JP2023075044A - Method and facilities for hole expansion test of metal material - Google Patents

Method and facilities for hole expansion test of metal material Download PDF

Info

Publication number
JP2023075044A
JP2023075044A JP2022178786A JP2022178786A JP2023075044A JP 2023075044 A JP2023075044 A JP 2023075044A JP 2022178786 A JP2022178786 A JP 2022178786A JP 2022178786 A JP2022178786 A JP 2022178786A JP 2023075044 A JP2023075044 A JP 2023075044A
Authority
JP
Japan
Prior art keywords
hole
section
image
cross
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022178786A
Other languages
Japanese (ja)
Other versions
JP7501591B2 (en
Inventor
麻理奈 須惠
Marina Sue
光俊 剱持
Mitsutoshi Kenmochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023075044A publication Critical patent/JP2023075044A/en
Application granted granted Critical
Publication of JP7501591B2 publication Critical patent/JP7501591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide a method for detecting a through crack regardless of a specification of a material or a state of a hole cross section unit in a hole expansion test.SOLUTION: A hole expansion test method includes the steps of: acquiring an image by imaging a hole expansion process of a hole expansion section while radiating light on the hole expansion section of a metal material and pressing a punch in contact; defining a circumferential circle, a peripheral circle, and a hole cross section unit sandwiched by both of the hole expansion section unit regarding the image; calculating an average luminance value of only the hole cross section unit; further acquiring a histogram of luminance of only the hole cross section unit to offset the average luminance value to a value of a valley portion of the histogram; determining a binarization threshold value using the average luminance value; and binarizing the image to judge a penetration crack.SELECTED DRAWING: Figure 1

Description

本発明は、金属材料の穴広げ試験方法、及び、穴広げ試験用設備に関するものである。 TECHNICAL FIELD The present invention relates to a hole-expanding test method for metal materials and equipment for hole-expanding test.

穴広げ試験とは、材料の成形性を評価するための試験である。具体的には、試験する材料の板状試験片に規定の大きさの円形の穴を開け、試験機にセットし、試験機に付帯した円錐形のポンチで試験片の穴を下から押し広げる。穴が広がるにつれて穴の断面部には亀裂が生じ、やがて試験片上面から下面に貫通する。以下、試験片上面から下面に貫通している割れを「貫通割れ」、貫通していない割れを単に「割れ」と呼称する。試験者は、穴広げを開始した時点から穴の断面部を観察し、どこか一か所でも貫通割れを認めた瞬間に試験機(ポンチ)を停止する。その後、試験片の穴径を測定し、以下の式で穴広げ率を求め、試験結果とする。 A hole expansion test is a test for evaluating the formability of a material. Specifically, a circular hole of a specified size is made in a plate-shaped test piece of the material to be tested, set in the testing machine, and the hole in the test piece is widened from below with a conical punch attached to the testing machine. . As the hole widens, a crack occurs in the cross section of the hole, and eventually penetrates from the upper surface of the test piece to the lower surface. Hereinafter, cracks penetrating from the upper surface to the lower surface of the test piece are referred to as "penetrating cracks", and cracks not penetrating are simply referred to as "cracks". The tester observes the cross-section of the hole from the time the hole expansion is started, and stops the test machine (punch) at the moment when a penetration crack is found anywhere. After that, the hole diameter of the test piece is measured, and the hole expansion rate is obtained by the following formula, which is used as the test result.

Figure 2023075044000002
Figure 2023075044000002

ただし、λ:穴広げ率(%)、D:試験前の穴径(D=10mm:JIS Z 2256:2020に準拠した場合の穴径)、D:試験後の穴径(mm)である。 However, λ: hole expansion ratio (%), D 0 : hole diameter before test (D 0 = 10 mm: hole diameter in accordance with JIS Z 2256: 2020), D h : hole diameter after test (mm) is.

穴の断面部の観察は、通常目視で行われている。しかし、円形の穴断面のどこに割れが生じるか、生じた割れのうちどれが最初に貫通割れに進展するかが不明であるため、試験者は試験開始から終了まで、断面をくまなく観察し続ける必要がある。場合によっては、断面の2か所以上で同時に割れが進展することもあり、注意を要する。そのため、目視による貫通割れの判定は、試験者に対する身体的負荷が高いという課題がある。 Observation of the cross section of the hole is usually performed visually. However, since it is unclear where the cracks will occur in the circular hole cross-section and which of the cracks will first develop into through cracks, the tester will continue to observe the cross-section from the beginning to the end of the test. There is a need. In some cases, cracks may develop at two or more locations on the cross section at the same time, so care must be taken. Therefore, there is a problem that the visual determination of penetration cracks imposes a heavy physical burden on the tester.

また、貫通割れ発生後は速やかに試験機を停止する必要があるが、前項の理由により貫通割れの発見が遅れたり、発見しても個人の反応速度の違いにより試験機を停止するのが遅れたりする場合がある。試験機の停止が遅れると、その分穴が広がるため、貫通割れ発生後即座に試験機を停止した場合と比較して、穴広げ率が大きくなることになる。貫通割れ発見の遅れは主に試験作業に習熟していない新人、試験機停止の遅れは視力や反応速度の落ちたシニア層によくみられるが、試験者の体調などによっても左右されうる。いずれにしても、これらは試験結果のばらつきの要因となり、その解決も課題の一つである。 In addition, it is necessary to stop the testing machine immediately after the occurrence of penetration cracks. may occur. If the stopping of the testing machine is delayed, the hole will expand accordingly, so the hole expansion rate will increase compared to the case where the testing machine is stopped immediately after the penetration crack occurs. Delays in discovering penetrating cracks are common among newcomers who are not familiar with the testing process, and delays in stopping the testing machine are common among seniors with poor eyesight and poor reaction speed. In any case, these factors cause variations in test results, and solving them is one of the issues.

このため、穴広げ試験においては、貫通割れの判定を目視ではなく、ソフトウェア等による自動判定とすることが求められている。その手段として、特許文献1では、試験中、穴断面が押し広げられる過程をテレビカメラで撮影し、その画像データ処理装置にて、穴断面の内周円・外周円および割れ部を暗部、それ以外を明部とし、内周円および外周円を時計回りおよび反時計回りに追跡して板厚を貫通する割れを検出する方法が提案されている。 For this reason, in the hole expanding test, it is required that penetration cracks be determined automatically by software or the like instead of by visual inspection. As a means for that, in Patent Document 1, during the test, the process of expanding the hole cross section is photographed with a television camera, and the image data processing device detects the inner and outer circumference circles and cracks of the hole cross section as dark areas, and A method has been proposed in which cracks penetrating through the sheet thickness are detected by making the areas other than the bright part and tracking the inner and outer circumferences clockwise and counterclockwise.

また、特許文献2には、試験中の穴断面をテレビカメラで撮影、データ処理装置に入力し、穴断面の内周円を明確化後、内周円全周について一定のピッチで測定点を定め、さらにその測定点の位置データに近似した真円である疑似円を仮定、測定点と疑似円の位置データに一定のずれが生じたら貫通割れ発生と判定する方法が提案されている。 In addition, in Patent Document 2, the hole cross-section under test is photographed with a television camera, input to a data processing device, and after clarifying the inner circumference circle of the hole cross-section, measuring points are measured at a constant pitch around the entire circumference of the inner circumference circle. Further, a pseudo-circle is assumed to be a perfect circle approximated to the position data of the measurement point, and a method is proposed in which it is determined that a penetration crack has occurred when a certain deviation occurs between the position data of the measurement point and the pseudo-circle.

特開平10-142131号公報JP-A-10-142131 特許第5170146号公報Japanese Patent No. 5170146

特許文献1の方法では、穴断面部の汚れや、穴打抜き時に生じるせん断面と破断面との表面性状の差による模様を貫通割れと判別し難い場合がある。特許文献2の方法では、材料の規格によっては貫通割れに至っていなくても穴断面部の内側(ポンチと接している側、試験片下面)に段差が生じる場合があり、それらを貫通割れとして誤検知する恐れがある。 In the method of Patent Literature 1, it may be difficult to distinguish through cracks from stains on the cross section of the hole or patterns due to the difference in surface properties between the sheared surface and the fractured surface generated during hole punching. In the method of Patent Document 2, depending on the standard of the material, a step may occur on the inside of the hole cross section (the side in contact with the punch, the lower surface of the test piece) even if it does not lead to through cracks, and these are called through cracks. There is a risk of erroneous detection.

本発明は上述した問題を解決するためになされたものであって、その目的とするところは、穴広げ試験において、材料の規格や穴断面部の状態によらず、貫通割れを検出する穴広げ試験方法と、穴広げ試験用設備を提供するものである。 The present invention has been made to solve the above-mentioned problems, and the object thereof is to provide a hole expansion test that detects penetrating cracks regardless of the material standard or the state of the hole cross section in the hole expansion test. A test method and equipment for hole expansion testing are provided.

筆者らは鋭意調査した結果、穴広げ試験に際し、穴断面部を挟む内周円と外周円および割れ部を暗部、それ以外を明部として2値化処理する際の、しきい値を適切に調整することにより、貫通割れ部が存在しない定常部を明部とし、貫通割れ部と、穴断面部を挟む内周円の内側と外周円の外側とを暗部として判別することができるため、定常部である穴断面部の汚れや、穴打抜き時にせん断面と破断面との表面性状の差が生じる場合にはその模様と、貫通割れ部との差異を明確に区別できることを知見した。 As a result of intensive investigation by the authors, during the hole expansion test, the threshold value was appropriately set when binarizing the inner and outer circles sandwiching the hole cross section and the cracks as dark areas and the other areas as bright areas. By adjusting, the steady area where there is no penetrating crack can be identified as a bright area, and the penetrating crack and the inner and outer circumferences of the inner and outer circles sandwiching the hole cross-section can be identified as dark areas. It was found that if there is dirt on the cross section of the hole, or if there is a difference in surface properties between the sheared surface and the fractured surface during hole punching, the difference between the pattern and the through crack can be clearly distinguished.

本発明は、以上の知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
[1]金属材料の穴広げ試験において、前記金属材料の開穴部に光を照らし、ポンチを当接して押し込みながら、前記開穴部の穴拡大過程を撮像して画像を得る工程、前記画像について前記開穴部の、内周円と外周円および両者に挟まれた穴断面部を定義する工程、前記穴断面部のみの平均輝度値を計算する工程、前記穴断面部のみの輝度のヒストグラムを更に求め、前記ヒストグラムの谷部の値に前記平均輝度値をオフセットする工程、前記平均輝度値を使用して2値化しきい値を決定する工程、及び、前記画像を2値化して貫通割れを判定する工程を特徴とする、金属材料の穴広げ試験方法。
[2]前記画像を2値化して貫通割れを判定する工程において、前記穴断面部を挟む前記内周円と前記外周円が、貫通割れが発生していないときは穴断面部によって割れが分断されてそれぞれ別々の領域となり、貫通割れが発生しているときは割れによってひとつながりの領域となることを特徴とする、[1]に記載の金属材料の穴広げ試験方法。
[3]金属材料の穴広げ試験用設備であって、前記金属材料の開穴部にポンチを当接するための穴広げ試験機と、前記開穴部の穴拡大過程を照らす光源と、前記穴拡大過程を撮像して画像を得るための撮像装置と、前記画像を処理するための画像処理装置とを備え、前記画像処理装置は、前記開穴部の、内周円と外周円および両者に挟まれた穴断面を定義する手段、前記穴断面部のみの平均輝度値を計算する手段、前記穴断面部のみの輝度のヒストグラムを更に求め、前記ヒストグラムの谷部の値に前記平均輝度値をオフセットする手段、前記平均輝度値を使用して2値化しきい値を決定する手段、及び、前記画像を2値化して貫通割れを判定する手段を備えることを特徴とする、金属材料の穴広げ試験用装置。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In a hole expansion test of a metal material, a step of illuminating the opening of the metal material with light, and capturing an image of the process of expanding the hole of the opening while pressing the punch in contact with the punch to obtain an image; The step of defining the inner and outer circles of the opening and the hole cross-section sandwiched between them, the step of calculating the average brightness value of only the hole cross-section, and the brightness histogram of only the hole cross-section and offsetting the average luminance value to a valley value of the histogram; using the average luminance value to determine a binarization threshold; and binarizing the image to detect through cracks. A hole expansion test method for metallic materials, characterized by the step of determining
[2] In the step of determining penetration cracks by binarizing the image, the crack is divided by the hole cross section when the inner circumference circle and the outer circumference circle sandwiching the hole cross section do not cause penetration cracks. The hole expansion test method for a metal material according to [1], wherein the holes are separated from each other and become a continuous region due to the cracks when a penetrating crack occurs.
[3] Equipment for a hole expansion test of a metal material, comprising a hole expansion tester for contacting a punch to an open hole of the metal material, a light source for illuminating the process of expanding the hole of the open hole, and the hole An imaging device for obtaining an image by imaging an enlarging process, and an image processing device for processing the image, the image processing device is provided with an inner peripheral circle and an outer peripheral circle of the opening portion, and both. Means for defining sandwiched hole cross-sections, Means for calculating the average brightness value of only the hole cross-section, further obtaining a histogram of the brightness of only the hole cross-section, and applying the average brightness value to the value of the trough of the histogram means for offsetting, means for determining a binarization threshold using the average brightness value, and means for binarizing the image to determine penetration cracks. test equipment.

本発明では、2値化のしきい値の決定に関する範囲を穴断面部のみとし、輝度のヒストグラムを用いてしきい値を更にオフセットすることで、試験片の模様や汚れを含む定常部と貫通割れ部とが明確に区別できるように2値化が可能となる。さらに、記載の貫通割れを判定する工程を用いることで、試験が進行して穴断面部を挟む内周円と外周円に段差が生じたり、部分的に板厚が減少したりする場合であっても、より明確に貫通割れを判定できる。これらによって、穴広げ試験における貫通割れの発生を誤検知なく自動で判定できるので、試験者の負荷低減と共に、試験者による試験結果のばらつきを小さくでき、品質の高い穴広げ試験を行うことができる。 In the present invention, the range for determining the threshold value for binarization is limited to only the cross section of the hole. Binarization is possible so that the crack can be clearly distinguished. Furthermore, by using the process of determining penetration cracks described above, there may be cases where the test progresses and a step occurs between the inner and outer circles sandwiching the hole cross section, or the plate thickness partially decreases. Penetration cracks can be determined more clearly even if With these, it is possible to automatically determine the occurrence of penetration cracks in the hole expansion test without erroneous detection, so it is possible to reduce the tester's load and reduce the variation in the test results, so that the hole expansion test can be performed with high quality. .

図1は、本発明における穴広げ試験画像撮像工程から貫通割れ判定工程までのフロー図である。FIG. 1 is a flow chart from a hole-expanding test image imaging process to a penetration crack determination process in the present invention. 図2は、穴広げ試験中の2値化する前の穴断面部およびその周囲の明暗の分布図である。FIG. 2 is a distribution diagram of the brightness and darkness of the hole cross section and its surroundings before binarization during the hole expanding test. 図3は、穴広げ試験片の2値化する前の穴断面部におけるせん断目と破断面の分布図である。FIG. 3 is a distribution diagram of shear lines and fracture surfaces in the hole cross-section before binarization of the hole-expanded test piece. 図4は、穴断面部についての輝度のヒストグラムである。FIG. 4 is a luminance histogram for the hole cross section. 図5は、本発明における穴広げ試験用設備である。FIG. 5 shows equipment for a hole expanding test in the present invention. 図6は、穴広げ試験中の2値化後の穴断面部と貫通割れ部を表す図である。FIG. 6 is a diagram showing a hole cross section and a penetrating crack after binarization during the hole expanding test. 図7は、穴断面部のみの平均輝度値を穴断面部の輝度のヒストグラムの谷部の値にオフセットすることなく、画像を2値化した結果の図である。FIG. 7 is a diagram showing the result of binarizing an image without offsetting the average luminance value of only the hole cross section to the value of the trough of the luminance histogram of the hole cross section. 図8は、明るさ1300ルクスで穴断面部を撮像した結果の図である。FIG. 8 is a diagram showing the result of imaging the cross section of the hole with a brightness of 1300 lux. 図9は、明るさ2000ルクスで穴断面部を撮像した結果の図である。FIG. 9 is a diagram showing the result of imaging the cross section of the hole at a brightness of 2000 lux.

以下、図面を参照しながら本発明の穴広げ試験について説明する。なお、本発明は以下の実施形態に限定されるものではない。以下の実施形態には、当業者が容易に置換可能なもの、あるいは実質的に同一のものも含まれる。 Hereinafter, the hole expanding test of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

本発明における穴広げ試験用設備を図5に示す。本発明を実施するためには、穴広げ試験機13のほか、穴断面部3を撮像する撮像装置14、画像処理装置15と光源16を要する。 FIG. 5 shows equipment for the hole expansion test in the present invention. In order to carry out the present invention, in addition to the hole expanding tester 13, an imaging device 14 for imaging the hole cross section 3, an image processing device 15, and a light source 16 are required.

金属材料(例えば鋼板)から切り出した試験片の中心に円形の穴を開けて開穴部(図示せず)を作成し、穴広げ試験機13にセットする。前記開穴部に光源16によって光を照らし、円錐形のポンチ(図示せず)を当接して押し込みながら、上記円形の穴を押し広げていく。この時、撮像装置14にて前記開穴部の穴拡大過程を撮像する。 A circular hole is made in the center of a test piece cut out from a metal material (for example, a steel plate) to create an open hole (not shown), and the test piece is set in the hole expanding tester 13 . A light source 16 illuminates the open hole, and a conical punch (not shown) is pressed into contact with the open hole to widen the circular hole. At this time, the imaging device 14 images the process of enlarging the hole.

前記撮像装置14は、カメラが好ましい。使用するカメラは、一定のシャッタースピードで画像を撮像し、それを画像処理装置15に逐一送信できるものであればよく、好適例として、市販のビデオカメラがあげられる。カメラの解像度は、1ピクセル当たりの長さが測定したい貫通割れ幅(以下、割れ幅という)以下であればよい。より好ましくは、1ピクセル当たりの長さが割れ幅の1/3以下であるとよい。これは、貫通割れは穴断面の接線に対して必ずしも垂直に発生するとは限らず、斜め方向に発生する場合もあり、2値化後の画像で貫通割れ部のすべてを暗部とするためには一定の余裕代が必要だからである。1ピクセル当たりの長さが割れ幅を上回ると、撮影した画像で貫通割れ部とその周囲との明暗差が適切に表現されず、その結果、2値化をしても貫通割れ部が暗部にならない場合がある。 The imaging device 14 is preferably a camera. Any camera can be used as long as it can take an image at a constant shutter speed and send it to the image processing device 15 one by one. A suitable example is a commercially available video camera. The resolution of the camera may be as long as the length per pixel is equal to or less than the through crack width (hereinafter referred to as the crack width) to be measured. More preferably, the length per pixel is 1/3 or less of the crack width. This is because penetrating cracks do not necessarily occur perpendicularly to the tangent line of the hole cross section and may occur obliquely. This is because a certain allowance is required. If the length per pixel exceeds the width of the crack, the difference in brightness between the penetrating crack and its surroundings will not be represented appropriately in the captured image, and as a result, the penetrating crack will appear dark even after binarization. may not be.

撮影した画像は画像処理装置15に送信し、2値化処理および貫通割れの有無の判定を行う。画像処理装置15については、コンピュータ上に以下の各工程を実施するための手段を備えたコンピュータープログラムを実装することが好ましいが、必要な機能を備えたソフトウェアを用いてもよい。 The photographed image is transmitted to the image processing device 15, and binarization processing and determination of the presence or absence of penetration cracks are performed. As for the image processing device 15, it is preferable to implement a computer program provided with means for executing each of the following steps on a computer, but software provided with necessary functions may be used.

次に、送信された画像を2値化処理するまでの手順(工程)を以下に述べる。手順の概略を図1に示す。まず、撮像した開穴部の画像から、図2に示す内周円1および外周円2を検出する。検出された内周円1と外周円2に挟まれたドーナツ状の領域を定義し、以下、穴断面部3と呼ぶ。 Next, the procedure (steps) up to the binarization processing of the transmitted image will be described below. An outline of the procedure is shown in FIG. First, the inner peripheral circle 1 and the outer peripheral circle 2 shown in FIG. 2 are detected from the captured image of the aperture. A doughnut-shaped region sandwiched between the detected inner peripheral circle 1 and outer peripheral circle 2 is defined, and is hereinafter referred to as a hole cross-section portion 3 .

次に、2値化のしきい値を決定するため、穴断面部3のみの輝度の平均値およびヒストグラムを求める。穴広げ試験の際、穴断面部3は貫通割れの確認がしやすいように光源16を用いて照らす。光源16は、試験者やカメラの視野を阻害しないものであれば特に限定されず、従来用いられてきたもので良い。より好ましくは、周方向の光量が均一であるようなリング状の光源がよい。周方向の光量が均一であることによって、穴断面部の明るさのむらが小さくなり、定常部と貫通割れ部とを分離しやすくなるからである。光源の明るさは、撮像装置や画像処理装置、試験片の性状にあわせて適切に調整すればよい。より好ましくは、試験片を置く面で測定した場合、1200~1800ルクスがよい。明るさが不足していると(例えば、1200ルクス未満の場合)、穴断面部の定常部と貫通割れ部とのコントラストが弱くなり、貫通割れの判定が難しくなる場合がある。一方で、明るさが過剰に高い(例えば、1800ルクス超)場合、穴断面部での光の反射等により、画像中で輝度の高い部分の輪郭が不鮮明になる場合がある。当該不鮮明部分と貫通割れ部が隣接していると、画像中で貫通割れ部の判定が難しくなる場合がある。 Next, in order to determine the binarization threshold value, the average luminance value and histogram of only the hole cross section 3 are obtained. During the hole expansion test, the hole cross section 3 is illuminated using a light source 16 so as to facilitate confirmation of penetration cracks. The light source 16 is not particularly limited as long as it does not obstruct the field of view of the examiner or the camera, and conventionally used light sources may be used. More preferably, it is a ring-shaped light source that emits a uniform amount of light in the circumferential direction. This is because the uniformity of the amount of light in the circumferential direction reduces unevenness in the brightness of the cross section of the hole, making it easier to separate the stationary portion and the penetrating crack. The brightness of the light source may be appropriately adjusted according to the properties of the imaging device, the image processing device, and the test piece. More preferably, it is 1200 to 1800 lux when measured on the surface on which the test piece is placed. If the brightness is insufficient (for example, less than 1200 lux), the contrast between the steady portion of the hole cross-section and the penetrating crack becomes weak, which may make it difficult to determine the penetrating crack. On the other hand, if the brightness is excessively high (for example, more than 1800 lux), the outline of the high-brightness portion in the image may become unclear due to the reflection of light on the cross section of the hole. If the unclear portion and the penetrating crack are adjacent to each other, it may be difficult to determine the penetrating crack in the image.

また、光源の取り付け位置は、室内の照明や周囲の人通り等の外乱要因によって、光源16の光量が変化して画像処理に影響しない箇所に設置すれば良い。より好ましくは、図5に示すように、例えばリング状の光源16を、穴広げ試験機13の内部の、試験に支障しない箇所に取り付けることができる。 Also, the light source may be installed at a position where the amount of light emitted from the light source 16 does not change due to disturbance factors such as indoor lighting and pedestrian traffic, which does not affect image processing. More preferably, as shown in FIG. 5, for example, a ring-shaped light source 16 can be attached to a location inside the hole expanding tester 13 that does not interfere with the test.

図3に示すように表面性状の違いによって反射率が異なる、せん断面7と破断面8が存在する場合がある。これは、穴広げ試験の対象となる鋼板の板厚が大きくなるほど穴断面部の面積も大きくなるため、せん断面7と破断面8の表面性状の違いが画像処理に及ぼす影響も大きくなる。このせん断面7と破断面8が存在する場合には、これらの輝度の違いにより、単純に輝度の平均値をしきい値とすると、本来明部となるべき定常部の一部が暗部となり、貫通割れの有無が不明確になる場合がある。したがって、輝度の平均値だけでなくヒストグラムを求め、穴断面部3の定常部全域が明部となるようなオフセットを設定すれば、定常部と貫通割れをより明確に区別することが可能となる。この他、定常部は、模様、汚れ等も含む。 As shown in FIG. 3, there may be a sheared surface 7 and a fractured surface 8 having different reflectances due to different surface properties. This is because the larger the plate thickness of the steel sheet to be subjected to the hole expansion test, the larger the area of the hole cross-section, so the difference in surface properties between the sheared surface 7 and the fractured surface 8 has a greater effect on image processing. When the sheared surface 7 and the fractured surface 8 are present, due to the difference in luminance between them, if the average value of the luminance is simply used as a threshold, part of the stationary portion that should originally be a bright portion becomes a dark portion. In some cases, the presence or absence of penetrating cracks becomes unclear. Therefore, if a histogram is obtained in addition to the average value of the brightness and an offset is set so that the entire stationary portion of the hole cross section 3 becomes a bright portion, it becomes possible to more clearly distinguish between the stationary portion and the penetration crack. . In addition, the stationary portion includes patterns, stains, and the like.

ヒストグラムの一例を図4に示す。2値化のしきい値は図4に示すヒストグラムの暗部ピーク9と明部ピーク10の間の谷部11となるように平均輝度値12をオフセットした値にすればよい。それにより、穴断面部3の定常部は暗部となることなく、貫通割れ部4と明確に区別することができる。このようなしきい値を用いて画像全体を2値化すると、図6に示すように穴断面部3の定常部は明部、貫通割れ部4、穴断面部を挟む内周円の内側5と外周円の外側6は暗部となる。ここで、内周円の内側5を「暗部I」、外周円の外側6を「暗部II」とする。 An example of a histogram is shown in FIG. The threshold for binarization may be a value obtained by offsetting the average luminance value 12 so that the valley 11 between the dark peak 9 and the bright peak 10 of the histogram shown in FIG. As a result, the stationary portion of the hole cross-section portion 3 does not become a dark portion and can be clearly distinguished from the penetrating crack portion 4 . When the entire image is binarized using such a threshold value, as shown in FIG. The outside 6 of the outer circumference becomes a dark area. Here, the inner side 5 of the inner peripheral circle is referred to as "dark area I", and the outer side 6 of the outer peripheral circle is referred to as "dark area II".

続いて、2値化した画像を用いて貫通割れの判定を行う。貫通割れの判定には、暗部Iと暗部IIが、貫通割れ4がないときは明部である穴断面部3に分断されてそれぞれ別の領域となるが、貫通割れ4があるときは暗部である貫通割れ4によってひとつながりの領域となることを利用する。具体的な判定方法の態様を、以下に2つ述べる。 Subsequently, through cracks are determined using the binarized image. In the determination of penetration cracks, the dark portion I and the dark portion II are divided into the hole cross-section portion 3 which is the bright portion when there is no penetration crack 4 and become separate regions, but when there is a penetration crack 4, it is a dark portion. The fact that a through crack 4 forms a continuous region is utilized. Two specific aspects of the determination method will be described below.

1つ目の態様は、画像内における一定以上の面積を持った暗部の数を観測する方法である。貫通割れ4が発生する前は、一定の大きさの暗部の数は暗部Iと暗部IIの2つである。しかし、貫通割れ4が発生すると、暗部Iと暗部IIは暗部である貫通割れ4により接続され、結果、画像内の暗部の数は1つに減少する。これを観測することで貫通割れ4の判定を行うことができる。 The first mode is a method of observing the number of dark areas having a certain area or more in the image. Before the penetrating crack 4 occurs, the number of dark areas of a certain size is two, dark area I and dark area II. However, when the penetrating crack 4 occurs, the dark portion I and the dark portion II are connected by the penetrating crack 4, which is a dark portion, and as a result, the number of dark portions in the image is reduced to one. By observing this, the penetration crack 4 can be judged.

2つ目の態様は、画像内における、最大の暗部の面積を観測する方法である。貫通割れ4が発生する前は、最大の暗部は暗部Iまたは暗部IIのいずれかである。貫通割れ4が発生すると、暗部Iと暗部IIは暗部である貫通割れ4により接続され、結果、最大の暗部の面積は、暗部Iと暗部IIの面積の和に近い値となる。したがって、暗部Iおよび暗部IIの面積より大きく、両者の和より小さいようなしきい値を設定し、最大暗部の面積がしきい値を超えたら貫通割れ4発生と判定できる。 A second aspect is a method of observing the area of the maximum dark portion in the image. Before the penetration crack 4 occurs, the largest dark space is either dark space I or dark space II. When the penetrating crack 4 occurs, the dark portion I and the dark portion II are connected by the penetrating crack 4, which is a dark portion. As a result, the maximum dark portion area is close to the sum of the dark portion I and the dark portion II. Therefore, a threshold is set such that it is larger than the areas of the dark portion I and the dark portion II and smaller than the sum of the two.

なお当然、これらの態様は明部と暗部を反転しても同様の効果が期待できる。採用する画像処理装置の特性に合わせ、適切な方法を選択するとよい。 Of course, the same effect can be expected even if the bright portion and the dark portion are reversed in these aspects. An appropriate method should be selected according to the characteristics of the adopted image processing apparatus.

板厚1.2mm、1.6mmの冷延鋼板における穴広げ試験について、本発明を実施した。図5に示すように、穴広げ試験機13の窓の直上に撮像装置14を設置し、開穴部を撮像できるようにした。撮像装置14には、500万画素のカメラを採用し、シャッタースピードは10回/秒とした。撮像装置14は画像処理装置15に接続した。光源16には、リング状の白色LED光源を採用し、穴広げ試験機13の内部に、リングの中心が試験片の穴中心のおよそ直上となるように設置した。2値化貫通割れの判定方法については、前述の1つめ目の態様に示した、2値化後の画像における一定以上の面積を持つ暗部の数の計数を用いた。 The present invention was carried out for hole expansion tests on cold-rolled steel sheets with thicknesses of 1.2 mm and 1.6 mm. As shown in FIG. 5, an imaging device 14 was installed directly above the window of the hole expanding tester 13 so as to capture an image of the hole. A 5-megapixel camera was used as the imaging device 14, and the shutter speed was set to 10 times/second. The imaging device 14 was connected to the image processing device 15 . A ring-shaped white LED light source was adopted as the light source 16 and installed inside the hole expanding tester 13 so that the center of the ring was approximately directly above the center of the hole of the test piece. As for the determination method of binarization penetration cracks, the counting of the number of dark portions having a certain area or more in the binarized image shown in the above-described first aspect was used.

本発明の比較例として、同一の試験片に対し、試験者の目視判定による従来の方法でも穴広げ試験を実施し、貫通割れの判定を行った。 As a comparative example of the present invention, the same test piece was also subjected to a hole expansion test by a conventional method based on visual judgment by an examiner, and penetration cracks were judged.

本発明の評価方法としては、まず穴広げ完了後に撮像装置14にて撮影した画像をさかのぼって確認し、貫通割れが発生したと認められる時刻を求めた。次に、発明例1として本発明による方法で、および比較例1として目視判定による従来の方法で貫通割れ発生と判定した時刻をそれぞれ求めた。各々の方法で貫通割れ発生を判定した時刻と、上記貫通割れ発生が認められた時刻との差分を取ったもの、すなわち貫通割れが発生してからそれを判定するのに要した時間を判定所要時間と定義した。実施結果を表1に示す。判定所要時間の平均は、板厚1.2mmでは目視判定の場合0.45秒であったのに対し、本発明による方法では0.13秒と、0.32秒短縮された。同様に、1.6mmでは0.2秒短縮された。また、各方法9枚ずつの試験片に対し、判定所要時間の標準偏差(σ)をもとめた。 As an evaluation method of the present invention, first, after the completion of hole expansion, the images taken by the imaging device 14 were retroactively checked to obtain the time at which penetration cracks were recognized to have occurred. Next, the time at which the occurrence of penetration cracks was determined by the method according to the present invention as Inventive Example 1 and by the conventional method based on visual determination as Comparative Example 1 were obtained. The difference between the time when the occurrence of penetration cracks was determined by each method and the time when the occurrence of penetration cracks was recognized, that is, the time required to determine it after the occurrence of penetration cracks. defined as time. Table 1 shows the implementation results. The average time required for judgment was 0.45 seconds for visual judgment at a plate thickness of 1.2 mm, while it was 0.13 seconds for the method according to the present invention, which was shortened by 0.32 seconds. Similarly, at 1.6 mm, it was shortened by 0.2 seconds. In addition, the standard deviation (σ) of the time required for determination was determined for nine test pieces for each method.

Figure 2023075044000003
Figure 2023075044000003

比較例1の場合σ=0.13であったのに対し、発明例1による方法ではσ=0.05であり、比較例1に比べて有意にばらつきが小さくなった。 In the case of Comparative Example 1, σ=0.13, while in the method according to Invention Example 1, σ=0.05.

なお、実施例では1つ目の態様のみを用いて試験を行ったが、2つ目の態様についても同様の結果が得られることは確認済みである。 In the examples, the test was conducted using only the first aspect, but it has been confirmed that the same results can be obtained for the second aspect.

また、穴断面部のみの平均輝度値を当該穴断面部の輝度のヒストグラムの谷部の値にオフセットする工程を省略して画像を2値化した比較例2を、図7に示す。当該工程を省略して2値化した結果、穴断面部の外周円付近の輝度がしきい値を下回るため暗部となり、貫通割れと定常部との差異が不明確となった。 FIG. 7 shows Comparative Example 2 in which the image is binarized by omitting the step of offsetting the average luminance value of only the hole cross section to the value of the trough of the luminance histogram of the hole cross section. As a result of omitting this process and binarizing, the brightness around the outer circumference of the cross section of the hole fell below the threshold value, resulting in a dark area, and the difference between the penetration crack and the steady area became unclear.

さらに、同規格・同一板厚の試験片について、光源16の明るさを1300ルクス、2000ルクスとしてそれぞれ撮像した発明例3を、夫々図8、9に示す。明るさを1300ルクスとした場合では貫通割れ箇所が明瞭に撮像できている。一方で、2000ルクスでは主に穴断面部の内周側で光が強く反射してしまい、定常部と貫通割れ部との区別が難しくなっている。 8 and 9 show Inventive Example 3 in which the brightness of the light source 16 was set to 1300 lux and 2000 lux, respectively, for the test piece of the same standard and the same plate thickness. When the brightness is set to 1300 lux, the penetrating crack can be clearly imaged. On the other hand, at 2000 lux, the light is strongly reflected mainly on the inner peripheral side of the hole cross section, making it difficult to distinguish between the steady portion and the penetrating crack.

このように、本発明を用いることにより、判定所要時間のばらつきを大きく低減することができ、かつ試験の自動化による試験者の負荷低減にも寄与することができる。 Thus, by using the present invention, it is possible to greatly reduce variations in the time required for determination, and contribute to reducing the burden on the tester by automating the test.

1 内周円
2 外周円
3 穴断面部
4 貫通割れ部
5 内周円の内側
6 外周円の外側
7 せん断面
8 破断面
9 暗部ピーク
10 明部ピーク
11 谷部
12 平均輝度値
13 穴広げ試験機
14 撮像装置
15 画像処理装置
16 光源
17 鋼板
1 inner peripheral circle 2 outer peripheral circle 3 hole cross-section 4 penetrating crack 5 inside of inner peripheral circle 6 outer peripheral circle 7 sheared surface 8 broken surface 9 dark peak 10 bright peak 11 trough 12 average luminance value 13 hole expansion test machine 14 imaging device 15 image processing device 16 light source 17 steel plate

Claims (3)

金属材料の穴広げ試験において、
前記金属材料の開穴部に光を照らし、ポンチを当接して押し込みながら、前記開穴部の穴拡大過程を撮像して画像を得る工程、
前記画像について前記開穴部の、内周円と外周円および両者に挟まれた穴断面部を定義する工程、
前記穴断面部のみの平均輝度値を計算する工程、
前記穴断面部のみの輝度のヒストグラムを更に求め、前記ヒストグラムの谷部の値に前記平均輝度値をオフセットする工程、
前記平均輝度値を使用して2値化しきい値を決定する工程、及び、
前記画像を2値化して貫通割れを判定する工程を特徴とする、金属材料の穴広げ試験方法。
In the hole expansion test of metal materials,
A step of illuminating the opening of the metal material and capturing an image of the process of enlarging the opening while pressing the punch into contact with the punch to obtain an image;
Defining an inner circumference circle, an outer circumference circle, and a hole cross-section sandwiched between the two of the aperture for the image;
calculating an average luminance value of only the hole cross section;
further obtaining a histogram of the brightness of only the hole cross-section, and offsetting the average brightness value to the value of the valley of the histogram;
determining a binarization threshold using the average luminance value; and
A hole expansion test method for a metal material, characterized by a step of binarizing the image to determine penetration cracks.
前記画像を2値化して貫通割れを判定する工程において、前記穴断面部を挟む前記内周円と前記外周円が、貫通割れが発生していないときは穴断面部によって割れが分断されてそれぞれ別の領域となり、貫通割れが発生しているときは割れによってひとつながりの領域となることを特徴とする、請求項1に記載の金属材料の穴広げ試験方法。 In the step of determining a through crack by binarizing the image, the inner peripheral circle and the outer peripheral circle sandwiching the hole cross section are separated by the hole cross section when the through crack is not generated. 2. The hole expansion test method for a metal material according to claim 1, wherein the area becomes a separate area, and when a penetrating crack occurs, the area becomes a continuous area due to the crack. 金属材料の開穴部にポンチを当接するための穴広げ試験機と、
前記開穴部の穴拡大過程を照らす光源と、
前記穴拡大過程を撮像して画像を得るための撮像装置と、
前記画像を処理するための画像処理装置と、を備え、
前記画像処理装置が、
前記開穴部の、内周円と外周円および両者に挟まれた穴断面部を定義する手段、
前記穴断面部のみの平均輝度値を計算する手段、
前記穴断面部のみの輝度のヒストグラムを更に求め、前記ヒストグラムの谷部の値に前記平均輝度値をオフセットする手段、
前記平均輝度値を使用して2値化しきい値を決定する手段、及び、
前記画像を2値化して貫通割れを判定する手段を有することを特徴とする、金属材料の穴広げ試験用設備。
A hole expanding tester for contacting the punch with the open hole of the metal material;
a light source for illuminating the process of enlarging the opening;
an imaging device for imaging the hole enlarging process to obtain an image;
an image processing device for processing the image,
The image processing device is
Means for defining an inner peripheral circle, an outer peripheral circle, and a cross-sectional portion sandwiched between the inner and outer circumferences of the aperture;
means for calculating an average luminance value of only the hole cross section;
Means for further obtaining a luminance histogram only for the hole cross section and offsetting the average luminance value to the value of the trough of the histogram;
means for determining a binarization threshold using the average luminance value; and
Equipment for a hole expansion test of a metal material, characterized by having means for binarizing the image to determine penetration cracks.
JP2022178786A 2021-11-18 2022-11-08 Hole expansion test method for metal materials and hole expansion test equipment Active JP7501591B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021187571 2021-11-18
JP2021187571 2021-11-18

Publications (2)

Publication Number Publication Date
JP2023075044A true JP2023075044A (en) 2023-05-30
JP7501591B2 JP7501591B2 (en) 2024-06-18

Family

ID=86541258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022178786A Active JP7501591B2 (en) 2021-11-18 2022-11-08 Hole expansion test method for metal materials and hole expansion test equipment

Country Status (1)

Country Link
JP (1) JP7501591B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125142B1 (en) 2018-09-27 2020-07-07 한양대학교 에리카산학협력단 Hole Expansion Device, Hole Expansion Ratio Test Method and Operating Program thereof
JP7344156B2 (en) 2020-02-21 2023-09-13 日鉄テックスエンジ株式会社 Crack detection device, crack detection method and program for hole expansion test

Also Published As

Publication number Publication date
JP7501591B2 (en) 2024-06-18

Similar Documents

Publication Publication Date Title
KR101867256B1 (en) Apparatus for inspecting surface defects of steel sheet and method for inspecting surface defects
EP1742016B1 (en) Apparatus and method for inspecting screw portions
US10041888B2 (en) Surface defect inspecting device and method for hot-dip coated steel sheets
EP3610986B1 (en) Apparatus and method for shot peening evaluation
RU2764644C1 (en) Method for detecting surface defects, device for detecting surface defects, method for producing steel materials, method for steel material quality control, steel materials production plant, method for generating models for determining surface defects and a model for determining surface defects
JP5170146B2 (en) Hole expansion test method for metal materials
JP2015040796A (en) Defect detection device
KR102125142B1 (en) Hole Expansion Device, Hole Expansion Ratio Test Method and Operating Program thereof
JP5732605B2 (en) Appearance inspection device
JP2023075044A (en) Method and facilities for hole expansion test of metal material
JP6387909B2 (en) Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
JP4652024B2 (en) Surface inspection method and apparatus
JP5257063B2 (en) Defect detection method and defect detection apparatus
JP2000162150A (en) Defect inspecting method and device for metal sample surface
JP2009288050A (en) Imaging device and inspection device
JP3243394B2 (en) Flaw inspection device
JPH10142131A (en) Method for testing hole-spreading property of hole-hole spreading metal plate
JP3421967B2 (en) Flat surface inspection equipment
JP2005003574A (en) Method and device for inspecting surface flaw
JP2016188768A (en) Method of detecting defect in surface of metal plate
JP3454162B2 (en) Inspection system for flat plate with holes
WO2023286519A1 (en) Method for determining debris
JP4185841B2 (en) Method for determining the resolution of a radiographic test image
JPH08184580A (en) Automatic magnetic particle inspection apparatus of seam-welded steel pipe welded part
JP2024036007A (en) Surface inspection device of metal band, surface inspection method, and metal band manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520

R150 Certificate of patent or registration of utility model

Ref document number: 7501591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150