JP2023076986A - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
JP2023076986A
JP2023076986A JP2021190051A JP2021190051A JP2023076986A JP 2023076986 A JP2023076986 A JP 2023076986A JP 2021190051 A JP2021190051 A JP 2021190051A JP 2021190051 A JP2021190051 A JP 2021190051A JP 2023076986 A JP2023076986 A JP 2023076986A
Authority
JP
Japan
Prior art keywords
region
trench
semiconductor device
semiconductor layer
body region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021190051A
Other languages
English (en)
Inventor
秀史 高谷
Hideshi Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2021190051A priority Critical patent/JP2023076986A/ja
Priority to PCT/JP2022/018860 priority patent/WO2023095363A1/ja
Priority to CN202280077487.6A priority patent/CN118284982A/zh
Publication of JP2023076986A publication Critical patent/JP2023076986A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thyristors (AREA)

Abstract

【課題】オン抵抗の低い半導体装置を提供する。【解決手段】半導体装置1は、第1主面10aと第2主面10bを有する半導体層10と、トレンチゲート30と、を備えている。半導体層は、n型のドリフト領域12と、ドリフト領域よりも第1主面側に設けられているp型のボディ領域14と、を有している。トレンチゲートは、半導体層の第1主面からボディ領域を貫通してドリフト領域に達するトレンチTR1内に設けられている。トレンチゲートの側面は、ボディ領域とドリフト領域に接している。トレンチゲートの側面に接する部分において、ボディ領域とドリフト領域のうちのボディ領域のみが、トレンチゲートの側面から遠い側よりも不純物濃度が低いチャネル領域14bを有している。【選択図】図1

Description

本明細書が開示する技術は、半導体装置とその製造方法に関する。
特許文献1には、トレンチゲートの側面に接する部分の不純物濃度を低下させた半導体装置が開示されている。特許文献1に開示される半導体装置では、特にp型ボディ層のうちのトレンチゲートの側面に接する部分の不純物濃度が低下しているので、チャネル抵抗が低下するとされている。
特開2018-101706号公報
しかしながら、特許文献1では、n型ドリフト層のうちのトレンチゲートの側面に接する部分の不純物濃度も低下しているので、ドリフト抵抗が増加することが懸念される。
本明細書が開示する半導体装置は、第1主面(10a)と第2主面(10b)を有する半導体層(10)と、トレンチゲート(30)と、を備えることができる。前記半導体層は、第1導電型のドリフト領域(12)と、前記ドリフト領域よりも前記第1主面側に設けられている第2導電型のボディ領域(14)と、を有することができる。前記トレンチゲートは、前記半導体層の前記第1主面から前記ボディ領域を貫通して前記ドリフト領域に達するトレンチ(TR1)内に設けられている。前記トレンチゲートの側面は、前記ボディ領域と前記ドリフト領域に接している。前記トレンチゲートの側面に接する部分において、前記ボディ領域と前記ドリフト領域のうちの前記ボディ領域のみが、前記トレンチゲートの側面から遠い側よりも不純物濃度が低いチャネル領域(14b)を有している。この半導体装置では、前記ボディ領域のみに不純物濃度が低いチャネル領域が選択的に形成されているので、ドリフト抵抗の増加を抑えながら、チャネル抵抗のみを低下させることができる。
本明細書が開示する半導体装置(1)の製造方法は、第1主面(10a)と第2主面(10b)を有する第1導電型の半導体層(10)の前記第1主面から深部に向けて延びるにトレンチ(TR1)を形成するトレンチ形成工程と、前記半導体層の表層部に第2導電型の不純物イオンをイオン注入してボディ領域(14)を形成するイオン注入工程であって、前記不純物イオンは前記トレンチよりも浅い範囲に注入される、イオン注入工程と、を備えることができる。前記イオン注入工程では、前記トレンチ内に向けて照射される前記不純物イオンが、前記半導体層に注入される深さ範囲の少なくとも一部の範囲に存在しないように実施される。この製造方法によると、前記イオン注入工程で前記ボディ領域を形成したときに、前記ボディ領域のうちの前記トレンチに面する部分の不純物濃度を低下させることができる。
半導体装置の要部断面図を模式的に示す図である。 図1の半導体装置を製造する一工程における半導体層の要部断面図を模式的に示す図である。 図1の半導体装置を製造する一工程における半導体層の要部断面図を模式的に示す図である。 図1の半導体装置を製造する一工程における半導体層の要部断面図を模式的に示す図である。 図1の半導体装置を製造する一工程における半導体層の要部断面図を模式的に示す図である。 トレンチのテーパ角度とチャネル濃度パーセントの関係を示す図である。 図1の半導体装置の変形例を製造する一工程における半導体層の要部断面図を模式的に示す図である。
図1に示されるように、半導体装置1は、nチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)と称される種類の半導体装置であり、第1主面10aと第2主面10bを有する半導体層10と、半導体層10の第2主面10bを被覆するドレイン電極22と、半導体層10の第1主面10aを被覆するソース電極24と、半導体層10の表層部に設けられているトレンチゲート30と、を備えている。ここで、第1主面10aと第2主面10bは、半導体層10の表面のうちの平行な関係で延びている一対の面であり、半導体層10の厚み方向に直交する面である。半導体層10は、n+型のドレイン領域11と、n型のドリフト領域12と、p型の電界緩和領域13と、p型のボディ領域14と、n+型のソース領域15と、p+型のボディコンタクト領域16と、を有している。半導体層10の材料は、特に限定されるものではないが、例えば炭化シリコン(SiC)であってもよい。
ドレイン領域11は、半導体層10の裏層部に設けられており、n型不純物を高濃度に含んでいる。ドレイン領域11は、半導体層10の第2主面10bに露出する位置に設けられており、ドレイン電極22にオーミック接触している。ドレイン領域11は、後述するドリフト領域12がエピタキシャル成長するための下地基板でもある。
ドリフト領域12は、ドレイン領域11の表面上に設けられており、ドレイン領域11とボディ領域14の間に配置されており、ドレイン領域11とボディ領域14の双方に接している。ドリフト領域12は、ドレイン領域11の表面からエピタキシャル成長して形成されており、n型の不純物濃度が略一定である。
電界緩和領域13は、ドリフト領域12上に設けられており、トレンチゲート30の底面に接するように設けられている。電界緩和領域13は、トレンチゲート30の底面の電界集中を緩和することができる。
ボディ領域14は、ドリフト領域12の表面上に設けられており、ドリフト領域12とソース領域15の間及びドリフト領域12とボディコンタクト領域16の間に配置されている。ボディ領域14は、メインボディ領域14aとチャネル領域14bを有している。メインボディ領域14aは、トレンチゲート30の側面からチャネル領域14bによって隔てられており、ボディ領域14のうちのトレンチゲート30の側面から遠い側の領域である。チャネル領域14bは、トレンチゲート30の側面に接しており、ボディ領域14のうちのトレンチゲート30の側面に近い側の領域であり、メインボディ領域14aよりもp型の不純物濃度が薄い領域である。半導体層10の主面に平行な面で計測したときに、メインボディ領域14aのp型の不純物濃度は略一定であり、チャネル領域14bのp型の不純物濃度はトレンチゲート30の側面に近づくにつれて低下する。
ソース領域15は、半導体層10の表層部に設けられており、ボディ領域14の表面上に設けられており、n型不純物を高濃度に含んでいる。ソース領域15は、半導体層10の第1主面10aに露出する位置に設けられており、ソース電極24にオーミック接触している。
ボディコンタクト領域16は、半導体層10の表層部に設けられており、ボディ領域14の表面上に設けられており、p型不純物を高濃度に含んでいる。ボディコンタクト領域16は、半導体層10の第1主面10aに露出する位置に設けられており、ソース電極24にオーミック接触している。
トレンチゲート30は、半導体層10の第1主面10aからソース領域15及びボディ領域14を貫通してドリフト領域12に達するトレンチTR1内に設けられている。トレンチゲート30の側面はソース領域15とボディ領域14のチャネル領域14bとドリフト領域12に接しており、トレンチゲート30の底面は電界緩和領域13に接している。トレンチゲート30は、ゲート絶縁膜32及びゲート電極34を有している。ゲート電極34は、その側面及び底面がゲート絶縁膜32で被覆されている。また、ゲート電極34は、層間絶縁膜によってソース電極24から絶縁されている。
次に、半導体装置1の動作について説明する。ソース電極24よりも高い正電圧がドレイン電極22に印加され、ゲート電極32に閾値電圧よりも高い正電圧が印加されると、半導体装置1はオンとなる。このとき、トレンチゲート30の側面に接するボディ領域14のチャネル領域14b内に反転層が形成される。ソース領域15から注入された電子は、チャネル領域14bの反転層を介してドリフト領域12に移動し、半導体装置1がオンする。チャネル領域14bのp型の不純物濃度が低いので、チャネル抵抗が低下する。このように、半導体装置1は、低オン抵抗な特性を有することができる。
ゲート電極32に印加される正電圧が閾値電圧を下回ると、チャネル領域14bの反転層が消失し、半導体装置1がオフとなる。半導体装置1がオフすると、ドリフト領域12とボディ領域14の接合面からドリフト領域12とボディ領域14の各々に空乏層が広がる。ボディ領域14はp型の不純物濃度が高いメインボディ領域14aを有しているので、半導体装置1がオフしたときにメインボディ領域14aが完全空乏化してパンチスルーすることが抑えられている。このため、半導体装置1は、高アバランシェ耐量な特性を有することができる。
次に、半導体装置1の製造方法を説明する。まず、図2に示されるように、ドレイン領域11とドリフト領域12が積層した半導体層10を準備する。この半導体層10は、エピタキシャル成長技術を利用して、ドレイン領域11からドリフト領域12を結晶成長して形成される。
次に、図3に示されるように、ドライエッチング技術を利用して、半導体層10の第1主面10aから所定深さまで延びるトレンチTR1を形成する(トレンチ形成工程の一例)。ここで、トレンチTR1のテーパ角θは、トレンチTR1の底面の端部からトレンチTR1の底面に平行に延長した延長線とトレンチTR1の側面の間の角度として定義される。後述するように、トレンチTR1は、テーパ角θが87°以上となるように形成されている。
次に、図4に示されるように、イオン注入技術を利用して、半導体層10の第1主面10aに向けてp型不純物イオン(例えば、アルミニウムイオン)を照射する(イオン注入工程の一例)。半導体層10の表層部に注入されたp型不純物イオンによってボディ領域14が形成され、トレンチTR1を通過してトレンチTR1の底面に注入されたp型不純物イオンによって電界緩和領域13が形成される。
このイオン注入工程では、ボディ領域14のうちのトレンチTR1に露出する部分のp型の不純物濃度が低下し、チャネル領域14bが形成される。トレンチTR1内に向けて照射されるp型不純物イオンは、半導体層10に注入される深さ範囲を通過してトレンチTR1の底面に注入される。このため、仮にトレンチTR1が形成されていなければ、トレンチTR1に対応した領域に注入されたp型不純物イオンがチャネル領域14bに拡散し得るが、本製造方法では、そのようなp型不純物イオンの拡散が存在しないことから、チャネル領域14bのp型の不純物濃度が低下する。また、チャネル領域14bのp型不純物イオンがトレンチTR1内に外方拡散することにより、チャネル領域14bのp型の不純物濃度が低下する。これらの理由により、ボディ領域14のうちのトレンチTR1に露出する部分のp型の不純物濃度が選択的に低下し、チャネル領域14bが形成される。
イオン注入工程では、p型不純物イオンは半導体層10の面内に均一に照射される。このため、半導体層10の所定深さのp型の不純物濃度、即ち、メインボディ領域14aの所定深さのp型の不純物濃度は一定である。このため、半導体層10の所定深さの面内においてp型の不純物濃度が低下している領域を特定することで、チャネル領域14bの位置を特定することができる。トレンチゲート30の側面に直交する方向に計測したときのチャネル領域14bの幅14Wは、10nm以上であり、且つ、40nm以下であってもよい。チャネル領域14bの幅14Wが10nm以上であれば、チャネル領域14b内に反転層が形成されるので、チャネル抵抗が低下する。チャネル領域14bの幅14Wが40nm以下であれば、メインボディ領域14aを広く確保することができるので、パンチスルーによるアバランシェ耐量の悪化を抑えることができる。
次に、図5に示されるように、イオン注入技術を利用して、半導体層10の表層部にn型不純物イオン(例えば窒素イオン)及びp型不純物イオン(例えばアルミニウムイオン)を注入し、ソース領域15及びボディコンタクト領域16を形成する。次に、CVD技術を利用して、そのトレンチ内にゲート絶縁膜32及びゲート電極34を形成し、トレンチゲート30を形成する(図1参照)。最後に、半導体層10の第2主面10bにドレイン電極22を被膜し、半導体層10の第1主面10aにソース電極24を被膜すると、半導体装置1が完成する(図1参照)。
図6に、トレンチTR1のテーパ角度(θ)とチャネル領域14bのチャネル濃度パーセントの関係を示す。チャネル濃度パーセントは、メインボディ領域14aのp型の不純物濃度に対するチャネル領域14bのうちの最も低いp型の不純物濃度を百分率で表したものである。図6に示されるように、チャネル濃度パーセントは、トレンチTR1のテーパ角度(θ)に依存し、トレンチTR1のテーパ角度(θ)が大きくなるほど低下する。トレンチTR1のテーパ角度(θ)が87°以上になると、チャネル濃度パーセントが50%以下となる。即ち、チャネル領域14bの少なくとも一部のp型の不純物濃度が、メインボディ領域14aのp型の不純物濃度の半分以下となることができる。
図7に、イオン注入工程の変形例を示す。この例では、トレンチTR1内に遮蔽材42が充填された状態で、p型不純物イオンのイオン注入が実施される。これにより、トレンチTR1の底面に電界緩和領域が形成されないようにすることができる。遮蔽材42は、p型不純物イオンがトレンチTR1の底面に注入されないようにp型不純物イオンを遮蔽するものであればよく、例えばレジスト、シリコン酸化膜、又は、メタル入りの流動性材料であってもよい。遮蔽材42がレジスト又はシリコン酸化膜の場合、図7に示すように、半導体層10の第1主面10aから突出するように遮蔽材42が形成されてもよい。この例でも、遮蔽材42内に注入されるp型不純物イオンがボディ領域14の深さ範囲の少なくとも一部において存在しないようにすることで、p型の不純物濃度が選択的に低下したチャネル領域14bを形成することができる。
以下、本明細書で開示される技術の特徴を整理する。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。
本明細書が開示する技術は、第1主面と第2主面を有する半導体層と、トレンチゲートと、を備えることができる。前記半導体層は、第1導電型のドリフト領域と、前記ドリフト領域よりも前記第1主面側に設けられている第2導電型のボディ領域と、を有することができる。前記トレンチゲートは、前記半導体層の前記第1主面から前記ボディ領域を貫通して前記ドリフト領域に達するトレンチ内に設けられている。前記トレンチゲートの側面は、前記ボディ領域と前記ドリフト領域に接している。前記トレンチゲートの側面に接する部分において、前記ボディ領域と前記ドリフト領域のうちの前記ボディ領域のみが、前記トレンチゲートの側面から遠い側よりも不純物濃度が低いチャネル領域を有している。
上記半導体装置では、前記チャネル領域の少なくとも一部の第2導電型の不純物濃度が、前記トレンチゲートの側面から遠い側の前記ボディ領域の第2導電型の不純物濃度の半分以下となってもよい。この半導体装置は、低オン抵抗な特性を有することができる。
上記半導体装置では、前記半導体層が、前記トレンチゲートの底面に接するように設けられている第2導電型の電界緩和領域をさらに有していてもよい。この半導体装置では、トレンチゲートの底面の電界集中が緩和される。
上記半導体装置では、前記トレンチの側面のテーパ角度が87°以上であってもよい。
上記半導体装置では、前記トレンチゲートの側面に直交する方向に計測したときの前記チャネル領域の幅が40nm以下であってもよい。この半導体装置では、不純物濃度が低いチャネル領域の幅が制限されているので、パンチスルーによるアバランシェ耐量の悪化が抑えられている。
本明細書が開示する半導体装置の製造方法は、第1主面と第2主面を有する第1導電型の半導体層の前記第1主面から深部に向けて延びるにトレンチを形成するトレンチ形成工程と、前記半導体層の表層部に第2導電型の不純物イオンをイオン注入してボディ領域を形成するイオン注入工程であって、前記不純物イオンは前記トレンチよりも浅い範囲に注入される、イオン注入工程と、を備えることができる。前記イオン注入工程では、前記トレンチ内に向けて照射される前記不純物イオンが、前記半導体層に注入される深さ範囲の少なくとも一部の範囲に存在しないように実施される。
上記製造方法の前記イオン注入工程では、前記半導体層に前記不純物イオンが注入される深さ範囲において、前記トレンチの側面が露出していてもよい。この製造方法によると、前記ボディ領域のうちの前記トレンチの側面に露出する部分の不純物濃度を選択的に低くすることができる。さらに、このイオン注入工程では、前記トレンチの底面にも前記不純物イオンが注入され、電界緩和領域が形成されてもよい。この製造方法によると、前記ボディ領域と前記電界緩和領域を同時に形成することができる。
上記製造方法の前記イオン注入工程では、前記トレンチ内に遮蔽材が充填されていてもよい。この製造方法によると、前記イオン注入工程において前記ボディ領域のみを形成することができる。
上記製造方法では、前記トレンチの側面のテーパ角度が87°以上であってもよい。この製造方法によると、前記ボディ領域のうちの前記トレンチの側面に露出する部分の不純物濃度を、前記トレンチの側面から遠い側の前記ボディ領域の不純物濃度の半分以下とすることができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。上記実施形態では、MOSFETを例示したが、本明細書が開示する技術は、トレンチゲートを備える他の種類の半導体装置、例えばIGBT(Insulated Gate Bipolar Transistor)にも適用可能である。また、上記実施形態では、nチャネル型の半導体装置を説明したが、本明細書が開示する技術は、pチャネル型の半導体装置にも適用可能である。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
1:半導体装置、 10:半導体層、 10a:第1主面、 10b:第2主面、 11:ドレイン領域、 12:ドリフト領域、 13:電界緩和領域、 14:ボディ領域、 14a:メインボディ領域、 14b:チャネル領域、 15:ソース領域、 16:ボディコンタクト領域、 22:ドレイン電極、 24:ソース電極、 30:トレンチゲート、 32:ゲート絶縁膜、 34:ゲート電極

Claims (12)

  1. 半導体装置(1)であって、
    第1主面(10a)と第2主面(10b)を有する半導体層(10)と、
    トレンチゲート(30)と、を備えており、
    前記半導体層は、
    第1導電型のドリフト領域(12)と、
    前記ドリフト領域よりも前記第1主面側に設けられている第2導電型のボディ領域(14)と、を有しており、
    前記トレンチゲートは、前記半導体層の前記第1主面から前記ボディ領域を貫通して前記ドリフト領域に達するトレンチ(TR1)内に設けられており、
    前記トレンチゲートの側面は、前記ボディ領域と前記ドリフト領域に接しており、
    前記トレンチゲートの側面に接する部分において、前記ボディ領域と前記ドリフト領域のうちの前記ボディ領域のみが、前記トレンチゲートの側面から遠い側よりも不純物濃度が低いチャネル領域(14b)を有している、半導体装置。
  2. 前記チャネル領域の少なくとも一部の第2導電型の不純物濃度は、前記トレンチゲートの側面から遠い側の前記ボディ領域の第2導電型の不純物濃度に対して半分以下である、請求項1に記載の半導体装置。
  3. 前記半導体層は、
    前記トレンチゲートの底面に接するように設けられている第2導電型の電界緩和領域(13)、をさらに有している、請求項1又は2に記載の半導体装置。
  4. 前記トレンチの側面のテーパ角度が87°以上である、請求項1~3のいずれか一項に記載の半導体装置。
  5. 前記トレンチゲートの側面に直交する方向に計測したときの前記チャネル領域の幅が40nm以下である、請求項1~4のいずれか一項に記載の半導体装置。
  6. 前記半導体層が炭化シリコンである、請求項1~5のいずれか一項に記載の半導体装置。
  7. 半導体装置(1)の製造方法であって、
    第1主面(10a)と第2主面(10b)を有する第1導電型の半導体層(10)の前記第1主面から深部に向けて延びるにトレンチ(TR1)を形成するトレンチ形成工程と、
    前記半導体層の表層部に第2導電型の不純物イオンをイオン注入してボディ領域(14)を形成するイオン注入工程であって、前記不純物イオンは前記トレンチよりも浅い範囲に注入される、イオン注入工程と、を備えており、
    前記イオン注入工程では、前記トレンチ内に向けて照射される前記不純物イオンが、前記半導体層に注入される深さ範囲の少なくとも一部の範囲に存在しないように実施される、半導体装置の製造方法。
  8. 前記イオン注入工程では、前記半導体層に前記不純物イオンが注入される深さ範囲において、前記トレンチの側面が露出している、請求項7に記載の半導体装置の製造方法。
  9. 前記イオン注入工程では、前記トレンチの底面にも前記不純物イオンが注入され、電界緩和領域が形成される、請求項8に記載の半導体装置の製造方法。
  10. 前記イオン注入工程では、前記トレンチ内に遮蔽材(42)が充填されている、請求項7に記載の半導体装置の製造方法。
  11. 前記トレンチの側面のテーパ角度が87°以上である、請求項7~10のいずれか一項に記載の半導体装置の製造方法。
  12. 前記半導体層が炭化シリコンである、請求項7~11のいずれか一項に記載の半導体装置の製造方法。
JP2021190051A 2021-11-24 2021-11-24 半導体装置とその製造方法 Pending JP2023076986A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021190051A JP2023076986A (ja) 2021-11-24 2021-11-24 半導体装置とその製造方法
PCT/JP2022/018860 WO2023095363A1 (ja) 2021-11-24 2022-04-26 半導体装置とその製造方法
CN202280077487.6A CN118284982A (zh) 2021-11-24 2022-04-26 半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021190051A JP2023076986A (ja) 2021-11-24 2021-11-24 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
JP2023076986A true JP2023076986A (ja) 2023-06-05

Family

ID=86539008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021190051A Pending JP2023076986A (ja) 2021-11-24 2021-11-24 半導体装置とその製造方法

Country Status (3)

Country Link
JP (1) JP2023076986A (ja)
CN (1) CN118284982A (ja)
WO (1) WO2023095363A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065365A (ja) * 2013-09-26 2015-04-09 三菱電機株式会社 絶縁ゲート型炭化珪素半導体装置およびその製造方法
EP3264470A1 (en) * 2016-06-29 2018-01-03 ABB Schweiz AG Short channel trench power mosfet
US20180138300A1 (en) * 2016-11-17 2018-05-17 Sanken Electric Co., Ltd. Semiconductor device and method of manufacturing the same
JP7184090B2 (ja) * 2018-10-10 2022-12-06 サンケン電気株式会社 半導体装置及びその製造方法
JP7278914B2 (ja) * 2019-09-13 2023-05-22 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Also Published As

Publication number Publication date
CN118284982A (zh) 2024-07-02
WO2023095363A1 (ja) 2023-06-01

Similar Documents

Publication Publication Date Title
US11837629B2 (en) Power semiconductor devices having gate trenches and buried edge terminations and related methods
US20200373418A1 (en) Semiconductor device and manufacturing method of semiconductor device
JP5586887B2 (ja) 半導体装置及びその製造方法
EP2293336B1 (en) Semiconductor device
WO2015049815A1 (ja) 炭化珪素半導体装置およびその製造方法
US20220376107A1 (en) Mosfet in sic with self-aligned lateral mos channel
JP7432071B2 (ja) 半導体装置およびその製造方法
US10361299B2 (en) Semiconductor device and method of manufacturing a semiconductor device
US11610991B2 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
JP6571467B2 (ja) 絶縁ゲート型スイッチング素子とその製造方法
US7701001B2 (en) Short channel trench power MOSFET with low threshold voltage
US10600867B2 (en) Semiconductor device having an emitter region and a contact region inside a mesa portion
US20100025739A1 (en) Semiconductor device with large blocking voltage and method of manufacturing the same
TWI739252B (zh) 溝槽式mosfet元件及其製造方法
US11349019B2 (en) Semiconductor device with an expanded doping concentration distribution in an accumulation region
KR102406116B1 (ko) 반도체 소자 및 그 제조 방법
US11769828B2 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
WO2023095363A1 (ja) 半導体装置とその製造方法
TW202234712A (zh) 具有縮短溝道長度和高Vth的碳化矽金屬氧化物半導體場效電晶體
JP2020155772A (ja) 炭化ケイ素から成る半導体本体を備える半導体デバイス
JP2020126932A (ja) トレンチゲート型半導体装置
US20240258425A1 (en) Semiconductor device and method for manufacturing the same
CN111316447B (zh) 用于减轻碳化硅mosfet器件中的短沟道效应的方法和组件
JP2020096083A (ja) トレンチゲート型のスイッチング素子の製造方法
CN116195068A (zh) 功率半导体器件以及操作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721