JP2023072094A - 生分解性樹脂組成物及び成形体 - Google Patents

生分解性樹脂組成物及び成形体 Download PDF

Info

Publication number
JP2023072094A
JP2023072094A JP2020061808A JP2020061808A JP2023072094A JP 2023072094 A JP2023072094 A JP 2023072094A JP 2020061808 A JP2020061808 A JP 2020061808A JP 2020061808 A JP2020061808 A JP 2020061808A JP 2023072094 A JP2023072094 A JP 2023072094A
Authority
JP
Japan
Prior art keywords
aliphatic
acid
resin composition
less
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020061808A
Other languages
English (en)
Inventor
玲美 宮町
Remi Miyamachi
浩 野口
Hiroshi Noguchi
恭士 山本
Takashi Yamamoto
隆利 木村
Takatoshi Kimura
聡 加藤
Satoshi Kato
悠太 池田
Yuta Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020061808A priority Critical patent/JP2023072094A/ja
Priority to PCT/JP2021/014070 priority patent/WO2021201185A1/ja
Publication of JP2023072094A publication Critical patent/JP2023072094A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

【課題】生分解速度が速く、かつ、生分解度の高い生分解性樹脂組成物を提供することを課題とする。【解決手段】樹脂と下記一般式(I)で表されるアミン化合物及びその塩から選択される1種以上の化合物を含有し、前記樹脂の30℃における還元粘度が0.5dL/g以上であり、前記化合物の含有量が0.001重量%以上50重量%以下であり、前記化合物の分子量が10000未満である、生分解性樹脂組成物(式中、R、R’及びR’’は、それぞれ独立に水素原子又は置換基を有していてもよい1価の有機基を表す。)。TIFF2023072094000009.tif24170【選択図】なし

Description

本発明は、生分解性樹脂組成物に関する。
現代社会において、プラスチックは、その軽さ、電気絶縁性、成型加工性、耐久性に優れることから、包装用資材、家電製品資材、建築資材などの身の回りの幅広い用途で使用されている。これらの用途に使用されているプラスチックとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート等がある。しかしながら、これらのプラスチックの成形品は、自然環境下で分解され難いため、使用後に埋設しても地中に残存し易い。また、焼却しても有害ガスを発生して焼却炉を傷めることがあり、近年、世界中で、環境汚染防止の観点から、一般家庭で堆肥にすることが可能な製品(ホームコンポスト可能な製品)や海洋生分解性を有するプラスチックが求められている。特に、海洋生分解性を有するプラスチックについては、近年、海洋に廃棄されるプラスチックが問題となっているが、海水中で分解する樹脂は少なく、また、海水中での生分解速度が遅いため、海水中で高い分解性を示す樹脂が求められている。
上述の問題を解決する手段として、土中又は水中の微生物によって二酸化炭素及び水に分解される生分解性を有する材料についての研究が数多くなされてきた。生分解性材料の代表例としては、ポリ乳酸(以下、「PLA」と略記することがある。)、ポリヒドロキシアルカノエート(以下、「PHA」と略記することがある。)、ポリブチレンサクシネート(以下、「PBS」と略記することがある。)、ポリブチレンサクシネートアジペート(以下、「PBSA」と略記することがある。)、ポリブチレンアジペートテレフタレート(以下「PBAT」と略記することがある)等の生分解性樹脂が挙げられる。
これらの樹脂のうち、ポリ乳酸は、生分解速度が極めて遅い。一方、ポリヒドロキシアルカノエートは、生分解速度は、ポリ乳酸より速いものの、従来のプラスチックに比べ、成形加工性が劣る(特許文献1)。ポリエチレンと似た力学特性を有するPBS、PBSA等についても、生分解速度は比較的速いが、更に生分解速度が速く、生分解度が高い材料が求められている。また、特に、海洋生分解性樹脂については、海水中での生分解速度が速く、生分解度が高い樹脂が求められている。
国際公開第2009/001525号
本発明の課題は、生分解速度が速く、かつ、生分解度の高い生分解性樹脂組成物を提供することである。
本発明者らは、上記実情に鑑み、鋭意検討した。具体的には、アミノ基を含有する化合物に着目し、アミノ基を有する化合物が分解促進に寄与すると考えた。そして、検討の結果、特定の還元粘度の樹脂に、特定のアミノ基を有する化合物を特定量配合することにより、著しい生分解促進効果が得られ、これにより上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明の要旨は、以下の通りである。
本発明の第1の要旨は、樹脂と下記一般式(I)で表されるアミン化合物及びその塩から選択される1種以上の化合物を含有し、前記樹脂の30℃における還元粘度が0.5dL/g以上であり、前記化合物の含有量が0.001重量%以上50重量%以下であり、前記化合物の分子量が10000未満である、生分解性樹脂組成物に存する。
Figure 2023072094000001

(式中、R、R’及びR’’は、それぞれ独立に水素原子又は置換基を有していてもよい1価の有機基を表す。)
本発明の第2の要旨は、生分解度が、前記生分解性樹脂組成物から前記化合物を除いた組成物の生分解度の1.1倍以上である、第1の要旨に記載の生分解性樹脂組成物に存する。また、本発明の第3の要旨は、前記一般式(I)におけるR、R’及びR’’の少なくとも何れか1つが置換基を有していてもよい脂肪族炭化水素である、第1又は第2の要旨に記載の生分解性樹脂組成物に存する。そして、本発明の第4の要旨は、前記アミン化合物が、脂肪族モノアミン、脂肪族ジアミン及びアミノ酸の少なくとも何れかである、第1~3の何れか1つの要旨に記載の生分解性樹脂組成物に存する。
本発明の第5の要旨は、前記樹脂が生分解性樹脂である、第1~4の何れか1つの要旨に記載の生分解性樹脂組成物に存する。また、本発明の第6の要旨は、前記樹脂がポリエステル樹脂である、第1~5の何れか1つの要旨に記載の生分解性樹脂組成物に存する。そして、本発明の第7の要旨は、前記ポリエステル樹脂が、ジオール単位として、1,4-ブタンジオール、1,3-プロパンジオール及びエチレングリコールよりなる群から選ばれる1種類以上を有する、第6の要旨に記載の生分解性樹脂組成物に存する。本発明の第8の要旨は、前記ポリエステル樹脂が、ジカルボン酸単位として、炭素数2~22のジカルボン酸を有する、第6又は第7の要旨に記載の生分解性樹脂組成物に存する。
そして、本発明の第9の要旨は、第1~8の何れか1つの要旨に記載の生分解性樹脂組成物を含む、成形体に存する。
本発明によれば、生分解速度が速く、かつ、生分解度の高い生分解性樹脂組成物を提供することができ、海洋汚染問題等の環境問題解決に対する寄与は大きい。
以下に本発明の実施の形態を詳細に説明する。
本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本発明の一実施形態は、樹脂とアミノ基を有する化合物を含む生分解性樹脂組成物(以下、「本実施形態に係る生分解性樹脂組成物」又は「本発明の樹脂組成物」と言う場合がある。)である。
本明細書において、「生分解性」とは、微生物の働きにより、樹脂が加水分解等により
オリゴマーやモノマー等の低分子に分解され、これが更に、水と二酸化炭素等に分解される性質を意味する。本発明の樹脂組成物は、通常、海水中、淡水中、汽水中、土壌中又はコンポスト中の少なくとも何れかの環境で生分解される。また、特に、海水中では微生物量が少ないため、海水中で生分解性が高いこと(海洋生分解性樹脂組成物)が好ましい。
以下、本実施形態に係る生分解性樹脂組成物の構成成分、特性、製造方法及び用途について説明する。
[アミン化合物及びその塩]
本実施形態に係る生分解性樹脂組成物は、下記一般式(I)で表されるアミン化合物及びその塩から選択される1種以上の化合物(以下、「アミノ化合物(I)等の化合物」と言うことがある。)を含有する。
Figure 2023072094000002
式中、R、R’及びR’’は、それぞれ独立に水素原子又は置換基を有していてもよい1価の有機基を表す。
R、R’及びR’’のうち、少なくとも何れか1つは水素原子であることが好ましく、2つが水素原子であることがより好ましい。また、R、R’及びR’’で表される有機基は、互いに結合して環構造を形成していてもよいが、環構造を形成していないことが好ましい。
有機基としては、窒素原子、酸素原子、硫黄原子及びハロゲン原子からなる群より選択される1種以上の原子を含んでいてもよい炭化水素基が挙げられる。
炭化水素基は、脂肪族炭化水素基でも芳香族炭化水素基でもよい。脂肪族炭化水素基は、鎖状でも環状でもよい。また、炭素-炭素不飽和結合を有していてもよい。これらのうち、炭化水素基は、好ましくは、脂肪族炭化水素基である。脂肪族炭化水素基の中でも、鎖状の脂肪族炭化水素基がより好ましく、直鎖状の脂肪族炭化水素基がさらに好ましい。また、R、R’及びR’’の少なくとも何れか1つが置換基を有していてもよい脂肪族炭化水素であることが好ましい。
なお、本明細書においては、芳香族炭化水素基には、芳香族複素環基を含むものとする。また、芳香族炭化水素基は、単環でも複数の環が互いに結合又は縮合した環でもよく、それらが置換基を有していてもよい。
また、「窒素原子、酸素原子、硫黄原子及びハロゲン原子からなる群より選択される1種以上の原子を含んでいてもよい」とは、置換基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子、アスタチン原子、1級アミノ基、ヒドロキシ基、カルボキシル基、チオール基、アセチル基、カルボキシメチル基等を含んでいてもよいことを意味する他、2級アミノ基、3級アミノ基、エーテル結合、カルボニル結合、チオエーテル結合等の窒素原子又は硫黄原子を含む連結基を炭素骨格内に含んでいてもよいことを意味する。これらのうち、置換基としては、1級アミノ基(-NH)、ヒドロキシル基若しくはカルボキシル基を含む態様又は2級アミノ基(-NH-)若しくはエーテル結合を含む態様が好ましい。なお、炭化水素基の炭素骨格内に2級アミノ基を含む態様とは、高分子主鎖中にアミノ基を有する繰り返し単位を含む高分子を意図するものではない。
炭化水素基の炭素数は、特に限定されず、後述するアミノ化合物(I)又はその塩の分子量の範囲内となる炭素数を適宜選択すればよい。但し、生分解性の促進効果、入手容易
性、作業性等の観点から、炭化水素基の炭素数は、通常2以上、好ましくは3以上、また、通常40以下、好ましくは20以下、より好ましくは16以下、さらに好ましくは11以下である。
具体的なアミン化合物(I)としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、イソブチルアミン等のモノアルキルアミン;ジメチルアミン、ジエチルアミン等のジアルキルアミン;エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン(プトレスシン)、ペンタメチレンジアミン(カダベリン)、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン等のアルキレンジアミン;ビス(3-アミノプロピル)アミン、N-(3-アミノプロピル)-1,3-プロパンジアミン(ノルスペルミジン)、N-(3-アミノプロピル)テトラメチレンジアミン(スペルミジン)、N,N’-ビス(3-アミノプロピル)-1,4-ブタンジアミン(スペルミン)等のアルキレン骨格中にNH基を有するアルキレンジアミン;アラニン、グリシン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、フェニルアラニン、バリン等のアミノ酸;グルコサミン、ノイラミン酸等のアミノ糖;N-アセチルグルコサミン、ムラミン酸、N-アセチルムラミン酸、N-アセチルノイラミン酸、N-アセチルガラクトサミン等のアミノ糖誘導体等が挙げられる。
これらのうち、好ましいアミン化合物としては、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、イソブチルアミン等のモノアルキルアミン;エチレンジアミン、トリメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、プトレスシン、オクタメチレンジアミン等のアルキレンといったジアミン;ノルスペルミジン、スペルミン、スペルミジン等の、アルキレン骨格中にNH基を有するアルキレンジアミン;プトレスシンといったポリアミン;アラニン、グリシン、アスパラギン、アスパラギン酸、グルタミン、リシン、トリプトファン、プロリン等のアミノ酸;N-アセチルグルコサミン等のアミノ糖誘導体が挙げられる。この中でさらに好ましくは、ペンタメチレンジアミン、ヘキサメチレンジアミン、ブチルアミン、ノルスペルミジン、スペルミン、スペルミジン、プトレスシン、アラニン、グリシン、アスパラギン、グルタミンが挙げられる。また、アミノ化合物(I)等の化合物としては、脂肪族モノアミン、脂肪族ジアミン及びアミノ酸が特に好ましい。
アミン化合物(I)の塩としては、ハロゲン化水素、硫酸等の無機酸の塩が挙げられる。ハロゲン化水素とは、フッ化水素、塩化水素、臭化水素、ヨウ化水素及びアスタチン化水素の総称である。これらのうち、アミン化合物(I)と塩を形成する無機酸は、好ましくは塩化水素である。
アミノ化合物(I)等の化合物の分子量は、10000未満以下である。ここで、アミノ化合物(I)等の化合物が高分子の場合は、重量平均分子量とする。分子量は、生分解性の促進効果の観点から、好ましくは5000以下、より好ましくは1000以下、さらに好ましくは500以下、特に好ましくは400以下である。また、アミノ化合物(I)等の化合物の分子量の下限は、特に限定されないが、通常17以上、好ましくは50以上である。すなわち、アミノ化合物(I)等の化合物は、モノマーの重合体(例えば重合度100以上の重合体)でなく、低分子化合物であることが好ましい。
アミノ化合物(I)等の化合物に含まれる炭素に対する窒素の質量比は、通常5以下、好ましくは2.5以下、より好ましくは1.2以下、さらに好ましくは0.7以下、特に好ましくは0.6以下である。また、一方で、通常は0.01以上、好ましくは0.05以上、より好ましくは0.10以上、さらに好ましくは0.13以上である。アミノ化合物(I)等の化合物は、2級及び3級アミンが含まれる場合、その含有率が低いことが好ましい。アミノ化合物(I)等の化合物中に1級、2級、3級アミンが存在する場合、2
級と3級アミンに対する1級アミンの存在比としては、通常0.1以上、好ましくは0.4以上、さらに好ましくは1.0以上である。また、上限は特に限定されないが、通常5以下、好ましくは2.5以下である。
生分解性樹脂組成物中には、アミノ化合物(I)等の化合物が0.001重量%以上50重量%以下の量で含有される。生分解性樹脂組成物中に含有されるアミノ化合物(I)等の化合物の量は、樹脂の種類、アミノ化合物(I)等の化合物の種類、生分解性樹脂組成物の用途等に応じて適宜調整すればよい。アミノ化合物(I)等の化合物の含有量は、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.1重量%以上がさらに好ましく、1重量%以上が特に好ましく、5重量%以上が最も好ましい。また、一方で、同含有量は、50重量%以下が好ましく、40重量%以下がより好ましく、20重量%以下が更に好ましい。
生分解性樹脂組成物中のアミノ化合物(I)等の化合物の含有量を上記範囲内とすることで、生分解性と、成形体に加工した際の機械特性を兼ね備えた組成物となりやすい。
[樹脂]
本実施形態に係る生分解性樹脂組成物は、樹脂を含有する。本実施形態に係る生分解性樹脂組成物に含有される樹脂は、上述のアミノ化合物(I)等の化合物との樹脂組成物とすることにより、生分解性が向上すれば、特に限定されない。すなわち、本実施形態に係る生分解性樹脂組成物に含有される樹脂は、生分解性樹脂が好ましい。本実施形態に係る生分解性樹脂組成物の生分解度については、後述する。本実施形態に係る生分解性樹脂組成物に含有される樹脂は、1種類を単独で用いても、2種類以上の樹脂を任意の組み合わせと比率で用いてもよい。
生分解性の樹脂としては、PLA、PHA、ポリカプロラクトン、PBS、PBSA、PBAT、ポリブチレンセバケートテレフタレート(PBSeT)などのポリエステル樹脂;ポリビニルアルコール;ポリアミド4;ポリエチレングリコールなどが知られている。
本実施形態に係る生分解性樹脂組成物に含有される樹脂としては、アミノ化合物(I)等の化合物との樹脂組成物とすることにより生分解性が向上しやすいことから、ポリエステル樹脂及び脂肪族オキシカルボン酸樹脂などのジカルボン酸単位とジオール単位を有する樹脂が好ましく、ポリエステル樹脂が更に好ましい。また、ヒドロキシカルボン酸単位を有する樹脂も好ましい。
ポリエステル樹脂は、脂肪族ポリエステル樹脂であっても、芳香族ポリエステル樹脂であっても、脂肪族-芳香族ポリエステル樹脂であってもよい。
樹脂は、各々1種類のみでも、構成単位の種類、構成単位比、製造方法、物性等の異なる2種類以上の樹脂をブレンドして用いることができる。
本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂について、以下に詳述する。なお、ポリエステル樹脂における各繰返し単位は、それぞれの繰返し単位の由来となる化合物に対する化合物単位とも呼ぶ。例えば、脂肪族ジオールに由来する繰返し単位を「脂肪族ジオール単位」、脂肪族ジカルボン酸に由来する繰返し単位を「脂肪族ジカルボン酸単位」、芳香族ジカルボン酸に由来する繰返し単位を「芳香族ジカルボン酸単位」とも呼ぶ。また、ポリエステル樹脂中の「主構成単位」とは、通常、その構成単位が当該ポリエステル樹脂中に80重量%以上含まれる構成単位のことであり、主構成単位以外の構成単位が含まれない場合もある。
ポリエステル樹脂に含まれるジオール単位は、脂肪族でも芳香族でもよいが、生分解しやすいことから、脂肪族が好ましく、下記一般式(1)で表されるジオール単位が特に好ましい。
-O-R-O- (1)
式(1)中、Rは炭素数2以上20以下の脂肪族炭化水素基を表す。
で表される脂肪族炭化水素基の炭素数は、成形性、機械強度等の観点から、通常2以上、好ましくは4以上、また、通常20以下、好ましくは16以下、より好ましくは12以下、さらに好ましくは6以下である。脂肪族炭化水素基として特に好ましい基は、炭素数4の脂肪族炭化水素基である。
式(1)で表される脂肪族ジオール単位を与える脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が好ましく、1,4-ブタンジオール、1,3-プロパンジオール及びエチレングリコールがより好ましく、1,4-ブタンジオールが特に好ましい。
ポリエステル樹脂に含まれるジオール単位は、1種類でも、2種類以上の単位を任意の組み合わせと比率で有していてもよい。ポリエステル樹脂に複数種のジオール単位が含まれる場合、脂肪族ジオール単位が30モル%以上含まれることが好ましく、50モル%以上含まれることがより好ましい。
ポリエステル樹脂に含まれるジオール単位は、芳香族ジオール単位を含んでいてもよい。芳香族ジオール単位を与える芳香族ジオール成分の具体例としては、例えば、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン酸等が挙げられる。芳香族ジオール成分は、芳香族ジオール化合物の誘導体でもよい。また、複数の脂肪族ジオール化合物及び/又は芳香族ジオール化合物が互いに脱水縮合した構造を有する化合物であってもよい。
ポリエステル樹脂に含まれるジカルボン酸単位は、脂肪族でも芳香族でもよい。また、ポリエステル樹脂に含まれるジオール単位は、1種類でも、2種類以上の単位を任意の組み合わせと比率で有していてもよく、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位を有していてもよい。但し、生分解性の観点から、ジカルボン酸単位は、脂肪族のジカルボン酸単位であることが好ましい。ポリエステル樹脂に複数種のジカルボン酸単位が含まれる場合、脂肪族ジカルボン酸単位が30モル%以上含まれることが好ましく、40モル%以上含まれることがより好ましい。一方、脂肪族ジカルボン酸単位の下限値は、特にないが、含まれていなくても構わない。また、ポリエステル樹脂に芳香族ジカルボン酸単位が含まれる場合は、芳香族ジカルボン酸単位が70モル%以下であることが好ましく、60モル%以下であることがさらに好ましい。
ジカルボン酸単位が有する炭素数は、2~22であることが好ましい。
ポリエステル樹脂に含まれるジカルボン酸単位は、下記一般式(2)で表されるジカルボン酸単位、またはシュウ酸が好ましい。
-OC-R-CO- (2)
式(2)中、Rは単結合、炭素数1以上22以下の脂肪族炭化水素基又は炭素数4以上8以下の芳香族炭化水素基若しくは複素芳香族基を表す。
で表される炭化水素基の炭素数は、2以上、22以下であることが好ましい。
で表される脂肪族炭化水素基の炭素数は、通常1以上、好ましくは2以上であり、また、一方で、好ましくは22以下、より好ましくは16以下、さらに好ましくは12以下、特に好ましくは8以下である。ポリエステル樹脂が、式(2)で表される脂肪族ジカルボン酸単位を2種類以上含む場合、脂肪族炭化水素基の組み合わせとしては、炭素数2の脂肪族炭化水素基と炭素数4以上10以下の脂肪族炭化水素基との組み合わせが好ましい。
式(2)で表される脂肪族ジカルボン酸単位を与える脂肪族ジカルボン酸成分としては、特に限定されないが、その炭素数は、2以上が好ましく、4以上がより好ましく、また、一方で、22以下が好ましく、10以下がより好ましい。すなわち、炭素数2以上22以下の脂肪族ジカルボン酸又はそのアルキルエステル等の誘導体が好ましく、炭素数4以上10以下の脂肪族カルボン酸又はそのアルキルエステル等の誘導体がより好ましい。
好ましい脂肪族ジカルボン酸又はその誘導体としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸又はその誘導体が挙げられる。これらのうち、アジピン酸、コハク酸及びセバシン酸が好ましく、コハク酸及びセバシン酸がより好ましく、コハク酸が特に好ましい。
ポリエステル樹脂は、全ジカルボン酸単位中における上述の好ましいジカルボン酸単位の割合が、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、50モル%以上であることがさらに好ましく、64モル%以上であることが特に好ましく、68モル%以上であることが最も好ましい。なお、上限は100モル%である。ポリエステル樹脂における好ましいジカルボン酸の割合を上記範囲内とすることにより、成形性が向上すると共に、耐熱性、生分解性にも優れた生分解性樹脂組成物を得ることが可能となる。
ポリエステルは、脂肪族ジカルボン酸成分を2種類以上含むことが好ましく、上述の好ましい脂肪族ジカルボン酸成分を2種類以上含むことがより好ましい。この場合、脂肪族ジカルボン酸成分の組み合わせとしては、炭素数4の脂肪族ジカルボン酸又はその誘導体と炭素数6以上12以下の脂肪族ジカルボン酸との組み合わせが好ましく、炭素数4の脂肪族ジカルボン酸又はその誘導体と炭素数6以上10以下の脂肪族ジカルボン酸との組み合わせがより好ましい。具体的には、脂肪族ジカルボン酸の組み合わせとしては、コハク酸又はその誘導体、アジピン酸又はその誘導体、セバシン酸又はその誘導体の少なくとも何れか1つを含むことが好ましく、これらの中から2種以上のジカルボン酸を組み合わせることがより好ましい。
コハク酸又はその誘導体と組み合わせるジカルボン酸としては、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸若しくはドデカン二酸又はその誘導体が好ましく、アジピン酸若しくはセバシン酸又はその誘導体との組み合わせがより好ましく、セバシン酸又はその誘導体との組み合わせがさらに好ましい。
コハク酸又はその誘導体と組み合わせるジカルボン酸は、全ジカルボン酸単位に対して、5モル%以上含まれていることが好ましく、10モル%以上含まれていることがより好ましく、15モル%以上含まれていることが更に好ましく、また、一方で、50モル%以下含まれていることがより好ましく、45モル%以下含まれていることがより好ましく、40モル%以下含まれていることが更に好ましい。コハク酸以外の脂肪族ジカルボン酸単位を上記範囲内で共重合することで、ポリエステル樹脂の結晶化度を下げることができ、生分解速度を速くすることが可能である。
ポリエステル樹脂は、ジカルボン酸単位の量が異なるポリエステル樹脂の混合物であってもよく、例えば、ジカルボン酸単位として上述の好ましいジカルボン酸単位のみを含むポリエステル樹脂と、これら以外のジカルボン酸単位を含むポリエステル樹脂とをブレンドして、ポリエステル樹脂における好ましいジカルボン酸単位の割合を上記範囲内に調整することも可能である。
式(2)で表される芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分としては、特に限定されないが、その炭素数は、通常4以上、8以下であり、好ましくは6以上である。具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、2,5-フランジイル基等が挙げられる。
式(2)で表される芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分としては、特に限定されないが、通常、上述の好ましい炭素数の芳香族ジカルボン酸又はその誘導体である。具体的には、フタル酸、イソフタル酸、テレフタル酸、2,5-フランジカルボン酸等が挙げられ、中でも、テレフタル酸及び2,5-フランジカルボン酸が好ましく、2,5-フランジカルボン酸が更に好ましい。
なお、芳香族ジカルボン酸の誘導体とは、芳香族ジカルボン酸の炭素数1以上4以下の低級アルキルエステル、酸無水物等が挙げられる。芳香族ジカルボン酸の誘導体の具体例としては、上述の芳香族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル等の低級アルキルエステル;芳香族ジカルボン酸の環状酸無水物;等が挙げられる。中でも、ジメチルテレフタレートが好ましい。
ポリエステル樹脂は、オキシカルボン酸単位を含む樹脂であってもよい。
ポリエステル樹脂に含まれるオキシカルボン酸単位は、下記一般式(3)で表される脂肪族オキシカルボン酸単位を含むポリエステル樹脂であってもよい。
-O-R-CO- (3)
式(3)中、Rは炭素数1以上20以下の脂肪族炭化水素基を表す。
で表される脂肪族炭化水素基の炭素数は、好ましくは1以上、また、一方で、好ましくは16以下、より好ましくは12以下、さらに好ましくは8以下である。
式(3)で表される脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸成分としては、特に限定されず、例えば、乳酸、グリコール酸、3-ヒドロキシ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、3-ヒドロキシプロピオン酸、4-ヒドロキシ酪酸、5-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸等のヒドロキシ酸又はこれらの低級アルキルエステル若しくは分子内エステル等の誘導体等が挙げられる。これらに光学異性体が存在する場合には、D体、L体のいずれでもよい。これらの中で好ましいものは、乳酸及びグリコール酸である。
ポリエステル樹脂がこれらのオキシカルボン酸単位を含む場合、その含有量は、成形性の観点から、ポリエステル樹脂を構成する全構成単位に対して、20モル%以下であることが好ましく、より好ましくは10モル%以下、更に好ましくは5モル%以下である。なお、ポリエステル樹脂は、オキシカルボン酸を含まなくても構わない。
ポリエステル樹脂は、3官能以上の脂肪族多価アルコールと3官能以上の脂肪族多価カルボン酸若しくはその酸無水物又は3官能以上の脂肪族多価オキシカルボン酸成分とを共重合することによって、溶融粘度が高められた樹脂であってもよい。
3官能の脂肪族多価アルコールの具体例としては、トリメチロールプロパン、グリセリン等が挙げられる。4官能の脂肪族多価アルコールの具体例としては、ペンタエリスリトール等が挙げられる。これらは1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。
3官能の脂肪族多価カルボン酸又はその酸無水物の具体例としては、プロパントリカルボン酸又はその酸無水物が挙げられる。4官能の多価カルボン酸又はその酸無水物の具体例としては、シクロペンタンテトラカルボン酸又はその酸無水物等が挙げられる。これらは1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。
また、3官能の脂肪族オキシカルボン酸は、(i)カルボキシル基が2個とヒドロキシ
ル基が1個を同一分子中に有するタイプと、(ii)カルボキシル基が1個とヒドロキシル基が2個のタイプとに大別される。何れのタイプも使用可能であるが、成形性、機械強度、成形体外観等の観点からリンゴ酸等の(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプが好ましく、リンゴ酸がより好ましい。
また、4官能の脂肪族オキシカルボン酸成分は、(i)3個のカルボキシル基と1個のヒドロキシル基とを同一分子中に共有するタイプ、(ii)2個のカルボキシル基と2個のヒドロキシル基とを同一分子中に共有するタイプ、(iii)3個のヒドロキシル基と1個のカルボキシル基とを同一分子中に共有するタイプに大別される。何れのタイプも使用可能であるが、カルボキシル基を複数有するものが好ましく、クエン酸及び酒石酸がより好ましい。これらは1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。
ポリエステル樹脂が上述の3官能以上の成分由来の構成単位を含む場合、その含有量は、ポリエステル樹脂を構成する全構成単位中に含まれる量は、0.01モル%以上が好ましく、また、一方で、5モル%以下が好ましく、2.5モル%以下が更に好ましい。なお、ポリエステル樹脂は、上述の3官能以上の成分由来の構成単位を含まなくても構わない。
ポリエステル樹脂に含まれるオキシカルボン酸単位は、芳香族オキシカルボン酸単位を含んでいてもよい。
芳香族オキシカルボン酸単位を与える芳香族オキシカルボン酸成分の具体例としては、例えば、p-ヒドロキシ安息香酸、p-β-ヒドロキシエトキシ安息香酸等が挙げられる。芳香族オキシカルボン酸成分は、芳香族オキシカルボン酸化合物の誘導体でもよい。また、複数の芳香族オキシカルボン酸化合物及び/又は芳香族オキシカルボン酸化合物が互いに脱水縮合した構造を有する化合物(オリゴマー)であってもよい。すなわち、原料物質としてオリゴマーを用いてもよい。
これらの芳香族化合物単位を与える芳香族化合物成分に光学異性体が存在する場合には、D体、L体、及びラセミ体のいずれを用いてもよい。また、芳香族化合物成分としては、芳香族化合物単位を与えることができれば、上記の例に限定されるものではない。更に、芳香族化合物成分は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。
本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂は、各構成単位を、1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。また、ジオール単位、ジカルボン酸単位及び脂肪族オキシカルボン酸単位は、石油から誘導された化合物由来であっても、植物原料から誘導された化合物由来であってもかまわないが、植物原料から誘導された化合物由来であることが環境問題に配慮できることから望ましい。
本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂としては、上記一般式(1)で表されるジオール単位及び上記一般式(2)で表されるジカルボン酸単位を含むポリエステル樹脂;上記一般式(1)で表されるジオール単位、上記一般式(2)で表されるジカルボン酸単位及び上記一般式(3)で表されるオキシカルボン酸単位を含むポリエステル樹脂;上記一般式(3)で表されるオキシカルボン酸単位を含むポリエステル樹脂等が挙げられる。
すなわち、ポリエステル樹脂は、脂肪族ジオール単位及び脂肪族ジカルボン酸単位を主構成単位として含む脂肪族ポリエステル樹脂(以下、「脂肪族ポリエステル樹脂(A)」と言う場合がある。)、脂肪族ポリエステル樹脂(A)の繰り返し単位の少なくとも一部が、芳香族化合物単位に置き換えられた樹脂である脂肪族-芳香族ポリエステル樹脂(B)、脂肪族ポリエステル樹脂(A)の繰り返し単位が芳香族化合物単位に置き換えられた
樹脂である芳香族ポリエステル樹脂(ポリアリレート)(C)などが挙げられる。
(脂肪族ポリエステル樹脂(A))
脂肪族ポリエステル樹脂(A)としては、上記の式(1)で表される脂肪族ジオール単位とRが脂肪族炭化水素基である上記の式(2)で表される脂肪族ジカルボン酸単位を含む脂肪族ポリエステル樹脂;上記の式(1)で表される脂肪族ジオール単位とRが脂肪族炭化水素基である上記の式(2)で表される脂肪族ジカルボン酸単位と上記の式(3)で表される脂肪族オキシカルボン酸単位を含む脂肪族ポリエステル樹脂が好ましい。
なお、式(1)で表される脂肪族ジオール単位、Rが脂肪族炭化水素基である式(2)で表される脂肪族ジカルボン酸単位及び式(3)で表される脂肪族オキシカルボン酸単位については、前述したとおりである。また、脂肪族ポリエステル(A)として好ましい脂肪族ポリエステル樹脂についても、脂肪族ポリエステル樹脂(A)が、3官能以上の脂肪族多価アルコールと3官能以上の脂肪族多価カルボン酸若しくはその酸無水物又は3官能以上の脂肪族多価オキシカルボン酸成分とを共重合されている場合も含め、前述したとおりである。
脂肪族ポリエステル樹脂(A)としては、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンサクシネートセバケート(PBSSe)等のポリブチレンサクシネート系樹脂が特に好ましい。
(脂肪族-芳香族ポリエステル樹脂(B))
脂肪族-芳香族ポリエステル樹脂(B)は、上述の脂肪族ポリエステル樹脂(A)の繰り返し単位の少なくとも一部が、芳香族化合物単位に置き換えられた樹脂である。脂肪族-芳香族ポリエステル樹脂(B)としては、上述の式(1)で表される脂肪族ジオール単位及びRが芳香族基である上述の式(2)で表される芳香族ジカルボン酸単位を含む、脂肪族-芳香族ポリエステル樹脂;式(1)で表される脂肪族ジオール単位、Rが芳香族炭化水素基である上述の式(2)で表される芳香族ジカルボン酸単位及び式(3)で表される脂肪族オキシカルボン酸単位を含む、脂肪族-芳香族ポリエステル樹脂が好ましい。
なお、式(1)で表される脂肪族ジオール単位、Rが芳香族炭化水素基である式(2)で表される芳香族ジカルボン酸単位及び式(3)で表される脂肪族オキシカルボン酸単位については、前述したとおりである。また、脂肪族-芳香族ポリエステル(B)として好ましい脂肪族ポリエステルについても、脂肪族-芳香族ポリエステル樹脂(B)が、3官能以上の脂肪族多価アルコールと3官能以上の脂肪族多価カルボン酸若しくはその酸無水物又は3官能以上の脂肪族多価オキシカルボン酸成分とを共重合されている場合も含め、前述したとおりである。
脂肪族-芳香族ポリエステル樹脂(B)は、芳香族ジオール単位を含んでいてもよい。すなわち、脂肪族-芳香族ポリエステル樹脂(B)は、芳香族ジオール単位と脂肪族ジカルボン酸単位;芳香族ジオール単位と脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位;脂肪族ジオール単位と芳香族のジオール単位と芳香族ジカルボン酸単位;脂肪族ジオール単位と芳香族のジオール単位と脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位を有するポリエステル樹脂であってもよい。なお、ここで、芳香族ジオール成分の具体例については、上述したとおりである。
脂肪族-芳香族ポリエステル樹脂(B)は、芳香族オキシカルボン酸単位を含んでいてもよい。芳香族オキシカルボン酸単位を与える芳香族オキシカルボン酸成分の具体例としては、上述したとおりである。
脂肪族-芳香族ポリエステル樹脂(B)としては、芳香族化合物単位を与える成分として、芳香族ジカルボン酸成分を用いることが好ましく、この場合の芳香族ジカルボン酸単位の含有量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位の全量を基準(100モル%)として、10モル%以上、80モル%以下であることが好ましい。
芳香族ジカルボン酸成分としては、テレフタル酸又は2,5-フランジカルボン酸を用いることが好ましい。具体的には、脂肪族-芳香族ポリエステル樹脂(B)としては、ポリブチレンアジペートテレフタレート(PBAT)やポリブチレンサクシネートテレフタレート(PBST)、ポリブチレンセバケートテレフタレート(PBSeT)等のポリブチレンテレフタレート系樹脂、及びポリブチレンアジペートフラノエート(PBAF)やポリブチレンサクシネートフラノエート(PBSF)、ポリブチレンセバケートフラノエート(PBSeF)、ポリブチレンサクシネートセバケートフラノエート(PBSSeF)等のポリフランジカルボキシレート系樹脂が好ましい。
脂肪族-芳香族ポリエステル樹脂(B)としては、ジカルボン酸単位として、コハク酸、アジピン酸及びセバシン酸を有する樹脂が好ましい。そこで、脂肪族-芳香族ポリエステル樹脂(B)としては、PBST、PBSF、PBSSeFなどのポリブチレンサクシネート系樹脂;PBAT、PBAF、PBASeFなどのポリブチレンアジベート系樹脂;及びPBSeT、PBSeFなどのポリブチレンセバケート系樹脂が好ましく、PBST、PBSF、PBSSeFなどのポリブチレンサクシネート-芳香族ジカルボン酸系樹脂が更に好ましい。
(芳香族ポリエステル樹脂(C))
芳香族ポリエステル樹脂(ポリアリレート)(C)は、上述の脂肪族ポリエステル樹脂(A)の繰り返し単位が、芳香族化合物単位に置き換えられた樹脂である。
芳香族ポリエステル樹脂(C)としては、上述の脂肪族-芳香族ポリエステル樹脂(B)が含んでいてもよい芳香族ジオール単位とRが芳香族炭化水素基である上述の式(2)で表される芳香族ジカルボン酸単位を含む芳香族ポリエステル樹脂;脂肪族-芳香族ポリエステル樹脂(B)が含んでいてもよい芳香族ジオール単位、Rが芳香族炭化水素基である上述の式(2)で表される芳香族ジカルボン酸単位及び脂肪族-芳香族ポリエステル樹脂(B)が含んでいてもよい芳香族オキシカルボン酸単位を含む芳香族ポリエステル樹脂等が挙げられる。
芳香族ポリエステル樹脂(C)に含まれる各単位等については、上述したとおりである。
ポリエステル樹脂の製造方法は、ポリエステルの製造に関する公知の方法が採用できる。また、この際の重縮合反応は、従来から採用されている適切な条件を設定することができ、特に制限されない。通常、エステル化反応を進行させた後、減圧操作を行うことによって更に重合度を高める方法が採用される。
ポリエステル樹脂の製造時に、ジオール単位を形成するジオール成分とジカルボン酸単位を形成するジカルボン酸成分とを反応させる場合には、製造されるポリエステル樹脂が目的とする組成を有するように、ジオール成分及びジカルボン酸成分の使用量を調整する。通常、ジオール成分とジカルボン酸成分とは、実質的に等モル量で反応するが、ジオール成分は、エステル化反応中に留出することから、通常はジカルボン酸成分よりも1モル%~20モル%過剰に用いる。
ポリエステル樹脂に、オキシカルボン酸単位、多官能成分単位等の成分を共重合させる場合、そのオキシカルボン酸単位及び多官能成分単位についても、それぞれ目的とする組
成となるように、それぞれに対応する化合物(モノマー又はオリゴマー)を反応に供すればよい。このとき、これらの成分を反応系に導入する時期及び方法に制限はなく、ポリエステル樹脂を製造できる限り任意である。
例えば、ポリエステル樹脂に、オキシカルボン酸を共重合させる場合には、オキシカルボン酸成分を導入する時期は、ジオール成分とジカルボン酸成分との重縮合反応前であれば特に限定されず、予め触媒をオキシカルボン酸溶液に溶解させた状態で混合する方法、原料仕込み時に触媒を反応系に導入すると同時に混合する方法等が挙げられる。
多官能成分単位を形成する化合物の導入時期は、重合初期の他のモノマー又はオリゴマーと同時に仕込むようにしても、或いは、エステル交換反応後、減圧を開始する前に仕込むようにしてもよいが、他のモノマー又はオリゴマーと同時に仕込む方が工程の簡略化の点で好ましい。
ポリエステル樹脂は、通常、触媒の存在下で製造される。触媒としては、公知のポリエステル樹脂の製造に用いることのできる触媒を、本発明の効果を著しく損なわない限り任意に選択することができる。その例を挙げると、ゲルマニウム、チタン、ジルコニウム、ハフニウム、アンチモン、スズ、マグネシウム、カルシウム、亜鉛等の金属化合物が好適である。中でもゲルマニウム化合物、チタン化合物が好適である。
触媒として使用できるゲルマニウム化合物としては、例えば、テトラアルコキシゲルマニウム等の有機ゲルマニウム化合物、酸化ゲルマニウム、塩化ゲルマニウム等の無機ゲルマニウム化合物等が挙げられる。中でも、価格、入手の容易さなどから、酸化ゲルマニウム、テトラエトキシゲルマニウム又はテトラブトキシゲルマニウム等が好ましく、特には、酸化ゲルマニウムが好適である。
触媒として使用できるチタン化合物としては、例えば、テトラプロピルチタネート、テトラブチルチタネート、テトラフェニルチタネート等のテトラアルコキシチタン等の有機チタン化合物が挙げられる。中でも、価格、入手の容易さなどから、テトラプロピルチタネート、テトラブチルチタネート等が好ましい。
また、本発明の目的を損なわない限り、他の触媒の併用を妨げない。なお、触媒は1種類を単独で用いても、2種類以上を任意の組み合わせと比率で併用してもよい。
触媒の使用量は、本発明の効果を著しく損なわない限り任意であるが、使用するモノマー量に対して、通常0.0005重量%以上、より好ましくは0.001重量%以上、また、通常3重量%以下、好ましくは1.5重量%以下である。触媒量を上記範囲内とすることで、製造コストを抑えつつ十分な触媒効果が得られ、かつ、得られるポリマーの着色又は耐加水分解性の低下を抑制することができる。
触媒の導入時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に導入しておいてもよく、減圧開始時に導入してもよい。脂肪族オキシカルボン酸単位を導入する場合は、原料仕込み時に乳酸、グリコール酸等の脂肪族オキシカルボン酸単位を形成するモノマー又はオリゴマーと同時に導入するか、又は脂肪族オキシカルボン酸水溶液に触媒を溶解して導入する方法が好ましく、特に、重合速度が大きくなるという点で脂肪族オキシカルボン酸水溶液に触媒を溶解して導入する方法が好ましい。
ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応する際の温度、重合時間、圧力等の反応条件は、本発明の効果を著しく損なわない限り任意である。但し、ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交
換反応の反応温度は、下限が、通常150℃以上、好ましくは180℃以上であり、上限が、通常260℃以下、好ましくは250℃以下である。また、反応雰囲気は、通常、窒素、アルゴン等の不活性雰囲気下で反応させる。反応圧力は、通常、常圧~10kPaであるが、中でも常圧が好ましい。また、反応時間は、下限が、通常1時間以上であり、上限が通常10時間以下、好ましくは6時間以下、より好ましくは4時間以下である。反応条件を上記範囲内とすることで、不飽和結合の過剰生成によるゲル化が抑制され、重合度をコントロールすることができる。
また、ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応後の重縮合反応における圧力は、下限が、通常0.01×10Pa以上、好ましくは0.03×10Pa以上であり、上限が、通常1.4×10Pa以下、好ましくは0.4×10Pa以下の真空度下で行うことが望ましい。また、この時の反応温度は、下限が、通常150℃以上、好ましくは180℃以上であり、上限が、通常260℃以下、好ましくは250℃以下である。反応時間は、下限が、通常2時間以上であり、上限が、通常15時間以下、好ましくは10時間以下である。反応条件を上記範囲内とすることで、不飽和結合の過剰生成によるゲル化が抑制され、重合度をコントロールすることができる。
ポリエステル樹脂の製造時には、カーボネート化合物、ジイソシアネート化合物等の鎖延長剤を使用することもできる。この場合、鎖延長剤の量は、ポリエステル樹脂を構成する全構成単位に対する、カーボネート結合又はウレタン結合の割合として、通常10モル%以下、好ましくは5モル%以下、より好ましくは3モル%以下である。本実施形態に係る生分解性樹脂組成物の生分解性の観点から、ポリエステル樹脂を構成する全構成単位に対し、カーボネート結合は1モル%未満であることが好ましく、0.5モル%以下であることがより好ましく、0.1モル%以下であることが更に好ましい。ウレタン結合は0.5モル%以下であることが好ましく、0.3モル%以下であることがより好ましく、0.12モル%以下であることが更に好ましく、0.05モル%以下であるのが特に好ましい。この量を、ポリエステル樹脂組成物に対する重量%に換算すると、0.9重量%以下が好ましく、0.5重量%以下がより好ましく、0.2重量%以下がさらに好ましく、0.1重量%以下が特に好ましい。特に、ウレタン結合量を上記範囲内とすることで、成膜工程等において、ウレタン結合分解に起因する発煙及び臭気が抑制され、また、溶融膜中の発泡による膜切れが抑制されるため成形安定性を確保することができる。なお、ポリエステル樹脂中のカーボネート結合量又はウレタン結合量は、H-NMR及び13C-NMR等のNMRの測定結果から算出することができる。
鎖延長剤としてのカーボネート化合物としては、具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、エチレンカーボネート、ジアミルカーボネート、ジシクロヘキシルカーボネート等が例示される。その他、フェノール類、アルコール類のようなヒドロキシ化合物から誘導されるカーボネート化合物も使用可能である。
ジイソシアネート化合物としては、具体的には、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合体、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,4,6-トリイソプロピルフェニルジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリジンジイソシアネート等の公知のジイソシアネート等が例示される。
また、その他の鎖延長剤として、ジオキサゾリン、珪酸エステル等を使用してもよい。
珪酸エステルとしては、具体的には、テトラメトキシシラン、ジメトキシジフェニルシラン、ジメトキシジメチルシラン、ジフェニルジヒドロキシシラン等が例示される。
これらの鎖延長剤(カップリング剤)を用いた高分子量ポリエステル樹脂についても、従来公知の技術を用いて製造することが可能である。鎖延長剤は、通常、重縮合終了後、均一な溶融状態で無溶媒にて反応系に添加し、重縮合により得られたポリエステルと反応させる。
より具体的には、ジオール成分とジカルボン酸成分とを触媒反応させて得られる、末端基が実質的にヒドロキシル基を有するポリエステル樹脂に、鎖延長剤を反応させることにより、より高分子量化したポリエステル樹脂を得ることができる。重量平均分子量が20000以上のプレポリマーは、少量の鎖延長剤の使用により、溶融状態のような苛酷な条件下でも、残存触媒の影響を受けないので反応中にゲルを生ずることなく、高分子量のポリエステル樹脂を製造することができる。ここで、ポリエステル樹脂の重量平均分子量(Mw)は、溶媒をクロロホルムとし、測定温度40℃でゲルパーミエーションクロマトグラフィー(GPC)による測定値から単分散ポリスチレンによる換算値として求められる。
そこで、例えば、鎖延長剤として上述のジイソシアネート化合物を用いて、ポリエステル樹脂を更に高分子量化する場合におけるプレポリマーの重量平均分子量は、20000以上が好ましく、40000以上がより好ましい。重量平均分子量が高いと、高分子量化するためのジイソシアネート化合物の使用量が少量で済むため、耐熱性が低下し難い。このようにして、ジイソシアネート化合物に由来するウレタン結合を介して連鎖した線状構造を有するウレタン結合を有するポリエステル樹脂が製造される。
鎖延長時の圧力は、0.01MPa以上が好ましく、0.05MPa以上がより好ましく、0.07MPa以上が更に好ましい。また、一方で、鎖延長時の圧力は、1MPa以下が好ましく、は0.5MPa以下がより好ましく、0.3MPa以下が更に好ましい。そして、鎖延長時の圧力は、常圧が最も好ましい。
鎖延長時の反応温度は、下限が、100℃以上が好ましく、150℃以上がより好ましく、190℃以上が更に好ましく、200℃以上が特に好ましい。また、一方で、鎖延長時の反応温度は、上限が、250℃以下が好ましく、240℃以下がより好ましく、230℃以下が更に好ましい。反応温度を上記範囲内とすることで、反応液が適切な粘度に維持されるため、均一な反応が可能となり、高い攪拌動力を要することなく十分に反応液を攪拌することができ、また、ポリエステル樹脂のゲル化又は分解の併発を抑制することができる。
鎖延長反応を行う時間は、下限が、0.1分以上が好ましく、1分以上がより好ましく、5分以上が更に好ましい。また、一方で、鎖延長反応を行う時間は、上限が、5時間以下が好ましく、1時間以下がより好ましく、30分以下が更に好ましく、15分以下が特に好ましい。鎖延長時間を上記範囲内とすることで、所望の分子量に鎖延長させることができ、また、ポリエステル樹脂のゲル化又は分解の併発を抑制することができる。
(脂肪族オキシカルボン酸樹脂(D))
本実施形態に係る生分解性樹脂組成物に含有される樹脂としては、脂肪族オキシカルボン酸樹脂も好ましく用いられる。脂肪族オキシカルボン酸樹脂(D)は、脂肪族オキシカルボン酸単位を主構成単位とするものである。脂肪族オキシカルボン酸樹脂(D)として
は、例えば、上述の式(3)で表される脂肪族オキシカルボン酸単位を含む脂肪族オキシカルボン酸樹脂等が挙げられる。
脂肪族オキシカルボン酸樹脂(D)における、脂肪族オキシカルボン酸単位及び当該単位を与える成分は、上述の脂肪族ポリエステル樹脂(A)における脂肪族オキシカルボン酸単位及び脂肪族オキシカルボン酸成分と同様に定義され、好ましい態様も同様である。
脂肪族オキシカルボン酸樹脂(D)としては、具体的には、ポリ乳酸(PLA)又はポリカプロラクトン(PCL)が好ましく、ポリカプロラクトンがより好ましい。
また、生分解性に影響を与えない範囲であれば、脂肪族オキシカルボン酸樹脂(D)には、ウレタン結合、アミド結合、カーボネート結合、エーテル結合等を導入してもよい。
脂肪族オキシカルボン酸樹脂(D)の製造方法は、特に限定されるものではなく、オキシカルボン酸の直接重合法、あるいは環状体の開環重合法等公知の方法で製造することができる。
脂肪族オキシカルボン酸樹脂(D)としては、以下に説明するポリヒドロキシアルカノエート(E)も好ましく用いることができる。
本実施形態において好適に用いられるポリヒドロキシアルカノエート(E)は、一般式:[-CHR-CH-CO-O-](式中、Rは炭素数1以上15以下のアルキル基である。)で示される繰り返し単位を含む脂肪族ポリエステルであり、3-ヒドロキシブチレート単位と3-ヒドロキシヘキサノエート単位を主たる構成単位として含む共重合体である。
ポリヒドロキシアルカノエート(E)は、成形性、熱安定性の観点から、構成成分として3-ヒドロキシブチレート単位を80モル%以上含むことが好ましく、85モル%以上含むことがより好ましい。また、ポリヒドロキシアルカノエート(E)は、微生物によって生産されたものが好ましい。ポリヒドロキシアルカノエート(E)の具体例としては、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂等が挙げられる。
特に、成形加工性及び得られる成形体の物性の観点から、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂、すなわち、PHBHが好ましい。
ポリヒドロキシアルカノエート(E)において、3-ヒドロキシブチレート(以下、3HBと称する場合がある)と、共重合している3-ヒドロキシヘキサノエート(以下、3HHと称する場合がある)等のコモノマーとの構成比、すなわち、共重合樹脂中のモノマーのモル比は、成形加工性及び成形体品質等の観点から、3-ヒドロキシブチレート/コモノマーは、97/3以上であることが好ましく、95/5以上であることがより好ましく、また、一方で、80/20以下であることが好ましく、85/15であることがより好ましい。モノマー比率を上記範囲内とすることにより、成形加工温度と熱分解温度との開きが大きくなるため、成形加工が容易となり、また、結晶化速度が適切な範囲となり、生産性を確保することができる。
ポリヒドロキシアルカノエート(E)中の各モノマー比率は、以下のようにガスクロマトグラフィーによって測定できる。
乾燥させた20mgのポリヒドロキシアルカノエートを試料容器に入れ、これに2mlの硫酸/メタノール混液(15/85(質量比))と2mlのクロロホルムを添加して密
栓し、100℃で140分間加熱して、ポリヒドロキシアルカノエートを分解させることにより、メチルエステルを得る。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生が止まるまで放置する。4mlのジイソプロピルエーテルを添加して、しっかりと混合した後、上清中の試料分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析することによって、共重合樹脂中の各モノマーの比率を求めることができる。
ポリヒドロキシアルカノエート(E)は、例えば、Alcaligenes eutrophusにAeromonas caviae由来のポリヒドロキシアルカノエート合成酵素遺伝子を導入したAlcaligenes eutrophus AC32株(ブダペスト条約に基づく国際寄託、国際寄託当局:独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1中央第6)、原寄託日:平成8年8月12日、平成9年8月7日に移管、寄託番号FERM BP-6038(原寄託FERM P-15786より移管))(J.Bacteriol.,179,4821(1997))等の微生物によって産生されることができる。
ポリヒドロキシアルカノエート(E)としては、市販品を用いることもできる。3-ヒドロキシブチレート単位及び3-ヒドロキシヘキサノエート単位を主構成単位として含むポリヒドロキシアルカノエート(E)の市販品としては、カネカ社製「PHBH X331N」、「PHBH X131A」、「PHBH X151A」等を用いることができる。
本実施形態においては、上述のポリヒドロキシアルカノエート(E)を含め、脂肪族オキシカルボン酸樹脂(D)は1種類に限らず、構成単位の種類、構成単位比、製造方法、物性等の異なる2種類以上の脂肪族オキシカルボン酸樹脂(D)をブレンドして用いることができる。
樹脂の30℃における還元粘度ηsp/cは、0.5dL/g以上である。樹脂の還元粘度は、用途、加工方法等に応じて適宜選択すればよい。具体的には、樹脂の30℃における還元粘度は、0.8dL/g以上であることが好ましく、1.0dL/g以上であることが更に好ましく、1.2dL/g以上であることが特に好ましく、また、一方で、4.0dL/g以下であることが好ましく、3.0dL/g以下であることがより好ましく、2.5dL/g以下であることが更に好ましく、2.3dL/g以下であることが特に好ましい。
樹脂の還元粘度を上記範囲内とすることにより、成形体に加工した際の機械物性を確保することができ、また、成形加工時の生分解性樹脂組成物の溶融粘度が、押出機、射出機等の成形機に過度な負荷をかけない程度となり、生産性を確保することができる。
樹脂の還元粘度は、通常、以下の方法により測定することができる。先ず、樹脂を溶媒に溶解させ、濃度c(g/dL)の樹脂溶液を調製する。次いで、毛細管粘度計(ウベローデ粘度計)を用いて、温度30.0℃±0.1℃の条件で溶媒の通過時間tと樹脂溶液の通過時間tを測定し、次式(i)に基づいて相対粘度ηrelを算出する。そして、相対粘度ηrelから、次式(ii)に基づいて比粘度ηspを求める。
ηrel=t/t ・・・(i)
ηsp=ηrel-1 ・・・(ii)
得られた比粘度ηspを濃度c(g/dL)で割ることにより、還元粘度ηsp/cを求めることができる。なお、通常、この値が高いほど分子量が大きい。
樹脂の分子量は、通常、ゲルパーミエーションクロマトグラフィー(GPC)により測定する。本実施形態に係る生分解性樹脂組成物に含有される樹脂は、成形性と機械強度の
観点から、単分散ポリスチレンを標準物質とした重量平均分子量(Mw)が以下の範囲であることが好ましい。すなわち、樹脂の分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることが更に好ましく、50,000以上であることが特に好ましい。また、一方で、2,500,000以下であることが好ましく、1,000,000以下であることがより好ましく、800,000以下であることが更に好ましく、600,000以下であることが特に好ましく、500,000以下であることが殊更好ましく、400,000以下であることが最も好ましい。
また、特に、ポリヒドロキシアルカノエート樹脂の重量平均分子量(Mw)については、200,000以上であることが好ましく、250,000以上であることがより好ましく、300,000以上であることが更に好ましい。また、一方で、ポリヒドロキシアルカノエート樹脂の重量平均分子量(Mw)は、2,500,000以下であることが好ましく、2,000,000以下であることがより好ましく、1,000,000以下で
あることが更に好ましい。
樹脂のメルトフローレート(MFR)は、JIS K 7210(1999年)に基づいて、190℃、荷重2.16kgで測定した値で評価できる。本実施形態に係る生分解性樹脂組成物に含有される樹脂のMFRは、成形性と機械強度の観点から、以下の範囲であることが好ましい。すなわち、0.1g/10分以上であることが好ましく、1g/10分以上であることがより好ましい。また、一方で、樹脂のMFRは、100g/10分以下であることが好ましく、80g/10分以下であることがより好ましく、50g/10分以下であることが更に好ましく、40g/10分以下であることが特に好ましく、30g/10分以下であることが最も好ましい。なお、樹脂のMFRは、分子量等により調整することが可能である。
樹脂の融点は、以下の範囲内とすることにより、良好な成形性を確保することができる。すなわち、樹脂の融点は、60℃以上が好ましく、70℃以上がより好ましく、75℃以上が更に好ましく、80℃以上が特に好ましく、また、一方で、270℃以下が好ましく、200℃以下がより好ましく、150℃以下が更に好ましく、140℃以下が特に好ましく、130℃以下が殊更好ましい。なお、樹脂に融点が複数存在する場合には、少なくとも1つの融点が上記範囲内にあることが好ましい。
また、特に、ポリヒドロキシアルカノエート樹脂の融点については、100℃以上が好ましく、110℃以上がより好ましく、また、一方で、180℃以下が好ましく、170℃以下がより好ましく、160℃未満が特に好ましい。
樹脂の弾性率は、良好な成形加工性及び耐衝撃強度を確保することができることから、180MPa以上であることが好ましく、また、一方で、2000MPa以下であることが好ましい。Sアミノ化合物(I)等の化合物との樹脂組成物とすることにより、生分解性が向上すれば、特に限定されるものではなく、上述の好ましい樹脂以外の樹脂からなる樹脂でも構わない。
[その他成分]
本実施形態に係る生分解性樹脂組成物は、本発明の効果を大幅に損なわない限りにおいて、フィラー(充填剤)、可塑剤、帯電防止剤、酸化防止剤、光安定剤、紫外線吸収剤、染料、顔料、加水分解防止剤、結晶核剤、アンチブロッキング剤、耐候剤、熱安定剤、難燃剤、離型剤、防曇剤、表面ぬれ改善剤、焼却補助剤、分散助剤、各種界面活性剤、スリップ剤、鮮度保持剤、抗菌剤等の各種添加剤等のその他成分を含んでいてもよい。これらの成分を含む場合、その成分は、1種類のみでも、2種類以上を含んでもよい。
生分解性樹脂組成物中にその他成分が含まれる場合の含有量は、生分解性樹脂組成物の特性を損なわない観点から、生分解性樹脂組成物の総量に対して、40重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることが更に好ましく、5重量%以下であることが特に好ましい。なお、その他成分の含有量の下限は特に限定されない。
[生分解性樹脂組成物の生分解度]
本明細書において、生分解度は、理論的酸素要求量(ThOD)に対する生物学的酸素要求量(BOD)の比率として算出される。
例えば、海水中での生分解に関しては、ISO 14851:1999(プラスチック-水系培養液中の好気的究極生分解度の求め方-発生二酸化炭素量の測定による方法)に準拠して測定され;土壌中の生分解に関してはISO 17556:2003(プラスチック-呼吸計を用いた酸素消費量又は発生した二酸化炭素量の測定による土壌中での好気的究極生分解度の求め方)に準拠して測定される。
本実施形態に係る生分解性樹脂組成物は、生分解性試験開始後任意の時点における生分解度が、本実施形態に係る生分解性樹脂組成物から上述のアミノ化合物(I)等の化合物を除いた組成物(以下、「基準組成物」と称することがある。)の生分解度の1.0倍を超えることが好ましい(以下、基準組成物の生分解度に対する生分解度の上昇倍率を「生分解向上度」と称することがある。)。具体的には、上記規格に準拠した生分解性試験開始後28日目において、本実施形態に係る生分解性樹脂組成物の生分解向上度は、1.1倍以上であることがより好ましく、1.2倍以上であることが更に好ましく、2.5倍以上であることが特に好ましい。
なお、本明細書において、生分解度が高いとは、生分解性試験開始後任意の時点における生分解性樹脂組成物の生分解向上度が、1.0倍超、1.1倍以上又は1.2倍以上であることを意味する。
[生分解性樹脂組成物の製造方法]
本実施形態に係る生分解性樹脂組成物の製造方法は、特に限定されない。本実施形態に係る生分解性樹脂組成物は、樹脂、アミノ化合物(I)等の化合物及び必要に応じてその他樹脂やその他成分を混合することにより得られる。生分解性樹脂組成物の製造は、例えば、各成分を、所定の割合で同時に又は任意の順序で、タンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合又は混練し、好ましくはさらに溶融混練することにより行うことができる。或いは、樹脂とアミノ化合物(I)等の化合物とを溶媒中に溶解又は分散させ、溶媒を除去することにより、製造することもできる。
生分解性樹脂組成物の生分解度及び生分解速度、特に初期生分解速度を向上させる観点からは、生分解性樹脂組成物中、アミノ化合物(I)等の化合物が均一に分散していることが好ましい。そこで、生分解性樹脂組成物は、混練により製造することが好ましい。
混練に使用する混練機は溶融混練機であってもよい。また、押出機は、二軸押出機、単軸押出機のいずれでもよいが、二軸押出機がより好ましい。
溶融混練を行う場合、溶融混練温度は、好ましくは80℃以上、より好ましくは100℃以上がよく、また、一方で、好ましくは220℃以下、より好ましくは210℃以下がよい。この温度範囲であると、短時間で溶融混練することができ、樹脂の劣化やアミノ化合物(I)等の化合物の炭化に伴う色調の悪化等が起こり難く、また、耐衝撃性、耐湿熱性等の実用面での物理特性がより優れた樹脂組成物となりやすい。
溶融混練時間は、アミノ化合物(I)等の化合物が生分解性樹脂中に均一に分散し得る
限り特に限定されないが、同様に、樹脂の劣化等が起こり難いことから、短時間で行うことが望ましい。具体的には、溶融混練時間は、好ましくは10秒以上、より好ましくは30秒以上であり、また、一方で、好ましくは20分以下、より好ましくは15分以下である。
[成形体]
本実施形態に係る生分解性樹脂組成物は、汎用プラスチックに適用される各種成形法により成形することができる。成形法としては、例えば、圧縮成形(圧縮成形、積層成形、スタンパブル成形)、射出成形、押出成形、共押出成形(インフレ法又はTダイ法によるフィルム成形、ラミネート成形、パイプ成形、電線/ケーブル成形、異形材の成形)、熱プレス成形、中空成形(各種ブロー成形)、カレンダー成形、固体成形(一軸延伸成形、二軸延伸成形、ロール圧延成形、延伸配向不織布成形、熱成形(真空成形、圧空成形)、塑性加工、粉末成形(回転成形)、各種不織布成形(乾式法、接着法、絡合法、スパンボンド法等)等が挙げられる。中でも、好適には、射出成形、押出成形、圧縮成形又は熱プレス成形が適用され、より好適には射出成形又は押出成形が適用される。具体的な形状としては、シート、フィルム、容器への適用が好ましい。
また、本実施形態に係る生分解性樹脂組成物を成形してなる成形体には、化学的機能、電気的機能、磁気的機能、力学的機能、摩擦/摩耗/潤滑機能、光学的機能、熱的機能、生体適合性等の表面機能等の付与を目的として、各種の二次加工を施すことも可能である。二次加工の例としては、エンボス加工、塗装、接着、印刷、メタライジング(めっき等)、機械加工、表面処理(帯電防止処理、コロナ放電処理、プラズマ処理、フォトクロミズム処理、物理蒸着、化学蒸着、コーティング等)等が挙げられる。
[用途]
本実施形態に係る生分解性樹脂組成物を成形してなる成形体は、各種食品、薬品、雑貨等の液状物、粉粒物、固形物等を包装するための包装用資材、農業用資材、建築資材等幅広い用途において好適に用いられる。具体的用途としては、射出成形体(例えば、生鮮食品のトレー、ファーストフードの容器、コーヒーカプセルの容器、カトラリー、野外レジャー製品等)、押出成形体(例えば、フィルム、シート、釣り糸、漁網、植生ネット、2次加工用シート、保水シート等)、中空成形体(ボトル等)等が挙げられる。更に、その他農業用のフィルム、コーティング資材、肥料用コーティング材、育苗ポット、ラミネートフィルム、板、延伸シート、モノフィラメント、不織布、フラットヤーン、ステープル、捲縮繊維、筋付きテープ、スプリットヤーン、複合繊維、ブローボトル、ショッピングバッグ、ゴミ袋、コンポスト袋、化粧品容器、洗剤容器、漂白剤容器、ロープ、結束材、衛生用カバーストック材、保冷箱、クッション材フィルム、マルチフィラメント、合成紙、医療用として手術糸、縫合糸、人工骨、人工皮膚、マイクロカプセル等のDDS、創傷被覆材等が挙げられる。当該成形体は、食品包装用フィルム、生鮮食品のトレー、ファーストフードの容器、弁当箱等の食品用向けの容器として特に好適である。
以下、実施例及び比較例を用いて、本発明の内容を更に具体的に説明する。本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。以下の実施例における各種の製造条件又は評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
<樹脂>
(PBSSe)
1,4-ブタンジオール(100.1g)、コハク酸(75.0g)、セバシン酸(3
2.1g)、トリメチロールプロパン(0.34g)及びチタンテトラブトキシド(0.50g)を窒素下、200℃で2時間攪拌しながら加熱した。続けて、減圧しながら250℃まで昇温し、5時間15分反応させて得られたポリマーをストランド状に水中に抜き出し、カッティングすることでペレット状のPBSSeを得た。
下記測定方法に従ってPBSSeの還元粘度を測定したところ、1.8dL/gであった。
(PBSA)
BioPBSTM FD92PB(PTT MCC Biochem社製)
下記測定方法に従ってPBSAの還元粘度を測定したところ、2.3dL/gであった。
(PBS)
BioPBSTM FZ91PB(PTT MCC Biochem社製)
下記測定方法に従ってPBSの還元粘度を測定したところ、2.2dL/gであった。
<アミノ化合物(I)等の化合物>
エチレンジアミン二塩酸塩(分子量133.02)
トリメチレンジアミン二塩酸塩(分子量147.04)
テトラメチレンジアミン二塩酸塩(分子量161.07)
ペンタメチレンジアミン二塩酸塩(分子量175.10)
ヘキサメチレンジアミン二塩酸塩(分子量189.12)
ヘプタメチレンジアミン(分子量130.24)
オクタメチレンジアミン(分子量144.26)
エチレンアミン塩酸塩(分子量81.54)
プロピルアミン塩酸塩(分子量95.57)
ブチルアミン塩酸塩(分子量109.60)
ペンチルアミン(分子量87.17)
ヘキシルアミン(分子量101.19)
イソブチルアミン塩酸塩(分子量109.60)
3,3‘-ジアミノ-N-メチルジプロピルアミン(分子量145.25)
N-ベンジル1,3-プロパンジアミン(分子量164.25)
ビス(3-アミノプロピル)アミン(分子量131.22)
N,N’-ビス(3-アミノプロピル)-1,4-ブタンジアミン四塩酸塩(分子量348.18)
N-(3-アミノプロピル)テトラメチレンジアミン(分子量145.25)
アラニン(分子量89.09)
グリシン(分子量75.07)
アスパラギン(分子量132.12)
アスパラギン酸(分子量133.10)
グルタミン(分子量146.15)
グルタミン酸(分子量147.13)
バリン(分子量117.15)
ロイシン(分子量131.16)
イソロイシン(分子量131.16)
システイン(分子量121.16)
メチオニン(分子量149.21)
リシン(分子量146.19)
ヒスチジン(分子量155.16)
アルギニン(分子量174.21)
フェニルアラニン(分子量165.19)
チロシン(分子量181.19)
トリプトファン(分子量204.21)
トレオニン(分子量119.12)
セリン(分子量105.09)
プロリン(分子量115.13)
N-アセチルグルコサミン(分子量221.21)
<その他の化合物>
ポリエチレンイミン(重量平均分子量66000)
(還元粘度の測定方法)
フェノールとテトラクロロエタンとの1:1(重量比)混合溶媒に、樹脂を0.5g/dLとなるように溶解させ、樹脂溶液を調製した。次いで、ウベローデ粘度管を用い、30℃における樹脂溶液の溶液粘度を測定し、その結果に基づいて還元粘度を算出した。
<比較例1>
PBSSeを、粒子径(ふるい分け法)が250μm以下となるように粉砕することにより、粉砕樹脂を得た。
<比較例3>
PBSAを、粒子径(ふるい分け法)が250μm以下となるように粉砕することにより、粉砕樹脂を得た。
<比較例4>
PBSを、粒子径(ふるい分け法)が250μm以下となるように粉砕することにより、粉砕樹脂を得た。
<実施例1~41、44、比較例2>
粉砕樹脂とアミノ化合物(I)等の化合物等を、表1~5に示す割合で合計30mgになるよう混合した。
<実施例42、43、45、46>
PBSAとテトラメチレンジアミン塩酸塩を表4及び5に示す割合でブレンドし、小型二軸混練機(DSM社製「Xplore MC15 Micro Compounder」)に投入し、窒素雰囲気下、150℃で3分間溶融混練した。得られた混練物を、粒子径(ふるい分け法)が250um以下となるよう粉砕し、生分解性樹脂組成物を得た。
<生分解度の測定方法>
実施例1~46及び比較例1~4で得られた樹脂又は樹脂組成物の生分解度を、ISO
14851に準拠し、以下の通り測定した。
試料30mgを入れた510mLの褐色瓶に、ISO 14851に準拠した方法で調整した標準試験培養液と海水の混合液100mLを加えた。褐色瓶に圧力センサー(WTW社製、OxiTop(登録商標)-C型)を取り付け、25℃の恒温環境下、28日間試験液をスターラーで攪拌し、BOD測定に基づいて生分解度(%)を算出した。結果を表1~5に示す。
Figure 2023072094000003
Figure 2023072094000004
Figure 2023072094000005
Figure 2023072094000006
Figure 2023072094000007
実施例1~43と比較例1との比較、実施例44、45と比較例3との比較及び実施例
46と比較例4との比較より、アミノ化合物(I)等の化合物により、樹脂の生分解度が著しく向上していることが裏付けられた。ここで、ポリエチレンイミンで生分解度が低下した原因としては、ポリエチレンイミンは分子量が大きいために、ポリエチレンイミン自体が生分解されにくく、分解によるアミノ基の生成が生じにくいこと、生分解性樹脂組成物表面付近に存在するポリエチレンイミンが樹脂の微生物との接触を阻害したこと等が考えられる。すなわち、アミノ化合物(I)等の化合物は、分子量が小さいために、生分解されやすく、分解によるアミノ基の生成が生じやすく、生分解性樹脂組成物表面付近に存在するアミノ化合物(I)等の化合物が樹脂の微生物との接触の妨げになり難いため、生分解度が向上すると考えられる。
また、実施例1~18、21~43と比較例2とを比較すると、ポリエチレンイミンを含む樹脂ではむしろ生分解度が低下していたのに対し、アミノ化合物(I)等の化合物を含むことにより、生分解度が向上していたことがわかった。
アミノ化合物(I)等の化合物の含有量については、N-(3-アミノプロピル)テトラメチレンジアミンを含有しない比較例1に対し、その含有量が1重量%である実施例19の生分解性樹脂組成物は生分解度が1.2倍になり、その含有量が5重量%である実施例20の生分解性樹脂組成物では、生分解度が更に高い3.6倍であった。特に、樹脂とアミノ化合物(I)等の化合物を混練して得られた生分解性樹脂組成物については、実施例42、43、45、46のとおり、生分解度が3~7倍と顕著に向上することがわかった。

Claims (9)

  1. 樹脂と下記一般式(I)で表されるアミン化合物及びその塩から選択される1種以上の化合物を含有し、前記樹脂の30℃における還元粘度が0.5dL/g以上であり、前記化合物の含有量が0.001重量%以上50重量%以下であり、前記化合物の分子量が10000未満である、生分解性樹脂組成物。
    Figure 2023072094000008

    (式中、R、R’及びR’’は、それぞれ独立に水素原子又は置換基を有していてもよい1価の有機基を表す。)
  2. 生分解度が、前記生分解性樹脂組成物から前記化合物を除いた組成物の生分解度の1.1倍以上である、請求項1に記載の生分解性樹脂組成物。
  3. 前記一般式(I)におけるR、R’及びR’’の少なくとも何れか1つが置換基を有していてもよい脂肪族炭化水素である、請求項1又は2に記載の生分解性樹脂組成物。
  4. 前記アミン化合物が、脂肪族モノアミン、脂肪族ジアミン及びアミノ酸の少なくとも何れかである、請求項1~3の何れか1項に記載の生分解性樹脂組成物。
  5. 前記樹脂が生分解性樹脂である、請求項1~4の何れか1項に記載の生分解性樹脂組成物。
  6. 前記樹脂がポリエステル樹脂である、請求項1~5の何れか1項に記載の生分解性樹脂組成物。
  7. 前記ポリエステル樹脂が、ジオール単位として、1,4-ブタンジオール、1,3-プロパンジオール及びエチレングリコールよりなる群から選ばれる1種類以上を有する、請求項6に記載の生分解性樹脂組成物。
  8. 前記ポリエステル樹脂が、ジカルボン酸単位として、炭素数2~22のジカルボン酸を有する、請求項6又は7に記載の生分解性樹脂組成物。
  9. 請求項1~8の何れか1項に記載の生分解性樹脂組成物を含む、成形体。
JP2020061808A 2020-03-31 2020-03-31 生分解性樹脂組成物及び成形体 Pending JP2023072094A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020061808A JP2023072094A (ja) 2020-03-31 2020-03-31 生分解性樹脂組成物及び成形体
PCT/JP2021/014070 WO2021201185A1 (ja) 2020-03-31 2021-03-31 生分解性樹脂組成物及び成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061808A JP2023072094A (ja) 2020-03-31 2020-03-31 生分解性樹脂組成物及び成形体

Publications (1)

Publication Number Publication Date
JP2023072094A true JP2023072094A (ja) 2023-05-24

Family

ID=77927906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061808A Pending JP2023072094A (ja) 2020-03-31 2020-03-31 生分解性樹脂組成物及び成形体

Country Status (2)

Country Link
JP (1) JP2023072094A (ja)
WO (1) WO2021201185A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2023007521A (es) 2020-12-23 2023-07-06 Kintra Fibers Inc Nanocompuestos de polimeros de poliester.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236325A1 (en) * 2002-05-30 2003-12-25 Michela Bonora Agricultural articles
JP5120925B2 (ja) * 2007-04-30 2013-01-16 住友ゴム工業株式会社 タイヤ用ゴム組成物およびこれを用いた空気入りタイヤ
JP5436410B2 (ja) * 2008-03-11 2014-03-05 株式会社カネカ 樹脂組成物
JP2012057120A (ja) * 2010-09-13 2012-03-22 Kaneka Corp 生分解性ポリエステル系樹脂組成物およびその製造方法並びに生分解性ポリエステル系樹脂成形体および生分解性ポリエステル系樹脂繊維
JP2018139560A (ja) * 2017-02-28 2018-09-13 三菱ケミカルアグリドリーム株式会社 農業用生分解性フィルム

Also Published As

Publication number Publication date
WO2021201185A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
CN111801385B (zh) 成形体、片材及容器,以及管状体、吸管、棉签及气球用杆
JP2003313436A (ja) 生分解性プラスチック組成物とその成形品及び生分解速度制御方法
CN102070880A (zh) 一种生物降解树脂组合物及其制品
US20230108915A1 (en) Biodegradable resin composition and biodegradable resin molded articles
JP5200208B2 (ja) 脂肪族芳香族ポリエステル及び樹脂組成物
WO2022142512A1 (zh) 一种半芳香族聚酯及其制备方法和应用
RU2587167C2 (ru) Полиэфирная композиция
JP2011153275A (ja) ポリエステル樹脂及び樹脂組成物、並びにこれらを用いた成型体
CN114514289B (zh) 生物降解性树脂用降解促进剂、生物降解性树脂组合物、生物降解性树脂成型体、以及生物降解性树脂用降解促进剂的制造方法
KR20220125263A (ko) 개선된 기계적 특성 및 분해성을 갖는 필름을 위한 중합체 조성물
TW201331259A (zh) 脂肪族-芳香族共聚醚酯
JP7173259B1 (ja) 生分解性樹脂組成物、成形体及び生分解方法
JP2020122131A (ja) 管状体、ストロー、綿棒及び風船用スティック
JP2023072094A (ja) 生分解性樹脂組成物及び成形体
JP5167502B2 (ja) 脂肪族芳香族ポリエステル及びその樹脂組成物
JP4493993B2 (ja) 生分解性ポリエステル樹脂組成物、成形物及び農業用マルチフィルム
JP2019077823A (ja) ポリエステル系樹脂組成物およびその成形体
Sitompul et al. Improvement of properties of poly (L-lactic acid) through solution blending of biodegradable polymers
US20230365806A1 (en) Resin composition for injection molding and injection-molded article
JP2021191845A (ja) 生分解性樹脂組成物及び生分解性樹脂成形体
JP2007284595A (ja) 脂肪族ポリエステルフィルム
JP2021055084A (ja) フィルム
JP2022157778A (ja) 生分解性樹脂組成物及び成形体
WO2021201186A1 (ja) 生分解性樹脂組成物及び成形体
JP7106936B2 (ja) 成形体、シート及び容器