JP2023086633A - Solar heat supply system - Google Patents

Solar heat supply system Download PDF

Info

Publication number
JP2023086633A
JP2023086633A JP2021215195A JP2021215195A JP2023086633A JP 2023086633 A JP2023086633 A JP 2023086633A JP 2021215195 A JP2021215195 A JP 2021215195A JP 2021215195 A JP2021215195 A JP 2021215195A JP 2023086633 A JP2023086633 A JP 2023086633A
Authority
JP
Japan
Prior art keywords
hot water
heat
storage tank
solar
solar heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021215195A
Other languages
Japanese (ja)
Inventor
秀典 寺内
Hidenori Terauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021215195A priority Critical patent/JP2023086633A/en
Publication of JP2023086633A publication Critical patent/JP2023086633A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a heat supply system which utilizes solar heat at a maximum regardless of season and weather and is excellent in energy-saving performance to solve a problem that a desired heat quantity cannot be obtained only by solar heat in certain seasons and weather in conventional solar water heaters which have been mainly utilized for hot water supply of baths.SOLUTION: In a device, a heat pump is used as a backup heat source in a case that a desired heat quantity cannot be obtained by a solar collector and solar heat. Further, the device uses temperature sensors, each of which includes a number of detection elements serving as temperature sensitive parts and is inserted in a vertically downward direction from an upper surface of a heat storage tank, to digitize and monitor a cubic volume and a heat reserving volume of hot water produced by solar heat and the heat pump. Providing the device allows hot water to be supplied to a hot water storage tank according to the heat demand with heat radiation inhibited and thereby achieves the above object.SELECTED DRAWING: Figure 1

Description

本発明は、太陽熱供給システムに関するものであり、更に詳しくは、バックアップ熱源となるヒートポンプ式給湯器を備えた太陽熱供給システムに関するものである。 TECHNICAL FIELD The present invention relates to a solar heat supply system, and more particularly to a solar heat supply system having a heat pump water heater as a backup heat source.

従来の太陽温水器は主として風呂用の給湯として利用されてきたが、晴天時には給湯負荷のほとんどをまかなうことができるとはいえ、雨の日や冬には所望とする熱量を得ることができないという問題があった。このために晴れた日には太陽熱温水器から、雨の日にはガス給湯器もしくはヒートポンプ式給湯器(エコキュート)からお湯が浴槽に供給されるように給湯配管を手動で切り替えるハイブリッドシステムもある。このシステムでは雨天の日には太陽熱温水器からぬるいお湯を出した上でガス給湯器などで追い焚きすることもできる。しかしこの方法は、多少、手間がかかるという問題点があった。 Conventional solar water heaters have been mainly used to supply hot water for baths, but although they can cover most of the hot water supply load on sunny days, they cannot provide the desired amount of heat on rainy days or in winter. I had a problem. For this reason, there is also a hybrid system that manually switches the hot water supply pipe so that hot water is supplied to the bathtub from the solar water heater on sunny days and from the gas water heater or heat pump type water heater (EcoCute) on rainy days. With this system, on rainy days, you can use the solar water heater to supply lukewarm water and reheat it with a gas water heater. However, this method has the problem that it takes some time and effort.

この問題点を解消するために提案された特許文献1に示す太陽熱給湯システムは、太陽熱温水器をヒートポンプでバックアップするハイブリッド給湯器である。このシステムでは、太陽熱を太陽熱集熱器で集め、お湯が足りないときにはヒートポンプユニットで大気から空気熱を集熱する。不凍液は使用せず、水を太陽熱集熱器に通して、温められた45℃以上の温水を静かに貯湯槽の上部に層状に蓄え、温度の低い貯湯槽下部の水層と混合しないようにして上部から出湯することで、適温のお湯を供給できるわけであるが、熱量の需要量に対して太陽熱が不足する分だけを自動でヒートポンプバックアップ熱源から供給できないために、必要以上に熱いお湯を作りすぎることもあるという問題点があった。温度センサーの数が少ないと、センサーの位置までお湯ができたかどうかというお湯の体積だけで制御して、熱量を計算していないために、必要以上の熱量を蓄えることがある。 The solar hot water supply system shown in Patent Document 1 proposed to solve this problem is a hybrid water heater in which the solar water heater is backed up by a heat pump. In this system, solar heat is collected by a solar heat collector, and when hot water is insufficient, air heat is collected from the atmosphere by a heat pump unit. Without using antifreeze liquid, water is passed through a solar heat collector, and warm water of 45°C or higher is gently stored in a layer in the upper part of the hot water tank so that it does not mix with the water layer in the lower part of the hot water tank, which has a lower temperature. Hot water at a suitable temperature can be supplied by discharging hot water from the top, but since the amount of solar heat that is insufficient for the amount of heat required cannot be automatically supplied from the heat pump backup heat source, hot water that is hotter than necessary can be supplied. There was a problem that it was possible to make too much. If the number of temperature sensors is small, it is possible to store more heat than necessary because the amount of heat is not calculated and controlled only by the volume of hot water, which indicates whether the hot water reaches the position of the sensor.

特開2011-47582号公報JP 2011-47582 A

本発明は上記従来の課題を解決するもので、バックアップ熱源となるヒートポンプ式給湯器を備えた太陽熱供給システムの省エネ効果をさらに向上させるものである。消費者が必要とするだけの温水を貯湯槽に準備するように制御される。 The present invention solves the above-mentioned conventional problems, and further improves the energy-saving effect of a solar heat supply system equipped with a heat pump water heater as a backup heat source. It is controlled to prepare hot water in the hot water tank as much as the consumer needs.

上記課題を解決するため、本発明の太陽熱供給システムは、水を熱媒とする太陽熱集熱器と、前記太陽熱集熱器で得られる温水を蓄える貯湯槽を備え、前記貯湯槽の上部からお湯が層状に溜まって行く太陽熱供給システムにおいて、前記貯湯槽内の設定した高さの湯温を測定する多数個の温度センサーと、前記温度センサーから得られた多くの湯温データを無線で送信する送信機と、前記湯温データから貯湯槽に蓄えられた温水の総蓄熱量を計算する計算手段と、前記貯湯槽内の湯量及び熱量が入浴や床暖房の使用に必要な数値に達していない時には自動的に起動されるか、または手動で不足分を補う給湯器とを備えたことを特徴とする。 In order to solve the above problems, the solar heat supply system of the present invention includes a solar heat collector using water as a heat medium, and a hot water storage tank for storing hot water obtained by the solar heat collector. In a solar heat supply system in which hot water accumulates in layers, a large number of temperature sensors for measuring the hot water temperature at a set height in the hot water storage tank and a large amount of hot water temperature data obtained from the temperature sensors are transmitted wirelessly. A transmitter, a calculation means for calculating the total amount of heat stored in the hot water stored in the hot water storage tank from the hot water temperature data, and the hot water amount and the heat amount in the hot water storage tank do not reach the numerical values necessary for bathing and floor heating. and a water heater that is sometimes automatically activated or manually supplements the shortfall.

また、本発明の太陽熱供給システムにあっては、前記多数個の温度センサーと、前記多数個の温度センサーから得られた湯温データを無線で通信する送信機をまとめて一体化したセンサープローブは、貯湯槽の上面から鉛直下向きに差し込むことが望ましい。
また、本発明の太陽熱供給システムにあっては、前記貯湯槽は、前記太陽熱集熱器と一体に形成されており、屋根に設置されることが望ましい。
Further, in the solar heat supply system of the present invention, the sensor probe is integrated with the plurality of temperature sensors and a transmitter for wirelessly communicating hot water temperature data obtained from the plurality of temperature sensors. , It is desirable to insert vertically downward from the upper surface of the hot water storage tank.
Moreover, in the solar heat supply system of the present invention, it is preferable that the hot water storage tank is formed integrally with the solar heat collector and installed on the roof.

本発明の太陽熱供給システムは、水を熱媒とする太陽熱集熱器と、前記太陽熱集熱器で得られる温水を蓄える貯湯槽を備え、前記貯湯槽の上部からお湯が層状に溜まって行く太陽熱供給システムにおいて、前記貯湯槽内の設定した高さの湯温を測定する複数個の温度センサーと、前記温度センサーから得られた多くの湯温データから貯湯槽に蓄えられた温水の総蓄熱量を計算する計算手段と、前記貯湯槽内の湯量及び熱量が入浴や床暖房の使用に必要な数値に達していない時には自動的に起動されるか、または手動で不足分を補う給湯器とを備えたことを特徴とするものであるから、貯湯槽に蓄えられた湯量と熱量をモニタリングでき、熱需要に応じて熱供給ができるという効果がある。 The solar heat supply system of the present invention comprises a solar heat collector using water as a heat medium, and a hot water storage tank for storing hot water obtained by the solar heat collector, and hot water accumulates in layers from the top of the hot water storage tank. In the supply system, a plurality of temperature sensors for measuring the hot water temperature at a set height in the hot water storage tank, and the total amount of heat stored in the hot water stored in the hot water storage tank from a large amount of hot water temperature data obtained from the temperature sensors. and a water heater that is automatically activated when the amount of hot water and the amount of heat in the hot water storage tank do not reach the values necessary for bathing or using floor heating, or manually compensates for the shortage. Since it is characterized by having the hot water storage tank, it is possible to monitor the amount of hot water and the amount of heat stored in the hot water storage tank, and there is an effect that heat can be supplied according to the heat demand.

バックアップ熱源のヒートポンプ給湯機(「関西電力」の登録商標でエコキュート)は、太陽熱温水器のついていない単体で用いられる時には、深夜電力時間帯に高温で沸き上げて、湯切れが起こらないように大量に貯湯する「高温沸き上げ・大量貯湯」制御が一般的であった。しかし高温で沸き上げると、ヒートポンプのエネルギー消費効率(COP、成績係数)が低くなるという欠点がある。深夜電力は安価であり、例えば朝の洗顔のお湯を準備するには好都合である。しかし、夜のお風呂のお湯は、深夜電力で沸き上げると利用するまでの時間が長いので貯湯槽からの放熱ロスという無駄も多くなる欠点もある。本発明の太陽熱供給システムでは、太陽熱の集熱が終わる夕方からお風呂に入るまでの時間帯に、必要とされる熱量が得られるまで昼間電力でヒートポンプを動かし、低温沸き上げを行うため、COPを高めることができる。お湯を利用するまでの時間も短くなり放熱ロスが少なくなる。本発明の太陽熱供給システムは、多数の温度センサーでモニタリングすることで適量だけを貯湯することができ、全体のエネルギー効率を上げることができるという効果がある。太陽熱集熱器のついていないエコキュート単体であっても、本発明のセンサーの数を増やした貯湯槽を使えば「低温沸き上げ・適量貯湯」制御が可能になるという点で省エネ効果がある。 The heat pump water heater (registered trademark of Kansai Electric Power Co., Ltd.) as a backup heat source, when used alone without a solar water heater, boils water at a high temperature during late-night power hours, and a large amount of water is supplied to prevent running out of hot water. "High-temperature boiling and large-volume hot water storage" control, in which hot water is stored in water, was common. However, boiling at a high temperature has the drawback of lowering the energy consumption efficiency (COP, coefficient of performance) of the heat pump. Late-night electricity is inexpensive and convenient for preparing hot water for washing your face in the morning, for example. However, since it takes a long time to use the hot water in the bath when it is boiled by late-night electric power, there is also the drawback that there is a lot of waste in the form of heat loss from the hot water storage tank. In the solar heat supply system of the present invention, the heat pump is operated with daytime electricity until the required amount of heat is obtained from the evening when the collection of solar heat is finished until the time when the user takes a bath. can increase The time it takes to use hot water is also shortened, and heat loss is reduced. The solar heat supply system of the present invention has the effect of being able to store only an appropriate amount of hot water by monitoring with a large number of temperature sensors, thereby improving the overall energy efficiency. Even with a single EcoCute unit without a solar heat collector, if a hot water storage tank with an increased number of sensors of the present invention is used, it is possible to control "low temperature boiling and appropriate amount of hot water storage", which is effective in saving energy.

又、請求項2のように、前記温度センサーと前記計算手段と、前記計算手段から得られた温度データを無線で通信する多数の感温部となる検出素子(熱電対、サーミスタ、測温抵抗体などがありうる)を有する温度センサープローブは、シース型といわれる無機絶縁ケーブルであって、ステンレスなどのケースの中に等間隔に検出素子が並び、酸化マグネシウムで固く充填されたものとなっている。そのシース型の温度センサーが貯湯槽の上面から鉛直方向下向きに差し込まれている構造をしている。この構造によって、多数の検出素子で温度と湯量が感知されて熱量計算が可能になると同時に、センサーを差し込む穴も一つで済むために放熱ロスが削減される。蓄熱性能が上がれば、当日雨天であっても前日晴天であれば残存する太陽熱を使えるというように、省エネ性能が高まるという効果がある。Further, as in claim 2, the temperature sensor, the calculation means, and a number of detecting elements (thermocouples, thermistors, temperature measuring resistors, thermocouples, thermistors, temperature measuring resistors, A temperature sensor probe having a body) is an inorganic insulated cable called a sheath type, in which detection elements are arranged at regular intervals in a case made of stainless steel or the like and filled tightly with magnesium oxide. there is The sheath type temperature sensor is inserted vertically downward from the upper surface of the hot water storage tank. With this structure, the temperature and the amount of hot water are detected by a large number of detection elements, and the amount of heat can be calculated. If the heat storage performance is improved, the remaining solar heat can be used even if it rains on the day of the event, as long as the weather is fine the day before.

又、請求項3のように、前記貯湯槽は、前記太陽熱集熱器と一体に形成されており、屋根に設置されるものは、システムが簡易であり、貯湯槽に蓄えられた湯量と熱量をスマートフォンなどで簡単にモニタリングでき、熱需要に満たない時には不足分だけをバックアップ熱源で補えるという効果がある。 In addition, as in claim 3, the hot water storage tank is formed integrally with the solar heat collector, and the one installed on the roof has a simple system, and the amount of hot water and heat stored in the hot water storage tank can be easily monitored with a smartphone, etc., and when the heat demand is not met, the shortfall can be supplemented with a backup heat source.

本発明の太陽熱給湯システムの構成図Configuration diagram of the solar hot water supply system of the present invention 本発明のシース型温度センサーの外観を示す正面図FIG. 2 is a front view showing the outer appearance of the sheath-type temperature sensor of the present invention; 同上のシース型温度センサーの構造を示す平面図A plan view showing the structure of the same sheath-type temperature sensor. 同上のシース型温度センサーの構造を示す断面図Cross-sectional view showing the structure of the same sheath-type temperature sensor 貯湯槽に蓄えられた仮想的な水柱A virtual water column stored in a hot water tank

以下、本発明を実施の形態の一例を図1乃至図4に基づいて詳述すると、本発明の太陽熱供給システム1は、水を熱媒とする太陽熱集熱器2と、前記太陽熱集熱器2で得られる温水を蓄える貯湯槽3を備え、前記貯湯槽3の上部からお湯が層状に溜まって行く太陽熱供給システム1において、前記貯湯槽3内の設定した高さの湯温を測定する複数個の温度センサープローブ4と、前記温度センサープローブ4から得られた多くの湯温データから貯湯槽3に蓄えられた温水の総蓄熱量を計算する計算手段5と、前記貯湯槽3内の湯量及び熱量が入浴や床暖房の使用に必要な数値に達していない時には自動的に起動されて不足分を補う給湯器6とを備えている。給湯器6はヒートポンプ式給湯器を一般に用いるが、ガス給湯器を用いても構わない。 1 to 4, a solar heat supply system 1 of the present invention includes a solar heat collector 2 using water as a heat medium, and the solar heat collector A solar heat supply system 1 comprising a hot water storage tank 3 for storing the hot water obtained in 2, in which hot water is accumulated in layers from the upper part of the hot water storage tank 3. temperature sensor probes 4, calculation means 5 for calculating the total amount of heat stored in the hot water stored in the hot water storage tank 3 from many hot water temperature data obtained from the temperature sensor probes 4, and the amount of hot water in the hot water storage tank 3 and a water heater 6 which is automatically activated to make up for the shortfall when the amount of heat does not reach the numerical value required for bathing or floor heating. A heat pump type water heater is generally used as the water heater 6, but a gas water heater may be used.

太陽熱集熱器2は、長方形で、太陽光を透過するガラス面と、ケースと、ケース内に設置される集熱板と中に水を流す熱媒管からなる。熱媒管は、ジグザグに蛇行した一本の管である。エナテックス社製の太陽熱集熱器を使用してよい。(特開2018-179462号公報) The solar heat collector 2 is rectangular and consists of a glass surface that transmits sunlight, a case, a heat collecting plate installed in the case, and a heat medium pipe through which water flows. The heat medium pipe is a single pipe that meanders in a zigzag manner. Enatex solar collectors may be used. (JP 2018-179462)

貯湯槽3は、エコキュートを製造している各社が市場に出している円筒状のステンレス製のタンクと外見は似ているが、温度センサーを取り付ける位置が異なる。通常、貯湯槽は側面からサーミスタの温度センサーを差し込む穴が3ヶ所から6ヶ所ほど開いている。これは貯湯槽の上部、中間部、下部に蓄えられた水の温度を測定するためである。熱いお湯は密度が小さく、上部から貯まって行くため、例えば中間部のセンサーが熱い温度を検知したらその高さから上にはお湯が貯まったと判断され、ヒートポンプの湯沸かし終了などの制御がなされる。しかし本発明の貯湯槽3に備え付けられた温度センサープローブ4は、自然まかせの太陽熱による温水の温度を測定する。晴れた日には高温となり、雨の日には低温になる。太陽熱集熱器2は、ヒートポンプより受け身的、パッシブな装置であり、45℃以上のお湯を集めるよう制御しても、温度ばらつきが生じる。本発明では、この温度分布を測定するために、従来よりもはるかに多いセンサーを入れる。しかし、そのために側面から穴を開けると放熱のため蓄熱ロスが生じる。このため、感温部となる多数の検出素子18が内部に等間隔に並んだ温度センサープローブ4を貯湯槽3の上面から差し込むための穴が貯湯槽3の上面に一カ所だけある。そしてその穴は、ネジ式で、ネジ式の温度センサープローブ4の取手を閉めると温度センサーのシース13といわれる金属部分全体が貯湯槽3内部に差し込まれ、フタをする。このフタには温度データの送信機(トランスミッター)14が内蔵されており、デジタル化した温度データを無線で送信できるコンピュータチップ27が入っている。多数の検出素子18で温度分布を測定する目的は、後述するように蓄熱量をデジタル化して計算するためである。 The hot water storage tank 3 is similar in appearance to cylindrical stainless steel tanks marketed by each company that manufactures EcoCute, but differs in the position where the temperature sensor is attached. Usually, the hot water tank has three to six holes for inserting the temperature sensor of the thermistor from the side. This is to measure the temperature of the water stored in the top, middle and bottom of the hot water tank. Hot water has a low density and accumulates from the top. For example, if the sensor in the middle detects a hot temperature, it is determined that hot water has accumulated above that height, and control such as stopping the water heating of the heat pump is performed. However, the temperature sensor probe 4 provided in the hot water storage tank 3 of the present invention measures the temperature of hot water generated by natural solar heat. High temperatures on sunny days and low temperatures on rainy days. The solar heat collector 2 is a more passive device than the heat pump, and even if it is controlled to collect hot water of 45° C. or higher, temperature variations occur. In the present invention, far more sensors than before are used to measure this temperature distribution. However, if a hole is made from the side for that purpose, heat storage loss will occur due to heat dissipation. For this reason, there is only one hole in the upper surface of the hot water storage tank 3 for inserting the temperature sensor probe 4 in which a large number of detection elements 18 serving as temperature sensing portions are arranged at equal intervals inside the hot water storage tank 3 . The hole is of a screw type, and when the handle of the screw type temperature sensor probe 4 is closed, the entire metal part called the sheath 13 of the temperature sensor is inserted into the inside of the hot water storage tank 3 to close the lid. The lid contains a temperature data transmitter 14 and contains a computer chip 27 capable of wirelessly transmitting digitized temperature data. The purpose of measuring the temperature distribution with a large number of detection elements 18 is to digitize and calculate the amount of stored heat, as will be described later.

従来のヒートポンプ式給湯器では、最大6個程度の複数の温度センサーが貯湯槽の側面から穴を開けて差し込まれている構造のために、センサー用の穴からの放熱による蓄熱ロスがあった。貯湯槽の断熱材として発泡スチロールやポリウレタンが使われているが、本発明のようにセンサープローブ4を上部から差し込む構造にすれば、穴を開けずに済むために貯湯槽の側面を真空技術を使用した構造にして蓄熱性能を向上させることも可能になるだろう。 Conventional heat pump water heaters have a structure in which multiple temperature sensors, up to about six, are inserted through holes drilled from the side of the hot water storage tank. Styrofoam and polyurethane are used as the heat insulating material for the hot water storage tank, but if the sensor probe 4 is inserted from the top like the present invention, there is no need to make a hole, so vacuum technology is used for the side of the hot water storage tank. It will also be possible to improve the heat storage performance by making the structure

給湯器6は、ヒートポンプを製造している各社のヒートポンプ式給湯器をそのまま使用してよい。 As the water heater 6, heat pump water heaters manufactured by manufacturers of heat pumps may be used as they are.

温度センサープローブ4は、ステンレスなどでできたシース13の内部に約2cm~約10cmの間隔を空けて等間隔に、10から60個の感温部となる検出素子18が内部に等間隔で設置されたものである。検出素子18の個数は、多ければ多いほど精密に熱量を計算できる。検出素子18には、熱電対、サーミスタ、測温抵抗体などを使用できる。シース13と熱電対素線19の間を粉末状の酸化マグネシウムなどの無機物20で硬く充填し、絶縁を保つと同時に内部を気密状態にして、高い耐久性を持たせる。The temperature sensor probe 4 has a sheath 13 made of stainless steel or the like, and has 10 to 60 detection elements 18, which are temperature sensitive parts, arranged at equal intervals at intervals of about 2 cm to about 10 cm. It is what was done. The greater the number of detection elements 18, the more precisely the amount of heat can be calculated. A thermocouple, a thermistor, a resistance temperature detector, or the like can be used as the detection element 18 . The space between the sheath 13 and the thermocouple wire 19 is tightly filled with an inorganic material 20 such as powdered magnesium oxide to maintain insulation and airtight the inside, thereby imparting high durability.

シース型の温度センサープローブ4でなく、多数個の検出素子18をワイヤーに繋いでアンカーで沈めるという構造でも、感温部となる検出素子の高さを変えることで温度分布を測定することができる。 Instead of the sheath-type temperature sensor probe 4, even with a structure in which a large number of detection elements 18 are connected to a wire and submerged with an anchor, the temperature distribution can be measured by changing the height of the detection element, which is the temperature sensing part. .

温度センサープローブ4が多数の検出素子18を内蔵するにもかかわらず一本の形状をしているのには次のようなメリットがある。温度センサープローブ4が故障した際、温度センサープローブ4を引き抜いて作業することができるし、新しい温度センサープローブ4を交換する際には手間がかからない。このような形状にすることで、貯湯槽3から漏れる熱量を最小限に抑えることができる。検出素子から得られた電流の微妙な変化は検出素子18から伸びる導線19を通って温度センサープローブ4の上部の取手部分の送信機14に内蔵されたコンピュータチップ27で温度データに変換され、Bluetoothや5Gのような無線により台所などに設置されたリモコンに送信される。そしてリモコン内部のコンピュータでそのときに貯湯槽3に蓄えられた総熱量が計算される仕組みになっている。こうして貯湯槽3に蓄えられた総熱量がモニタリングされる。 Although the temperature sensor probe 4 incorporates a large number of detection elements 18, the single shape has the following merits. When the temperature sensor probe 4 is out of order, the temperature sensor probe 4 can be pulled out for work, and replacement of the new temperature sensor probe 4 is not troublesome. With such a shape, the amount of heat leaking from the hot water storage tank 3 can be minimized. Subtle changes in the electric current obtained from the detection element 18 are converted into temperature data by the computer chip 27 incorporated in the transmitter 14 of the upper handle portion of the temperature sensor probe 4 through the conducting wire 19 extending from the detection element 18, and are converted into temperature data. It is transmitted to the remote control installed in the kitchen etc. by wireless such as 5G. The computer in the remote controller calculates the total amount of heat stored in the hot water storage tank 3 at that time. The total amount of heat stored in the hot water tank 3 is thus monitored.

詳しく説明すると、各家庭での熱の消費形態は家族構成やライフスタイルに応じて多種多様である。そのために、本発明の太陽熱供給システムでは、消費者は自分の必要とするお湯の温度(あつい・ふつう・ぬるい)と体積(単位はL)と使用する時刻という各自の温水の消費パターン(洗顔、シャワー、入浴などが想定される)を台所などに備え付けられたリモコンに前もって自分で入力する。この熱需要に応じた熱量・体積のお湯を貯湯槽に用意するために、多数個の温度センサーで貯湯槽に蓄えられた太陽熱の熱量と湯量のデータを取ってデジタル化し、リモコンのコンピュータに送信してモニタリングする。毎日の天候によって変動する太陽熱と、放熱で失われてしまうために刻々と変化する貯湯槽の中のお湯の蓄熱量を、得られた多数のデータから計算する。変動する蓄熱量をモニタリングして可視化することで、太陽熱が需要に対して不足した日には不足分をヒートポンプで沸き上げるよう制御でき、各々の消費者の需要を満たすお湯を毎日作ることが可能になる。 To explain in detail, there are various types of heat consumption patterns in each home, depending on the family structure and lifestyle. For this reason, in the solar heat supply system of the present invention, each consumer has their own hot water consumption pattern (face washing, Showering, bathing, etc.) are entered by oneself in advance into a remote controller installed in a kitchen or the like. In order to prepare hot water in the hot water storage tank with the amount of heat and volume according to this heat demand, the data on the amount of solar heat and the amount of hot water stored in the hot water storage tank is digitized by multiple temperature sensors and sent to the computer of the remote controller. and monitor. Solar heat, which fluctuates according to the weather every day, and the amount of heat stored in the hot water tank, which changes every moment due to heat loss due to heat dissipation, are calculated from a large amount of data obtained. By monitoring and visualizing the fluctuating amount of stored heat, it is possible to control the heat pump to make up for the shortage of solar heat on days when it is insufficient, making it possible to produce hot water that meets the demand of each consumer every day. become.

計算手段5は、次のようになっている。太陽熱集熱器2を通って得られた温水は、貯湯槽3に上部から層状に蓄えられていく。高温の水は貯湯槽3のより上部に、より低温の水はより下部に蓄えられている。鉛直方向に伸びるセンサープローブ4に内蔵された多数の温度センサーの検出素子18で貯湯槽3に蓄えられた温水のいろんな高さの温度を計測すると、ある時刻における温度ばらつきのデータが出揃う。貯湯槽3の水を、図5のように温度センサーの検出素子18の数に分かれた仮想的な水柱の集合と考える。検出素子18は各水柱の真ん中の高さの位置にあり、各検出素子18の示す温度は各水柱の平均温度の近似値となる。図5では例として上から62℃、55℃、45℃としている。図5では貯湯槽3の底の水柱の平均温度の近似値は15℃としているが、これはその日の水道管からの給水温度とほぼ同じである。検出素子18は等間隔に並んでいるので、各水柱の体積は同じになる。図5では例として10Lとしている。すると各水柱の蓄えた熱量は次の計算式で表現できる。
(各水柱の蓄えた熱量)=(水の比熱)×(仮想的な各水柱の質量)×(水温-その日の給水温度)
各水柱のその時刻における蓄えた熱量は上式で得られるため、総熱量は各水柱の蓄えた熱量の総和になる。リモコンのコンピュータにはこのような計算を行うプログラムを入れておく。この蓄熱量のモニタリングの時間の間隔は、必要に応じて設定される。1分間隔、15分間隔、30分間隔、1時間間隔などがありうる。
The calculation means 5 is as follows. Hot water obtained through the solar heat collector 2 is stored in the hot water storage tank 3 in layers from above. High temperature water is stored in the upper portion of the hot water storage tank 3, and lower temperature water is stored in the lower portion. When the temperature of the hot water stored in the hot water storage tank 3 is measured at various heights by the detection elements 18 of a large number of temperature sensors built into the sensor probe 4 extending in the vertical direction, data on temperature variations at a certain time are collected. The water in the hot water storage tank 3 is considered as a set of virtual water columns separated by the number of detection elements 18 of the temperature sensor as shown in FIG. The sensing element 18 is located at the mid-height position of each water column, and the temperature indicated by each sensing element 18 is an approximation of the average temperature of each water column. In FIG. 5, the temperatures are 62° C., 55° C., and 45° C. from the top as an example. In FIG. 5, the approximate value of the average temperature of the water column at the bottom of the hot water storage tank 3 is 15° C., which is almost the same as the water supply temperature from the water pipe on that day. Since the detection elements 18 are arranged at equal intervals, each water column has the same volume. In FIG. 5, it is 10L as an example. Then, the amount of heat stored in each water column can be expressed by the following formula.
(The amount of heat stored in each water column) = (Specific heat of water) x (Mass of each virtual water column) x (Water temperature - Water supply temperature on that day)
Since the amount of heat stored in each water column at that time is obtained by the above formula, the total amount of heat is the sum of the amounts of heat stored in each water column. A program that performs such calculations is installed in the computer of the remote controller. The time interval for monitoring the heat storage amount is set as required. There can be 1 minute intervals, 15 minute intervals, 30 minute intervals, 1 hour intervals, and the like.

この計算はインターネット上で行うと便利である。インターネット上で行えば、データや計算された蓄熱量をパソコン上で見ることもできる。ある日のお湯は太陽熱で100%まかなわれたとか、ある日のお湯は太陽熱が70%と残りヒートポンプで30%でまかなわれた、というようなデータを分析して得られた情報もパソコンの画面上ならたやすく表示できる。IoT技術でパソコンを用いてこの太陽熱供給システムを遠隔から制御したり、気象予測から翌日の太陽熱蓄熱量を予測するような応用も考えられる。 It is convenient to perform this calculation on the Internet. If you do it on the Internet, you can also see the data and the calculated heat storage amount on your computer. Information obtained by analyzing data, such as 100% of hot water on one day was supplied by solar heat, or 70% of hot water was supplied by solar heat and the remaining 30% by heat pump, is also displayed on the computer screen. You can easily see it above. Applications such as remote control of this solar heat supply system using a personal computer using IoT technology and prediction of the next day's solar heat storage amount from weather forecasts are also conceivable.

各温度センサーの示す温度は各水柱の平均温度と仮定すると誤差が生じるリスクが大きいときには、各温度センサーの示す温度が各水柱の最低温度と仮定すれば計算された蓄熱量が真の蓄熱量の値よりも下回ることはない。If the temperature indicated by each temperature sensor is assumed to be the average temperature of each water column, when there is a large risk of error, if the temperature indicated by each temperature sensor is assumed to be the lowest temperature of each water column, the calculated heat storage amount will be the true heat storage amount. not lower than the value.

単位についてであるが、熱量の単位はkJ(キロジュール)が使用されるのが普通である。しかし、この蓄熱槽が家庭で用いられる場合、太陽光の余剰電力を蓄電池に電気エネルギーとして蓄えるだけではなく、ヒートポンプを利用して熱エネルギーの形態で蓄熱槽に蓄えておくことも考えられる。そのため、太陽光発電や蓄電池でよく用いられるkWh(キロワットアワー)を熱量にも用いると、電力と熱のセクターカップリングの観点からは都合がいいと考えられる。kWhに単位を統一すると、太陽光パネルで発電したうち、何割を蓄電池に、何割を蓄熱槽に蓄えた、というように理解できる。家庭のエネルギーマネジメントを電力と熱を合わせて総合的に考えることができ、利便性が向上すると考えられる。ネットゼロエネルギーハウス、ZEHをはじめとするエコハウスをデザインするときに便利だろう。1kWh=3600kJである。Regarding the unit, kJ (kilojoule) is usually used as the unit of heat quantity. However, when this heat storage tank is used at home, it is conceivable not only to store the surplus power of sunlight in the storage battery as electric energy, but also to store it in the heat storage tank in the form of thermal energy using a heat pump. Therefore, if kWh (kilowatt hour), which is often used in photovoltaic power generation and storage batteries, is also used for the amount of heat, it is considered convenient from the viewpoint of sector coupling between electric power and heat. If the unit is unified to kWh, it can be understood that of the power generated by the solar panel, what percentage is stored in the storage battery and what percentage is stored in the heat storage tank. It is thought that home energy management can be comprehensively considered by combining electric power and heat, and convenience will be improved. It will be useful when designing eco-houses such as net zero energy houses and ZEH. 1kWh=3600kJ.

図1は本発明の実施例のシステム構成図である。図2において2の太陽熱集熱器に日光が当たって太陽熱集熱器2の温度センサー7が45℃以上になると集熱が開始されるように制御されており、9の集熱循環ポンプが動いて太陽熱の集熱が開始される。太陽熱集熱器2への送水管を通っていく水は貯湯槽3の底部から水が吐出され、その日の水道水の温度となっている。集熱器2からの温水戻り管を通ってくる水は、貯湯槽3の上部から戻ってくるが、この温水の温度は天候の状況によってばらつきが生じる。例えば真夏には70℃にも達することもある。水は高温であるほど膨張して同質量での体積が大きくなるため、比重が軽くなる。このため、より高温の水は貯湯槽3のより上部に層状に溜まっていく。太陽熱集熱器の温度センサー7が45℃以下になると集熱ポンプ9は停止する。このシステムでは、太陽熱集熱器2と給湯器6が貯湯槽3に対して並列につながっている。雨天時など、太陽熱集熱器2の水温が45℃に満たない時には、給湯器6への循環ポンプ10が作動して給湯器6が自動的に稼働して需要量に応じた温水を貯湯槽3の上部に作る。太陽熱ではまかなえない日にはどの程度給湯器6を動かせばいいのかは、貯湯槽3の中のお湯の量、すなわちお湯の体積と計算手段5で計算された蓄熱量で決まる。変動する蓄熱量のモニタリングによって再生可能エネルギーである太陽熱を効率よく利用することができる。FIG. 1 is a system configuration diagram of an embodiment of the present invention. In FIG. 2, when sunlight hits the solar heat collector 2 and the temperature sensor 7 of the solar heat collector 2 reaches 45° C. or higher, heat collection is controlled to start, and the heat collection circulation pump 9 is operated. solar heat collection starts. The water flowing through the water pipe to the solar heat collector 2 is discharged from the bottom of the hot water storage tank 3 and has the temperature of tap water for that day. The water coming through the hot water return pipe from the heat collector 2 returns from the upper part of the hot water storage tank 3, but the temperature of this hot water varies depending on the weather conditions. For example, it can reach 70°C in midsummer. The higher the temperature of water, the more it expands and has a larger volume for the same mass, so the specific gravity becomes lighter. For this reason, higher temperature water accumulates in the upper part of the hot water storage tank 3 in a layered manner. When the temperature sensor 7 of the solar heat collector reaches 45° C. or less, the heat collection pump 9 stops. In this system, a solar heat collector 2 and a water heater 6 are connected in parallel to a hot water storage tank 3 . When the water temperature of the solar heat collector 2 is less than 45° C., such as in rainy weather, the circulation pump 10 to the water heater 6 is activated to automatically operate the water heater 6 to store hot water in accordance with the demand. Make it on top of 3. The amount of hot water in the hot water storage tank 3, that is, the volume of the hot water and the heat storage amount calculated by the calculation means 5 determine how much the water heater 6 should be operated on days when solar heat cannot cover the heat. Solar heat, which is renewable energy, can be used efficiently by monitoring the fluctuating heat storage amount.

計算手段5で得られた総熱量が、温水の消費者が必要とする温水の熱量を超える量である時は、太陽熱で需要が完全にまかなわれたことになる。もし総熱量が消費者の必要とする熱量よりも少ない時は、バックアップ熱源の給湯器6でその不足分を、消費者がお湯を必要とする時刻までにあらかじめ自動的に用意されておかなければならない。この多少複雑な条件分けは、台所などのリモコンに内蔵されるマイコン(マイクロコントローラー)のコンピュータにプログラミングしておく必要がある。それに加えてこのマイコンは、例えば「毎日180Lで43℃のお風呂を沸かす習慣があって、夜8時に利用する」というような消費者の消費パターンも、消費者本人がインプットできる仕様も備えている。インプットされた消費パターンとは別に、にわかに温水が必要になった際は、手動で給湯器6を動かせるような機能も備える。給湯器6で作られたお湯も、太陽熱と合わせて蓄熱量の計算とモニタリングがなされ、消費者が必要とする熱量にまで達したらヒートポンプの湯沸かし終了という制御がなされる仕組みである。When the total amount of heat obtained by the calculation means 5 exceeds the amount of hot water required by the hot water consumer, it means that the demand is completely covered by solar heat. If the total amount of heat is less than the amount of heat required by the consumer, the shortage must be automatically prepared in advance by the water heater 6 as the backup heat source by the time the consumer needs hot water. not. This somewhat complicated conditional division needs to be programmed in a microcomputer (microcontroller) built into a kitchen remote controller. In addition to that, this microcomputer has specifications that allow the consumer to input the consumption pattern of a consumer, for example, "I have a habit of boiling a bath of 180L at 43°C every day, and I use it at 8 o'clock in the evening." there is Apart from the input consumption pattern, it also has a function of manually moving the water heater 6 when hot water is suddenly needed. The hot water produced by the water heater 6 is also calculated and monitored for the amount of heat stored together with the solar heat, and when the amount of heat required by the consumer is reached, the heat pump is controlled to stop boiling water.

この発明は、集熱板と一体化した貯湯槽を屋根の上に乗せる型式の図6のような太陽熱温水器33にも適用できる。屋根の上の太陽熱温水器の貯湯槽38の中に温度センサープローブ37を取り付け、太陽の熱による太陽熱温水器の集熱板35の内部の水の対流を用いて自然循環式で集められた太陽熱を遠隔からモニタリングすることが同様に可能である。太陽熱が集熱できない時のバックアップの熱源にはヒートポンプやガス給湯器などを用いる。 The present invention can also be applied to a solar water heater 33 as shown in FIG. A temperature sensor probe 37 is installed in the hot water storage tank 38 of the solar water heater on the roof, and the solar heat collected in a natural circulation system using the convection of the water inside the solar heat collecting plate 35 of the solar water heater. can also be remotely monitored. A heat pump or gas water heater is used as a backup heat source when solar heat cannot be collected.

本発明の、バックアップ熱源となる給湯器6を備えた太陽熱供給システム1は、主に無料の太陽熱と空気熱を使用するため使用者にとっては光熱費が安くなる効果がある。太陽熱と空気熱は再生可能エネルギーだから、太陽熱供給システム1は脱炭素技術であり、家庭部門における温室効果ガスの排出量をガス給湯器だけを使った場合に比べて大幅に削減でき、温暖化防止に役立つという効果がある。ガスの供給が突然途絶えてしまう災害時のような緊急事態でも、太陽熱を集熱し、シャワーなどに使用できるという効果がある。 The solar heat supply system 1 having the hot water heater 6 as a backup heat source according to the present invention mainly uses free solar heat and air heat, which has the effect of reducing utility costs for the user. Since solar heat and air heat are renewable energies, the solar heat supply system 1 is a decarbonization technology that can significantly reduce greenhouse gas emissions in the household sector compared to using gas water heaters alone, thereby preventing global warming. have the effect of helping Even in an emergency such as a disaster when the gas supply is suddenly cut off, the solar heat can be collected and used for things such as showers.

1…太陽熱供給システム
2…太陽熱集熱器
3…貯湯槽
4…シース型温度センサープローブ
6…給湯器
7…太陽熱集熱器の温度センサー
8…集熱温度センサーから集熱循環ポンプへの信号導線
9…太陽熱温水器への循環ポンプ
10…ヒートポンプへの循環ポンプ
11…空気抜き弁
12…出湯弁
13…シース(温度センサーのケース)
14…送信機(トランスミッター)
15…ヒートポンプ供給管
16…ヒートポンプ排出管
17…整流板
18…温度センサーの検出素子(熱電対、サーミスタもしくは測温抵抗体)
19…検出素子から伸びる導線
20…酸化マグネシウム粉末の充填剤
21…ターミナル
22…パッキング
23…パッキング押さえ
24…フランジ部
25…送信機容器
26…メイン基板
27…チップ
28…コネクタ
29…乾電池ケース
30…乾電池
31…フタ部材
32…留めネジ
33…太陽熱温水器
34…太陽熱温水器の集熱板のケース
35…太陽熱温水器の集熱板
36…太陽熱温水器のタンク
37…太陽熱温水器のセンサープローブ
38…太陽熱温水器の貯湯槽
39…太陽熱温水器の送信機
40…ガス給湯器
41…浴槽
REFERENCE SIGNS LIST 1 Solar heat supply system 2 Solar heat collector 3 Hot water storage tank 4 Sheath-type temperature sensor probe 6 Water heater 7 Temperature sensor of solar heat collector 8 Signal lead from heat collection temperature sensor to heat collection circulation pump 9...Circulation pump to solar water heater 10...Circulation pump to heat pump 11...Air vent valve 12...Hot water valve 13...Sheath (temperature sensor case)
14 ... transmitter (transmitter)
REFERENCE SIGNS LIST 15: heat pump supply pipe 16: heat pump discharge pipe 17: rectifying plate 18: detection element of temperature sensor (thermocouple, thermistor or resistance temperature detector)
REFERENCE SIGNS LIST 19 Conductive wire extending from detection element 20 Magnesium oxide powder filler 21 Terminal 22 Packing 23 Packing retainer 24 Flange 25 Transmitter container 26 Main substrate 27 Chip 28 Connector 29 Dry battery case 30 Dry battery 31 Lid member 32 Fastening screw 33 Solar water heater 34 Solar water heater heat collecting plate case 35 Solar water heater heat collecting plate 36 Solar water heater tank 37 Solar water heater sensor probe 38 ... Hot water storage tank of solar water heater 39 ... Transmitter of solar water heater 40 ... Gas water heater 41 ... Bathtub

本発明の太陽熱給湯システムの構成図Configuration diagram of the solar hot water supply system of the present invention 本発明のシース型温度センサープローブの外観を示す正面図FIG. 2 is a front view showing the outer appearance of the sheath-type temperature sensor probe of the present invention; 同上のシース型温度センサープローブのシース部分の内部構造を示す断面図Cross-sectional view showing the internal structure of the sheath portion of the same sheath-type temperature sensor probe 同上のシース型温度センサープローブの送信機の構造を示す断面図Cross-sectional view showing the structure of the transmitter of the sheath-type temperature sensor probe same as above 貯湯槽に蓄えられた仮想的な水柱A virtual water column stored in a hot water tank 本発明の太陽熱温水器にシース型温度センサープローブを組み込んだシステムの構成図Schematic diagram of a system incorporating a sheath-type temperature sensor probe into the solar water heater of the present invention.

上記課題を解決するため、本発明の太陽熱供給システムは、水を熱媒とする太陽熱集熱器と、前記太陽熱集熱器で得られる温水を蓄える貯湯槽を備え、前記貯湯槽の上部からお湯が層状に溜まって行く太陽熱供給システムにおいて、前記貯湯槽内の設定した高さの湯温を測定する多数個の温度センサーと、前記温度センサーから得られた多くの湯温データを無線で送信する送信機と、前記湯温データから貯湯槽に蓄えられた温水の総蓄熱量を計算する計算手段と、前記貯湯槽内の湯量及び熱量が入浴や床暖房の使用に必要な数値に達していない時には自動的に起動されるか、または手動で不足分を補う給湯器とを備えた太陽熱供給システムであって、前記多数個の温度センサーと、前記多数個の温度センサーから得られた温度データを無線で通信する送信機を一つにまとめたセンサープローブは、貯湯槽上面から鉛直下向きに差し込まれ、ステンレスなどのケースの中に等間隔に検出素子が並び、無機物で固く充填されたいわゆるシース型の構造をしていることを特徴とすることを特徴とする。In order to solve the above problems, the solar heat supply system of the present invention includes a solar heat collector using water as a heat medium, and a hot water storage tank for storing hot water obtained by the solar heat collector. In a solar heat supply system in which hot water accumulates in layers, a large number of temperature sensors for measuring the hot water temperature at a set height in the hot water storage tank and a large amount of hot water temperature data obtained from the temperature sensors are transmitted wirelessly. A transmitter, a calculation means for calculating the total amount of heat stored in the hot water stored in the hot water storage tank from the hot water temperature data, and the hot water amount and the heat amount in the hot water storage tank do not reach the numerical values necessary for bathing and floor heating. a solar heating system with a water heater, sometimes automatically activated or manually backfilled, wherein said multiple temperature sensors and temperature data obtained from said multiple temperature sensors; The sensor probe, which integrates a transmitter that communicates wirelessly, is inserted vertically downward from the top of the hot water storage tank, and is a so-called sheath type in which detection elements are arranged at regular intervals inside a case made of stainless steel or the like, and is firmly filled with inorganic substances. It is characterized by having a structure of

本発明の太陽熱供給システムは、水を熱媒とする太陽熱集熱器と、前記太陽熱集熱器で得られる温水を蓄える貯湯槽を備え、前記貯湯槽の上部からお湯が層状に溜まって行く太陽熱供給システムにおいて、前記貯湯槽内の設定した高さの湯温を測定する複数個の温度センサーと、前記温度センサーから得られた多くの湯温データから貯湯槽に蓄えられた温水の総蓄熱量を計算する計算手段と、前記貯湯槽内の湯量及び熱量が入浴や床暖房の使用に必要な数値に達していない時には自動的に起動されるか、または手動で不足分を補う給湯器とを備えた太陽熱供給システムであって、前記多数個の温度センサーと、前記多数個の温度センサーから得られた温度データを無線で通信する送信機を一つにまとめたセンサープローブは、貯湯槽上面から鉛直下向きに差し込まれ、ステンレスなどのケースの中に等間隔に検出素子が並び、無機物で固く充填されたいわゆるシース型の構造をしていることを特徴とするものであるから、貯湯槽に蓄えられた湯量と熱量をモニタリングでき、熱需要に応じて熱供給ができるという効果がある。The solar heat supply system of the present invention comprises a solar heat collector using water as a heat medium, and a hot water storage tank for storing hot water obtained by the solar heat collector, and hot water accumulates in layers from the top of the hot water storage tank. In the supply system, a plurality of temperature sensors for measuring the hot water temperature at a set height in the hot water storage tank, and the total amount of heat stored in the hot water stored in the hot water storage tank from a large amount of hot water temperature data obtained from the temperature sensors. and a water heater that is automatically activated when the amount of hot water and the amount of heat in the hot water storage tank do not reach the values necessary for bathing or using floor heating, or manually compensates for the shortage. A solar heat supply system comprising a plurality of temperature sensors and a sensor probe that integrates a transmitter that wirelessly communicates temperature data obtained from the plurality of temperature sensors, is installed from the upper surface of the hot water storage tank It is characterized by a so-called sheath-type structure in which the detection elements are arranged at equal intervals in a case made of stainless steel or the like and filled with an inorganic substance. It has the effect of being able to monitor the amount of hot water and the amount of heat supplied, and to be able to supply heat according to the heat demand.

Claims (3)

水を熱媒とする太陽熱集熱器と、前記太陽熱集熱器で得られる温水を蓄える貯湯槽を備え、前記貯湯槽の上部からお湯が層状に溜まって行く太陽熱供給システムにおいて、前記貯湯槽内の設定した高さの湯温を測定する多数個の感温部となる検出素子を含む温度センサーと、前記温度センサーから得られた湯温データから貯湯槽に蓄えられた温水の総蓄熱量を計算する計算手段と、前記貯湯槽内の湯量及び熱量が入浴や床暖房の使用に必要な数値に達していない時には自動的に起動されるか、または手動で不足分を補う給湯器とを備えたことを特徴とする太陽熱供給システム。 A solar heat supply system comprising: a solar heat collector using water as a heat medium; A temperature sensor that includes a number of detecting elements serving as temperature sensing parts that measure the temperature of hot water at a set height, and the total amount of heat stored in the hot water storage tank from the hot water temperature data obtained from the temperature sensor. and a water heater that is automatically activated when the amount of hot water and the amount of heat in the hot water storage tank do not reach the numerical values required for bathing or use of floor heating, or manually makes up for the shortage. A solar heat supply system characterized by: 前記多数個の温度センサーと、前記多数個の温度センサーから得られた温度データを無線で通信する送信機を一つにまとめたセンサープローブは、貯湯槽上面から鉛直下向きに差し込まれ、ステンレスなどのケースの中に等間隔に検出素子が並び、酸化マグネシウムで固く充填されたいわゆるシース型の構造をしている請求項1に記載の太陽熱供給システム。 A sensor probe, which integrates the multiple temperature sensors and a transmitter for wirelessly communicating the temperature data obtained from the multiple temperature sensors, is inserted vertically downward from the upper surface of the hot water storage tank, and is made of stainless steel or the like. 2. The solar heat supply system according to claim 1, which has a so-called sheath type structure in which the detection elements are arranged at equal intervals in the case and are firmly filled with magnesium oxide. 前記貯湯槽は、前記太陽熱集熱器と一体に形成されており、屋根に設置される請求項1または請求項2のいずれか1項に記載の太陽熱供給システム。 The solar heat supply system according to any one of claims 1 and 2, wherein the hot water storage tank is formed integrally with the solar heat collector and installed on the roof.
JP2021215195A 2021-12-10 2021-12-10 Solar heat supply system Pending JP2023086633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021215195A JP2023086633A (en) 2021-12-10 2021-12-10 Solar heat supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021215195A JP2023086633A (en) 2021-12-10 2021-12-10 Solar heat supply system

Publications (1)

Publication Number Publication Date
JP2023086633A true JP2023086633A (en) 2023-06-22

Family

ID=86850256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021215195A Pending JP2023086633A (en) 2021-12-10 2021-12-10 Solar heat supply system

Country Status (1)

Country Link
JP (1) JP2023086633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117346908A (en) * 2023-09-21 2024-01-05 精拓新能源科技(北京)有限公司 Novel solar temperature sensor mounting method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210807A (en) * 1996-02-01 1997-08-15 Kobe Kotobuki Tekko Kk Device for measuring multi-point temperatures
JP2004263909A (en) * 2003-02-28 2004-09-24 Noritz Corp Water heater using solar heat
JP2007170690A (en) * 2005-12-19 2007-07-05 Sharp Corp Heat pump water heater and its control method
JP2008295336A (en) * 2007-05-30 2008-12-11 Nakai Kikai Kogyo Kk Apparatus for producing bread dough and method for controlling operation of the apparatus
JP2010112681A (en) * 2008-11-10 2010-05-20 Denso Corp Storage type hot water supply device
JP2011047582A (en) * 2009-08-27 2011-03-10 Enetecs Kk Solar heat hot water supply system including heat pump backup heat source
JP2011144962A (en) * 2010-01-12 2011-07-28 Denso Corp Hybrid water heater
JP2012181000A (en) * 2011-03-03 2012-09-20 Ohbayashi Corp Hot water supply system, and control method of the same
JP2013053805A (en) * 2011-09-04 2013-03-21 Denso Corp Hybrid system
JP2014190653A (en) * 2013-03-28 2014-10-06 Tokyo Gas Co Ltd Solar heat utilization hot water system
JP2014219143A (en) * 2013-05-08 2014-11-20 パナソニック株式会社 Hot water storage water heater
JP2017003232A (en) * 2015-06-15 2017-01-05 大和ハウス工業株式会社 Hot water system
WO2018029880A1 (en) * 2016-08-09 2018-02-15 三菱電機株式会社 Hot water supply system and hot water supply method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210807A (en) * 1996-02-01 1997-08-15 Kobe Kotobuki Tekko Kk Device for measuring multi-point temperatures
JP2004263909A (en) * 2003-02-28 2004-09-24 Noritz Corp Water heater using solar heat
JP2007170690A (en) * 2005-12-19 2007-07-05 Sharp Corp Heat pump water heater and its control method
JP2008295336A (en) * 2007-05-30 2008-12-11 Nakai Kikai Kogyo Kk Apparatus for producing bread dough and method for controlling operation of the apparatus
JP2010112681A (en) * 2008-11-10 2010-05-20 Denso Corp Storage type hot water supply device
JP2011047582A (en) * 2009-08-27 2011-03-10 Enetecs Kk Solar heat hot water supply system including heat pump backup heat source
JP2011144962A (en) * 2010-01-12 2011-07-28 Denso Corp Hybrid water heater
JP2012181000A (en) * 2011-03-03 2012-09-20 Ohbayashi Corp Hot water supply system, and control method of the same
JP2013053805A (en) * 2011-09-04 2013-03-21 Denso Corp Hybrid system
JP2014190653A (en) * 2013-03-28 2014-10-06 Tokyo Gas Co Ltd Solar heat utilization hot water system
JP2014219143A (en) * 2013-05-08 2014-11-20 パナソニック株式会社 Hot water storage water heater
JP2017003232A (en) * 2015-06-15 2017-01-05 大和ハウス工業株式会社 Hot water system
WO2018029880A1 (en) * 2016-08-09 2018-02-15 三菱電機株式会社 Hot water supply system and hot water supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117346908A (en) * 2023-09-21 2024-01-05 精拓新能源科技(北京)有限公司 Novel solar temperature sensor mounting method

Similar Documents

Publication Publication Date Title
Li et al. Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool
JP5121882B2 (en) Boiling control system, boiling control method and program
US9599365B2 (en) Companion water heater jacket
CA1195892A (en) Energy management control method and system
JP5810970B2 (en) Hot water control system
GB2514128A (en) Energy management method and apparatus
Chandrasekaran et al. IoT enabled smart solar water heater system using real time ThingSpeak IoT platform
WO2016193928A1 (en) A water heater controller
JP2023086633A (en) Solar heat supply system
US11480366B2 (en) Solar water heating system
JP6544534B2 (en) Solar thermal storage collector heated inline
JP5375670B2 (en) Hybrid system
CN107339798A (en) A kind of more inner-tube structures and flat water heater
JP2013053805A (en) Hybrid system
CN201059786Y (en) Central single door type intelligent solar energy hot-water apparatus
CN101832596A (en) Solar air source heat pumps energy-saving low-temperature central hot water supply device for high-rise buildings
CN202734031U (en) Self-temperature-controlling floor heating device
CN208886887U (en) Heating system
JP6184880B2 (en) Solar solar heat utilization system control device, solar solar heat utilization system, and solar solar heat utilization system control method
CN103673043A (en) Automatic temperature control floor heating device
CN201680624U (en) Flat solar one-way circulation intelligent variable-frequency auxiliary heating control system
CN202136054U (en) Automatic circulation type constant-temperature water heating blanket with leakage protector
CN201177314Y (en) Solar energy heat heating
CN201680498U (en) High-rise building solar air source heat pump energy-saving low temperature form central hot-water supply device
Boukdir et al. Comparison of three solar water heaters technologies through a full-scale experimental station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230509