyleneimine group, an oligoethyleneimine group, a thiol group as a site that interacts with the retention layer, Sulfide group, carboxyl group, amide group, phenyl group, substituted phenyl group, alkylsilyl group, fluoroalkyl group, perfluoroalkyl group, chloroalkyl group, bromoalkyl group, oligo(dimethylsiloxane) group, poly(dimethylsiloxane) group , oligo (isobutylene) group, poly (isobutylene) group, comprising one or more partial structures selected from,
Furthermore, one or more partial structures selected from a perfluoroalkyl group, an oligo(dimethylsiloxane) group, a poly(dimethylsiloxane) group, an oligo(isobutylene) group, and a poly(isobutylene) group are combined with the interfacial penetrating component and the 6. The antifouling member according to any one of claims 1 to 5, wherein the components of the fluidized bed are commonly provided.
基材の表面に保持層を設ける工程と、前記保持層の表面に流動層を設ける工程と、を有し、前記保持層と前記流動層とを貫通する界面貫通成分を含むことを特徴とする防汚性部材の製造方法。 It comprises a step of providing a retention layer on the surface of a base material, and a step of providing a fluidized layer on the surface of the retention layer, and includes an interfacial penetrating component that penetrates the retention layer and the fluidized layer. A method for producing an antifouling member. 前記保持層を設ける工程は、前記保持層の成分および前記界面貫通成分と、を含む溶液を塗布し、乾燥する工程であり、
前記保持層の表面に前記流動層を設ける工程は、前記保持層の表面に前記流動層の成分を含む溶液を塗布し、乾燥する工程であることを特徴とする請求項10に記載の防汚性部材の製造方法。
The step of providing the retention layer is a step of applying and drying a solution containing the components of the retention layer and the interfacial penetrating component,
11. The antifouling according to claim 10, wherein the step of providing the fluidized layer on the surface of the retention layer is a step of applying a solution containing components of the fluidized layer to the surface of the retention layer and drying the solution. A method for manufacturing a flexible member.
前記保持層を設ける工程は、前記基材に前記界面貫通成分を含む前記保持層を貼り付ける工程であり、
前記流動層を設ける工程は、前前記保持層の表面に前記流動層を貼り付ける工程であることを特徴とする請求項10に記載の防汚性部材の製造方法。
The step of providing the holding layer is a step of attaching the holding layer containing the interfacial penetrating component to the substrate,
11. The method for manufacturing an antifouling member according to claim 10, wherein the step of providing the fluidized layer is a step of attaching the fluidized layer to the surface of the front holding layer.
JP2022005719A 2022-01-18 2022-01-18 Stain-proof member and manufacturing method for stain-proof member Pending JP2023104614A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022005719A JP2023104614A (en) 2022-01-18 2022-01-18 Stain-proof member and manufacturing method for stain-proof member
PCT/JP2022/045328 WO2023139959A1 (en) 2022-01-18 2022-12-08 Anti-fouling member and method for manufacturing anti-fouling member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022005719A JP2023104614A (en) 2022-01-18 2022-01-18 Stain-proof member and manufacturing method for stain-proof member

Publications (1)

Publication Number Publication Date
JP2023104614A true JP2023104614A (en) 2023-07-28

Family

ID=87348098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022005719A Pending JP2023104614A (en) 2022-01-18 2022-01-18 Stain-proof member and manufacturing method for stain-proof member

Country Status (2)

Country Link
JP (1) JP2023104614A (en)
WO (1) WO2023139959A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348430A (en) * 2000-06-08 2001-12-18 Nissan Motor Co Ltd Stainproof coating film and method for producing the same
CN104254579B (en) * 2012-01-10 2018-05-29 哈佛学院院长等 For the modification on fluid and the surface of solid repellency
WO2014012080A1 (en) * 2012-07-12 2014-01-16 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
CA2943879A1 (en) * 2014-03-26 2015-10-01 3M Innovative Properties Company Polyurethane compositions, films, and methods thereof
WO2016058104A1 (en) * 2014-10-16 2016-04-21 Queen's University At Kingston Anti-smudge and anti-graffiti compositions
JP6598138B2 (en) * 2016-03-23 2019-10-30 日産自動車株式会社 Antifouling structure and automobile parts provided with the antifouling structure
JP7199350B2 (en) * 2016-11-18 2023-01-05 ザ・ペン・ステート・リサーチ・ファンデーション Liquid Repellent, Viscoelastic Repellent, and Anti-Biofouling Coatings
KR20210024162A (en) * 2018-06-28 2021-03-04 닛토덴코 가부시키가이샤 Antifouling polymer composite

Also Published As

Publication number Publication date
WO2023139959A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
Zhang et al. Deposition and adhesion of polydopamine on the surfaces of varying wettability
Oliveira et al. The role of hydrophobicity in bacterial adhesion
CN103080197B (en) The polymer substrate with hyaloid surface and the chip be made up of described polymer substrate
JP4580608B2 (en) Microfluidic device surface
Paunov Novel method for determining the three-phase contact angle of colloid particles adsorbed at air− water and oil− water interfaces
Ortiz et al. Poly (methyl methacrylate) surface modification for surfactant-free real-time toxicity assay on droplet microfluidic platform
Rozkiewicz et al. Reversible covalent patterning of self-assembled monolayers on gold and silicon oxide surfaces
Gam-Derouich et al. Electrografted aryl diazonium initiators for surface-confined photopolymerization: a new approach to designing functional polymer coatings
US9511575B2 (en) Sonication for improved particle size distribution of core-shell particles
JP2015507507A (en) Surface modification for fluid and solid resilience
Trinavee et al. Anomalous wetting of underliquid systems: oil drops in water and water drops in oil
JP2019516073A (en) Microfluidic device having microchannels with a hydrophilic coating
Singh et al. Self-propulsion and shape restoration of aqueous drops on sulfobetaine silane surfaces
Markov et al. Controlled engineering of oxide surfaces for bioelectronics applications using organic mixed monolayers
Kanitthamniyom et al. Application of polydopamine in biomedical microfluidic devices
EP2617759B1 (en) Method of modifying the properties of a surface
EP3794080B1 (en) Compositions, devices, and methods for improving a surface property of a substrate
JP2023104614A (en) Stain-proof member and manufacturing method for stain-proof member
Geßner et al. Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure
Hayashi et al. Nonfouling self-assembled monolayers: mechanisms underlying protein and cell resistance
Lee et al. Tuning oleophobicity of silicon oxide surfaces with mixed monolayers of aliphatic and fluorinated alcohols
Girard et al. Lubricant-impregnated surfaces for mitigating asphaltene deposition
Hameed et al. Sustainable Drag Reduction of Fatty Acid Amide‐Based Oleogel Surface Under High‐Speed Shear Flows
Han et al. Reusable, polyethylene glycol-structured microfluidic channel for particle immunoassays
EP3562893A1 (en) Modification of surface properties of microfluidic devices