JP2023097964A - Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus - Google Patents

Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus Download PDF

Info

Publication number
JP2023097964A
JP2023097964A JP2021214395A JP2021214395A JP2023097964A JP 2023097964 A JP2023097964 A JP 2023097964A JP 2021214395 A JP2021214395 A JP 2021214395A JP 2021214395 A JP2021214395 A JP 2021214395A JP 2023097964 A JP2023097964 A JP 2023097964A
Authority
JP
Japan
Prior art keywords
gas
storage tank
adsorbent
adsorbable component
lower cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021214395A
Other languages
Japanese (ja)
Inventor
正也 山脇
Masaya Yamawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2021214395A priority Critical patent/JP2023097964A/en
Publication of JP2023097964A publication Critical patent/JP2023097964A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a pressure fluctuation adsorption-type gas separation method and a pressure fluctuation adsorption-type gas separation apparatus which can supply collected readily adsorbable components at pressure higher than pressure of a lower tube at the time before the components are collected, without using a boosting pump.SOLUTION: In a pressure fluctuation adsorption-type gas separation method, readily adsorbable components and hardly adsorbable components are collected, using a pressure fluctuation adsorption-type gas separation apparatus 100 which is provided with: lower tubes 10B (11B) and upper tubes 10U (11U) filled with adsorbent; a raw material gas storage tank 1 that stores at least raw material gas; a readily adsorbable component low-pressure storage tank 2 that stores readily adsorbable components fed from the lower tubes 10B (11B); a readily adsorbable component high-pressure storage tank 5 that stores the readily adsorbable components at high pressure; a compressing machine 4 that pressurizes gas fed from the raw material gas storage tank 1 or from the readily adsorbable component low-pressure storage tank 2 and feeds the gas to the lower tubes 10B (11B); and a hardly adsorbable component storage tank 3 that stores hardly adsorbable components fed from the upper tubes 10U (11U).SELECTED DRAWING: Figure 1

Description

本発明は、圧力変動吸着式ガス分離方法及び圧力変動吸着式ガス分離装置に関する。 The present invention relates to a pressure swing adsorption gas separation method and a pressure swing adsorption gas separation apparatus.

半導体集積回路、液晶パネル等の半導体製品を製造する工程では、希ガス雰囲気中で高周波放電によりプラズマを発生させ、該プラズマによって半導体製品もしくは表示装置の各種処理を行う装置が広く用いられている。このような処理において使用される希ガスとして、従来はアルゴンが用いられてきたが、近年はより高度な処理を行うためにクリプトンやキセノンが注目されている。ランプ分野においても電球の封入ガスに、従来はアルゴンが用いられてきたが、近年は消費電力低減や輝度向上のために、クリプトンやキセノンを使用した高付加価値品が製造されてきている。また、ガラス分野においても複層ガラスの封入ガスに、従来はアルゴンが用いられてきたが、断熱性能の向上のために、クリプトンを使用した高付加価値品が製造されてきている。しかし、クリプトンやキセノンは、原料となる空気中の存在比及び分離工程の複雑さから極めて希少で高価なガスであり、その使用によって需給バランスが崩れ、コストが著しく増大する問題があった。このようなガスを使用することを経済的に成り立たせるためには、使用済みの希ガスを回収し、再利用することが極めて重要となる。なお、希ガスを再利用するためには、少なくとも90%以上の濃度が求められる。
キセノンやクリプトンを分離する装置としては、キセノン又はクリプトンと、不純物である他成分を含む原料ガスを、キセノンやクリプトンに対して易吸着性で、不純物である他成分に対して難吸着性の吸着剤を充填した吸着筒に流し、易吸着成分であるキセノン又はクリプトンを吸着剤に吸着させ、難吸着成分である不純物をキセノンやクリプトンと分離するとともに、吸着剤に吸着したキセノン又はクリプトンを吸着剤より脱離させて高濃度で回収する方法がある。
2. Description of the Related Art In the process of manufacturing semiconductor products such as semiconductor integrated circuits and liquid crystal panels, an apparatus is widely used in which plasma is generated by high-frequency discharge in a rare gas atmosphere and the plasma is used to perform various processes on semiconductor products or display devices. Conventionally, argon has been used as the rare gas used in such processing, but krypton and xenon have been attracting attention in recent years in order to perform more advanced processing. In the field of lamps, argon has traditionally been used as the filling gas for light bulbs, but in recent years, high value-added products using krypton or xenon have been manufactured to reduce power consumption and improve brightness. In the field of glass, argon has conventionally been used as a filling gas for double glazing, but high value-added products using krypton have been manufactured in order to improve heat insulation performance. However, krypton and xenon are extremely scarce and expensive gases due to their abundance in the air and the complexity of their separation processes, and their use has the problem of disrupting the supply-demand balance and significantly increasing costs. In order to make the use of such gases economically viable, it is extremely important to recover and reuse the used noble gases. In order to reuse the rare gas, a concentration of at least 90% is required.
As a device for separating xenon or krypton, a source gas containing xenon or krypton and other impurity components should be adsorbed with an adsorbent that easily adsorbs xenon or krypton but does not easily adsorb other impurity components. Xenon or krypton, which are easily adsorbed components, are adsorbed on the adsorbent, and impurities, which are poorly adsorbed components, are separated from xenon and krypton, and the xenon or krypton adsorbed on the adsorbent is removed by the adsorbent. There is a method of desorbing more and recovering at a high concentration.

特許文献1には、直列に接続した2本の吸着筒(上部筒10U(11U)、下部筒10B(11B))に原料ガス貯留槽1の原料ガスを加圧して流し、易吸着成分であるキセノン又はクリプトンを吸着し、難吸着成分である不純物を難吸着成分貯留槽3に回収する工程aと、易吸着成分低圧貯留槽2に充填されたキセノン又はクリプトンを加圧して下部筒10B(11B)に導入し、これの空隙に残る難吸着成分である不純物を上部筒10U(11U)に導出し、上部筒10U(11U)において易吸着成分であるキセノン又はクリプトンを吸着し、上部筒10U(11U)より難吸着成分である不純物を回収する工程bと、下部筒10B(11B)を減圧し、易吸着成分であるキセノン又はクリプトンを吸着剤より脱離させて易吸着成分高圧貯留槽5に回収した後、さらに易吸着成分を脱着させ、これを易吸着成分低圧貯留槽2に回収する工程cと、上部筒10U(11U)を減圧し、吸着剤に吸着した成分を脱離させて下部筒10B(11B)に導入し、さらに下部筒10B(11B)より流出したガスを原料ガス貯留槽1に回収する工程dと、先に回収した難吸着成分である不純物を上部筒10U(11U)に導入し、易吸着成分であるキセノン又はクリプトンを吸着剤より脱離させて下部筒10B(11B)に導入し、さらに下部筒10B(11B)より流出したガスを原料ガス貯留槽1に回収する工程eを、シーケンスに従って順次行う圧力変動吸着式ガス分離装置101(図10)及びこの分離装置を用いる圧力変動吸着式ガス分離方法が開示されている。 In Patent Document 1, the raw material gas in the raw material gas storage tank 1 is pressurized and flowed into two adsorption cylinders (upper cylinder 10U (11U) and lower cylinder 10B (11B)) connected in series. Step a of adsorbing xenon or krypton and recovering impurities, which are difficult-to-adsorb components, in the difficult-to-adsorb component storage tank 3; ), the impurities, which are difficult-to-adsorb components remaining in the voids thereof, are led out to the upper cylinder 10U (11U), the upper cylinder 10U (11U) adsorbs xenon or krypton, which are easily adsorbable components, and the upper cylinder 10U ( 11U), the lower cylinder 10B (11B) is decompressed to desorb the easily adsorbable component xenon or krypton from the adsorbent, and the easily adsorbable component high-pressure storage tank 5. After recovery, the easily adsorbable components are further desorbed and recovered in the easily adsorbable component low-pressure storage tank 2; A step d of recovering the gas introduced into the cylinder 10B (11B) and flowing out from the lower cylinder 10B (11B) into the raw material gas storage tank 1, and removing the previously recovered impurities, which are difficult-to-adsorb components, into the upper cylinder 10U (11U). , the easily adsorbable component xenon or krypton is desorbed from the adsorbent and introduced into the lower cylinder 10B (11B). A pressure swing adsorption gas separation apparatus 101 (FIG. 10) in which step e is sequentially performed according to a sequence and a pressure swing adsorption gas separation method using this separation apparatus are disclosed.

特開2007-130611号公報Japanese Patent Application Laid-Open No. 2007-130611

しかし、特許文献1に開示された圧力変動吸着式ガス分離方法及び圧力変動吸着式ガス分離装置には、下部筒の吸着剤に吸着した易吸着成分を易吸着成分高圧貯留槽5に回収するため、易吸着成分高圧貯留槽に回収できる易吸着成分の圧力が回収前の下部筒圧力より低く、回収した易吸着成分をより高い圧力で供給するには昇圧ポンプの使用が不可欠であるという問題がある。 However, in the pressure swing adsorption gas separation method and the pressure swing adsorption gas separation apparatus disclosed in Patent Document 1, the easily adsorbable components adsorbed by the adsorbent in the lower cylinder are collected in the easily adsorbable component high-pressure storage tank 5. However, the pressure of the easily adsorbable components that can be recovered in the easily adsorbable component high-pressure storage tank is lower than the pressure of the lower cylinder before recovery. be.

本発明は、昇圧ポンプを使用することなく、回収した易吸着成分を回収前の下部筒圧力よりも高い圧力で供給することができる圧力変動吸着式ガス分離方法及び圧力変動吸着式ガス分離装置を提供することを課題とする。 The present invention provides a pressure swing adsorption gas separation method and a pressure swing adsorption gas separation apparatus capable of supplying recovered easily adsorbable components at a pressure higher than the lower cylinder pressure before recovery without using a booster pump. The task is to provide

[1] 吸着剤と、前記吸着剤に対して易吸着性である易吸着成分及び前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスと、を用い、
前記吸着剤を充填した下部筒及び上部筒と、少なくとも前記原料ガスを貯留する原料ガス貯留槽と、前記下部筒からの前記易吸着成分を貯留する易吸着成分低圧貯留槽と、前記易吸着成分を高圧にて貯留する易吸着成分高圧貯留槽と、前記原料ガス貯留槽又は前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に送る圧縮機と、前記上部筒からの前記難吸着成分を貯留する難吸着成分貯留槽と、を備える圧力変動吸着式ガス分離装置を使用し、前記原料ガス中の前記易吸着成分と前記難吸着成分とを分離し、前記易吸着成分及び前記難吸着成分のそれぞれを回収する圧力変動吸着式ガス分離方法であって、
(a)前記原料ガス貯留槽からのガスを加圧して前記下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、前記下部筒からの前記易吸着成分が減少したガスを前記上部筒に導入し、前記易吸着成分が減少したガス中に含まれる前記易吸着成分を前記上部筒の前記吸着剤に吸着して、前記上部筒から流出してくる前記難吸着成分を前記難吸着成分貯留槽に回収する工程と、
(b)前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に導入して、前記下部筒の前記吸着剤に共吸着された前記難吸着成分及び前記吸着剤の空隙に存在する前記難吸着成分を前記上部筒に導出し、前記下部筒から流入してきたガス中に含まれる易吸着成分を前記上部筒の前記吸着剤に吸着させて、前記上部筒から前記難吸着成分を導出させる工程と、
(c)前記易吸着成分低圧貯留槽からのガスを加圧して前記易吸着成分高圧貯留槽に回収する工程と、
(d)前記下部筒を減圧して、前記下部筒の前記吸着剤に吸着した前記易吸着成分を脱着させ、脱着してきた前記易吸着成分を前記易吸着成分低圧貯留槽に回収する工程と、
を有し、
前記工程(a)~工程(d)を予め定められたシーケンスに基づいて順次繰り返し行うことによって前記原料ガス中の前記易吸着成分及び前記難吸着成分を同時に回収する、圧力変動吸着式ガス分離方法。
[2] さらに、
(e)前記上部筒を減圧して、前記上部筒の前記吸着剤に吸着したガスを脱着させ、脱着してきたガスを前記下部筒に導入し、前記下部筒から流出してきたガスを前記原料ガス貯留槽に回収する工程と、
(f)前記工程(a)において回収した前記難吸着成分を向流パージガスとして前記上部筒に導入し、前記上部筒の前記吸着剤に吸着した前記易吸着成分を置換脱着し、前記上部筒から流出してくるガスを前記下部筒に導入し、前記下部筒から流出してくるガスを前記原料ガス貯留槽に回収する工程と、
(g)前記工程(b)において導出した前記難吸着成分を導入することで前記下部筒及び前記上部筒を加圧する工程と、
を有し、
前記工程(a)~工程(g)の各工程を予め定められたシーケンスに基づいて順次繰り返し行うことによって前記原料ガス中の前記易吸着成分及び前記難吸着成分を同時に回収する、[1]に記載の圧力変動吸着式ガス分離方法。
[3] 前記工程(c)は前記易吸着成分高圧貯留槽が所定の圧力に到達したら終了する、[1]又は[2]に記載の圧力変動吸着式ガス分離方法。
[4] 前記圧縮機を通気するガス中の前記易吸着成分の濃度が前記工程(c)の開始前において予め定められた濃度に達していなければ、前記工程(c)をスキップし、前記工程(b)完了後に前記工程(d)を行う、[1]~[3]のいずれかに記載の圧力変動吸着式ガス分離方法。
[5] 前記工程(c)を前記工程(b)中に同時に行う、[1]~[4]のいずれかに記載の圧力変動吸着式ガス分離方法。
[6] 前記易吸着成分低圧貯留槽は吸着剤が充填された容器である、[1]~[5]のいずれかに記載の圧力変動吸着式ガス分離方法。
[7] 吸着剤と、前記吸着剤に対して易吸着性である易吸着成分及び前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスと、を用い、
前記吸着剤を充填した下部筒及び上部筒と、少なくとも前記原料ガスを貯留する原料ガス貯留槽と、前記下部筒からの前記易吸着成分を貯留する易吸着成分低圧貯留槽と、前記易吸着成分を高圧にて貯留する易吸着成分高圧貯留槽と、前記原料ガス貯留槽又は前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に送る圧縮機と、前記上部筒からの前記難吸着成分を貯留する難吸着成分貯留槽と、制御部と、を備え、前記原料ガス中の前記易吸着成分と前記難吸着成分とを分離し、前記易吸着成分及び前記難吸着成分のそれぞれを回収する圧力変動吸着式ガス分離装置であって、
前記制御部は、以下の工程(a)~工程(d)の各工程を予め定められたシーケンスによって制御する、圧力変動吸着式ガス分離装置。
(a)前記原料ガス貯留槽からのガスを加圧して前記下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、前記下部筒からの前記易吸着成分が減少したガスを前記上部筒に導入し、前記易吸着成分が減少したガス中に含まれる前記易吸着成分を前記上部筒の前記吸着剤に吸着して、前記上部筒から流出してくる前記難吸着成分を前記難吸着成分貯留槽に回収する工程。
(b)前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に導入して、前記下部筒の前記吸着剤に共吸着された前記難吸着成分及び前記吸着剤の空隙に存在する前記難吸着成分を前記上部筒に導出し、前記下部筒から流入してきたガス中に含まれる易吸着成分を前記上部筒の前記吸着剤に吸着させて、前記上部筒から前記難吸着成分を導出させる工程。
(c)前記易吸着成分低圧貯留槽からのガスを加圧して前記易吸着成分高圧貯留槽に回収する工程。
(d)前記下部筒を減圧して、前記下部筒の前記吸着剤に吸着した前記易吸着成分を脱着させ、脱着してきた前記易吸着成分を前記易吸着成分低圧貯留槽に回収する工程。
[8] 前記制御部は、以下の工程(a)~工程(g)の各工程を予め定められたシーケンスによって制御する、[7]に記載の圧力変動吸着式ガス分離装置。
(a)前記原料ガス貯留槽からのガスを加圧して前記下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、前記下部筒からの前記易吸着成分が減少したガスを前記上部筒に導入し、前記易吸着成分が減少したガス中に含まれる前記易吸着成分を前記上部筒の前記吸着剤に吸着して、前記上部筒から流出してくる前記難吸着成分を前記難吸着成分貯留槽に回収する工程。
(b)前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に導入して、前記下部筒の前記吸着剤に共吸着された前記難吸着成分及び前記吸着剤の空隙に存在する前記難吸着成分を前記上部筒に導出し、前記下部筒から流入してきたガス中に含まれる易吸着成分を前記上部筒の前記吸着剤に吸着させて、前記上部筒から前記難吸着成分を導出させる工程。
(c)前記易吸着成分低圧貯留槽からのガスを加圧して前記易吸着成分高圧貯留槽に回収する工程。
(d)前記下部筒を減圧して、前記下部筒の前記吸着剤に吸着した前記易吸着成分を脱着させ、脱着してきた前記易吸着成分を前記易吸着成分低圧貯留槽に回収する工程。
(e)前記上部筒を減圧して、前記上部筒の前記吸着剤に吸着したガスを脱着させ、脱着してきたガスを前記下部筒に導入し、前記下部筒から流出してきたガスを前記原料ガス貯留槽に回収する工程。
(f)前記工程(a)において回収した前記難吸着成分を向流パージガスとして前記上部筒に導入し、前記上部筒の前記吸着剤に吸着した前記易吸着成分を置換脱着し、前記上部筒から流出してくるガスを前記下部筒に導入し、前記下部筒から流出してくるガスを前記原料ガス貯留槽に回収する工程。
(g)前記工程(b)において導出した前記難吸着成分を導入することで前記下部筒及び前記上部筒を加圧する工程。
[9] 前記圧縮機と前記下部筒が接続する流路に、一端が前記易吸着成分高圧貯留槽に接続する流路と接続する分岐バルブを有し、
前記分岐バルブに切替用三方ボールバルブ、ロータリーバルブ、三方分流型ベローズバルブ及び三方分流型ダイアフラムバルブから選択されるいずれか1つを使用する、[7]又は[8]に記載の圧力変動吸着式ガス分離装置。
[10] 前記圧縮機の吸気側流路及び吐出側流路のいずれか一方の流路に、前記流路を流れるガス中の前記易吸着成分の濃度を測定する易吸着成分濃度計を有し、
前記制御部が前記易吸着成分濃度計の値に基づいて前記工程(c)を実施しないように制御する、[7]~[9]のいずれかに記載の圧力変動吸着式ガス分離装置。
[11] 前記易吸着成分低圧貯留槽は吸着剤が充填された容器である、[7]~[10]のいずれかに記載の圧力変動吸着式ガス分離装置。
[1] using an adsorbent and a raw material gas containing an easily adsorbable component that is easily adsorbable to the adsorbent and a difficultly adsorbable component that is difficult to adsorb to the adsorbent,
a lower cylinder and an upper cylinder filled with the adsorbent; a raw material gas storage tank for storing at least the raw material gas; an easily adsorbable component low-pressure storage tank for storing the easily adsorbable component from the lower cylinder; a compressor for pressurizing the gas from the source gas storage tank or the easily adsorbable component low-pressure storage tank and sending the gas to the lower cylinder; A pressure swing adsorption type gas separation device comprising a storage tank for storing adsorbable components is used to separate the easily adsorbable components and the difficultly adsorbable components in the raw material gas, thereby separating the easily adsorbable components and the difficult adsorbable components. A pressure swing adsorption gas separation method for recovering each of the difficultly adsorbed components,
(a) The gas from the source gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbable components in the gas are adsorbed by the adsorbent, and the easily adsorbable components from the lower cylinder are reduced. The gas is introduced into the upper cylinder, and the easily adsorbable components contained in the gas in which the easily adsorbable components are reduced are adsorbed by the adsorbent in the upper cylinder, and the weakly adsorbable components flowing out from the upper cylinder are adsorbed. a step of recovering the component in the poorly adsorbable component storage tank;
(b) Gas from the easily adsorbable component low-pressure storage tank is pressurized and introduced into the lower cylinder, and exists in the gap between the adsorbent and the weakly adsorbable component co-adsorbed by the adsorbent in the lower cylinder. The difficult-to-adsorb components are led out to the upper cylinder, the easily-adsorbable components contained in the gas flowing from the lower cylinder are adsorbed by the adsorbent in the upper cylinder, and the difficult-to-adsorb components are led out from the upper cylinder. and
(c) a step of pressurizing the gas from the easily adsorbable component low-pressure storage tank and recovering it in the easily adsorbable component high-pressure storage tank;
(d) decompressing the lower cylinder to desorb the easily adsorbable component adsorbed on the adsorbent in the lower cylinder, and recovering the desorbed easily adsorbable component in the easily adsorbable component low-pressure storage tank;
has
A pressure swing adsorption gas separation method, wherein the steps (a) to (d) are sequentially repeated based on a predetermined sequence to simultaneously recover the easily adsorbable component and the difficultly adsorbable component in the source gas. .
[2] Furthermore,
(e) reducing the pressure in the upper cylinder to desorb the gas adsorbed by the adsorbent in the upper cylinder, introducing the desorbed gas into the lower cylinder, and removing the gas flowing out of the lower cylinder from the raw material gas; collecting in a reservoir;
(f) introducing the weakly adsorbable component recovered in the step (a) into the upper cylinder as a countercurrent purge gas, and replacing and desorbing the easily adsorbable component adsorbed on the adsorbent in the upper cylinder; a step of introducing the outflowing gas into the lower cylinder and recovering the gas flowing out from the lower cylinder into the source gas storage tank;
(g) a step of pressurizing the lower cylinder and the upper cylinder by introducing the weakly adsorbable component derived in the step (b);
has
The easily adsorbable component and the difficultly adsorbable component in the raw material gas are simultaneously recovered by sequentially and repeatedly performing each of the steps (a) to (g) based on a predetermined sequence; The pressure swing adsorption gas separation method described.
[3] The pressure swing adsorption gas separation method according to [1] or [2], wherein step (c) is terminated when the easily adsorbable component high-pressure storage tank reaches a predetermined pressure.
[4] If the concentration of the easily adsorbable component in the gas passing through the compressor has not reached a predetermined concentration before the start of the step (c), the step (c) is skipped and the step (b) The pressure swing adsorption gas separation method according to any one of [1] to [3], wherein the step (d) is performed after completion.
[5] The pressure swing adsorption gas separation method according to any one of [1] to [4], wherein the step (c) is performed simultaneously with the step (b).
[6] The pressure swing adsorption gas separation method according to any one of [1] to [5], wherein the easily adsorbable component low-pressure storage tank is a container filled with an adsorbent.
[7] using an adsorbent and a raw material gas containing an easily adsorbable component that is easily adsorbable to the adsorbent and a difficultly adsorbable component that is difficult to adsorb to the adsorbent,
a lower cylinder and an upper cylinder filled with the adsorbent; a raw material gas storage tank for storing at least the raw material gas; an easily adsorbable component low-pressure storage tank for storing the easily adsorbable component from the lower cylinder; a compressor for pressurizing the gas from the source gas storage tank or the easily adsorbable component low-pressure storage tank and sending the gas to the lower cylinder; a difficultly adsorbable component storage tank for storing adsorbable components; A recovering pressure swing adsorption gas separation device comprising:
The pressure swing adsorption gas separation apparatus, wherein the control unit controls the following steps (a) to (d) according to a predetermined sequence.
(a) The gas from the source gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbable components in the gas are adsorbed by the adsorbent, and the easily adsorbable components from the lower cylinder are reduced. The gas is introduced into the upper cylinder, and the easily adsorbable components contained in the gas in which the easily adsorbable components are reduced are adsorbed by the adsorbent in the upper cylinder, and the weakly adsorbable components flowing out from the upper cylinder are adsorbed. a step of recovering the component in the poorly adsorbable component storage tank;
(b) Gas from the easily adsorbable component low-pressure storage tank is pressurized and introduced into the lower cylinder, and exists in the gap between the adsorbent and the weakly adsorbable component co-adsorbed by the adsorbent in the lower cylinder. The difficult-to-adsorb components are led out to the upper cylinder, the easily-adsorbable components contained in the gas flowing from the lower cylinder are adsorbed by the adsorbent in the upper cylinder, and the difficult-to-adsorb components are led out from the upper cylinder. The process of making
(c) a step of pressurizing the gas from the easily adsorbable component low-pressure storage tank and recovering it in the easily adsorbable component high-pressure storage tank;
(d) decompressing the lower cylinder to desorb the easily adsorbable components adsorbed on the adsorbent in the lower cylinder, and recovering the desorbed easily adsorbable components in the easily adsorbable component low-pressure storage tank;
[8] The pressure swing adsorption gas separation apparatus according to [7], wherein the controller controls the following steps (a) to (g) according to a predetermined sequence.
(a) The gas from the source gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbable components in the gas are adsorbed by the adsorbent, and the easily adsorbable components from the lower cylinder are reduced. The gas is introduced into the upper cylinder, and the easily adsorbable components contained in the gas in which the easily adsorbable components are reduced are adsorbed by the adsorbent in the upper cylinder, and the weakly adsorbable components flowing out from the upper cylinder are adsorbed. a step of recovering the component in the poorly adsorbable component storage tank;
(b) Gas from the easily adsorbable component low-pressure storage tank is pressurized and introduced into the lower cylinder, and exists in the gap between the adsorbent and the weakly adsorbable component co-adsorbed by the adsorbent in the lower cylinder. The difficult-to-adsorb components are led out to the upper cylinder, the easily-adsorbable components contained in the gas flowing from the lower cylinder are adsorbed by the adsorbent in the upper cylinder, and the difficult-to-adsorb components are led out from the upper cylinder. The process of making
(c) a step of pressurizing the gas from the easily adsorbable component low-pressure storage tank and recovering it in the easily adsorbable component high-pressure storage tank;
(d) decompressing the lower cylinder to desorb the easily adsorbable components adsorbed on the adsorbent in the lower cylinder, and recovering the desorbed easily adsorbable components in the easily adsorbable component low-pressure storage tank;
(e) reducing the pressure in the upper cylinder to desorb the gas adsorbed by the adsorbent in the upper cylinder, introducing the desorbed gas into the lower cylinder, and removing the gas flowing out of the lower cylinder from the raw material gas; The process of collecting in a storage tank.
(f) introducing the weakly adsorbable component recovered in the step (a) into the upper cylinder as a countercurrent purge gas, and replacing and desorbing the easily adsorbable component adsorbed on the adsorbent in the upper cylinder; a step of introducing the outflowing gas into the lower cylinder and recovering the gas flowing out from the lower cylinder into the source gas storage tank;
(g) a step of pressurizing the lower cylinder and the upper cylinder by introducing the weakly adsorbable component derived in the step (b);
[9] A branch valve having one end connected to a flow path connected to the easily adsorbable component high-pressure storage tank in the flow path connecting the compressor and the lower cylinder,
The pressure swing adsorption type according to [7] or [8], wherein any one selected from a three-way ball valve for switching, a rotary valve, a three-way split type bellows valve and a three-way split type diaphragm valve is used as the branch valve. gas separator.
[10] An easily adsorbable component concentration meter for measuring the concentration of the easily adsorbable component in the gas flowing through the flow path is provided in one of the intake side flow path and the discharge side flow path of the compressor. ,
The pressure swing adsorption gas separation apparatus according to any one of [7] to [9], wherein the control unit controls not to perform the step (c) based on the value of the easily adsorbable component concentration meter.
[11] The pressure swing adsorption gas separation apparatus according to any one of [7] to [10], wherein the easily adsorbable component low-pressure storage tank is a container filled with an adsorbent.

本発明によれば、昇圧ポンプを使用することなく、回収した易吸着成分を回収前の下部筒圧力よりも高い圧力で供給することができる圧力変動吸着式ガス分離方法及び圧力変動吸着式ガス分離装置を提供することができる。 According to the present invention, the pressure swing adsorption gas separation method and the pressure swing adsorption gas separation can supply the recovered easily adsorbable components at a pressure higher than the lower cylinder pressure before recovery without using a booster pump. Equipment can be provided.

図1は、本発明の圧力変動吸着式ガス分離方法を実施するための圧力変動吸着式ガス分離装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a pressure swing adsorption gas separation apparatus for carrying out the pressure swing adsorption gas separation method of the present invention. 図2は、本発明の圧力変動吸着式ガス分離方法の工程(a)を説明する図である。FIG. 2 is a diagram illustrating step (a) of the pressure swing adsorption gas separation method of the present invention. 図3は、本発明の圧力変動吸着式ガス分離方法の工程(b)を説明する図である。FIG. 3 is a diagram illustrating step (b) of the pressure swing adsorption gas separation method of the present invention. 図4は、本発明の圧力変動吸着式ガス分離方法の工程(c)を説明する図である。FIG. 4 is a diagram illustrating step (c) of the pressure swing adsorption gas separation method of the present invention. 図5は、本発明の圧力変動吸着式ガス分離方法の工程(d)を説明する図である。FIG. 5 is a diagram illustrating step (d) of the pressure swing adsorption gas separation method of the present invention. 図6は、本発明の圧力変動吸着式ガス分離方法の工程(e)を説明する図である。FIG. 6 is a diagram illustrating step (e) of the pressure swing adsorption gas separation method of the present invention. 図7は、本発明の圧力変動吸着式ガス分離方法の工程(f)を説明する図である。FIG. 7 is a diagram illustrating step (f) of the pressure swing adsorption gas separation method of the present invention. 図8は、本発明の圧力変動吸着式ガス分離方法の工程(g)を説明する図である。FIG. 8 is a diagram illustrating step (g) of the pressure swing adsorption gas separation method of the present invention. 図9は、本発明の圧力変動吸着式ガス分離方法で工程(c)の途中から工程(d)を平行して行う場合の工程(c)+(d)を説明する図である。FIG. 9 is a diagram illustrating steps (c)+(d) when step (d) is performed in parallel from the middle of step (c) in the pressure swing adsorption gas separation method of the present invention. 図10は、特許文献1の圧力変動吸着式ガス分離方法を実施するための圧力変動求核式ガス分離装置の概略構成図である。FIG. 10 is a schematic configuration diagram of a pressure swing nucleophilic gas separation apparatus for carrying out the pressure swing adsorption gas separation method of Patent Document 1. As shown in FIG.

以下では、本発明の圧力変動吸着式ガス分離装置及び圧力変動吸着式ガス分離方法を、図面を適宜参照しながらより具体的に説明する。 Hereinafter, the pressure swing adsorption gas separation apparatus and the pressure swing adsorption gas separation method of the present invention will be described in more detail with reference to the drawings as appropriate.

図1は、本実施形態の圧力変動吸着式ガス分離装置を示す概略構成図である。
図1に概略構成を示す圧力変動吸着式ガス分離装置100は、吸着剤と、前記吸着剤に対して易吸着性である易吸着成分及び前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスと、を用い、前記原料ガス中の前記易吸着成分と前記難吸着成分とを分離し、前記易吸着成分及び前記難吸着成分のそれぞれを回収する圧力変動吸着式ガス分離装置である。
FIG. 1 is a schematic configuration diagram showing the pressure swing adsorption gas separation apparatus of this embodiment.
A pressure swing adsorption gas separation apparatus 100, the schematic configuration of which is shown in FIG. and a pressure swing adsorption gas separation apparatus that separates the easily adsorbable component and the difficultly adsorbable component in the source gas, and recovers the easily adsorbable component and the difficultly adsorbable component, respectively, using a raw material gas containing be.

本実施形態の圧力変動吸着式ガス分離装置100は、前記吸着剤を充填した下部筒10B(11B)及び上部筒10U(11U)と、少なくとも前記原料ガスを貯留する原料ガス貯留槽1と、下部筒10B(11B)からの前記易吸着成分を吸着する易吸着成分低圧貯留槽2と、易吸着成分低圧貯留槽2の前記易吸着成分を高圧にて貯留する易吸着成分高圧貯留槽5と、原料ガス貯留槽1又は易吸着成分低圧貯留槽2からのガスを加圧して下部筒10B(11B)又は易吸着成分高圧貯留槽5に送る圧縮機4と、上部筒10U(11U)からの前記難吸着成分を貯留する難吸着成分貯留槽3と、前記吸着剤に対して易吸着性である易吸着成分及び前記吸着剤に対して難吸着性である難吸着成分を少なくとも含む原料ガスを貯留する原料ガス貯留槽1と、前記易吸着成分を貯留する易吸着成分低圧貯留槽2と、前記難吸着成分を貯留する難吸着成分貯留槽3と、制御部20と、を備えている。 The pressure swing adsorption gas separation apparatus 100 of the present embodiment includes a lower cylinder 10B (11B) and an upper cylinder 10U (11U) filled with the adsorbent, a source gas storage tank 1 that stores at least the source gas, and a lower an easily adsorbable component low-pressure storage tank 2 that adsorbs the easily adsorbable component from the cylinder 10B (11B), an easily adsorbable component high-pressure storage tank 5 that stores the easily adsorbable component in the easily adsorbable component low-pressure storage tank 2 at high pressure, A compressor 4 pressurizes the gas from the source gas storage tank 1 or the easily adsorbable component low pressure storage tank 2 and sends it to the lower cylinder 10B (11B) or the easily adsorbable component high pressure storage tank 5; A difficult-to-adsorb component storage tank 3 for storing a difficult-to-adsorb component, and a raw material gas containing at least an easily-adsorbable component that is easily adsorbable to the adsorbent and a difficult-to-adsorbable component that is difficult to adsorb to the adsorbent is stored. an easily adsorbable component low-pressure storage tank 2 that stores the easily adsorbable component; a difficultly adsorbable component storage tank 3 that stores the difficultly adsorbable component;

圧力変動吸着式ガス分離装置は、吸着剤の被吸着ガスの選択性を利用した圧力変動吸着式ガス分離方法を実施するための装置である。
吸着剤の被吸着ガスの選択性には、平衡吸着量の相違によるものと、吸着速度の相違によるものとがある。
平衡吸着量の相違による選択性を有する吸着剤(平衡分離型吸着剤)の一例である活性炭では、キセノンを窒素やアルゴンよりも10倍以上多く吸着する(298K、100kPa(abs))。
吸着速度の相違による選択性を有する吸着剤(速度分離型吸着剤)の一例であるモレキュラーシーブスカーボン(MSC)では、酸素と窒素の吸着速度比は15前後である。
A pressure swing adsorption gas separation apparatus is a device for carrying out a pressure swing adsorption gas separation method that utilizes the selectivity of an adsorbent for a gas to be adsorbed.
The selectivity of the adsorbent gas to be adsorbed depends on the difference in equilibrium adsorption amount and the difference in adsorption speed.
Activated carbon, which is an example of an adsorbent (equilibrium separation type adsorbent) having selectivity due to a difference in equilibrium adsorption amount, adsorbs xenon at least 10 times more than nitrogen or argon (298 K, 100 kPa (abs)).
Molecular sieves carbon (MSC), which is an example of an adsorbent having selectivity due to a difference in adsorption speed (rate separation type adsorbent), has an adsorption speed ratio of about 15 between oxygen and nitrogen.

活性炭の場合、易吸着成分は、例えば、キセノンであり、難吸着成分は、例えば、窒素及びアルゴンである。
MSCの場合、易吸着成分は、例えば、酸素であり、難吸着成分は、例えば、窒素である。
In the case of activated carbon, the easily adsorbed component is, for example, xenon, and the poorly adsorbed component is, for example, nitrogen and argon.
In the case of MSC, the easily adsorbed component is, for example, oxygen, and the poorly adsorbed component is, for example, nitrogen.

易吸着成分及び難吸着成分は、使用する吸着剤に応じて異なり、吸着剤が異なると易吸着成分が難吸着成分となり、難吸着成分が易吸着成分となることがある。例えば、吸着剤として活性炭、Na-X型ゼオライト、Ca-X型ゼオライト、Ca-A型ゼオライト、Li-X型ゼオライト等の平衡分離型吸着剤の場合には、易吸着成分としては、キセノン、クリプトン等が挙げられ、難吸着成分としては、窒素、酸素、水素、ヘリウム、ネオン、アルゴン等が挙げられる。また、Na-A型ゼオライト、MSC等の速度分離型吸着剤の場合には、易吸着成分としては、窒素、酸素、アルゴン等が挙げられ、難吸着成分としてはクリプトン、キセノン等が挙げられる。 The easily adsorbable component and the difficultly adsorbable component differ depending on the adsorbent used, and when different adsorbents are used, the easily adsorbable component may become the difficult adsorbable component, and the difficultly adsorbable component may become the easily adsorbable component. For example, in the case of equilibrium separation type adsorbents such as activated carbon, Na-X zeolite, Ca-X zeolite, Ca-A zeolite, and Li-X zeolite as adsorbents, xenon, Examples include krypton and the like, and weakly adsorbable components include nitrogen, oxygen, hydrogen, helium, neon, argon and the like. In the case of Na—A type zeolite, MSC, and other velocity separation type adsorbents, easily adsorbed components include nitrogen, oxygen, argon, and the like, and poorly adsorbed components include krypton, xenon, and the like.

図1に示す圧力変動吸着式ガス分離装置100において、経路L1~L18は以下のとおりである。
経路L1は、原料ガスを原料ガス貯留槽1に導入する経路である。
経路L2は、原料ガス貯留槽1のガスを圧縮機4へ導出する経路である。
経路L3は、易吸着成分低圧貯留槽2のガスを圧縮機4へ導出する経路である。
経路L4、経路L5は、それぞれ、圧縮機4からのガスを下部筒10B、下部筒11Bに導入する経路である。
経路L6は、上部筒10U、上部筒11Uからのガスを難吸着成分貯留槽3に導入する経路である。
経路L7は、難吸着成分貯留槽3からの難吸着成分を装置系外に供給する経路である。
経路L8は、難吸着成分貯留槽3からの難吸着成分を向流パージガスとして上部筒10U、上部筒11Uに導入する経路である。
経路L9、経路L10は、それぞれ、下部筒10B、下部筒11Bからのガスを、原料ガス貯留槽1又は易吸着成分低圧貯留槽2に返送する経路である。
経路L11は、下部筒10B、下部筒11Bからのガスを、原料ガス貯留槽1に返送する流路である。
経路L12は、下部筒10B、下部筒11Bからのガスを、易吸着成分低圧貯留槽2に返送する流路である。
経路L13は、易吸着成分高圧貯留槽5からの易吸着成分を製品ガスとして供給する経路である。
経路L14は、上部筒10Uと上部筒11Uとの間で均圧を行う均圧ラインである。
経路L15は、圧縮機4で圧縮した易吸着成分低圧貯留槽2のガスを易吸着成分高圧貯留槽5に供給する流路である。
経路L16は、原料ガス貯留槽1、易吸着成分低圧貯留槽2からのガスを、圧縮機4に導入する経路である。
経路L17、経路L18は、それぞれ、圧縮機4で圧縮したガスを下部筒10B、下部筒11Bに供給する流路である。
In the pressure swing adsorption gas separation apparatus 100 shown in FIG. 1, paths L1 to L18 are as follows.
A route L1 is a route for introducing the raw material gas into the raw material gas storage tank 1 .
A route L2 is a route through which the gas in the source gas storage tank 1 is led out to the compressor 4 .
A route L3 is a route for leading the gas in the easily adsorbable component low-pressure storage tank 2 to the compressor 4 .
Routes L4 and L5 are routes for introducing gas from the compressor 4 into the lower cylinder 10B and the lower cylinder 11B, respectively.
A route L6 is a route for introducing gas from the upper tube 10U and the upper tube 11U into the poorly adsorbable component storage tank 3 .
A route L7 is a route for supplying the weakly adsorbable component from the poorly adsorbable component storage tank 3 to the outside of the apparatus system.
A route L8 is a route for introducing the weakly adsorbable component from the poorly adsorbable component storage tank 3 into the upper cylinder 10U and the upper cylinder 11U as a countercurrent purge gas.
Routes L9 and L10 are routes for returning the gas from the lower cylinder 10B and the lower cylinder 11B to the source gas storage tank 1 or the easily adsorbable component low-pressure storage tank 2, respectively.
The path L11 is a flow path for returning the gas from the lower cylinders 10B and 11B to the raw material gas storage tank 1 .
The path L12 is a flow path for returning the gas from the lower cylinder 10B and the lower cylinder 11B to the easily adsorbable component low-pressure storage tank 2.
The route L13 is a route for supplying the easily adsorbable component from the easily adsorbable component high-pressure storage tank 5 as a product gas.
The path L14 is a pressure equalization line that equalizes the pressure between the upper cylinder 10U and the upper cylinder 11U.
A path L15 is a flow path for supplying the gas of the easily adsorbable component low-pressure storage tank 2 compressed by the compressor 4 to the easily adsorbable component high-pressure storage tank 5 .
A route L16 is a route for introducing the gas from the source gas storage tank 1 and the easily adsorbable component low-pressure storage tank 2 into the compressor 4 .
A path L17 and a path L18 are flow paths for supplying the gas compressed by the compressor 4 to the lower cylinder 10B and the lower cylinder 11B, respectively.

下部筒10B、下部筒11B、上部筒10U、上部筒11Uには、原料ガス中の目的成分に対して易吸着性又は難吸着性を有し、目的成分以外の成分に対して難吸着性又は易吸着性を有する上述の吸着剤が充填されている。 The lower cylinder 10B, the lower cylinder 11B, the upper cylinder 10U, and the upper cylinder 11U have an easily adsorbable or a slightly adsorbable property for the target component in the raw material gas, and a difficult or difficult adsorbability for components other than the target component. It is filled with the above-mentioned adsorbent having easy adsorption.

易吸着成分低圧貯留槽2は、ガスバッグ(風船のように貯留量に応じて膨張・収縮するタンク)が好ましい。また、易吸着成分低圧貯留槽2として吸着剤が充填された容器を使用することが好ましい。易吸着成分低圧貯留槽2として吸着剤が充填された容器を使用すると、容器からガスを抜き出す(圧力が低下する)に従って、吸着剤に吸着しやすい成分(易吸着成分)の濃度が向上する。これは、難吸着成分は吸着剤の空隙に存在するのみだが、易吸着成分は吸着剤の空隙の他に吸着剤に吸着した分も存在するため、圧力が低下するほど易吸着成分の脱着が進み、難吸着成分に対して易吸着成分の比率(濃度)が増加するためである。その結果、後述する(2)回収工程で易吸着成分低圧貯留槽2から易吸着成分を排出した後の易吸着成分の濃度がより向上したガスを易吸着成分高圧貯留槽5に回収できるので、さらに高純度の易吸着成分を得ることができる。前記吸着剤としては例えば活性炭を用いることができる。 The easily adsorbable component low-pressure storage tank 2 is preferably a gas bag (a tank that expands and contracts like a balloon according to the amount of storage). Moreover, it is preferable to use a container filled with an adsorbent as the easily adsorbable component low-pressure storage tank 2 . When a container filled with an adsorbent is used as the easily adsorbable component low-pressure storage tank 2, the concentration of components that are easily adsorbed by the adsorbent (easily adsorbable component) increases as the gas is extracted from the container (the pressure decreases). This is because the weakly adsorbed components exist only in the pores of the adsorbent, but the easily adsorbed components also exist in the adsorbent in addition to the pores of the adsorbent, so the more easily adsorbed components are desorbed as the pressure decreases. This is because the ratio (concentration) of the easily adsorbed component to the difficultly adsorbed component increases. As a result, after the easily adsorbable components are discharged from the easily adsorbable component low-pressure storage tank 2 in the recovering step (2) described later, the gas in which the easily adsorbable component concentration is further improved can be recovered in the easily adsorbable component high-pressure storage tank 5. Furthermore, it is possible to obtain an easily adsorbable component of high purity. For example, activated carbon can be used as the adsorbent.

制御部20は、以下に説明する(1)吸着工程~(8)回収工程を、予め定められたシーケンスによって実行するシーケンサーを内蔵する。制御部20は、バルブV1~V15、V18の開閉、圧縮機4の作動及び停止等をシーケンシャルに制御する。 The control unit 20 incorporates a sequencer that executes (1) an adsorption step to (8) a recovery step described below in accordance with a predetermined sequence. The control unit 20 sequentially controls opening and closing of the valves V1 to V15 and V18, operation and stop of the compressor 4, and the like.

本実施形態の圧力変動吸着式ガス分離装置100は、圧縮機4と下部筒10B(11B)とが接続する流路に、一端が易吸着成分高圧貯留槽5に接続する流路と接続する分岐バルブV18を有することが好ましい。
前記分岐バルブV18としては、例えば、切替用三方ボールバルブ、ロータリーバルブ、三方分流型ベローズバルブ及び三方分流型ダイアフラムバルブから選択されるいずれか1つを使用することが好ましい。
ガスの流路のデッドボリュームに残留する難吸着成分は、回収される易吸着成分を汚染するため、デッドボリュームをより少なくすることが望ましい。そのため、分岐バルブV18として、デッドボリュームが少ない、切替用三方ボールバルブ、ロータリーバルブ、三方分流型ベローズバルブ、三方分流型ダイアフラムバルブ等を使用することが好ましい。
The pressure swing adsorption gas separation apparatus 100 of the present embodiment has a branched flow path connecting the compressor 4 and the lower cylinder 10B (11B) and one end connected to the flow path connecting the easily adsorbable component high pressure storage tank 5. It is preferred to have valve V18.
As the branch valve V18, it is preferable to use any one selected from, for example, a switching three-way ball valve, a rotary valve, a three-way split type bellows valve, and a three-way split type diaphragm valve.
The weakly adsorbed components remaining in the dead volume of the gas flow path contaminate the recovered easily adsorbed components, so it is desirable to reduce the dead volume as much as possible. Therefore, as the branch valve V18, it is preferable to use a three-way ball valve for switching, a rotary valve, a three-way branch type bellows valve, a three-way branch type diaphragm valve, or the like, which has a small dead volume.

次に、図1に示す圧力変動吸着式ガス分離装置100を用いて、原料ガス中の易吸着成分と難吸着成分とを分離し、易吸着成分及び難吸着成分のそれぞれを回収する、圧力変動吸着式ガス分離方法の一例を説明する。この例では、原料ガスとしてキセノンと窒素の混合ガスを用い、キセノン(易吸着成分)と窒素(難吸着成分)を分離・回収する圧力変動吸着式ガス分離方法について説明する。また、この例では、下部筒10B、下部筒11B、上部筒10U、上部筒11Uに充填される吸着剤として、平衡分離型吸着剤である活性炭を用いる。活性炭は、平衡吸着量としてキセノンの吸着量が多く(易吸着性)、窒素の吸着量が少ない(難吸着性)という性質を持つ。 Next, using the pressure swing adsorption gas separation apparatus 100 shown in FIG. An example of the adsorption gas separation method will be described. In this example, a mixed gas of xenon and nitrogen is used as a raw material gas, and a pressure swing adsorption gas separation method for separating and recovering xenon (a component that is easily adsorbed) and nitrogen (a component that is poorly adsorbed) will be described. In this example, activated carbon, which is an equilibrium separation type adsorbent, is used as the adsorbent filled in the lower cylinder 10B, the lower cylinder 11B, the upper cylinder 10U, and the upper cylinder 11U. Activated carbon has properties such that it has a large adsorption amount of xenon (easily adsorbable) and a small adsorption amount of nitrogen (poor adsorption) as an equilibrium adsorption amount.

表1は、圧力変動吸着式ガス分離装置100を用いた場合のバルブの開閉状態を示す表である。以下の説明は半サイクルの工程に関する内容である。
下部筒10B、上部筒10Uは、(1)吸着工程、(2)均圧減圧工程、(3)回収工程、(4)下部筒減圧工程、(5)上部筒減圧工程、(6)パージ再生工程、(7)均圧加圧工程、(8)回収工程が実施される。
下部筒10B、上部筒10Uが上述した(1)吸着工程~(8)回収工程の各工程を行っている間、下部筒11B、上部筒11Uは、(4)下部筒減圧工程、(5)上部筒減圧工程、(6)パージ再生工程、(7)均圧加圧工程、(8)回収工程、(1)吸着工程、(2)均圧減圧工程、(3)回収工程が実施される。
Table 1 shows the opening and closing states of valves when the pressure swing adsorption gas separation apparatus 100 is used. The following description is for a half-cycle process.
The lower cylinder 10B and the upper cylinder 10U undergo (1) an adsorption process, (2) a pressure equalization decompression process, (3) a recovery process, (4) a lower cylinder decompression process, (5) an upper cylinder decompression process, and (6) a purge regeneration. (7) Equalizing pressurization step and (8) Recovery step are carried out.
While the lower cylinder 10B and the upper cylinder 10U are performing the above-described (1) adsorption process to (8) recovery process, the lower cylinder 11B and the upper cylinder 11U are (4) the lower cylinder decompression process, (5) An upper cylinder depressurization step, (6) a purge regeneration step, (7) a pressure equalization pressurization step, (8) a recovery step, (1) an adsorption step, (2) a pressure equalization depressurization step, and (3) a recovery step are carried out. .

Figure 2023097964000002
Figure 2023097964000002

(1)吸着工程:図2
原料ガス貯留槽1からの混合ガスを圧縮機4で圧縮し、経路L2、L16、経路L18(L17)、経路L4(L5)を介して下部筒10B(11B)に供給する。下部筒10B(11B)と上部筒10U(11U)との間は、バルブV5(V6)を開放することで流通されているため、下部筒10B(11B)と上部筒10U(11U)との間は、ほぼ同様に圧力上昇する。
原料ガス貯留槽1の混合ガスは、経路L1から導入された原料ガスと後述する上部筒減圧工程、パージ再生工程で下部筒10B、下部筒11Bから排出されたガスとの混合ガスである。
下部筒10B(11B)に供給された混合ガスは、下部筒10B(11B)上部に進むにつれて、キセノンが優先的に吸着され、気相中に窒素が濃縮される(気相中のキセノン濃度が低下する)。濃縮された窒素は、下部筒10B(11B)から上部筒10U(11U)に導入され、上部筒10U(11U)において、窒素中に含まれる微量のキセノンがさらに吸着される。
上部筒10U(11U)の圧力が難吸着成分貯留槽3の圧力より高くなった後、上部筒10U(11U)においてさらに濃縮された窒素は、経路L6を介して、難吸着成分貯留槽3へ導出される。難吸着成分貯留槽3の窒素は、原料ガス中に含まれる窒素の流量に応じた流量が、経路L7から装置系外に排出され、残りのガスはパージ再生工程における向流パージガスとして利用される。
(1) Adsorption step: Fig. 2
The mixed gas from the raw material gas storage tank 1 is compressed by the compressor 4 and supplied to the lower cylinder 10B (11B) via paths L2, L16, L18 (L17), and L4 (L5). Between the lower cylinder 10B (11B) and the upper cylinder 10U (11U), since the valve V5 (V6) is opened, the flow is allowed between the lower cylinder 10B (11B) and the upper cylinder 10U (11U). increases in pressure almost similarly.
The mixed gas in the raw material gas storage tank 1 is a mixed gas of the raw material gas introduced from the path L1 and the gas discharged from the lower cylinders 10B and 11B in the upper cylinder decompression process and the purge regeneration process, which will be described later.
In the mixed gas supplied to the lower cylinder 10B (11B), xenon is preferentially adsorbed as it advances to the upper part of the lower cylinder 10B (11B), and nitrogen is concentrated in the gas phase (the xenon concentration in the gas phase is descend). The concentrated nitrogen is introduced from the lower cylinder 10B (11B) into the upper cylinder 10U (11U), and a small amount of xenon contained in the nitrogen is further adsorbed in the upper cylinder 10U (11U).
After the pressure in the upper tube 10U (11U) becomes higher than the pressure in the poorly adsorbable component storage tank 3, the nitrogen further concentrated in the upper tube 10U (11U) flows to the poorly adsorbable component storage tank 3 via the path L6. derived. The nitrogen in the poorly adsorbable component storage tank 3 is discharged out of the system through the path L7 at a flow rate corresponding to the flow rate of the nitrogen contained in the raw material gas, and the remaining gas is used as a countercurrent purge gas in the purge regeneration step. .

(2)均圧減圧工程:図3
バルブV1を閉止、バルブV2を開放することで、下部筒10B(11B)に導入するガスを易吸着成分低圧貯留槽2のキセノンに変更する。易吸着成分低圧貯留槽2からのキセノンを下部筒10B(11B)に導入することによって、下部筒10B(11B)の吸着剤充填層に共吸着された窒素と、吸着剤空隙に存在する窒素を上部筒10U(11U)へ押し出し、下部筒10B(11B)内をキセノンで吸着飽和とする。
この間、上部筒10U(11U)から経路L14(均圧ライン)を介して、もう一方の上部筒11U(10U)に窒素を導出することで下部筒10B(11B)、上部筒10U(11U)を減圧し、パージ再生工程を終了した下部筒11B(10B)、上部筒11U(10U)を均圧する。この時、上部筒10U(11U)から流出させる均圧ガスの流量は、均圧減圧工程が終了時点で均圧が完了するように流量調整バルブ、オリフィスなどを用いて調整する。
(2) Equalizing depressurization process: Fig. 3
By closing the valve V1 and opening the valve V2, the gas to be introduced into the lower cylinder 10B (11B) is changed to the xenon of the easily adsorbable component low-pressure storage tank 2. By introducing xenon from the easily adsorbable component low-pressure storage tank 2 into the lower cylinder 10B (11B), the nitrogen co-adsorbed in the adsorbent packed layer of the lower cylinder 10B (11B) and the nitrogen present in the adsorbent voids are removed. It is extruded into the upper cylinder 10U (11U), and the inside of the lower cylinder 10B (11B) is saturated with xenon.
During this time, nitrogen is led out from the upper cylinder 10U (11U) to the other upper cylinder 11U (10U) via the path L14 (pressure equalizing line), thereby lowering the lower cylinder 10B (11B) and the upper cylinder 10U (11U). The pressure is reduced to equalize the lower cylinder 11B (10B) and the upper cylinder 11U (10U) that have completed the purge regeneration process. At this time, the flow rate of the pressure equalizing gas flowing out from the upper tube 10U (11U) is adjusted using a flow control valve, an orifice, etc. so that the pressure equalization is completed when the pressure equalizing depressurization process ends.

圧縮機4の流入側流路及び/又は吐出側流路に易吸着成分の濃度を測定するための易吸着成分濃度計を設置してもよい。特許文献1(特開2007-130611号公報)に記載された圧力変動吸着式ガス分離装置では、下部筒から回収するガス中の易吸着成分の濃度を測定する手段が無いため、ガスを易吸着成分高圧貯留槽に回収しなければ易吸着成分の濃度を測定できなかった。不純物である難吸着成分が易吸着成分高圧貯留槽に混入すると、易吸着成分高圧貯留槽から難吸着成分を追い出す必要があるが、易吸着成分高圧貯留槽から難吸着成分を追い出して易吸着成分の純度を高くするには多くの時間が必要であり、その間は回収した易吸着成分を製品ガスとして供給できないという問題点がある。また、易吸着成分高圧貯留槽の容積を小さくすると1サイクルタイムで入替できるガス割合が高くなるので入れ替えに要する時間を短縮できるが、易吸着成分高圧貯留槽の圧力が大きく低下して、易吸着成分の供給圧力が低下するという問題点がある。
このような問題点に対して、圧縮機4の流入側流路及び/又は吐出側流路に易吸着成分濃度計6を配置して易吸着成分の濃度を測定し、基準値以上であれば易吸着成分高圧貯留槽5に回収し、基準値未満であれば回収しないように制御することで、易吸着成分高圧貯留槽5への難吸着成分の混入を防止することができる。
(3)回収工程を実施しなくても、易吸着成分高圧貯留槽5に貯留された易吸着成分を経路L13を通じて製品ガスとして供給先の装置に供給すればよく、供給先の装置のプロセスを急に止める必要はない。また、次のサイクルで易吸着成分濃度計6によって測定される易吸着成分の濃度が基準を満たしていれば、(3)回収工程を実施して、易吸着成分高圧貯留槽5に易吸着成分を回収する。この場合、(3)回収工程は、易吸着成分高圧貯留槽5が所定の圧力に到達したら終了することにしていれば、前のサイクルで回収しなかった易吸着成分を後のサイクルで回収したこととなる。
易吸着成分濃度計6としては、例えば、超音波式濃度計又は特許第3655569号公報に記載された装置を使用することが好ましい。
An easily adsorbable component concentration meter for measuring the concentration of the easily adsorbable component may be installed in the inflow side channel and/or the discharge side channel of the compressor 4 . In the pressure swing adsorption gas separation apparatus described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-130611), there is no means for measuring the concentration of easily adsorbable components in the gas recovered from the lower cylinder, so the gas is easily adsorbed. The concentrations of easily adsorbable components could not be measured unless they were recovered in the component high-pressure storage tank. If the difficult-to-adsorb components, which are impurities, enter the high-adsorption component high-pressure storage tank, it is necessary to expel the difficult-to-adsorb components from the easy-adsorption component high-pressure storage tank. It takes a long time to increase the purity of the gas, and there is a problem that during that time the recovered easily adsorbable components cannot be supplied as a product gas. In addition, if the volume of the easily adsorbable component high pressure storage tank is reduced, the ratio of gas that can be replaced in one cycle time is increased, and the time required for replacement can be shortened. There is a problem that the supply pressure of the component is lowered.
To solve this problem, the easily adsorbable component concentration meter 6 is placed in the inflow side channel and/or the discharge side channel of the compressor 4 to measure the concentration of the easily adsorbable component. It is possible to prevent the poorly adsorbable components from being mixed into the easily adsorbable component high pressure storage tank 5 by collecting the components in the easily adsorbable component high pressure storage tank 5 and not collecting them if the amount is less than the reference value.
(3) Even if the recovery step is not performed, the easily adsorbable component stored in the easily adsorbable component high-pressure storage tank 5 can be supplied as product gas to the device to which it is supplied through path L13. No need to stop suddenly. If the concentration of the easily adsorbable component measured by the easily adsorbable component concentration meter 6 in the next cycle satisfies the standard, the (3) recovery step is carried out to store the easily adsorbable component in the easily adsorbable component high-pressure storage tank 5. recover. In this case, if the recovery step (3) is terminated when the easily adsorbable component high-pressure storage tank 5 reaches a predetermined pressure, the easily adsorbable components that were not recovered in the previous cycle are recovered in the subsequent cycle. It will happen.
As the easily adsorbable component concentration meter 6, it is preferable to use, for example, an ultrasonic concentration meter or the device described in Japanese Patent No. 3655569.

(3)回収工程:図4
バルブV3(V4)を閉止、バルブV18を開放することで、圧縮機4で圧縮する易吸着成分低圧貯留槽2のキセノンを、易吸着成分高圧貯留槽5に送付する。なお、バルブV3を閉止することで、下部筒10B(11B)及び上部筒10U(11U)にガスの流れがなくなり休止状態となる。(3)回収工程の時間は予め定められた時間で完了してもよいが、易吸着成分高圧貯留槽5の圧力が予め定められた値に達した時点で完了としてもよい。易吸着成分高圧貯留槽5が予め定められた圧力に到達した時点で完了とすることで、易吸着成分高圧貯留槽5の回収ガス量が都度増減しないようにできる。
(3) Recovery process: Fig. 4
By closing the valve V3 (V4) and opening the valve V18, the xenon in the easily adsorbable component low-pressure storage tank 2 compressed by the compressor 4 is sent to the easily adsorbable component high pressure storage tank 5. By closing the valve V3, the flow of gas is stopped in the lower cylinder 10B (11B) and the upper cylinder 10U (11U), resulting in a resting state. (3) The recovery step may be completed within a predetermined time, or may be completed when the pressure in the easily adsorbable component high-pressure storage tank 5 reaches a predetermined value. By completing the process when the easily adsorbable component high-pressure storage tank 5 reaches a predetermined pressure, the recovery gas amount in the easily adsorbable component high-pressure storage tank 5 can be prevented from increasing or decreasing each time.

圧縮機4は下部筒10B(11B)及び上部筒10U(11U)の吸着圧力まで昇圧する能力を有するため、易吸着成分高圧貯留槽5に回収する易吸着成分の圧力は、特許文献1(特開2007-130611号公報)に記載された圧力変動吸着式ガス分離方法と比べてより高い圧力が得られるようになる。なお、(2)均圧減圧工程において、易吸着成分低圧貯留槽2~圧縮機4~下部筒10B(11B)までの流路は、易吸着成分低圧貯留槽2の易吸着成分で充分に洗浄されている。そのため、(3)回収工程において、難吸着成分による汚染が無い、高純度の易吸着成分を易吸着成分高圧貯留槽5に送ることが可能である。 Since the compressor 4 has the ability to increase the pressure up to the adsorption pressure of the lower cylinder 10B (11B) and the upper cylinder 10U (11U), the pressure of the easily adsorbable components recovered in the easily adsorbable component high-pressure storage tank 5 can A higher pressure can be obtained as compared with the pressure swing adsorption gas separation method described in JP-A-2007-130611. In the (2) pressure equalizing and depressurizing step, the flow path from the easily adsorbable component low-pressure storage tank 2 to the compressor 4 to the lower cylinder 10B (11B) is sufficiently washed with the easily adsorbable component in the easily adsorbable component low-pressure storage tank 2. It is Therefore, in the (3) recovery step, it is possible to send highly pure, easily adsorbable components to the easily adsorbable component high-pressure storage tank 5 without contamination by difficultly adsorbable components.

(2)均圧減圧工程中にバルブV18を開放することで、(3)回収工程を(2)均圧減圧工程と同時に行ってもよい(図9)。(3)回収工程を(2)均圧減圧工程中に行うことで、運転時間をより短縮することができる。 By opening the valve V18 during the (2) pressure equalizing and depressurizing step, the (3) recovery step may be performed simultaneously with the (2) pressure equalizing and depressurizing step (FIG. 9). By performing the (3) recovery step during the (2) pressure equalizing and depressurizing step, the operating time can be further shortened.

(4)下部筒減圧工程:図5
バルブV3(V4)、バルブV5(V6)を閉止し、バルブV11、バルブV12(V13)を開放する。これにより、(1)吸着工程~(2)均圧減圧工程間に下部筒10B(11B)に吸着されたキセノンは、易吸着成分低圧貯留槽2の差圧によって脱着し、経路L9(L10)、経路L12を介して、易吸着成分低圧貯留槽2に回収される。易吸着成分低圧貯留槽2に回収されたキセノンは並流パージガスとして上述した均圧減圧工程で使用される。この間、上部筒10U(11U)は、バルブV5(V6)、バルブV7(V8)、バルブV9が閉止されていることにより休止状態となる。
(4) Lower cylinder decompression step: Fig. 5
Valve V3 (V4) and valve V5 (V6) are closed, and valve V11 and valve V12 (V13) are opened. As a result, the xenon adsorbed in the lower cylinder 10B (11B) during the (1) adsorption step to (2) pressure equalization depressurization step is desorbed by the differential pressure in the easily adsorbable component low-pressure storage tank 2, and is routed through path L9 (L10). , and route L12 to the easily adsorbable component low-pressure storage tank 2. The xenon recovered in the readily adsorbable component low-pressure storage tank 2 is used as a co-current purge gas in the pressure equalization decompression process described above. During this time, the upper tube 10U (11U) is in a resting state because the valve V5 (V6), the valve V7 (V8), and the valve V9 are closed.

なお、(3)回収工程の開始前において圧縮機4を通気するガス中の易吸着成分の濃度が予め定められた濃度に達していない場合、(3)回収工程をスキップし、(2)均圧減圧工程の完了後に(4)下部筒減圧工程を行うようにしてもよい。 Note that if (3) the concentration of the readily adsorbable component in the gas passing through the compressor 4 does not reach a predetermined concentration before the start of the recovery process, (3) the recovery process is skipped, and (2) the equalization process is performed. (4) The lower cylinder depressurizing step may be performed after the pressure depressurizing step is completed.

(5)上部筒減圧工程:図6
バルブV11を閉止し、バルブV5(V6)、バルブV10を開放する。すると、(4)下部筒減圧工程において休止していた上部筒10U(11U)と減圧を行った下部筒10B(11B)の間に圧力差が生じることから、上部筒10U(11U)内のガスは下部筒10B(11B)に流入する。下部筒10B(11B)に導入されたガスは、下部筒10B(11B)をパージしながら、経路L9(L10)、経路L11を介して原料ガス貯留槽1に回収される。原料ガス貯留槽1に回収されたガスは、経路L1から導入される原料ガスと再混合されて、(1)吸着工程時に再び下部筒10B(11B)に供給される。
(5) Upper tube decompression step: Fig. 6
Close valve V11 and open valve V5 (V6) and valve V10. Then, in the (4) lower cylinder depressurization step, a pressure difference occurs between the resting upper cylinder 10U (11U) and the decompressed lower cylinder 10B (11B). flows into the lower cylinder 10B (11B). The gas introduced into the lower cylinder 10B (11B) is recovered in the source gas storage tank 1 through the path L9 (L10) and the path L11 while purging the lower cylinder 10B (11B). The gas recovered in the raw material gas storage tank 1 is remixed with the raw material gas introduced from the path L1, and supplied again to the lower cylinder 10B (11B) during the (1) adsorption step.

(6)パージ再生工程:図7
バルブV14(V15)を開放する。難吸着成分貯留槽3に貯留した窒素は、向流パージガスとして、経路L8を介して、上部筒10U(11U)に導入される。上部筒10U(11U)に導入された窒素は、上部筒10U(11U)下部に進むにつれて、吸着していたキセノンを置換脱着させる。脱着された比較的キセノンを多く含んだガスは、下部筒10B(11B)、経路L9(L10)、経路L11を介して原料ガス貯留槽1に回収される。
原料ガス貯留槽1に回収されたガスは、(5)上部筒減圧工程と同様に、経路L1から導入される原料ガスと混合されて、(1)吸着工程時に再び下部筒10B(11B)に供給される。
ここで、向流パージガスに使用される窒素は、(1)吸着工程において上部筒10U(11U)から導出された窒素を、難吸着成分貯留槽3を介さず、直接(5)パージ再生工程を行っている上部筒11U(10U)に導入してもよい。
(6) Purge regeneration step: Fig. 7
Open the valve V14 (V15). Nitrogen stored in the poorly adsorbable component storage tank 3 is introduced into the upper cylinder 10U (11U) via the path L8 as a countercurrent purge gas. The nitrogen introduced into the upper tube 10U (11U) causes substitution and desorption of the adsorbed xenon as it advances to the lower portion of the upper tube 10U (11U). The desorbed gas containing a relatively large amount of xenon is recovered in the source gas storage tank 1 via the lower cylinder 10B (11B), the path L9 (L10), and the path L11.
The gas recovered in the raw material gas storage tank 1 is mixed with the raw material gas introduced through the path L1 in the same manner as in the (5) upper cylinder depressurization step, and is returned to the lower cylinder 10B (11B) during the (1) adsorption step. supplied.
Here, the nitrogen used for the countercurrent purge gas is (1) the nitrogen derived from the upper cylinder 10U (11U) in the adsorption step directly without passing through the poorly adsorbable component storage tank 3 and (5) the purge regeneration step. It may be introduced into the upper tube 11U (10U) that is being carried out.

(7)均圧加圧工程:図8
バルブV12(V13)、バルブV14(V15)を閉止し、バルブV9を開放する。これによって、上部筒11U(10U)内のガスは、上部筒10U(11U)に導入される(均圧加圧操作)。上部筒10U(11U)に導入されるガスは窒素濃度が高いため、上部筒10U(11U)内のキセノンを上部筒10U(11U)下部及び下部筒10B(11B)へ押し下げることができる。
(7) Equalizing pressurization process: Fig. 8
The valve V12 (V13) and the valve V14 (V15) are closed, and the valve V9 is opened. As a result, the gas in the upper cylinder 11U (10U) is introduced into the upper cylinder 10U (11U) (pressure equalization pressurization operation). Since the gas introduced into the upper cylinder 10U (11U) has a high nitrogen concentration, the xenon in the upper cylinder 10U (11U) can be pushed down to the lower part of the upper cylinder 10U (11U) and the lower cylinder 10B (11B).

(8)回収工程:図4
バルブV9を閉止することで、下部筒11B(10B)及び上部筒11U(10U)にガスの流れがなくなり休止状態となる。なお、ここでバルブV6(V5)は開放状態となっているが、閉止してもよい。
(8) Recovery process: Fig. 4
By closing the valve V9, there is no gas flow in the lower cylinder 11B (10B) and the upper cylinder 11U (10U), resulting in a resting state. Although the valve V6 (V5) is in an open state here, it may be closed.

以上、説明した8つの工程を下部筒10Bと上部筒10U、下部筒11Bと上部筒11Uで順次繰り返し行うことで、窒素の濃縮と、キセノンの濃縮を連続的に行うことができる。また、下部筒10Bと上部筒10Uで(1)吸着工程~(3)回収工程の工程を行っている間、下部筒11Bと上部筒11Uでは(4)下部筒減圧工程~(8)回収工程の工程が行われる。
また、一方で下部筒10Bと上部筒10Uで(4)下部筒減圧工程~(8)回収工程の工程を行っている間、下部筒11Bと上部筒11Uでは(1)吸着工程~(3)回収工程の工程が行われる。
また、経路L1からの原料ガスの導入、経路L7からの窒素の排出、経路L13からのキセノンの導出は、工程によらず連続的に行われる。
By sequentially repeating the eight steps described above for the lower cylinder 10B and the upper cylinder 10U, and for the lower cylinder 11B and the upper cylinder 11U, nitrogen concentration and xenon concentration can be continuously performed. While the lower cylinder 10B and the upper cylinder 10U are performing the steps of (1) adsorption step to (3) recovery step, the lower cylinder 11B and the upper cylinder 11U are (4) lower cylinder pressure reduction step to (8) recovery step. process is performed.
On the other hand, while the lower cylinder 10B and the upper cylinder 10U are performing the steps of (4) lower cylinder pressure reduction step to (8) recovery step, the lower cylinder 11B and the upper cylinder 11U are (1) adsorption step to (3). A recovery process step is performed.
Also, the introduction of the raw material gas from the path L1, the discharge of nitrogen from the path L7, and the derivation of xenon from the path L13 are performed continuously regardless of the process.

表2は、上述した各工程における工程時間の占める割合の一例を示すもので、この例では1サイクルタイムを300秒とした場合の各工程が占める工程時間(秒)を示している。 Table 2 shows an example of the proportion of the process time in each process described above. In this example, the process time (seconds) occupied by each process is shown when one cycle time is 300 seconds.

Figure 2023097964000003
Figure 2023097964000003

以上説明したように、本実施形態の圧力変動吸着式ガス分離方法及び圧力変動吸着式ガス分離装置においては、新たな昇圧ポンプを使用することなく、回収した易吸着成分を回収前の下部筒10B(11B)圧力よりも高い圧力で供給することができる。 As described above, in the pressure swing adsorption gas separation method and the pressure swing adsorption gas separation apparatus of the present embodiment, the recovered easily adsorbable components are removed from the lower cylinder 10B before recovery without using a new booster pump. (11B) It can be supplied at a pressure higher than the pressure.

なお、吸着剤としてCMS等の速度分離型吸着剤を使用した場合には、易吸着成分高圧貯留槽5には窒素等が、難吸着成分貯留槽3にはキセノン等が回収されることになる。また、原料ガス中に、CO、HO、CF等が含まれている場合には、予め別のPSA装置などによってこれらを前処理して除去するか、又はこれらガスは、製品キセノンに混じって導出されるので、後処理によって除去することが好ましい。後処理によるものでは、除去設備に小型の装置を用いることができる。 When a velocity separation type adsorbent such as CMS is used as the adsorbent, nitrogen or the like is recovered in the easily adsorbable component high-pressure storage tank 5, and xenon or the like is recovered in the poorly adsorbable component storage tank 3. . In addition, if the source gas contains CO 2 , H 2 O, CF 4 and the like, these gases are removed by pretreatment with another PSA device or the like in advance, or these gases are converted into product xenon. It is preferably removed by post-processing. In the post-treatment, a small-sized device can be used as the removal facility.

以下では実施例によって本発明をより具体的に説明するが、本発明は後述する実施例に限定されるものではなく、本発明の要旨を逸脱しない限り種々の変形が可能である。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the examples described later, and various modifications are possible without departing from the gist of the present invention.

[実施例1]
<実験方法>
図1に概略を示す圧力変動吸着式ガス分離装置100を使用して、次の運転条件にて24時間の連続運転を行った。
なお、ガス体積は0℃、1気圧下の条件とする。
(1)原料ガス
キセノンと窒素の混合ガス 3.0L/min
原料ガスの内訳:キセノン(易吸着成分;10体積%) 0.3L/min
窒素(難吸着成分;90体積%) 2.7L/min
(2)下部筒(10B,11B)及び上部筒(10U,11U)
ステンレス鋼管80A(外径89.1mm、厚さ3.0mm、内径83.1mm)
充填剤充填高さ 500mm(吸着剤として活性炭1.5kg充填)
(3)圧縮機4
ダイアフラム式圧縮機 25L/min(吐出圧力 800kPa(abs))
(4)易吸着成分高圧貯留槽
容積 2.5L
(5)バルブの開閉状態
圧力変動吸着式ガス分離装置100のバルブの開閉状態を、上記した表1に示すとおりとした。
[Example 1]
<Experimental method>
Using the pressure swing adsorption gas separation apparatus 100 schematically shown in FIG. 1, continuous operation was performed for 24 hours under the following operating conditions.
The gas volume is set at 0° C. and under 1 atm.
(1) Source gas Mixed gas of xenon and nitrogen 3.0 L/min
Breakdown of source gas: xenon (easily adsorbed component; 10% by volume) 0.3 L/min
Nitrogen (difficultly adsorbed component; 90% by volume) 2.7 L/min
(2) Lower cylinders (10B, 11B) and upper cylinders (10U, 11U)
Stainless steel pipe 80A (outer diameter 89.1 mm, thickness 3.0 mm, inner diameter 83.1 mm)
Filling height 500 mm (1.5 kg of activated carbon is filled as an adsorbent)
(3) Compressor 4
Diaphragm compressor 25L/min (discharge pressure 800kPa (abs))
(4) Highly adsorbable component high-pressure storage tank volume 2.5L
(5) Open/Closed State of Valve The open/closed state of the valve of the pressure swing adsorption gas separation apparatus 100 was set as shown in Table 1 above.

(6)サイクルタイム時間設定
1サイクルタイムを300秒として各工程の工程時間を、上記した表2に示すとおりとした。
(6) Cycle time setting The process time for each process was set as shown in Table 2 above, with one cycle time being 300 seconds.

<実験結果>
経路L7から導出された窒素濃度、経路L13から導出されたキセノン濃度がほぼ一定に落ち着き、ほぼ循環定常状態に達した。この時の結果は次のとおりであった。
・キセノン中の窒素濃度 1000ppm・・・製品キセノン純度 99.9%
・窒素中のキセノン濃度 110ppm・・・キセノン回収率 99.9%
・易吸着成分高圧貯留槽5の圧力 700~750kPa(abs)
以上のとおり、易吸着成分高圧貯留槽5の圧力は700~750kPa(abs)であり、製品キセノンの供給圧力を700kPa(abs)以上で維持することが確認できた。また、製品キセノン純度99.9%、キセノン回収率99.9%と高く、いずれも優れていた。
<Experimental results>
The nitrogen concentration derived from the path L7 and the xenon concentration derived from the path L13 stabilized at a substantially constant level, and almost reached a circulation steady state. The results at this time were as follows.
・Nitrogen concentration in xenon 1000ppm Product xenon purity 99.9%
・Xenon concentration in nitrogen 110ppm...Xenon recovery rate 99.9%
・Pressure of easily adsorbable component high-pressure storage tank 5: 700 to 750 kPa (abs)
As described above, the pressure of the readily adsorbable component high-pressure storage tank 5 was 700 to 750 kPa (abs), and it was confirmed that the supply pressure of product xenon was maintained at 700 kPa (abs) or higher. The product xenon purity was 99.9% and the xenon recovery rate was high at 99.9%, both of which were excellent.

[比較例1]
<実験方法>
特許文献1(特開2007-130611号公報)の実施例1と同様にして分離実験を行った。すなわち、図10に概要を示す圧力変動吸着式ガス分離装置101を使用して、0℃、1気圧下、次の運転条件にて24時間の連続運転を行った。
(1)原料ガス
キセノンと窒素の混合ガス 3.0L/min
原料ガスの内訳:キセノン(易吸着成分;10体積%) 0.3L/min
窒素(難吸着成分;90体積%) 2.7L/min
(2)下部筒(10B,11B)及び上部筒(10U,11U)
ステンレス鋼管80A(外径89.1mm、厚さ3.0mm、内径83.1mm)
充填剤充填高さ 500mm(吸着剤として活性炭1.5kg充填)
(3)圧縮機4
ダイアフラム式圧縮機 25L/min(吐出圧力 800kPa(abs))
(4)易吸着成分高圧貯留槽
容積 2.5L
(5)バルブの開閉状態
以下の表3に圧力変動吸着式ガス分離装置101のバルブの開閉状態を示す。
[Comparative Example 1]
<Experimental method>
A separation experiment was conducted in the same manner as in Example 1 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-130611). That is, using the pressure swing adsorption gas separation apparatus 101 whose outline is shown in FIG. 10, continuous operation was performed for 24 hours under the following operating conditions at 0° C. and 1 atmospheric pressure.
(1) Source gas Mixed gas of xenon and nitrogen 3.0 L/min
Breakdown of source gas: xenon (easily adsorbed component; 10% by volume) 0.3 L/min
Nitrogen (difficultly adsorbed component; 90% by volume) 2.7 L/min
(2) Lower cylinders (10B, 11B) and upper cylinders (10U, 11U)
Stainless steel pipe 80A (outer diameter 89.1 mm, thickness 3.0 mm, inner diameter 83.1 mm)
Filling height 500 mm (1.5 kg of activated carbon is filled as an adsorbent)
(3) Compressor 4
Diaphragm compressor 25L/min (discharge pressure 800kPa (abs))
(4) Highly adsorbable component high-pressure storage tank volume 2.5L
(5) Open/Closed State of Valves Table 3 below shows the opened/closed states of the valves of the pressure swing adsorption gas separation apparatus 101 .

Figure 2023097964000004
Figure 2023097964000004

(6)サイクルタイム時間設定
1サイクルタイムを300秒として各工程の工程時間を以下の表4に示すとおりとした。
(6) Cycle time time setting The process time for each process was set as shown in Table 4 below, with one cycle time being 300 seconds.

Figure 2023097964000005
Figure 2023097964000005

<実験結果>
経路L7から導出された窒素濃度、経路L13から導出されたキセノン濃度がほぼ一定に落ち着き、ほぼ循環定常状態に達した。この時の結果は次のとおりであった。
キセノン中の窒素濃度 1000ppm・・・製品キセノン純度 99.9%
窒素中のキセノン濃度 110ppm・・・キセノン回収率 99.9%
易吸着成分高圧貯留槽5の圧力 380~435kPa(abs)
以上のとおり、高回収率でキセノン回収できることが確認できた。しかし、製品キセノンの供給圧力は最大350kPa(abs)程度と低かった。
<Experimental results>
The nitrogen concentration derived from the path L7 and the xenon concentration derived from the path L13 stabilized at a substantially constant level, and almost reached a circulation steady state. The results at this time were as follows.
Nitrogen concentration in xenon 1000 ppm Product xenon purity 99.9%
Xenon concentration in nitrogen 110ppm Xenon recovery rate 99.9%
Pressure of easily adsorbable component high pressure storage tank 5 380 to 435 kPa (abs)
As described above, it was confirmed that xenon could be recovered at a high recovery rate. However, the supply pressure of product xenon was as low as about 350 kPa (abs) at maximum.

[実施例2]
<実験方法>
バルブV18をダイアフラム式二方弁(メタルダイアフラムバルブ FPR-ND-71-9.52、フジキン社製)からダイアフラム式三方分流弁(メタルダイアフラムバルブ FPR-NDTB-71-9.52、フジキン社製)に変更して、実施例1と同じ条件で運転した。
[Example 2]
<Experimental method>
The valve V18 was changed from a diaphragm type two-way valve (metal diaphragm valve FPR-ND-71-9.52, manufactured by Fujikin) to a diaphragm type three-way diverting valve (metal diaphragm valve FPR-NDTB-71-9.52, manufactured by Fujikin). , and operated under the same conditions as in Example 1.

<実験結果>
経路L7から導出された窒素濃度、経路L13から導出されたキセノン濃度がほぼ一定に落ち着き、ほぼ循環定常状態に達した。
・キセノン中の窒素濃度 800ppm・・・製品キセノン純度 99.92%
・窒素中のキセノン濃度 110ppm・・・キセノン回収率 99.9%
易吸着成分高圧貯留槽5の圧力 700~755kPa(abs)
以上のとおり、極めて高回収率でキセノン回収できることが確認できた。さらに、製品キセノンの供給圧力も700kPa(abs)以上で維持することが確認できた。
バルブV18としてダイアフラム式三方分流弁を使用したことにより、易吸着成分高圧貯留槽に混入する難吸着成分が減少し、製品キセノンをより高純度にすることができた。
<Experimental results>
The nitrogen concentration derived from the path L7 and the xenon concentration derived from the path L13 stabilized at a substantially constant level, and almost reached a circulation steady state.
・Nitrogen concentration in xenon 800ppm Product xenon purity 99.92%
・Xenon concentration in nitrogen 110ppm...Xenon recovery rate 99.9%
Pressure of easily adsorbable component high pressure storage tank 5 700 to 755 kPa (abs)
As described above, it was confirmed that xenon could be recovered at an extremely high recovery rate. Furthermore, it was confirmed that the supply pressure of product xenon was maintained at 700 kPa (abs) or more.
By using a diaphragm type three-way diverting valve as the valve V18, it was possible to reduce the hardly adsorbable components mixed in the easily adsorbable component high-pressure storage tank, and to increase the purity of the product xenon.

本発明の圧力変動吸着式ガス分離方法及び圧力変動吸着式ガス分離装置は、半導体製品又は表示装置の製造設備に供給し、使用した後に排出される混合ガスから、キセノン等の高付加価値ガスを回収し、循環利用するための方法として有効活用することができる。そして、本発明の圧力変動吸着式ガス分離装置と、半導体製品又は表示装置の製造設備で形成される循環サイクルとの結合によって、半導体製造装置などで使用される高価な雰囲気ガスのコストを大幅に低減することができる。 The pressure swing adsorption gas separation method and the pressure swing adsorption gas separation apparatus of the present invention are supplied to manufacturing equipment for semiconductor products or display devices, and a high value-added gas such as xenon is separated from the mixed gas discharged after use. It can be effectively used as a method for collecting and recycling. By combining the pressure swing adsorption gas separation apparatus of the present invention with the circulation cycle formed in the semiconductor product or display device manufacturing equipment, the cost of the expensive atmospheric gas used in the semiconductor manufacturing equipment can be greatly reduced. can be reduced.

1…原料ガス貯留槽、2…易吸着成分低圧貯留槽、3…難吸着成分貯留槽、4…圧縮機、5…易吸着成分高圧貯留槽、6…易吸着成分濃度計、10B,11B…下部筒、10U,11U…上部筒、20…制御部、100,101…圧力変動吸着式ガス分離装置、V1,V2,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18…バルブ、L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16,L17,L18…経路 REFERENCE SIGNS LIST 1 raw material gas storage tank 2 easily adsorbable component low pressure storage tank 3 weakly adsorbable component storage tank 4 compressor 5 easily adsorbable component high pressure storage tank 6 easily adsorbable component concentration meter 10B, 11B... Lower cylinder 10U, 11U Upper cylinder 20 Control unit 100, 101 Pressure swing adsorption gas separation device V1, V2, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13 , V14, V15, V16, V17, V18... valves, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18... paths

Claims (11)

吸着剤と、前記吸着剤に対して易吸着性である易吸着成分及び前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスと、を用い、
前記吸着剤を充填した下部筒及び上部筒と、少なくとも前記原料ガスを貯留する原料ガス貯留槽と、前記下部筒からの前記易吸着成分を貯留する易吸着成分低圧貯留槽と、前記易吸着成分を高圧にて貯留する易吸着成分高圧貯留槽と、前記原料ガス貯留槽又は前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に送る圧縮機と、前記上部筒からの前記難吸着成分を貯留する難吸着成分貯留槽と、を備える圧力変動吸着式ガス分離装置を使用し、前記原料ガス中の前記易吸着成分と前記難吸着成分とを分離し、前記易吸着成分及び前記難吸着成分のそれぞれを回収する圧力変動吸着式ガス分離方法であって、
(a)前記原料ガス貯留槽からのガスを加圧して前記下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、前記下部筒からの前記易吸着成分が減少したガスを前記上部筒に導入し、前記易吸着成分が減少したガス中に含まれる前記易吸着成分を前記上部筒の前記吸着剤に吸着して、前記上部筒から流出してくる前記難吸着成分を前記難吸着成分貯留槽に回収する工程と、
(b)前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に導入して、前記下部筒の前記吸着剤に共吸着された前記難吸着成分及び前記吸着剤の空隙に存在する前記難吸着成分を前記上部筒に導出し、前記下部筒から流入してきたガス中に含まれる易吸着成分を前記上部筒の前記吸着剤に吸着させて、前記上部筒から前記難吸着成分を導出させる工程と、
(c)前記易吸着成分低圧貯留槽からのガスを加圧して前記易吸着成分高圧貯留槽に回収する工程と、
(d)前記下部筒を減圧して、前記下部筒の前記吸着剤に吸着した前記易吸着成分を脱着させ、脱着してきた前記易吸着成分を前記易吸着成分低圧貯留槽に回収する工程と、
を有し、
前記工程(a)~工程(d)を予め定められたシーケンスに基づいて順次繰り返し行うことによって前記原料ガス中の前記易吸着成分及び前記難吸着成分を同時に回収する、圧力変動吸着式ガス分離方法。
using an adsorbent and a raw material gas containing an easily adsorbable component that is easily adsorbable to the adsorbent and a poorly adsorbable component that is difficult to adsorb to the adsorbent;
a lower cylinder and an upper cylinder filled with the adsorbent; a raw material gas storage tank for storing at least the raw material gas; an easily adsorbable component low-pressure storage tank for storing the easily adsorbable component from the lower cylinder; a compressor for pressurizing the gas from the source gas storage tank or the easily adsorbable component low-pressure storage tank and sending the gas to the lower cylinder; A pressure swing adsorption type gas separation device comprising a storage tank for storing adsorbable components is used to separate the easily adsorbable components and the difficultly adsorbable components in the raw material gas, thereby separating the easily adsorbable components and the difficult adsorbable components. A pressure swing adsorption gas separation method for recovering each of the difficultly adsorbed components,
(a) The gas from the source gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbable components in the gas are adsorbed by the adsorbent, and the easily adsorbable components from the lower cylinder are reduced. The gas is introduced into the upper cylinder, and the easily adsorbable components contained in the gas in which the easily adsorbable components are reduced are adsorbed by the adsorbent in the upper cylinder, and the weakly adsorbable components flowing out from the upper cylinder are adsorbed. a step of recovering the component in the poorly adsorbable component storage tank;
(b) Gas from the easily adsorbable component low-pressure storage tank is pressurized and introduced into the lower cylinder, and exists in the gap between the adsorbent and the weakly adsorbable component co-adsorbed by the adsorbent in the lower cylinder. The difficult-to-adsorb components are led out to the upper cylinder, the easily-adsorbable components contained in the gas flowing from the lower cylinder are adsorbed by the adsorbent in the upper cylinder, and the difficult-to-adsorb components are led out from the upper cylinder. and
(c) a step of pressurizing the gas from the easily adsorbable component low-pressure storage tank and recovering it in the easily adsorbable component high-pressure storage tank;
(d) decompressing the lower cylinder to desorb the easily adsorbable component adsorbed on the adsorbent in the lower cylinder, and recovering the desorbed easily adsorbable component in the easily adsorbable component low-pressure storage tank;
has
A pressure swing adsorption gas separation method, wherein the steps (a) to (d) are sequentially repeated based on a predetermined sequence to simultaneously recover the easily adsorbable component and the difficultly adsorbable component in the source gas. .
さらに、
(e)前記上部筒を減圧して、前記上部筒の前記吸着剤に吸着したガスを脱着させ、脱着してきたガスを前記下部筒に導入し、前記下部筒から流出してきたガスを前記原料ガス貯留槽に回収する工程と、
(f)前記工程(a)において回収した前記難吸着成分を向流パージガスとして前記上部筒に導入し、前記上部筒の前記吸着剤に吸着した前記易吸着成分を置換脱着し、前記上部筒から流出してくるガスを前記下部筒に導入し、前記下部筒から流出してくるガスを前記原料ガス貯留槽に回収する工程と、
(g)前記工程(b)において導出した前記難吸着成分を導入することで前記下部筒及び前記上部筒を加圧する工程と、
を有し、
前記工程(a)~工程(g)の各工程を予め定められたシーケンスに基づいて順次繰り返し行うことによって前記原料ガス中の前記易吸着成分及び前記難吸着成分を同時に回収する、請求項1に記載の圧力変動吸着式ガス分離方法。
moreover,
(e) reducing the pressure in the upper cylinder to desorb the gas adsorbed by the adsorbent in the upper cylinder, introducing the desorbed gas into the lower cylinder, and removing the gas flowing out of the lower cylinder from the raw material gas; collecting in a reservoir;
(f) introducing the weakly adsorbable component recovered in the step (a) into the upper cylinder as a countercurrent purge gas, and replacing and desorbing the easily adsorbable component adsorbed on the adsorbent in the upper cylinder; a step of introducing the outflowing gas into the lower cylinder and recovering the gas flowing out from the lower cylinder into the source gas storage tank;
(g) a step of pressurizing the lower cylinder and the upper cylinder by introducing the weakly adsorbable component derived in the step (b);
has
2. The method according to claim 1, wherein the steps (a) to (g) are sequentially and repeatedly performed based on a predetermined sequence to simultaneously recover the easily adsorbable component and the difficultly adsorbable component in the source gas. The pressure swing adsorption gas separation method described.
前記工程(c)は前記易吸着成分高圧貯留槽が所定の圧力に到達したら終了する、請求項1又は2に記載の圧力変動吸着式ガス分離方法。 3. The pressure swing adsorption gas separation method according to claim 1 or 2, wherein said step (c) is terminated when said easily adsorbable component high pressure storage tank reaches a predetermined pressure. 前記圧縮機を通気するガス中の前記易吸着成分の濃度が前記工程(c)の開始前において予め定められた濃度に達していなければ、前記工程(c)をスキップし、前記工程(b)完了後に前記工程(d)を行う、請求項1~3のいずれか1項に記載の圧力変動吸着式ガス分離方法。 If the concentration of the easily adsorbable component in the gas passing through the compressor has not reached a predetermined concentration before the start of the step (c), the step (c) is skipped and the step (b) is performed. The pressure swing adsorption gas separation process of any one of claims 1 to 3, wherein step (d) is performed after completion. 前記工程(c)を前記工程(b)中に同時に行う、請求項1~4のいずれか1項に記載の圧力変動吸着式ガス分離方法。 The pressure swing adsorption gas separation process according to any one of claims 1 to 4, wherein said step (c) is performed simultaneously during said step (b). 前記易吸着成分低圧貯留槽は吸着剤が充填された容器である、請求項1~5のいずれか1項に記載の圧力変動吸着式ガス分離方法。 The pressure swing adsorption gas separation method according to any one of claims 1 to 5, wherein the easily adsorbable component low-pressure storage tank is a container filled with an adsorbent. 吸着剤と、前記吸着剤に対して易吸着性である易吸着成分及び前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスと、を用い、
前記吸着剤を充填した下部筒及び上部筒と、少なくとも前記原料ガスを貯留する原料ガス貯留槽と、前記下部筒からの前記易吸着成分を貯留する易吸着成分低圧貯留槽と、前記易吸着成分を高圧にて貯留する易吸着成分高圧貯留槽と、前記原料ガス貯留槽又は前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に送る圧縮機と、前記上部筒からの前記難吸着成分を貯留する難吸着成分貯留槽と、制御部と、を備え、前記原料ガス中の前記易吸着成分と前記難吸着成分とを分離し、前記易吸着成分及び前記難吸着成分のそれぞれを回収する圧力変動吸着式ガス分離装置であって、
前記制御部は、以下の工程(a)~工程(d)の各工程を予め定められたシーケンスによって制御する、圧力変動吸着式ガス分離装置。
(a)前記原料ガス貯留槽からのガスを加圧して前記下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、前記下部筒からの前記易吸着成分が減少したガスを前記上部筒に導入し、前記易吸着成分が減少したガス中に含まれる前記易吸着成分を前記上部筒の前記吸着剤に吸着して、前記上部筒から流出してくる前記難吸着成分を前記難吸着成分貯留槽に回収する工程。
(b)前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に導入して、前記下部筒の前記吸着剤に共吸着された前記難吸着成分及び前記吸着剤の空隙に存在する前記難吸着成分を前記上部筒に導出し、前記下部筒から流入してきたガス中に含まれる易吸着成分を前記上部筒の前記吸着剤に吸着させて、前記上部筒から前記難吸着成分を導出させる工程。
(c)前記易吸着成分低圧貯留槽からのガスを加圧して前記易吸着成分高圧貯留槽に回収する工程。
(d)前記下部筒を減圧して、前記下部筒の前記吸着剤に吸着した前記易吸着成分を脱着させ、脱着してきた前記易吸着成分を前記易吸着成分低圧貯留槽に回収する工程。
using an adsorbent and a raw material gas containing an easily adsorbable component that is easily adsorbable to the adsorbent and a poorly adsorbable component that is difficult to adsorb to the adsorbent;
a lower cylinder and an upper cylinder filled with the adsorbent; a raw material gas storage tank for storing at least the raw material gas; an easily adsorbable component low-pressure storage tank for storing the easily adsorbable component from the lower cylinder; a compressor for pressurizing the gas from the source gas storage tank or the easily adsorbable component low-pressure storage tank and sending the gas to the lower cylinder; a difficultly adsorbable component storage tank for storing adsorbable components; A recovering pressure swing adsorption gas separation device comprising:
The pressure swing adsorption gas separation apparatus, wherein the control unit controls the following steps (a) to (d) according to a predetermined sequence.
(a) The gas from the source gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbable components in the gas are adsorbed by the adsorbent, and the easily adsorbable components from the lower cylinder are reduced. The gas is introduced into the upper cylinder, and the easily adsorbable components contained in the gas in which the easily adsorbable components are reduced are adsorbed by the adsorbent in the upper cylinder, and the weakly adsorbable components flowing out from the upper cylinder are adsorbed. a step of recovering the component in the poorly adsorbable component storage tank;
(b) Gas from the easily adsorbable component low-pressure storage tank is pressurized and introduced into the lower cylinder, and exists in the gap between the adsorbent and the weakly adsorbable component co-adsorbed by the adsorbent in the lower cylinder. The difficult-to-adsorb components are led out to the upper cylinder, the easily-adsorbable components contained in the gas flowing from the lower cylinder are adsorbed by the adsorbent in the upper cylinder, and the difficult-to-adsorb components are led out from the upper cylinder. The process of making
(c) a step of pressurizing the gas from the easily adsorbable component low-pressure storage tank and recovering it in the easily adsorbable component high-pressure storage tank;
(d) decompressing the lower cylinder to desorb the easily adsorbable components adsorbed on the adsorbent in the lower cylinder, and recovering the desorbed easily adsorbable components in the easily adsorbable component low-pressure storage tank;
前記制御部は、以下の工程(a)~工程(g)の各工程を予め定められたシーケンスによって制御する、請求項7に記載の圧力変動吸着式ガス分離装置。
(a)前記原料ガス貯留槽からのガスを加圧して前記下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、前記下部筒からの前記易吸着成分が減少したガスを前記上部筒に導入し、前記易吸着成分が減少したガス中に含まれる前記易吸着成分を前記上部筒の前記吸着剤に吸着して、前記上部筒から流出してくる前記難吸着成分を前記難吸着成分貯留槽に回収する工程。
(b)前記易吸着成分低圧貯留槽からのガスを加圧して前記下部筒に導入して、前記下部筒の前記吸着剤に共吸着された前記難吸着成分及び前記吸着剤の空隙に存在する前記難吸着成分を前記上部筒に導出し、前記下部筒から流入してきたガス中に含まれる易吸着成分を前記上部筒の前記吸着剤に吸着させて、前記上部筒から前記難吸着成分を導出させる工程。
(c)前記易吸着成分低圧貯留槽からのガスを加圧して前記易吸着成分高圧貯留槽に回収する工程。
(d)前記下部筒を減圧して、前記下部筒の前記吸着剤に吸着した前記易吸着成分を脱着させ、脱着してきた前記易吸着成分を前記易吸着成分低圧貯留槽に回収する工程。
(e)前記上部筒を減圧して、前記上部筒の前記吸着剤に吸着したガスを脱着させ、脱着してきたガスを前記下部筒に導入し、前記下部筒から流出してきたガスを前記原料ガス貯留槽に回収する工程。
(f)前記工程(a)において回収した前記難吸着成分を向流パージガスとして前記上部筒に導入し、前記上部筒の前記吸着剤に吸着した前記易吸着成分を置換脱着し、前記上部筒から流出してくるガスを前記下部筒に導入し、前記下部筒から流出してくるガスを前記原料ガス貯留槽に回収する工程。
(g)前記工程(b)において導出した前記難吸着成分を導入することで前記下部筒及び前記上部筒を加圧する工程。
8. The pressure swing adsorption gas separation apparatus according to claim 7, wherein the control unit controls each of the following steps (a) to (g) according to a predetermined sequence.
(a) The gas from the source gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbable components in the gas are adsorbed by the adsorbent, and the easily adsorbable components from the lower cylinder are reduced. The gas is introduced into the upper cylinder, and the easily adsorbable components contained in the gas in which the easily adsorbable components are reduced are adsorbed by the adsorbent in the upper cylinder, and the weakly adsorbable components flowing out from the upper cylinder are adsorbed. a step of recovering the component in the poorly adsorbable component storage tank;
(b) Gas from the easily adsorbable component low-pressure storage tank is pressurized and introduced into the lower cylinder, and exists in the gap between the adsorbent and the weakly adsorbable component co-adsorbed by the adsorbent in the lower cylinder. The difficult-to-adsorb components are led out to the upper cylinder, the easily-adsorbable components contained in the gas flowing from the lower cylinder are adsorbed by the adsorbent in the upper cylinder, and the difficult-to-adsorb components are led out from the upper cylinder. The process of making
(c) a step of pressurizing the gas from the easily adsorbable component low-pressure storage tank and recovering it in the easily adsorbable component high-pressure storage tank;
(d) decompressing the lower cylinder to desorb the easily adsorbable components adsorbed on the adsorbent in the lower cylinder, and recovering the desorbed easily adsorbable components in the easily adsorbable component low-pressure storage tank;
(e) reducing the pressure in the upper cylinder to desorb the gas adsorbed by the adsorbent in the upper cylinder, introducing the desorbed gas into the lower cylinder, and removing the gas flowing out of the lower cylinder from the raw material gas; The process of collecting in a storage tank.
(f) introducing the weakly adsorbable component recovered in the step (a) into the upper cylinder as a countercurrent purge gas, and replacing and desorbing the easily adsorbable component adsorbed on the adsorbent in the upper cylinder; a step of introducing the outflowing gas into the lower cylinder and recovering the gas flowing out from the lower cylinder into the source gas storage tank;
(g) a step of pressurizing the lower cylinder and the upper cylinder by introducing the weakly adsorbable component derived in the step (b);
前記圧縮機と前記下部筒が接続する流路に、一端が前記易吸着成分高圧貯留槽に接続する流路と接続する分岐バルブを有し、
前記分岐バルブに切替用三方ボールバルブ、ロータリーバルブ、三方分流型ベローズバルブ及び三方分流型ダイアフラムバルブから選択されるいずれか1つを使用する、請求項7又は8に記載の圧力変動吸着式ガス分離装置。
a branch valve having one end connected to a flow path connected to the easily adsorbable component high-pressure storage tank in the flow path connecting the compressor and the lower cylinder;
9. The pressure swing adsorption gas separation according to claim 7 or 8, wherein the branch valve is one selected from a three-way ball valve for switching, a rotary valve, a three-way split type bellows valve and a three-way split type diaphragm valve. Device.
前記圧縮機の吸気側流路及び吐出側流路のいずれか一方の流路に、前記流路を流れるガス中の前記易吸着成分の濃度を測定する易吸着成分濃度計を有し、
前記制御部が前記易吸着成分濃度計の値に基づいて前記工程(c)を実施しないように制御する、請求項7~9のいずれか1項に記載の圧力変動吸着式ガス分離装置。
An easily adsorbable component concentration meter for measuring the concentration of the easily adsorbable component in the gas flowing through the flow channel is provided in either one of the intake side channel and the discharge side channel of the compressor,
10. The pressure swing adsorption gas separation apparatus according to any one of claims 7 to 9, wherein said control unit controls not to perform said step (c) based on the value of said easily adsorbable component concentration meter.
前記易吸着成分低圧貯留槽は吸着剤が充填された容器である、請求項7~10のいずれか1項に記載の圧力変動吸着式ガス分離装置。 The pressure swing adsorption gas separation apparatus according to any one of claims 7 to 10, wherein the easily adsorbable component low-pressure storage tank is a container filled with an adsorbent.
JP2021214395A 2021-12-28 2021-12-28 Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus Pending JP2023097964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021214395A JP2023097964A (en) 2021-12-28 2021-12-28 Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021214395A JP2023097964A (en) 2021-12-28 2021-12-28 Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus

Publications (1)

Publication Number Publication Date
JP2023097964A true JP2023097964A (en) 2023-07-10

Family

ID=87071841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214395A Pending JP2023097964A (en) 2021-12-28 2021-12-28 Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus

Country Status (1)

Country Link
JP (1) JP2023097964A (en)

Similar Documents

Publication Publication Date Title
JP4898194B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus
FI81966C (en) Improved adsorption process with pressure oscillation
TW398989B (en) Pressure swing adsorption process and system with a single adsorbent bed
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
US6752851B2 (en) Gas separating and purifying method and its apparatus
JP3899282B2 (en) Gas separation method
JP3921203B2 (en) Gas separation method and apparatus
US5080694A (en) Process for helium recovery
JP2005504626A (en) PSA process for co-production of nitrogen and oxygen
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
JP2006061831A5 (en)
JP2023097964A (en) Pressure fluctuation adsorption-type gas separation method and pressure fluctuation adsorption-type gas separation apparatus
JP3268177B2 (en) Method for producing neon and helium
JP7381554B2 (en) Pressure fluctuation adsorption type gas separation equipment
JP7374925B2 (en) Gas separation equipment and gas separation method
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JP7289908B1 (en) Pressure Swing Adsorption Gas Separator
WO2023127485A1 (en) Pressure-fluctuation-adsorption-type gas separation device
JP7289909B1 (en) Pressure Swing Adsorption Gas Separator
JPH08119603A (en) Production of carbon monoxide and hydrogen simultaneously from gaseous mixture
KR20200018042A (en) Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen or Air
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JPH09165205A (en) Production of high-purity oxygen
JPH0330812A (en) Adsorptive separation by pressure variation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423