JP2023055960A - Disaster prevention system and fire detector - Google Patents

Disaster prevention system and fire detector Download PDF

Info

Publication number
JP2023055960A
JP2023055960A JP2023019698A JP2023019698A JP2023055960A JP 2023055960 A JP2023055960 A JP 2023055960A JP 2023019698 A JP2023019698 A JP 2023019698A JP 2023019698 A JP2023019698 A JP 2023019698A JP 2023055960 A JP2023055960 A JP 2023055960A
Authority
JP
Japan
Prior art keywords
abnormality
test
deterioration
fire
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023019698A
Other languages
Japanese (ja)
Inventor
泰周 杉山
Yasunori Sugiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2023019698A priority Critical patent/JP2023055960A/en
Publication of JP2023055960A publication Critical patent/JP2023055960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fire detector that monitors an abnormality of the fire detector which cannot be determined in a sensitivity test or smear test, and reports the abnormality before a malfunction occurs, and a disaster prevention system including the fire detector.
SOLUTION: A tunnel disaster prevention system including a fire detector that detects a fire in a detection area monitors a fire using a fire detector 12 that includes sensors 64 and 68 which serve as light receiving sensors and detect light energy emanating from the fire in the detection area. A deterioration test unit 86 of the fire detector 12 serving as an abnormality determination unit determines a deterioration abnormality on the basis of information which is used for determining the deterioration abnormality and different from information for use in determining a detection sensitivity abnormality obtained during a sensitivity test or smear test which is a test for determining the detection sensitivity abnormality that the detection sensitivities of the sensors 64 and 68 of the fire detector 12 for light energy are degraded to a predetermined level.
SELECTED DRAWING: Figure 4
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、検知エリアの火災を検出する火災検知器を設けた防災システム及びその火災検知器に関する。 TECHNICAL FIELD The present invention relates to a disaster prevention system provided with a fire detector for detecting a fire in a detection area, and its fire detector.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されている。 Conventionally, in order to protect people and vehicles from fire accidents that occur in tunnels, fire detectors are installed in tunnels such as automobile roads to monitor fires, and are connected to signal lines drawn from disaster prevention receivers. ing.

火災検知器は左右の両方向に検出エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検出エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detectors have detection areas in both the left and right directions, and along the longitudinal direction of the tunnel, the detection areas of the fire detectors placed adjacent to each other complementarily overlap each other, for example, at intervals of 25 m or 50 m. continuously spaced apart.

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、受光素子の感度を監視するための感度試験や透光性窓の汚れを監視するための汚れ試験を行っている。 In addition, fire detectors monitor radiation from fire flames generated in tunnels through translucent windows, such as infrared radiation. sensitivity tests and contamination tests to monitor the contamination of translucent windows.

受光素子の感度試験は、防災受信盤から定期的に送信される試験信号を受信した場合に、疑似的な炎からの光に相当する試験光を試験用光源から受光素子に入射して受光感度を検出し、受光感度が所定の閾値感度に低下するまでは、検出感度の逆数となる補正値で受光値を補正し、検出感度が所定の感度閾値に低下して補正が不可能となった場合には、受光素子の故障信号を防災受信盤に送信してセンサ故障警報を出力させている。また、感度閾値に対しそれより高い予告感度閾値を設定し、検出感度が予告感度閾値を下回った場合には感度異常の予告警報を出力させている。 In the sensitivity test of the light receiving element, when a test signal periodically transmitted from the disaster prevention receiving panel is received, test light corresponding to light from a simulated flame is incident on the light receiving element from the test light source to measure the light receiving sensitivity. is detected, and the received light value is corrected with a correction value that is the reciprocal of the detection sensitivity until the light receiving sensitivity decreases to a predetermined threshold sensitivity. In this case, a failure signal of the light-receiving element is transmitted to the disaster prevention receiving panel to output a sensor failure alarm. Further, a notice sensitivity threshold higher than the sensitivity threshold is set, and if the detection sensitivity falls below the notice sensitivity threshold, a notice warning of sensitivity abnormality is output.

透光性窓の汚れ試験は、防災受信盤から定期的に送信される試験信号を受信した場合に、火災検知器の外側に設けられた試験光源から試験光を透光性窓に入射し、受光素子で受光して減光率を求め、減光率が所定の汚れ閾値を超えた場合に汚れ異常信号を防災受信盤に送信して汚れ警報を出力させている。また、汚れ閾値に対しそれより低い予告汚れ閾値を設定し、減光率が汚れ予告閾値を超えた場合に汚れ異常の予告警報を出力させている。 In the contamination test of the translucent window, when a test signal periodically transmitted from the disaster prevention receiver panel is received, the test light is incident on the translucent window from the test light source provided outside the fire detector, Light is received by a light-receiving element to obtain a light attenuation rate, and when the light attenuation rate exceeds a predetermined dirt threshold value, a dirt abnormality signal is transmitted to the disaster prevention receiving panel to output a dirt alarm. Further, a lower notice dirt threshold than the dirt threshold is set, and when the light reduction rate exceeds the dirt notice threshold, a notice alarm of dirt abnormality is output.

特開平6-325271号公報JP-A-6-325271 特開2002-246962号公報JP-A-2002-246962 特開平11-128381号公報JP-A-11-128381 特開2014-026446号公報JP 2014-026446 A 特開2000-315285号公報JP-A-2000-315285 特開2007-249520号公報JP 2007-249520 A 特許第5302086号公報Japanese Patent No. 5302086 特開2013-246552号公報JP 2013-246552 A 特開2000-035818号公報JP-A-2000-035818

しかしながら、このような従来の火災検知器の試験にあっては、落雷等による受光素子及びその信号処理回路の故障や透光性窓の汚れ以外の障害を検知することができず、運用期間が長くなった場合、感度試験によるセンサ故障や汚れ試験による汚れ異常が検出されることなく正常に運用されていると思われる状態で、突然、火災検知器が動作不良を起こす事態が度々発生しており、トンネル防災システムの信頼性を確保できないおそれがある。 However, in the test of such a conventional fire detector, failures other than failure of the light-receiving element and its signal processing circuit due to lightning strikes, etc., and dirt on the translucent window cannot be detected, and the operation period is long. If it takes a long time, the fire detector suddenly malfunctions frequently in a state where it seems that the sensor is operating normally without detection of sensor failure by the sensitivity test or contamination abnormality by the contamination test. There is a risk that the reliability of the tunnel disaster prevention system cannot be ensured.

本発明は、感度試験や汚れ試験で判断できない火災検知器の異常を監視して動作不良を起こす前に報知可能とする防災システム及びその火災検知器を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a disaster prevention system and its fire detector that can monitor an abnormality of the fire detector that cannot be determined by a sensitivity test or a contamination test and notify the user before malfunction occurs.

(防災システム及び火災検知器)
本発明は、検知エリアの火災からの光エネルギーを受光センサで検出する火災検知器を設けた防災システム及びその火災検知器であって、
少なくとも火災検知器の故障状態である故障異常に至る以前の劣化状態と認められる劣化異常を判定する異常判定部を備え、
異常判定部は、火災検知器の受光センサによる光エネルギーの検出感度が所定レベルに低下する検出感度異常を判定する試験時に取得した検出感度異常を判定するための情報とは異なる劣化異常を判定するための情報に基づいて、劣化異常を判定することを特徴とする。
(Disaster prevention system and fire detector)
The present invention is a disaster prevention system and its fire detector, which are provided with a fire detector that detects light energy from a fire in a detection area with a light receiving sensor,
At least an abnormality determination unit that determines a deterioration abnormality recognized as a deterioration state before reaching a failure abnormality that is a failure state of the fire detector,
The abnormality determination unit determines a deterioration abnormality different from information for determining detection sensitivity abnormality obtained during a test for determining detection sensitivity abnormality in which the light energy detection sensitivity of the light receiving sensor of the fire detector drops to a predetermined level. Deterioration abnormality is determined based on information for.

(劣化異常が発生した機能構成部の特定)
また、異常判定部は、劣化異常の判定対象とする火災検知器の機能構成部の各々について劣化異常を判定することにより、当該劣化異常が発生した機能構成部を特定可能とする。
(Specification of the functional component where the deterioration abnormality has occurred)
In addition, the abnormality determination unit determines the deterioration abnormality of each of the functional components of the fire detector to be determined for the deterioration abnormality, thereby making it possible to identify the functional component in which the deterioration abnormality has occurred.

(防災システム及び火災検知器の効果)
本発明は、検知エリアの火災からの光エネルギーを受光センサで検出する火災検知器を設けた防災システム及びその火災検知器であって、少なくとも火災検知器の故障状態である故障異常に至る以前の劣化状態と認められる劣化異常を判定する異常判定部を備え、異常判定部は、火災検知器の受光センサによる光エネルギーの検出感度が所定レベルに低下する検出感度異常を判定する試験時に取得した検出感度異常を判定するための情報とは異なる劣化異常を判定するための情報に基づいて、劣化異常を判定するようにしたため、劣化異常のために専用の試験する必要はなく、感度試験や汚れ試験等の検出感度異常に関する試験に合わせて劣化異常を判定することでき、試験時間を短縮させることができる。
(Effects of disaster prevention systems and fire detectors)
The present invention provides a disaster prevention system and its fire detector that detect light energy from a fire in a detection area with a light receiving sensor, and at least before the fire detector fails, which is a failure state. An anomaly judgment unit is provided for judging a deterioration anomaly recognized as a deteriorated state, and the anomaly judgment unit detects detection sensitivity acquired during a test for judging detection sensitivity anomaly in which the light energy detection sensitivity of the light-receiving sensor of the fire detector drops to a predetermined level. Deterioration abnormality is determined based on information for determining deterioration abnormality that is different from information for determining sensitivity abnormality. Degradation abnormality can be determined in accordance with the test related to the detection sensitivity abnormality, etc., and the test time can be shortened.

(劣化異常が発生した機能構成部の特定の効果)
また、異常判定部は、劣化異常の判定対象とする火災検知器の複数の機能構成部の各々について劣化異常を判定することにより、当該劣化異常が発生した機能構成部を特定可能としたため、動作不良を起こす前に、劣化異常を起こしている火災検知器を予備の火災検知器に交換する等の対応が可能となり、システムの経年劣化が進んでも、火災監視の信頼性を継続的に維持可能とし、劣化異常した箇所を特定することが出来る。
(Specific effect of the functional component in which the deterioration abnormality has occurred)
In addition, since the abnormality determination unit can identify the functional configuration unit in which the deterioration abnormality has occurred by determining the deterioration abnormality for each of the plurality of functional configuration units of the fire detector to be determined for the deterioration abnormality, the operation can be performed. It is possible to take measures such as replacing a fire detector that has deteriorated abnormally with a spare fire detector before a failure occurs, so that even if the system deteriorates over time, the reliability of fire monitoring can be maintained continuously. , it is possible to identify the location where deterioration has occurred.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention receiver 火災検知器の外観を示した説明図Explanatory diagram showing the exterior of the fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the fire detector 防災受信盤の制御動作を示したフローチャートFlowchart showing the control operation of the disaster prevention receiver 火災検知器の制御動作を示したフローチャートFlowchart showing the control operation of the fire detector

[トンネル防災システムの概要]
図1はトンネル防災システム概要を示した説明図である。図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。
[Overview of Tunnel Disaster Prevention System]
FIG. 1 is an explanatory diagram showing the outline of the tunnel disaster prevention system. As shown in FIG. 1, an up-line tunnel 1a and a down-line tunnel 1b are constructed as tunnels of a motorway.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置されている。火災検知器12は2組の火災検知部を備えることでトンネル長手方向上り側および下り側の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように連続的に配置し、検知エリア内で起きた火災による炎からの放射線、例えば赤外線を観測して火災を検知する。 Inside the up line tunnel 1a and the down line tunnel 1b, fire detectors 12 are installed at intervals of, for example, 25 meters or 50 meters along the walls in the longitudinal direction of the tunnels. The fire detector 12 has two sets of fire detection units so that it has detection areas on both the upward and downward sides in the longitudinal direction of the tunnel. The detection areas are arranged continuously so that they complement each other, and the radiation from the flames caused by the fire occurring in the detection area, such as infrared rays, is observed to detect the fire.

また、上り線トンネル1aと下り線トンネル1bには、非常用施設として、火災通報のために手動通報装置や非常電話が設けられ、火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧などが設置されるが、図示を省略されている。 In addition, in the inbound line tunnel 1a and the outbound line tunnel 1b, as emergency facilities, a manual reporting device and an emergency telephone are provided for fire reporting, and a fire hydrant device is provided for extinguishing the fire and preventing the spread of the fire. In order to protect the inside of the tunnel frame and ducts from fire, a water spray for spraying fire extinguishing water from a water spray head is installed, but illustration is omitted.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源回線を含む伝送路14a,14bを引き出して火災検知器12を接続しており、火災検知器12には回線単位に固有のアドレスを設定されている。 Transmission lines 14a and 14b including power supply lines are led out from the disaster prevention receiving panel 10 to the up line tunnel 1a and the down line tunnel 1b, and the fire detectors 12 are connected. address is set.

また、防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等を設けており、IG子局設備20をデータ伝送回線で接続する点を除き、それ以外の設備はP型信号回線により防災受信盤10に個別に接続されている。ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とをネットワークを経由して結ぶ通信設備である。 In addition, for the disaster prevention receiving panel 10, fire pump equipment 16, duct cooling pump equipment 18, IG slave station equipment 20, ventilation equipment 22, alarm display board equipment 24, radio rebroadcast equipment 26, television monitoring equipment 28 , lighting equipment 30, etc., and except that the IG slave station equipment 20 is connected by a data transmission line, other equipment is individually connected to the disaster prevention receiving panel 10 by a P-type signal line. Here, the IG slave station equipment 20 is communication equipment that connects the disaster prevention receiving panel 10 and a remote monitoring control equipment 32, which is an externally provided upper equipment, via a network.

換気設備22は、トンネル内の天井側に設置されているジェットファンの運転による高い吹き出し風速によってトンネル内の空気にエネルギーを与えて、トンネル長手方向に換気の流れを起こす設備である。 The ventilation equipment 22 is equipment that gives energy to the air in the tunnel by means of a high blowing wind speed generated by the operation of a jet fan installed on the ceiling side of the tunnel, thereby generating a ventilation flow in the longitudinal direction of the tunnel.

警報表示板設備24は、トンネル内の利用者に対して、トンネル内の異常を、電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 The alarm display board facility 24 is a facility for notifying users in the tunnel of an abnormality in the tunnel by displaying it on an electric display board. The radio rebroadcast facility 26 is a facility for enabling drivers and others to receive information from road administrators in tunnels. The television monitoring equipment 28 is equipment for checking the scale and position of the fire, operating the water spray equipment, and grasping the situation inside the tunnel when conducting evacuation guidance. The lighting equipment 30 is equipment for driving and managing the lighting equipment in the tunnel.

[防災受信盤]
図2は防災受信盤の機能構成の概略を示したブロック図である。図2に示すように、防災受信盤10は盤制御部34を備え、盤制御部34は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver]
FIG. 2 is a block diagram showing an outline of the functional configuration of the disaster prevention receiving panel. As shown in FIG. 2, the disaster prevention receiver panel 10 includes a panel control section 34, which is a function realized by executing a program, for example, and includes hardware such as a CPU, memory, and various input/output ports. using a computer circuit or the like with

盤制御部34に対しては伝送部36a,36bを設け、伝送部36a,36bから引き出した伝送路14a,14bに上り線トンネル1aと下り線トンネル1bに設置した火災検知器12をそれぞれ複数台接続されている。 Transmission units 36a and 36b are provided for the panel control unit 34, and transmission lines 14a and 14b drawn from the transmission units 36a and 36b are provided with a plurality of fire detectors 12 installed in the up line tunnel 1a and the down line tunnel 1b, respectively. It is connected.

また、盤制御部34に対しスピーカ、警報表示灯等を備えた警報部38、液晶ディスプレイ、プリンタ等を備えた表示部40、各種スイッチ等を備えた操作部42、外部監視設備と通信するIG子局設備20を接続するモデム44を設け、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたIO部46を設けている。 In addition, for the panel control unit 34, an alarm unit 38 equipped with a speaker, an alarm indicator lamp, etc., a display unit 40 equipped with a liquid crystal display, a printer, etc., an operation unit 42 equipped with various switches, etc., and an IG for communicating with external monitoring equipment A modem 44 for connecting the slave station equipment 20 is provided, and the fire pump equipment 16, cooling pump equipment 18, ventilation equipment 22, alarm display board equipment 24, radio rebroadcast equipment 26, television monitoring equipment 28 and An IO section 46 to which the lighting equipment 30 is connected is provided.

盤制御部34は、伝送部36a,36bに指示して火災検知器12のアドレスを順次指定したポーリングコマンドを含む呼出信号を繰り返し送信しており、火災検知器12は自己アドレスに一致する呼出信号を受信すると、火災検知や試験結果等の自己の状態情報を含む応答信号を返信する。 The panel control unit 34 instructs the transmission units 36a and 36b to repeatedly transmit a call signal including a polling command sequentially specifying the addresses of the fire detectors 12, and the fire detectors 12 generate call signals matching their own addresses. , it returns a response signal containing its own status information such as fire detection and test results.

また、防災受信盤10の盤制御部34は、火災検知器12からの応答信号の受信により火災を検知した場合は警報部38により火災警報を出力させると共にIO部46を介し他設備の連動制御を指示する制御を行う。 In addition, when a fire is detected by receiving a response signal from the fire detector 12, the board control unit 34 of the disaster prevention receiving board 10 causes the alarm unit 38 to output a fire alarm and interlocking control of other equipment via the IO unit 46. perform control to instruct

また、盤制御部34は、システムの立上げ時あるいは運用中の所定の周期毎に、火災検知器12のアドレスを順次指定した試験指示コマンドを設定した試験信号を送信し、火災検知器12に感度試験、汚れ試験及び劣化試験を行わせ、それぞれの試験結果を応答させる制御を行う。また、操作部42により特定の火災検知器12のアドレスを指定した試験操作により、個別の火災検知器に対し試験信号を送信して試験を行わせることもできる。 Further, the panel control unit 34 transmits a test signal in which a test instruction command sequentially specifying the addresses of the fire detectors 12 is set at the time of system start-up or at predetermined intervals during operation, and the fire detectors 12 Sensitivity test, contamination test and deterioration test are performed, and control is performed to respond with each test result. Further, by performing a test operation in which the address of a specific fire detector 12 is designated by the operation unit 42, a test signal can be transmitted to an individual fire detector to perform a test.

また、盤制御部34は火災検知器12の感度試験により得られた感度異常予告の応答信号を受信した場合、火災検知器のアドレスを特定した感度異常の予告警報を表示部40の警報音、ディスプレイ表示、印刷により報知させる制御を行う。 Further, when the board control unit 34 receives a sensitivity abnormality notice response signal obtained by the sensitivity test of the fire detector 12, the sensitivity abnormality notice warning with the specified address of the fire detector is issued by the display unit 40 with an alarm sound. Controls to notify by display and printing.

また、盤制御部34は火災検知器12の感度試験により得られたセンサ故障の応答信号を受信した場合、火災検知器のアドレスを特定したセンサ故障警報を表示部40の警報音、ディスプレイ表示、印刷により報知させる制御を行う。 Further, when the board control unit 34 receives a sensor failure response signal obtained by the sensitivity test of the fire detector 12, the sensor failure alarm specifying the address of the fire detector is displayed on the display unit 40 with an alarm sound, display, Control to notify by printing.

また、盤制御部34は火災検知器12の汚れ試験により得られた汚れ異常予告信号を受信した場合、火災検知器のアドレスを特定した汚れ異常の予告警報を表示部40の警報音、ディスプレイ表示、印刷により報知させる制御を行う。 When the panel control unit 34 receives a contamination anomaly notice signal obtained by the contamination test of the fire detector 12, the contamination anomaly notice alarm specifying the address of the fire detector is displayed on the display unit 40 with an alarm sound and display. , control to notify by printing.

また、盤制御部34は火災検知器12の汚れ試験により得られた汚れ異常の応答信号を受信した場合、火災検知器のアドレスを特定した汚れ警報を表示部40の警報音、ディスプレイ表示、印刷により報知させる制御を行う。 Further, when the panel control unit 34 receives a response signal indicating abnormal contamination obtained by the contamination test of the fire detector 12, the contamination alarm specifying the address of the fire detector is generated by the display unit 40 with an alarm sound, display, or printout. Control to notify by.

また、盤制御部34は火災検知器12の劣化試験により得られた劣化異常予告の応答信号を受信した場合、火災検知器のアドレスを特定した劣化異常の予告警報を表示部40の警報音、ディスプレイ表示、印刷により報知させる制御を行う。 Further, when the board control unit 34 receives a deterioration anomaly notice response signal obtained by a deterioration test of the fire detector 12, the deterioration anomaly notice alarm with the specified address of the fire detector is issued by the display unit 40 with an alarm sound. Controls to notify by display and printing.

また、盤制御部34は火災検知器12の劣化試験により得られた劣化異常の応答信号を受信した場合、火災検知器のアドレスを特定した劣化異常警報を表示部40の警報音、ディスプレイ表示、印刷により報知させる制御を行う。 Further, when the board control unit 34 receives a deterioration abnormality response signal obtained by the deterioration test of the fire detector 12, the deterioration abnormality alarm specifying the address of the fire detector is displayed on the display unit 40 with an alarm sound, display, Control to notify by printing.

また、盤制御部34は、火災検知器12の感度試験、汚れ試験及び劣化試験により得られた予告、故障、又は異常の応答信号を受信した場合、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に送信し、予告警報、故障警報又は異常警報を報知させる制御を行う。 In addition, when the board control unit 34 receives a notice, failure, or abnormal response signal obtained from the sensitivity test, contamination test, and deterioration test of the fire detector 12, the IG slave station shown in FIG. It is transmitted to the remote monitoring and control equipment 32 via the equipment 20, and performs control to issue an advance warning, a failure alarm, or an abnormal alarm.

更に、盤制御部34は、表示部40のディスプレイを利用した操作部42の操作に基づき、火災検知器12に設定されている感度異常、汚れ異常、劣化異常を判断するための閾値や、感度異常、汚れ異常、劣化異常の予告を判断する予告閾値を変更させる制御を行う。この閾値及び予告閾値を変更させる制御は、火災検知器12の閾値又は予告閾値を一斉に変更させることもできるし、アドレスを指定して特定の火災検知器12の閾値又は予告閾値を変更させることもできる。 Furthermore, the board control unit 34 uses the display of the display unit 40 to operate the operation unit 42, and the threshold value for determining the sensitivity abnormality, the dirt abnormality, and the deterioration abnormality set in the fire detector 12, and the sensitivity Control is performed to change the notice threshold for judging the notice of anomaly, contamination anomaly, and deterioration anomaly. This control for changing the threshold value and the notice threshold value can change the threshold value or the notice threshold value of the fire detectors 12 all at once, or change the threshold value or the notice threshold value of a specific fire detector 12 by specifying an address. can also

以下の説明では、伝送路14a,14b及び伝送部36a,36bについて、区別する必要がない場合は伝送路14及び伝送部36という場合がある。 In the following description, the transmission lines 14a and 14b and the transmission units 36a and 36b may be referred to as the transmission line 14 and the transmission unit 36 when there is no need to distinguish them.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory diagram showing the appearance of the fire detector, and FIG. 4 is a block diagram showing an outline of the functional configuration of the fire detector.

図3に示すように、火災検知器12は、筐体49の上部に設けられたセンサ収納部51に左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に、センサ部が配置されている。また、透光性窓50R,50Lの近傍の、センサ部を見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光窓52R,52Lが設けられている。 As shown in FIG. 3, the fire detector 12 is provided with two sets of translucent windows 50R and 50L divided into left and right in a sensor housing portion 51 provided at the top of a housing 49. The translucent windows 50R , 50L, a sensor unit is arranged. In addition, two sets of test light source translucent windows 52R each containing an external test light source used for the contamination test of the translucent windows 50R and 50L at positions near the translucent windows 50R and 50L where the sensor section can be seen. , 52L are provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the translucent window 50R may be called the right-eye translucent window 50R, and the translucent window 50L may be called the left-eye translucent window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部72、感度試験に用いられる内部試験光源74R,75Rと内部試験光源74L,75L、汚れ試験に用いられる外部試験光源76R,76Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Schematic configuration of fire detector)
As shown in FIG. 4, the fire detector 12 includes a detector control section 54, a transmission section 56, a power supply section 58, two pairs of left and right fire detection sections 60R and 60L, a test light emission drive section 72, and a sensitivity test. Internal test light sources 74R, 75R, internal test light sources 74L, 75L, and external test light sources 76R, 76L used for soil testing are provided. In the following description, the fire detection section 60R may be called the right eye fire detection section 60R, and the fire detection section 60L may be called the left eye fire detection section 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。 The detector control unit 54 is a function realized by executing a program, for example, and uses a computer circuit or the like having a CPU, a memory, various input/output ports, etc. as hardware.

伝送部56は伝送路14のシリアル伝送線Sとシリアル伝送コモン線SCにより図2に示した防災受信盤10の伝送部36に接続され、各種信号をシリアル伝送により送受信する。 The transmission unit 56 is connected to the transmission unit 36 of the disaster prevention receiving panel 10 shown in FIG. 2 by the serial transmission line S and the serial transmission common line SC of the transmission line 14, and transmits and receives various signals by serial transmission.

電源部58は伝送路14に含まれる電源線Bと電源コモン線BCにより図2に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部72となる回路ブロックに分けて、所定の電源電圧Vcc1~Vcc5が供給されている。 The power supply unit 58 receives power supply from the disaster prevention receiving panel 10 shown in FIG. Predetermined power supply voltages Vcc1 to Vcc5 are supplied to the detection units 60R and 60L and the test light emission driving unit 72, which are divided into circuit blocks.

ここで、電源電圧Vcc1は伝送部56に供給され、電源電圧Vcc2は検知器制御部54に供給され、電源電圧Vcc3は火災検知部60Rに供給され、電源電圧Vcc4は火災検知部60Lに供給され、電源電圧Vcc5は試験発光駆動部72に供給されている。 Here, the power supply voltage Vcc1 is supplied to the transmission unit 56, the power supply voltage Vcc2 is supplied to the detector control unit 54, the power supply voltage Vcc3 is supplied to the fire detection unit 60R, and the power supply voltage Vcc4 is supplied to the fire detection unit 60L. , and the power supply voltage Vcc5 are supplied to the test light emission driving section 72 .

電源部58から各回路ブロックに対する電源ラインには、電圧電流検出部78が個別に設けられ、各回路ブロックに対する電源電圧と消費電流を検出して検知器制御部54に出力されている。電圧電流検出部78は、電圧の検出は電源ラインの電圧を直接取出し、電流の検出は電流検出用の低抵抗を電源ラインに挿入接続して、その両端の電圧を電流検出電圧として取り出している。 Voltage and current detectors 78 are individually provided on power supply lines from the power supply unit 58 to each circuit block, and detect the power supply voltage and current consumption for each circuit block and output them to the detector control unit 54 . The voltage/current detector 78 directly extracts the voltage of the power supply line for voltage detection, and inserts and connects a low resistance for current detection into the power supply line for current detection, and extracts the voltage across the resistor as the current detection voltage. .

試験発光駆動部72には、感度試験に使用する内部試験光源74R,75R,74L,75Lが接続されまた、汚れ試験に使用する外部試験光源76R,76Lが接続され、それぞれ発光素子としてLEDを設けている。 Internal test light sources 74R, 75R, 74L, and 75L used for sensitivity tests are connected to the test light emission drive unit 72, and external test light sources 76R and 76L used for contamination tests are connected, each of which is provided with an LED as a light emitting element. ing.

(火災検知部)
火災検知部60R,60Lは、センサ部64,68と増幅処理部66,70を備える。例えば右眼火災検知部60Rを例にとると、センサ部64,68の前面には検知器カバーに設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの光エネルギーがセンサ部64,68に入射されている。
(Fire detector)
The fire detection units 60R and 60L include sensor units 64 and 68 and amplification processing units 66 and 70, respectively. Taking the right-eye fire detection unit 60R as an example, a right-eye translucent window 50R provided in the detector cover is arranged in front of the sensor units 64 and 68. Optical energy from an external detection area is incident on the sensor portions 64 and 68 .

右眼火災検知部60Rは、例えば2波長式の炎検知により火災を監視している。センサ部64は、右眼透光性窓50Rを介して入射した光エネルギーの中から、炎に特有なCO2の共鳴放射帯である4.4~4.5μmの放射線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線のエネルギーを検知して光電変換したうえで、増幅処理部66により増幅等所定の加工を施してエネルギー量に対応する受光信号にして検知器制御部54へ出力する。 The right eye fire detection unit 60R monitors fire by, for example, two-wavelength flame detection. The sensor unit 64 detects radiation of 4.4 to 4.5 μm, which is the resonance radiation band of CO2 peculiar to flame, from the light energy incident through the right-eye translucent window 50R through an optical wavelength bandpass filter. It is selectively transmitted (passed through), the energy of the radiation is detected by the light receiving sensor, photoelectrically converted, and then subjected to predetermined processing such as amplification by the amplification processing unit 66 to generate a received light signal corresponding to the amount of energy, which is controlled by the detector. Output to unit 54 .

センサ部68は、左眼透光性窓50Lを介して入射した光エネルギーの中から、5~6μmの放射エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線のエネルギーを検知して光電変換したうえで、増幅処理部70により増幅等所定の加工を施してエネルギー量に対応する受光信号にして検知器制御部54へ出力する。 The sensor unit 68 selectively transmits (passes) radiant energy of 5 to 6 μm from the light energy incident through the left-eye translucent window 50L with an optical wavelength bandpass filter, and detects the radiation with a light receiving sensor. After the energy is detected and photoelectrically converted, the signal is subjected to predetermined processing such as amplification by the amplification processing unit 70 to generate a light receiving signal corresponding to the amount of energy and output to the detector control unit 54 .

増幅処理部66,70には、プリアンプ、炎のゆらぎ周波数帯域を通過させるフィルタ及びパワーアンプ等が設けられている。 The amplification processing units 66 and 70 are provided with a preamplifier, a filter for passing the flame fluctuation frequency band, a power amplifier, and the like.

(火災判断)
検知器制御部54には、プログラムの実行により実現される機能として、火災判断部80の機能が設けられている。火災判断部80は、例えば、右眼火災検知部60Rの増幅処理部66,70から出力された受光値(受光信号レベル)の相対比をとり、所定の閾値と比較することにより炎の有無を判定し、炎有りの判定により火災を検知した場合には、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に火災検知情報を設定して防災受信盤10へ送信させる制御を行う。
(fire judgment)
The detector control section 54 is provided with the function of the fire determination section 80 as a function realized by executing the program. For example, the fire determination unit 80 determines the presence or absence of a flame by taking the relative ratio of the light reception values (light reception signal levels) output from the amplification processing units 66 and 70 of the right eye fire detection unit 60R and comparing it with a predetermined threshold value. If a fire is detected by judging that there is a flame, the transmission unit 56 is instructed to set fire detection information in the response signal to the call signal matching the own address and transmit it to the disaster prevention receiver panel 10. I do.

(感度試験)
検知器制御部54には、プログラムの実行により実現される機能として、感度試験部82の機能が設けられている。感度試験部82は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験信号を受信した場合に動作し、試験発光駆動部72に指示して、内部試験光源74R,75R,74L,75Lを順番に発光駆動して火災検知部60R,60Lの感度試験を行わせる。
(Sensitivity test)
The detector control section 54 is provided with the function of the sensitivity test section 82 as a function realized by executing the program. The sensitivity test section 82 operates when it receives a test signal designating its own address from the disaster prevention receiver board 10 via the transmission section 56, and instructs the test light emission driving section 72 to 74L and 75L are driven to emit light in order to perform the sensitivity test of the fire detection units 60R and 60L.

例えば右眼火災検知部60Rにおけるセンサ部64と増幅処理部66の回路系統の感度試験を例にとると、試験発光駆動部72は内部試験光源74R,75Rを発光駆動することにより、火災炎に相当する炎疑似光をセンサ部64に入射させる。内部試験光源74Rからの炎疑似光は、センサ部64で受光する炎に固有な4.4~4.5μm及びセンサ部68で受光する5~6μmの放射エネルギーを含み、且つ、炎に固有な8~12Hzのゆらぎ周波数をもつ光とされている。 For example, taking the sensitivity test of the circuit system of the sensor unit 64 and the amplification processing unit 66 in the right eye fire detection unit 60R, the test light emission drive unit 72 drives the internal test light sources 74R and 75R to emit light, thereby causing fire to occur. Corresponding flame-like light is made incident on the sensor section 64 . The flame simulating light from the internal test light source 74R includes radiant energy of 4.4 to 4.5 μm specific to the flame received by the sensor section 64 and 5 to 6 μm radiant energy received by the sensor section 68, and is specific to the flame. The light has a fluctuation frequency of 8 to 12 Hz.

感度試験部82は、センサ部64と増幅処理部66の回路ブロック、センサ部68と増幅処理部70の回路ブロック毎に感度試験を行う。 The sensitivity test section 82 performs a sensitivity test for each of the circuit blocks of the sensor section 64 and the amplification processing section 66 and the circuit blocks of the sensor section 68 and the amplification processing section 70 .

例えば、センサ部64と増幅処理部66の回路ブロックの感度試験は、工場出荷時に初期設定された基準受光値がメモリに記憶されており、システム立上げ時の感度試験で得られる検出受光値は基準受光値に一致しており、検出受光値を基準受光値で割った検出感度は1となっている。運用期間が経過していくと、検出受光値は徐々に低下し、検出感度は0.9,0.8,0.7・・・というように低下していく。 For example, in the sensitivity test of the circuit blocks of the sensor section 64 and the amplification processing section 66, the reference received light value initially set at the time of shipment from the factory is stored in the memory, and the detected received light value obtained in the sensitivity test at system start-up is It matches the reference light reception value, and the detection sensitivity obtained by dividing the detected light reception value by the reference light reception value is 1. As the operating period elapses, the detected received light value gradually decreases, and the detection sensitivity decreases to 0.9, 0.8, 0.7, and so on.

このように検出感度が1以下に低下した場合、感度試験部82は感度試験により検出感度を求めると共に、検出感度の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値に補正値を乗算して感度補正を行い、火災判断部80は感度補正された受光値により火災を判断する。 When the detection sensitivity decreases to 1 or less in this way, the sensitivity test unit 82 obtains the detection sensitivity by the sensitivity test, obtains a correction value that is the reciprocal of the detection sensitivity, stores it in the memory, and detects it in the subsequent operation state. The received light value is multiplied by the correction value to perform sensitivity correction, and the fire judgment unit 80 judges a fire based on the sensitivity-corrected light reception value.

また、感度試験部82には、感度補正が不可能となる限界に対応した感度閾値、例えば感度閾値0.5が予め設定されており、感度試験で求められた検出感度が感度閾値以下又は感度閾値を下回った場合にセンサ部64の感度異常による故障と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号にセンサ故障情報を設定して防災受信盤10へ送信させる制御を行う。なお、センサ故障の判断を確実なものとするため、感度試験部82は複数回連続して感度異常による故障と判断した場合に、センサ故障を設定した応答信号を送信させても良い。 Further, the sensitivity test unit 82 is preset with a sensitivity threshold corresponding to the limit at which sensitivity correction is impossible, for example, a sensitivity threshold of 0.5. If it falls below the threshold, it is determined that the sensor unit 64 has failed due to sensitivity abnormality, and the transmission unit 56 is instructed to set the sensor failure information in the response signal to the call signal that matches the own address and transmit it to the disaster prevention receiving panel 10. control to allow In addition, in order to make the determination of the sensor failure reliable, the sensitivity test section 82 may transmit a response signal setting the sensor failure when it is determined that the failure is due to sensitivity abnormality a plurality of times in succession.

また、感度試験部82には、感度閾値より大きい所定の感度異常の予告閾値、例えば予告閾値0.6が予め設定されており、感度試験で求められた検出感度が感度異常の予告閾値以下又は感度異常の予告閾値を下回った場合にセンサ部64の感度異常による故障が近いと判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に感度異常の予告情報を設定して防災受信盤10へ送信させる制御を行う。 Further, the sensitivity test unit 82 is preset with a predetermined sensitivity abnormality warning threshold larger than the sensitivity threshold, for example, a warning threshold of 0.6. If it falls below the notice threshold of sensitivity abnormality, it is determined that a failure due to sensitivity abnormality of the sensor section 64 is imminent, and instructs the transmission section 56 to set the sensitivity abnormality notice information in the response signal to the calling signal that matches the own address. and control to transmit to the disaster prevention receiving board 10.

左眼火災検知部60Lにおけるセンサ部68と増幅処理部70の回路系統の感度試験についても、試験発光駆動部72により内部試験光源74L,75Lを発光駆動することにより、同様にして感度試験が行われる。 The sensitivity test of the circuit system of the sensor unit 68 and the amplification processing unit 70 in the left eye fire detection unit 60L is performed in the same manner by driving the internal test light sources 74L and 75L to emit light by the test light emission drive unit 72. will be

(汚れ試験)
検知器制御部54には、プログラムの実行により実現される機能として、汚れ試験部84の機能が設けられている。汚れ試験部84は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験信号を受信した場合に動作し、試験発光駆動部72に指示して、外部試験光源76R,76Lを順番に発光駆動して透光性窓50R,50Lの汚れ試験を行わせる。
(dirt test)
The detector control section 54 is provided with the function of the contamination test section 84 as a function realized by executing the program. The contamination test section 84 operates when it receives a test signal designating its own address from the disaster prevention receiver board 10 via the transmission section 56, and instructs the test light emission driving section 72 to turn on the external test light sources 76R and 76L. The contamination test of the translucent windows 50R and 50L is performed by sequentially emitting light.

例えば透光性窓50Rの汚れ試験を例にとると、試験発光駆動部72は外部試験光源76Rを発光駆動することにより、火災炎に相当する炎疑似光を、透光性窓50Rを介してセンサ部64に入射させる。外部試験光源76Rからの炎疑似光は、センサ部64で受光する炎に固有な4.4~4.5μm及びセンサ部68で受光する5~6μmの放射エネルギーを含み、且つ、炎に固有な8~12Hzのゆらぎ周波数をもつ光とされている。 For example, taking a contamination test on the translucent window 50R, the test light emission drive unit 72 drives the external test light source 76R to emit a flame imitation light corresponding to a fire flame through the translucent window 50R. The light is caused to enter the sensor section 64 . The flame-like light from the external test light source 76R includes radiant energy of 4.4-4.5 μm specific to the flame received by the sensor section 64 and 5-6 μm radiant energy received by the sensor section 68, and is specific to the flame. The light has a fluctuation frequency of 8 to 12 Hz.

透光性窓50Rは工場出荷時に汚れはなく、その際に汚れ試験で得られた受光値が基準受光値としてメモリに記憶されており、減光率の演算に利用される。 The translucent window 50R is free from contamination at the time of shipment from the factory, and the received light value obtained in the contamination test at that time is stored in the memory as a reference received light value, and is used to calculate the light attenuation rate.

システム立上げ時の汚れ試験で得られる検出受光値は基準受光値に一致しており、基準受光値から検出受光値を減算した値を基準受光値で割った減光率は0となっている。運用期間が経過していくと、透光性窓50Rに汚れが付着し、減光率は、0.1,0.2,0.3・・・というように徐々に増加していく。 The detected light reception value obtained in the contamination test at the time of system startup matches the reference light reception value, and the light reduction rate obtained by dividing the value obtained by subtracting the detected light reception value from the reference light reception value by the reference light reception value is 0. . As the operating period elapses, dirt adheres to the translucent window 50R, and the light attenuation rate gradually increases to 0.1, 0.2, 0.3, and so on.

このように減光率が増加した場合、汚れ試験部84は汚れ試験により減光率を求めると共に、(1-減光率)の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値(感度試験の補正値により補正された受光値)を補正値により除算して汚れ補正を行い、火災判断部80は汚れ補正された受光値により火災を判断する。なお、運用状態で検出される受光値は、前述した感度試験で得られた補正値および汚れ試験で得られた補正値で補正されることになる。 When the light attenuation rate increases in this way, the contamination test unit 84 obtains the light attenuation rate by the contamination test and also obtains a correction value that is the reciprocal of (1-light attenuation rate) and stores it in the memory for subsequent operation. Dirt correction is performed by dividing the light reception value detected in the state (light reception value corrected by the correction value of the sensitivity test) by the correction value, and the fire judgment unit 80 judges a fire from the dirt-corrected light reception value. The received light value detected in the operating state is corrected by the correction value obtained in the sensitivity test and the correction value obtained in the contamination test.

また、汚れ試験部84には、汚れ補正が不可能となる限界に対応した減光率となる汚れ閾値、例えば汚れ閾値0.5が予め設定されており、汚れ試験で求められた減光率が汚れ閾値以上又は汚れ閾値を上回った場合に透光性窓50Rの汚れ補正が不可能となる汚れ異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚れ異常情報を設定して防災受信盤10へ送信させる制御を行う。 Further, in the contamination test section 84, a contamination threshold that is a light attenuation rate corresponding to the limit at which contamination correction is impossible, for example, a contamination threshold of 0.5, is set in advance. is greater than or equal to the contamination threshold value or exceeds the contamination threshold value, it is determined that the translucent window 50R is in an abnormal contamination state, and instructs the transmission unit 56 to respond to the call signal matching the own address. Control is performed to set dirt abnormality information and transmit it to the disaster prevention receiving panel 10 .

また、感度試験部82には、汚れ閾値より小さい所定の汚れ予告閾値、例えば汚れ予告閾値0.4が予め設定されており、汚れ試験で求められた減光率が汚れ予告閾値以上又は汚れ予告閾値を上回った場合に汚れ異常が近いと判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚れ異常の予告情報を設定して防災受信盤10へ送信させる制御を行う。 Further, the sensitivity test unit 82 is preset with a predetermined dirt warning threshold value smaller than the dirt threshold value, for example, a dirt warning threshold value of 0.4. When the threshold value is exceeded, it is judged that the contamination abnormality is near, and the transmission unit 56 is instructed to set the contamination abnormality notice information in the response signal to the call signal matching the own address and transmit it to the disaster prevention receiving panel 10. I do.

(劣化試験)
検知器制御部54には、プログラムの実行により実現される機能として、劣化試験部86の機能が設けられている。
(Deterioration test)
The detector control section 54 is provided with the function of the deterioration test section 86 as a function realized by executing the program.

劣化試験部86は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験信号を受信して感度試験部82と汚れ試験部84が順次動作して感度試験と汚れ試験を行った場合、各回路ブロックへの電源ラインに設けられた電圧電流検出部78により検出されている試験中の電源電圧Vcc1~Vcc5と消費電流(電源電流)Icc1~Icc5の検出信号をA/D変換ポートから周期的に読み込んでメモリに記憶し、続いて、メモリに記憶された複数の電源電圧と消費電流の平均値を各回路ブロックの内部電圧及び消費電流として求め、測定された内部電圧又は消費電流の変化から劣化異常を判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に劣化故障情報を設定して防災受信盤10へ送信させる制御を行う。 The deterioration test unit 86 receives a test signal designating its own address from the disaster prevention receiving board 10 via the transmission unit 56, and the sensitivity test unit 82 and the dirt test unit 84 operate sequentially to perform the sensitivity test and the dirt test. In this case, detection signals of power supply voltages Vcc1 to Vcc5 and consumption currents (power supply currents) Icc1 to Icc5 under test which are detected by the voltage/current detector 78 provided on the power supply line to each circuit block are A/D converted. Periodically read from the port and store in memory, then determine the average value of the multiple power supply voltages and current consumption stored in the memory as the internal voltage and current consumption of each circuit block, and measure the internal voltage or consumption Deterioration abnormality is determined from the change in current, and the transmission unit 56 is instructed to set deterioration failure information in the response signal to the call signal matching the own address and control to transmit it to the disaster prevention receiver panel 10 .

本実施形態にあっては、火災検知器12の各回路ブロックの劣化に伴い内部電圧および消費電流が低下することを想定されている。このため、検知器制御部54のメモリには、工場出荷時前の試験等により測定された各回路ブロックの内部電圧及び消費電流が基準値として記憶されており、且つ、これらの基準値からどの程度減少したら劣化異常と判断するかを決める所定の電圧閾値と電流閾値が予め記憶され、更に、劣化異常と判断する前の予告のための所定の予告電圧閾値と予告電流閾値も予め記憶されている。 In this embodiment, it is assumed that the internal voltage and current consumption will decrease as each circuit block of the fire detector 12 deteriorates. For this reason, the memory of the detector control unit 54 stores the internal voltage and current consumption of each circuit block, which are measured by tests or the like before shipment from the factory, as reference values. Predetermined voltage thresholds and current thresholds for determining whether deterioration is determined to be abnormal when the degree of decrease is determined are stored in advance, and predetermined notice voltage thresholds and notice current thresholds are also stored in advance for advance notice before judgment is made that deterioration is abnormal. there is

劣化試験部86は、劣化異常を判定する異常判定部としての機能を備え、各回路ブロックについて測定した内部電圧が所定の電圧閾値以下又は電圧閾値を下回った場合、又は、測定した消費電流が所定の電流閾値以下又は電流閾値を下回った場合に、劣化異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に劣化故障情報を設定して防災受信盤10へ送信させる制御を行う。なお、劣化異常の判断を確実なものとするため、劣化試験部86は複数回連続して劣化異常と判断した場合に、劣化故障情報を設定した応答信号を送信させるようにしても良い。 The deterioration test unit 86 has a function as an abnormality determination unit that determines a deterioration abnormality, and detects when the internal voltage measured for each circuit block is equal to or less than a predetermined voltage threshold or falls below the voltage threshold, or when the measured current consumption If the current is less than or below the current threshold of , it is determined that there is a deterioration abnormality, and the transmission unit 56 is instructed to set deterioration failure information in the response signal to the call signal that matches the own address and send it to the disaster prevention receiver panel 10. Control transmission. In order to ensure the determination of the deterioration abnormality, the deterioration test section 86 may transmit a response signal in which deterioration failure information is set when the deterioration abnormality is determined continuously a plurality of times.

また、劣化試験部86は、感度試験及び汚れ試験を通じて測定された回路ブロックの内部電圧が予告電圧閾値以下又は予告電圧閾値を下回った場合、又は、測定した消費電流が予告電流閾値以下又は予告電流閾値を下回った場合に、その回路ブロックの劣化異常が近いと判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に劣化異常の予告情報を設定して防災受信盤10へ送信させる制御を行う。 In addition, the deterioration test unit 86 determines whether the internal voltage of the circuit block measured through the sensitivity test and the contamination test is equal to or lower than the notice voltage threshold or lower than the notice voltage threshold, or the measured current consumption is equal to or less than the notice current threshold or less than the notice current threshold. If the value is below the threshold value, it is judged that the deterioration abnormality of the circuit block is near, and the transmission unit 56 is instructed to set the notification information of the deterioration abnormality in the response signal to the call signal matching the own address, and the disaster prevention receiving panel. 10 is controlled.

なお、劣化試験部86による劣化試験は、内部電圧又は消費電流のみを測定して劣化の度合を前述したと同様に判断するようにしても良い。 In the deterioration test by the deterioration test section 86, only the internal voltage or the consumption current may be measured and the degree of deterioration may be determined in the same manner as described above.

[防災監視システムの動作]
(防災受信盤の動作)
図5は防災受信盤の制御動作を示したフローチャートであり、図2の防災受信盤10に設けられた盤制御部34による制御動作となる。
[Operation of disaster prevention monitoring system]
(Operation of disaster prevention receiver)
FIG. 5 is a flow chart showing the control operation of the disaster prevention receiving board, which is the control operation by the board control section 34 provided in the disaster prevention receiving board 10 of FIG.

図5に示すように、防災受信盤10の電源を投入してシステムが立ち上げられると、盤制御部34は、ステップS1で所定の初期化処理を行った後にステップS2に進み、火災監視処理を行う。 As shown in FIG. 5, when the disaster prevention receiver panel 10 is powered on to start up the system, the panel control unit 34 performs predetermined initialization processing in step S1, and then proceeds to step S2 to perform fire monitoring processing. I do.

ステップS2の火災監視処理として、盤制御部34は、伝送部36a,36bに指示してアドレスを順次指定した呼出信号を伝送路14a,14bに送信させ、アドレスが一致した火災検知器12から送信された応答信号を受信して処理する。ここで、盤制御部34が応答信号の受信により火災を検知した場合は、警報部38により火災警報を出力させると共にIO部46を介し他設備の連動制御を指示し、また、モデム44を介して図1に示した遠方監視制御設備32に火災検知信号を送信して火災警報を出力させる制御を行う。 As the fire monitoring process in step S2, the panel control unit 34 instructs the transmission units 36a and 36b to transmit call signals with sequentially designated addresses to the transmission lines 14a and 14b, and the fire detectors 12 whose addresses match each other. receive and process the received response signal. Here, when the board control unit 34 detects a fire by receiving the response signal, the alarm unit 38 outputs a fire alarm and instructs interlocking control of other equipment via the IO unit 46, and also via the modem 44 control to transmit a fire detection signal to the remote monitoring control equipment 32 shown in FIG. 1 and output a fire alarm.

続いて、盤制御部34は、ステップS3で例えば1日1回となる所定の試験タイミングへの到達を判別するとステップS4に進み、初期設定された最初の火災検知器12のアドレスを指定した試験指示コマンドを設定した試験信号を送信し、火災検知器12に感度試験、汚れ試験及び劣化試験を行わせる。 Subsequently, when the panel control unit 34 determines in step S3 that a predetermined test timing, for example, once a day, has been reached, the process proceeds to step S4. A test signal in which an instruction command is set is transmitted to cause the fire detector 12 to perform a sensitivity test, a contamination test and a deterioration test.

続いて、ステップS5に進み、盤制御部34は試験を指示した火災検知器12からの試験結果が設定された応答信号の受信を判別するとステップS6に進み、試験結果の報知と記憶を行う。 Subsequently, the process proceeds to step S5, and when the board control unit 34 determines reception of a response signal in which the test result is set from the fire detector 12 instructing the test, the process proceeds to step S6, and the test result is reported and stored.

ステップS6の試験結果として、盤制御部34は、応答信号から感度異常の予告情報が得られた場合、警報部38及び表示部40に指示して、感度異常の予告警報の出力と表示、更にはプリンタ印字を行わせ、また、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に感度異常の予告信号を送信して感度異常の予告警報を出力させる。 As a result of the test in step S6, when the notice information of sensitivity abnormality is obtained from the response signal, the panel control section 34 instructs the alarm section 38 and the display section 40 to output and display the notice warning of sensitivity abnormality, causes the printer to print, and transmits a warning signal of sensitivity abnormality to the remote monitoring control equipment 32 from the modem 44 via the IG slave station equipment 20 shown in FIG. 1 to output a warning of sensitivity abnormality.

また、盤制御部34は、感度異常予告警報を行った後に、応答信号からセンサ故障情報が得られた場合は、警報部38及び表示部40に指示して、センサ故障警報の出力と表示、更にはプリンタ印字を行わせ、また、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32にセンサ故障信号を送信してセンサ故障警報を出力させる。 Further, after issuing the sensitivity abnormality advance warning, the panel control unit 34, when sensor failure information is obtained from the response signal, instructs the alarm unit 38 and the display unit 40 to output and display the sensor failure alarm, Furthermore, the printer is caused to print, and a sensor failure signal is transmitted from the modem 44 to the remote monitoring control equipment 32 via the IG slave station equipment 20 shown in FIG. 1 to output a sensor failure alarm.

一方、盤制御部34は、ステップS6の試験結果として、応答信号から汚れ異常の予告情報が得られた場合は、警報部38及び表示部40に指示して、汚れ異常の予告警報の出力と表示、更にはプリンタ印字を行わせ、また、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に汚れ異常の予告信号を送信して汚れ異常の予告警報を出力させる。 On the other hand, if, as a result of the test in step S6, the forewarning information of the contamination abnormality is obtained from the response signal, the panel control section 34 instructs the alarm section 38 and the display section 40 to output the forewarning of the contamination abnormality. Display and further, printer printing are performed, and an advance notice signal of contamination abnormality is transmitted from the modem 44 to the remote monitoring control equipment 32 via the IG slave station equipment 20 shown in FIG. 1 to output an advance warning of contamination abnormality. Let

また、盤制御部34は、応答信号から汚れ異常情報が得られた場合は、警報部38及び表示部40に指示して、汚れ警報の出力と表示、更にはプリンタ印字を行わせ、また、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に汚れ異常信号を送信して汚れ異常警報を出力させ、透光性窓の清掃作業が行われる。 Further, when the contamination abnormality information is obtained from the response signal, the panel control unit 34 instructs the alarm unit 38 and the display unit 40 to output and display the contamination alarm, and further print the information. A dirt abnormality signal is transmitted from the modem 44 to the remote monitoring control equipment 32 via the IG slave station equipment 20 shown in FIG.

更に、盤制御部34は、ステップS6の試験結果として、応答信号から劣化異常の予告情報が得られた場合は、警報部38及び表示部40に指示して、劣化異常の予告警報の出力と表示、更にはプリンタ印字を行わせ、また、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に劣化異常の予告信号を送信して劣化異常の予告警報を出力させる。 Further, when the warning information of the deterioration abnormality is obtained from the response signal as the result of the test in step S6, the board control section 34 instructs the alarm section 38 and the display section 40 to output the deterioration abnormality warning. Display and further, printer printing are performed, and a warning signal of deterioration abnormality is transmitted from the modem 44 to the remote monitoring control equipment 32 via the IG slave station equipment 20 shown in FIG. 1 to output a deterioration abnormality warning. Let

また、盤制御部34は、応答信号から劣化異常情報が得られた場合は、警報部38及び表示部40に指示して、劣化警報の出力と表示、更にはプリンタ印字を行わせ、また、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に劣化異常信号を送信して劣化異常警報を出力させ、予備の火災検知器への交換作業等の対処が行われる。 Further, when the deterioration abnormality information is obtained from the response signal, the board control unit 34 instructs the alarm unit 38 and the display unit 40 to output and display the deterioration alarm, and further print the deterioration alarm. A deterioration abnormality signal is transmitted from the modem 44 to the remote monitoring control equipment 32 via the IG slave station equipment 20 shown in FIG. will be

続いて、ステップS7に進み、火災検知器12の全アドレスについての試験終了を判別するまで、ステップS4~S7の処理を繰り返す。 Subsequently, the process proceeds to step S7, and the processing of steps S4 to S7 is repeated until it is determined that the test for all addresses of the fire detector 12 has been completed.

(火災検知器の動作)
図6は火災検知器の制御動作を示したフローチャートであり、図4の火災検知器12に設けられた検知器制御部54による制御動作となる。
(Action of fire detector)
FIG. 6 is a flow chart showing the control operation of the fire detector, which is the control operation by the detector control section 54 provided in the fire detector 12 of FIG.

図6に示すように、防災受信盤10からの電源供給を受けて火災検知器12が立ち上げられると、検知器制御部54は、ステップS11で所定の初期化処理を行った後にステップS12に進み、火災判断処理を行う。 As shown in FIG. 6, when the fire detector 12 is activated by receiving the power supply from the disaster prevention receiver panel 10, the detector control unit 54 performs predetermined initialization processing in step S11, and then proceeds to step S12. Proceed to perform fire judgment processing.

ステップS12の火災判断処理として、検知器制御部54は、火災検知部60R,60Lの増幅処理部66,70から出力された受光値を読み込み、感度試験で得られた補正値及び汚れ試験で得られた補正値による受光値を補正した後に、両者の比率を求め、所定の閾値を超えた場合に火災と判断し、伝送部56に指示し、自身のアドレスを指定した呼出信号の受信に対する応答信号に火災検知情報を設定して防災受信盤10に送信させる。 As the fire determination process in step S12, the detector control unit 54 reads the received light values output from the amplification processing units 66 and 70 of the fire detection units 60R and 60L, and the corrected values obtained in the sensitivity test and the contamination test. After correcting the received light value by the correction value obtained, the ratio of the two is obtained, and if it exceeds a predetermined threshold value, it is determined that there is a fire, and the transmitter 56 is instructed to respond to the reception of the call signal specifying its own address. Fire detection information is set in the signal and transmitted to the disaster prevention receiving panel 10 .

続いて、検知器制御部54は、ステップS13で自身のアドレスを指定した試験信号の受信を判別すると、ステップS14~S16で感度試験処理、汚れ試験処理及び劣化試験処理を行い、試験処理毎に試験結果を応答信号により防災受信盤10に送信する。 Subsequently, when the detector control unit 54 determines reception of a test signal designating its own address in step S13, it performs sensitivity test processing, contamination test processing, and deterioration test processing in steps S14 to S16. The test result is transmitted to the disaster prevention receiving board 10 by a response signal.

即ち、ステップS14の感度試験処理にあっては、検知器制御部54は試験発光駆動部72に指示して内部試験光源74R,75R,74L,75Lを発光駆動させ、炎試験光をセンサ部64,68に入射することで、増幅処理部66,70から出力される検出受光値を読み込み、基準受光値に基づき検出感度を求めると共に感度補正値を求めてメモリに記憶し、また、検出感度が感度異常の予告閾値以下の場合は伝送部56に指示して感度異常の予告情報を設定した応答信号を防災受信盤10に送信させ、更に、検出感度が感度異常閾値以下の場合は伝送部56に指示してセンサ故障情報が設定された応答信号を防災受信盤10に送信する。 That is, in the sensitivity test process of step S14, the detector control unit 54 instructs the test light emission driving unit 72 to drive the internal test light sources 74R, 75R, 74L, and 75L to emit the flame test light. , 68, the detected light reception values output from the amplification processing units 66 and 70 are read, the detection sensitivity is obtained based on the reference light reception value, and the sensitivity correction value is obtained and stored in the memory. If the detection sensitivity is equal to or less than the sensitivity abnormality threshold, the transmission unit 56 is instructed to transmit a response signal in which the sensitivity abnormality notification information is set to the disaster prevention receiver panel 10, and if the detection sensitivity is equal to or less than the sensitivity abnormality threshold, the transmission unit 56 to send a response signal in which the sensor failure information is set to the disaster prevention receiving panel 10 .

また、ステップS15の汚れ試験処理にあっては、検知器制御部54は試験発光駆動部72に指示して外部試験光源76R,76Lを発光駆動させ、炎試験光を透光性窓50R,50Lを介してセンサ部64,68に入射させ、例えば増幅処理部66から出力される受光値を読み込み、基準受光値に基づき減光率を求めると共に汚れ補正値を求めてメモリに記憶し、また、減光率が汚れ異常の予告閾値以上の場合は伝送部56に指示して汚れ異常の予告情報が設定された応答信号を防災受信盤10に送信させ、更に、減光率が汚れ異常閾値以下の場合は伝送部56に指示して汚れ異常情報が設定された応答信号を防災受信盤10に送信する。 In the contamination test process of step S15, the detector control unit 54 instructs the test light emission drive unit 72 to drive the external test light sources 76R and 76L to emit the flame test light through the translucent windows 50R and 50L. for example, reads the light reception value output from the amplification processing unit 66, calculates the light attenuation rate based on the reference light reception value, calculates the dirt correction value, and stores it in a memory, If the light reduction rate is equal to or higher than the dirt abnormality notice threshold, the transmitter 56 is instructed to transmit a response signal in which the dirt abnormality notice information is set to the disaster prevention receiving panel 10, and the light reduction rate is equal to or less than the dirt abnormality threshold. In the case of , the transmission unit 56 is instructed to transmit a response signal in which dirt abnormality information is set to the disaster prevention receiving panel 10 .

更に、ステップS16の劣化試験処理にあっては、ステップS14の感度試験及びステップS15の汚れ試験における各回路ブロックに対する内部電圧と消費電流を電圧電流検出部78の検出信号に基づいて求め、内部電圧が予告電圧閾値以下の場合または消費電流が予告電流閾値以下の場合、伝送部56に指示して劣化異常の予告情報が設定された応答信号を防災受信盤10に送信させ、更に、内部電圧が電圧閾値以下の場合または消費電流が電流閾値以下の場合、伝送部56に指示して劣化異常情報が設定された応答信号を防災受信盤10に送信する。 Further, in the deterioration test process of step S16, the internal voltage and consumption current for each circuit block in the sensitivity test of step S14 and the contamination test of step S15 are obtained based on the detection signal of the voltage/current detector 78, and the internal voltage is equal to or less than the notice voltage threshold, or if the current consumption is equal to or less than the notice current threshold, the transmission unit 56 is instructed to transmit a response signal in which notice information of deterioration abnormality is set to the disaster prevention receiver panel 10, and further, the internal voltage is If the voltage is equal to or less than the voltage threshold or the current consumption is equal to or less than the current threshold, the transmission unit 56 is instructed to transmit a response signal in which deterioration abnormality information is set to the disaster prevention receiver panel 10 .

[防災受信盤で劣化異常を判断する実施形態]
トンネル防災システムの他の実施形態として、図4に示した火災検知器12の検知器制御部54に設けられた劣化試験部86は、感度試験及び汚れ試験における内部電圧及び消費電流を測定し、測定した内部電圧及び消費電流の測定値を設定した応答信号を防災受信盤10に送信し、図2に示した防災受信盤10の盤制御部34に劣化異常を判定する異常判定部の機能を設け、防災受信盤10の盤制御部34により火災検知器12から受信した試験時の内部電圧と消費電流の測定値から検知器回路部の劣化を判断する。このため盤制御部34のメモリには、劣化異常を判断する所定の電圧閾値及び電流閾値、及びそれより大きい所定の予告電圧閾値及び予告電流閾値が予め設定されている。
[Embodiment in which deterioration abnormality is determined by a disaster prevention receiver]
As another embodiment of the tunnel disaster prevention system, the deterioration test unit 86 provided in the detector control unit 54 of the fire detector 12 shown in FIG. A response signal in which measured values of the measured internal voltage and current consumption are set is transmitted to the disaster prevention receiver panel 10, and the function of the abnormality determination section for determining the deterioration abnormality is added to the panel control section 34 of the disaster prevention receiver panel 10 shown in FIG. Deterioration of the detector circuit section is judged from the measured values of the internal voltage and current consumption during the test received from the fire detector 12 by the board control section 34 of the disaster prevention receiver board 10 . For this reason, the memory of the panel control unit 34 is preset with a predetermined voltage threshold value and a current threshold value for determining a deterioration abnormality, and a predetermined notice voltage threshold value and a notice current threshold value larger than these.

盤制御部34による検知器回路部の劣化判断は、火災検知器12の劣化試験部86の場合と同様であり、盤制御部34は、火災検知器12の各回路ブロックについて測定された内部電圧が予告電圧閾値以下又は予告電圧閾値を下回った場合、又は、測定された消費電流が予告電流閾値以下又は予告電流閾値を下回った場合に、その回路ブロックの劣化故障が近いと判断し、火災検知器12のアドレスを特定した劣化異常の予告警報を表示部40の警報音、ディスプレイ表示、印刷により報知させ、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に送信し、劣化異常予告を報知させる制御を行う。 Deterioration judgment of the detector circuit unit by the board control unit 34 is the same as the case of the deterioration test unit 86 of the fire detector 12, and the board control unit 34 detects the internal voltage measured for each circuit block of the fire detector 12. is below the notice voltage threshold or below the notice voltage threshold, or when the measured current consumption is below the notice current threshold or below the notice current threshold, it is determined that the deterioration failure of the circuit block is near, and fire is detected. An advance warning of deterioration abnormality specifying the address of the device 12 is notified by the alarm sound of the display unit 40, display display, and printing, and is sent from the modem 44 to the remote monitoring control equipment 32 via the IG slave station equipment 20 shown in FIG. Control is performed to transmit and notify deterioration abnormality notice.

また、盤制御部34は、火災検知器12の各回路ブロックについて測定された内部電圧が所定の電圧閾値以下又は電圧閾値を下回った場合、又は、測定した消費電流が所定の電流閾値以下又は電流閾値を下回った場合に劣化異常と判断し、火災検知器のアドレスを特定した劣化異常警報を表示部40の警報音、ディスプレイ表示、印刷により報知させ、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に送信し、劣化異常を報知させる制御を行う。 In addition, the board control unit 34 is controlled when the internal voltage measured for each circuit block of the fire detector 12 is below a predetermined voltage threshold or below the voltage threshold, or when the measured current consumption is below a predetermined current threshold or current If the threshold value is exceeded, it is determined that there is a deterioration abnormality, and a deterioration abnormality alarm specifying the address of the fire detector is notified by the alarm sound of the display unit 40, display display, and printing, and the IG slave station shown in FIG. 1 from the modem 44. It is transmitted to the remote monitoring and control equipment 32 via the equipment 20, and control is performed to report the deterioration abnormality.

また、盤制御部34は、メモリに火災検知器12から受信した内部電圧及び消費電流の測定値を時系列的なログ情報として記憶しており、例えば、所定のログ出力操作に基づき、火災検知器12のアドレス順に時系列的な内部電圧と消費電流の測定値をディスプレイ上に一覧表示するか、プリンタで印刷出力させることで、火災検知器12の劣化の進行具合をアドレス順に判断可能となる。この場合、時間的な並びは、日単位、週単位、月単位、更には指定された日数単位とすることで、劣化による内部電圧や消費電流の変化を強調させることができる。 In addition, the panel control unit 34 stores the measured values of the internal voltage and current consumption received from the fire detector 12 in the memory as chronological log information. By displaying a list of measured values of the internal voltage and current consumption chronologically in the order of the addresses of the fire detector 12 on the display or by printing them out with a printer, it is possible to judge the progress of deterioration of the fire detector 12 in the order of the addresses. . In this case, the chronological arrangement can be performed in units of days, weeks, months, or even specified number of days, thereby emphasizing changes in internal voltage and current consumption due to deterioration.

また、ログ情報の出力形式として、内部電圧と消費電流の数値表示以外に、時間軸を横軸、電圧電流を縦軸としたグラフ表示としても良い。 As an output format of the log information, in addition to the numerical display of the internal voltage and current consumption, a graph display with the time axis as the horizontal axis and the voltage and current as the vertical axis may be used.

更に、盤制御部34は、表示部40のディスプレイを利用した操作部42の操作に基づき、劣化異常を判断する閾値と、劣化異常の予告を判断する予告閾値を変更させる制御を行う。この閾値及び予告閾値を変更させる制御は、全ての火災検知器12の閾値と予告閾値を一斉に変更させることもできるし、アドレスを指定して特定の火災検知器12の閾値と予告閾値を変更させることもできる。 Further, the panel control unit 34 performs control to change the threshold for determining deterioration abnormality and the notice threshold for determining the notice of deterioration abnormality based on the operation of the operation unit 42 using the display of the display unit 40 . This control for changing the threshold value and the notice threshold value can change the threshold value and the notice threshold value of all the fire detectors 12 all at once, or change the threshold value and the notice threshold value of a specific fire detector 12 by specifying an address. You can also let

[本発明の変形例]
(火災検知器)
上記の実施形態は2波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、前述した2波長に加え、CO2の共鳴放射帯である4.4~4.5μm帯に対し短波長側の、例えば、3.8μm付近の波長帯域における放射線エネルギーを2波長式と同様の手法で検知し、これらの3波長帯域における各受光信号の相対比によって炎の有無を判定する3波長式の炎検知器としても良い。
[Modification of the present invention]
(fire detector)
Although the above embodiment uses a two-wavelength type fire detector as an example, other types may be used. Radiation energy in a wavelength band near 3.8 μm on the short wavelength side, for example, is detected by a method similar to the two-wavelength method, and the presence or absence of a flame is determined based on the relative ratio of the received light signals in these three wavelength bands. It may also be used as a type flame detector.

(汚れ試験)
上記の実施形態は、火災検知部60R,60Lに設けたセンサ部64と増幅処理部66により外部試験光源76R,76Lからの試験光により得られた受光値を使用して減光率を求めているが、汚れ試験専用のセンサ部と増幅処理部を設けて外部試験光源76R,76Lからの試験光による受光値から減光率を求めるようにしても良い。
(dirt test)
In the above embodiment, the light attenuation rate is obtained by using the light reception values obtained from the test light from the external test light sources 76R and 76L by the sensor units 64 and the amplification processing units 66 provided in the fire detection units 60R and 60L. However, a sensor section and an amplification processing section dedicated to the contamination test may be provided to obtain the light attenuation rate from the received light value of the test light from the external test light sources 76R and 76L.

(劣化試験)
上記の実施形態は、火災検知器12の回路ブロックの劣化により内部電圧と消費電流が減少することを想定して劣化の度合を判断されているが、回路ブロックによっては、絶縁低下等による漏洩電流等により消費電流が増加することが想定されることから、例えば、消費電流については、所定の基準消費電流より高い電流閾値を設定し、この電流閾値以上又は電流閾値を超えた場合に劣化異常と判断して劣化異常警報を出力するようにしても良い。
(Deterioration test)
In the above embodiment, the degree of deterioration is determined on the assumption that the internal voltage and current consumption will decrease due to deterioration of the circuit block of the fire detector 12. Since it is assumed that current consumption will increase due to factors such as this, for example, a current threshold that is higher than a predetermined reference current consumption is set for the current consumption, and if the current threshold is equal to or higher than the current threshold, it is considered to be a deterioration abnormality. A deterioration abnormality alarm may be output after making a judgment.

(火災検知器の内部電圧と消費電流の測定)
上記の実施形態では、火災検知器12の電源部58から各回路ブロックに供給される電源電圧と電源電流を、内部電圧及び消費電流として測定して劣化度合を判断されているが、電源部58から全ての回路部に供給される電源電圧と電源電流を、内部電圧及び消費電流として測定して劣化度合を判断しても良い。これにより電圧電流検出部78が1つで済み、回路構成と測定処理を簡単することができる。
(Measurement of fire detector internal voltage and current consumption)
In the above embodiment, the power supply voltage and power supply current supplied from the power supply unit 58 of the fire detector 12 to each circuit block are measured as the internal voltage and current consumption to determine the degree of deterioration. The degree of deterioration may be determined by measuring the power supply voltage and power supply current supplied to all the circuit units from the internal voltage and current consumption. As a result, only one voltage/current detector 78 is required, and the circuit configuration and measurement processing can be simplified.

また、回路部の劣化判断に使用する内部電圧と消費電流の測定を、感度試験と汚れ試験の試験時に測定しているが、それ以外の適宜の火災感知器の試験時に測定しても良い。更に、内部電圧と消費電流を火災検知器の試験時に測定する以外に、試験を行っていない定常監視状態での内部電圧と消費電流を測定して回路部の劣化度合を判断するようにしても良い。 In addition, the internal voltage and current consumption used to determine the deterioration of the circuit section are measured during the sensitivity test and contamination test, but they may be measured during other appropriate fire sensor tests. Furthermore, in addition to measuring the internal voltage and current consumption during testing of the fire detector, the internal voltage and current consumption may be measured in a steady monitoring state when no test is being performed to determine the degree of deterioration of the circuit. good.

(異常リストの表示)
また、防災受信盤10により異常を報知させるため、異常のリストと汚れ警報のリストを同一のリスト上に表示しても良い。
(Display of error list)
Further, in order to notify the abnormality by the disaster prevention receiving panel 10, the list of abnormality and the list of dirt alarm may be displayed on the same list.

(劣化異常となった火災検知器の取扱い)
また、劣化異常となった火災検知器について、火災検知結果を防災受信盤側で採用しないようにしても良い。これにより、正常な検知結果のみで火災を監視することが可能となり、非火災報を低減させることができる。また、上記において、検知範囲の重なる隣接感知器に異常がない場合のみ当該劣化異常火災検知器の火災検知結果を採用しないように制御することが、最低限の監視を行う上で好適である。
(Handling of fire detectors with abnormal deterioration)
In addition, the fire detection result of the fire detector that has deteriorated abnormally may not be used on the disaster prevention receiver side. As a result, it is possible to monitor fires based only on normal detection results, thereby reducing non-fire alarms. In addition, in the above, it is preferable to perform control so that the fire detection result of the deterioration abnormal fire detector is not adopted only when there is no abnormality in the adjacent detector whose detection range overlaps, in order to perform the minimum monitoring.

(火災検知器の表示灯)
また、火災検知器に表示灯を設け、異常時には発光表示させるようにしても良い。これにより、異常の対応を行う作業員がどの火災検知器に対して対処すればよいか現場にて一見で分かるようになる。また、当該異常の発光表示について、防災受信盤側から発光許可信号が出力されたときのみ、発光するようにしても良い。これにより、通常使用時においては異常の発光表示をしないため、運転者等が注意をひかれることはない。また、点検時においてのみ発光表示を行うことで、点検時においては一見で把握できるようになり、注意を引く程度の発光量で発光することも可能となる。
(Fire detector indicator light)
In addition, an indicator lamp may be provided in the fire detector so that it may emit light when there is an abnormality. As a result, it becomes possible for a worker who deals with an abnormality to know at a glance which fire detector should be dealt with at the site. Further, the light emission indication of the abnormality may be made to emit light only when the light emission permission signal is output from the disaster prevention receiver side. As a result, the abnormality is not displayed by light emission during normal use, so that the attention of the driver or the like is not drawn. In addition, by displaying light emission only at the time of inspection, it becomes possible to grasp the situation at a glance at the time of inspection, and it is also possible to emit light with an amount of light emission that draws attention.

(火災検知器のログ)
また、火災検知器は消費電流・内部電圧・劣化検出状態をログとして自身のメモリに記憶するようにしても良い。火災検知器はアドレス設定器等の外部機器に接続され、メモリに記憶したログデータの読み出しが行われる。
(fire detector log)
Also, the fire detector may store current consumption, internal voltage, and deterioration detection state as a log in its own memory. The fire detector is connected to an external device such as an address setting device, and the log data stored in the memory is read.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(others)
The present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14,14a,14b:伝送路
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:盤制御部
36,36a,36b,56:伝送部
46:IO部
50R,50L:透光性窓
51:センサ収納部
52R,52L:試験光源用透光窓
54:検知器制御部
58:電源部
60R,60L:火災検知部
64,68:センサ部
66,70:増幅処理部
72:試験発光駆動部
74R,74L,75R,75L:内部試験光源
76R,76L:外部試験光源
78:電圧電流検出部
80:火災判断部
82:感度試験部
84:汚れ試験部
86:劣化試験部





















1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver panel 12: Fire detectors 14, 14a, 14b: Transmission line 16: Fire pump equipment 18: Cooling pump equipment 20: IG substation equipment 22: Ventilation equipment 24: Alarm display board facility 26: Radio rebroadcast facility 28: TV monitoring facility 30: Lighting facility 32: Remote monitoring control facility 34: Panel control units 36, 36a, 36b, 56: Transmission unit 46: IO units 50R, 50L: Translucent Property window 51: Sensor storage units 52R, 52L: Translucent window for test light source 54: Detector control unit 58: Power supply units 60R, 60L: Fire detection units 64, 68: Sensor units 66, 70: Amplification processing unit 72: Test Light emission drive units 74R, 74L, 75R, 75L: Internal test light sources 76R, 76L: External test light sources 78: Voltage/current detection unit 80: Fire determination unit 82: Sensitivity test unit 84: Dirt test unit 86: Deterioration test unit





















Claims (4)

検知エリアの火災からの光エネルギーを受光センサで検出する火災検知器を設けた防災システムであって、
少なくとも前記火災検知器の故障状態である故障異常に至る以前の劣化状態と認められる劣化異常を判定する異常判定部を備え、
前記異常判定部は、前記火災検知器の前記受光センサによる前記光エネルギーの検出感度が所定レベルに低下する検出感度異常を判定する試験時に取得した前記検出感度異常を判定するための情報とは異なる前記劣化異常を判定するための情報に基づいて、前記劣化異常を判定することを特徴とする防災システム。
A disaster prevention system provided with a fire detector that detects light energy from a fire in a detection area with a light receiving sensor,
At least an abnormality determination unit that determines a deterioration abnormality recognized as a deterioration state before reaching a failure abnormality that is a failure state of the fire detector,
The abnormality determination unit is different from the information for determining the detection sensitivity abnormality acquired during a test for determining the detection sensitivity abnormality in which the detection sensitivity of the light energy by the light receiving sensor of the fire detector decreases to a predetermined level. A disaster prevention system, wherein the deterioration abnormality is determined based on information for determining the deterioration abnormality.
請求項1記載の防災システムであって、
前記異常判定部は、前記劣化異常の判定対象とする前記火災検知器の機能構成部の各々について前記劣化異常を判定することにより、当該劣化異常が発生した機能構成部を特定可能としたことを特徴とする防災システム。
A disaster prevention system according to claim 1,
The abnormality determination unit determines the deterioration abnormality for each of the functional components of the fire detector to be determined for the deterioration abnormality, thereby making it possible to identify the functional component in which the deterioration abnormality has occurred. A disaster prevention system characterized by:
検知エリアの火災からの光エネルギーを受光センサで検出する火災検知器であって、
少なくとも前記火災検知器の故障状態である故障異常に至る以前の劣化状態と認められる劣化異常を判定する異常判定部を備え、
前記異常判定部は、前記火災検知器の前記受光センサによる前記光エネルギーの検出感度が所定レベルに低下する検出感度異常を判定する試験時に取得した前記検出感度異常を判定するための情報とは異なる前記劣化異常を判定するための情報に基づいて、前記劣化異常を判定することを特徴とする火災検知器。
A fire detector that detects light energy from a fire in a detection area with a light receiving sensor,
At least an abnormality determination unit that determines a deterioration abnormality recognized as a deterioration state before reaching a failure abnormality that is a failure state of the fire detector,
The abnormality determination unit is different from the information for determining the detection sensitivity abnormality acquired during a test for determining the detection sensitivity abnormality in which the detection sensitivity of the light energy by the light receiving sensor of the fire detector decreases to a predetermined level. A fire detector that determines the deterioration abnormality based on information for determining the deterioration abnormality.
請求項3記載の火災検知器であって、
前記異常判定部は、前記劣化異常の判定対象とする前記火災検知器の機能構成部の各々について前記劣化異常を判定することにより、当該劣化異常が発生した機能構成部を特定可能としたことを特徴とする火災検知器。







A fire detector according to claim 3,
The abnormality determination unit determines the deterioration abnormality for each of the functional components of the fire detector to be determined for the deterioration abnormality, thereby making it possible to identify the functional component in which the deterioration abnormality has occurred. A fire detector characterized by:







JP2023019698A 2017-03-08 2023-02-13 Disaster prevention system and fire detector Pending JP2023055960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023019698A JP2023055960A (en) 2017-03-08 2023-02-13 Disaster prevention system and fire detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017044031A JP6900206B2 (en) 2017-03-08 2017-03-08 Tunnel disaster prevention system
JP2021099901A JP7249380B2 (en) 2017-03-08 2021-06-16 Fire prevention system and fire detector
JP2023019698A JP2023055960A (en) 2017-03-08 2023-02-13 Disaster prevention system and fire detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021099901A Division JP7249380B2 (en) 2017-03-08 2021-06-16 Fire prevention system and fire detector

Publications (1)

Publication Number Publication Date
JP2023055960A true JP2023055960A (en) 2023-04-18

Family

ID=63591354

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017044031A Active JP6900206B2 (en) 2017-03-08 2017-03-08 Tunnel disaster prevention system
JP2021099901A Active JP7249380B2 (en) 2017-03-08 2021-06-16 Fire prevention system and fire detector
JP2023019698A Pending JP2023055960A (en) 2017-03-08 2023-02-13 Disaster prevention system and fire detector

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017044031A Active JP6900206B2 (en) 2017-03-08 2017-03-08 Tunnel disaster prevention system
JP2021099901A Active JP7249380B2 (en) 2017-03-08 2021-06-16 Fire prevention system and fire detector

Country Status (1)

Country Link
JP (3) JP6900206B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358071B2 (en) * 2019-05-10 2023-10-10 ホーチキ株式会社 Monitoring system
JP7341819B2 (en) 2019-09-25 2023-09-11 ニッタン株式会社 flame detector

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618606A (en) * 1992-07-03 1994-01-28 Toyo Commun Equip Co Ltd Method for generating alarm for insulation deterioration
JP3277406B2 (en) * 1993-05-11 2002-04-22 能美防災株式会社 Radiation fire detector
JP3047892B2 (en) 1998-07-17 2000-06-05 日本電気株式会社 Equipment deterioration diagnosis apparatus, equipment deterioration diagnosis method, and recording medium
JP2000187784A (en) * 1998-12-22 2000-07-04 Matsushita Electric Works Ltd Fire sensor, fire warning receiver, fire warning reception system using them
JP3741404B2 (en) * 1999-04-30 2006-02-01 能美防災株式会社 Fire detector and disaster prevention system
JP4240353B2 (en) 2001-02-15 2009-03-18 ホーチキ株式会社 Tunnel disaster prevention equipment
JP2002298244A (en) * 2001-03-30 2002-10-11 Nohmi Bosai Ltd Fire detector
JP2003130899A (en) * 2001-10-22 2003-05-08 Nittetsu Elex Co Ltd Power source abnormality monitoring device
JP2003281639A (en) * 2002-03-25 2003-10-03 Matsushita Electric Works Ltd Fire and abnormality discrimination method for sensor line and fire reporting system
EP1369835B1 (en) * 2002-06-05 2007-05-09 Cooper Lighting and Security Limited Fire detectors
JP2005121490A (en) * 2003-10-16 2005-05-12 Nohmi Bosai Ltd Flame detector equipped with automatic test function
JP2005128699A (en) 2003-10-22 2005-05-19 Toshiba Corp Electric appliance diagnosis system
JP2006106835A (en) * 2004-09-30 2006-04-20 Nohmi Bosai Ltd Disaster prevention reception panel in tunnel disaster prevention facility
JP4817368B2 (en) * 2006-03-15 2011-11-16 能美防災株式会社 Fire detector
JP5302086B2 (en) * 2009-04-27 2013-10-02 ホーチキ株式会社 Alarm
JP5845109B2 (en) * 2012-02-23 2016-01-20 ホーチキ株式会社 Flame monitoring device
JP6013027B2 (en) 2012-05-24 2016-10-25 ホーチキ株式会社 Fire alarm system, fire alarm method for fire alarm system, and fire alarm program for fire alarm system
JP5911139B2 (en) * 2012-07-26 2016-04-27 能美防災株式会社 Fire detection system
JP2014157435A (en) * 2013-02-15 2014-08-28 Nohmi Bosai Ltd Fire alarm facilities
JP6126860B2 (en) * 2013-02-15 2017-05-10 能美防災株式会社 Fire alarm system
JP6474606B2 (en) * 2014-12-24 2019-02-27 新コスモス電機株式会社 Alarm
JP6577780B2 (en) * 2015-08-03 2019-09-18 ホーチキ株式会社 Tunnel disaster prevention system
CN205247554U (en) * 2015-12-21 2016-05-18 无锡圣敏传感科技股份有限公司 Air tubular line type heat fire detector that can real -time supervision pipeline trouble

Also Published As

Publication number Publication date
JP6900206B2 (en) 2021-07-07
JP2021152937A (en) 2021-09-30
JP7249380B2 (en) 2023-03-30
JP2018147373A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2023055960A (en) Disaster prevention system and fire detector
JP2018169893A5 (en)
KR101104519B1 (en) Contactless fire perception system
KR20130056211A (en) Aspirating environmental sensor with webserver and email notification
KR102176533B1 (en) Fire alarm system using artificial intelligence
KR101391302B1 (en) Addressable automatic fire alarm system
KR102233617B1 (en) Mobile Fire Notifying Application using Real-time Fire Detector malfunction estimating System and Device
KR101950793B1 (en) A system for detecting fire automatic
JP2021108194A (en) Disaster prevention system
JP2023089258A (en) Fire detector and tunnel disaster prevention system
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
KR20090125582A (en) Apparatus for information of a safety administration and building prevention using a wire net and wireless net
KR101264591B1 (en) Fire detection apparatus and system
JP2021106031A (en) Test system for tunnel disaster prevention facility
JP7441919B2 (en) disaster prevention system
KR101269232B1 (en) Fire receiver having fire prompt reporting function
JP2022121650A (en) disaster prevention system
KR20160093448A (en) Electronic fire detector by bluetooth ibeacon transmitter and receiving system
KR20100053128A (en) System based on network for detecting a fire
JP2023015283A (en) disaster prevention system
JP2023052809A (en) disaster prevention system
JP7019486B2 (en) Fire alarm system
JP7336248B2 (en) Tunnel disaster prevention system and fire detector
JP7358071B2 (en) Monitoring system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240522