JP2023055528A - 電動工具 - Google Patents

電動工具 Download PDF

Info

Publication number
JP2023055528A
JP2023055528A JP2021164979A JP2021164979A JP2023055528A JP 2023055528 A JP2023055528 A JP 2023055528A JP 2021164979 A JP2021164979 A JP 2021164979A JP 2021164979 A JP2021164979 A JP 2021164979A JP 2023055528 A JP2023055528 A JP 2023055528A
Authority
JP
Japan
Prior art keywords
motor
torque
control circuit
power tool
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021164979A
Other languages
English (en)
Inventor
邦久 嶋
Kunihisa Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Priority to JP2021164979A priority Critical patent/JP2023055528A/ja
Priority to CN202211087803.6A priority patent/CN115940701A/zh
Priority to DE102022125644.8A priority patent/DE102022125644A1/de
Priority to US17/960,276 priority patent/US12011810B2/en
Publication of JP2023055528A publication Critical patent/JP2023055528A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • B25B23/1475Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers for impact wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】モータの定回転制御において、負荷トルク増大に起因するモータの回転速度の低下を抑制する。【解決手段】電動工具は、モータと、速度検出部と、トルク検出部と、制御回路と、駆動回路とを備える。制御回路は、モータの回転速度が目標回転速度に一致するように駆動指令値を算出する。具体的には、制御回路は、速度検出部により検出されたモータの回転速度と目標回転速度との差に応じて、駆動指令値の初期値を算出する。制御回路はさらに、トルク検出部により検出されたモータの負荷トルクに基づいて、初期値を補正する。駆動回路は、制御回路により算出された駆動指令値に応じた電力をモータへ供給する。【選択図】図4

Description

本開示は、電動工具に関する。
特許文献1は、マイコンによりモータが定回転制御されるように構成された電動工具を開示している。この電動工具では、マイコンは、ホールセンサから取得した信号(以下、「ホール信号」と称する)に基づいてモータの回転速度を検出する。マイコンは、検出された回転速度に基づき、モータの回転速度が一定の目標速度に一致するようにモータを制御する。
特許第5591131号公報
ホール信号は、モータが一定の回転角度を回転する度に更新される。マイコンは、ホール信号が更新される度に、その更新されたホール信号に基づいて回転速度を検出する。マイコンは、その検出した回転速度を、次に再びホール信号が更新されるまでの間、モータの現在の回転速度として認識する。
そのため、モータの減速中は、モータの実際の回転速度がマイコンの認識回転速度よりも低いという状況が継続的に発生し得る。実際の回転速度よりもマイコンの認識回転速度の方が高いと、モータから発生するトルクが不足する可能性がある。特に低速回転中はホール信号の更新間隔が長くなる。そのため、例えば、低速回転中にモータに大きな負荷がかかってモータが減速すると、実際の回転速度がマイコンの認識回転速度よりも低いという状況が長時間発生し、これにより、モータから発生するトルクが不足してモータの回転速度が急減するまたはモータがロックする可能性がある。
本開示の一局面は、モータの定回転制御において負荷トルク増大に起因するモータの回転速度の低下を抑制することを目的とする。
本開示の一局面における電動工具は、モータを備える。電動工具は、出力軸を備える。出力軸は、先端工具が装着される。出力軸は、モータの回転力を受けて駆動される。電動工具は、速度検出部を備える。速度検出部は、モータの回転速度を検出する。電動工具は、トルク検出部を備える。トルク検出部は、モータの負荷トルクを検出する。
電動工具は、制御回路を備える。制御回路は、回転速度が目標回転速度に一致するように駆動指令値を算出する。駆動指令値は、モータへ供給すべき電力を示す。具体的には、制御回路は、初期値算出処理及び補正処理を実行することにより駆動指令値を算出する。初期値算出処理は、検出回転速度と目標回転速度との差に応じて駆動指令値の初期値を算出することを含む。検出回転速度は、速度検出部により検出された回転速度である。補正処理は、初期値算出処理により算出された初期値を、トルク検出部により検出された負荷トルクに基づいて補正し、その補正した値を駆動指令値として算出することを含む。
電動工具は、駆動回路を備える。駆動回路は、制御回路により算出された駆動指令値に応じた電力をモータへ供給することによりモータを駆動する。
このような電動工具では、検出回転速度と目標回転速度との差に応じて駆動指令値の初期値が算出される。この初期値が駆動指令値として用いられてもよいが、本開示では、この初期値が、負荷トルクに基づいて補正される。そのため、負荷トルクが考慮された駆動指令値、即ちモータの実際の回転状況がより反映(すなわちフィードバック)された駆動指令値が生成される。これにより、モータの定回転制御において、負荷トルク増大に起因するモータの回転速度の低下を抑制することが可能となる。
実施形態の電動工具の正面側斜視図である。 実施形態の電動工具の背面側斜視図である。 第1半割ハウジングが外された電動作業機の側面図である。 実施形態の電動工具の電気的構成を示す説明図である。 トルクフィードバック制御を含む定回転制御の実行例を示す説明図である。 トルクフィードバック制御を含まない定回転制御の実行例を示す説明図である。 モータ制御処理のフローチャートである。 デューティ比演算処理のフローチャートである。
[実施形態の総括]
ある実施形態における電動工具は、モータを備えてもよい。加えて/あるいは、電動工具は、出力軸を備えてもよい。出力軸は、先端工具が装着されてもよい。出力軸は、モータの回転力を受けて駆動される。加えて/あるいは、電動工具は、速度検出部を備えてもよい。速度検出部は、モータの回転速度を検出する。加えて/あるいは、電動工具は、トルク検出部を備えてもよい。トルク検出部は、モータの負荷トルクを検出する。負荷トルクは、モータに直接加わるトルクであってもよいし、モータに間接的に加わるトルクであってもよい。つまり、ここでいう負荷トルクは、モータのロータに直接加わるトルクに限定されない。先端工具によって各種作業が行われると、作業対象物から先端工具に、先端工具の動きを妨げる方向のトルクがかかり得る。このトルクは、出力軸の回転を妨げるように作用し、ひいてはモータの回転を妨げるように作用する。つまりこのトルクは出力軸を介してモータに伝達される。トルク検出部はこのトルクを負荷トルクとして検出する。トルク検出部は、出力軸からモータに至るトルクの伝達経路におけるどの部位のトルクを検出してもよい。加えて/あるいは、電動工具は、制御回路を備えてもよい。制御回路は、回転速度が目標回転速度に一致するように駆動指令値を算出する。駆動指令値は、モータへ供給すべき電力を示す。加えて/あるいは、制御回路は、初期値算出処理を実行してもよい。初期値算出処理は、検出回転速度と目標回転速度との差に応じて駆動指令値の初期値を算出することを含む。検出回転速度は、速度検出部により検出された回転速度である。加えて/あるいは、制御回路は、補正処理を実行してもよい。補正処理は、初期値算出処理により算出された初期値を、トルク検出部により検出された負荷トルクに基づいて補正することを含む。補正処理は、その補正した値を駆動指令値として算出することを含む。加えて/あるいは、電動工具は、駆動回路を備えてもよい。駆動回路は、制御回路により算出された駆動指令値に応じた電力をモータへ供給することによりモータを駆動する。
出力軸は、先端工具が離脱可能に装着されるように構成されていてもよい。初期値は、検出回転速度と目標回転速度との差に基づいて、回転速度が目標回転速度に一致するようにどのように算出されてもよい。例えば、検出回転速度が目標回転速度よりも低いほど大きい値の初期値が算出されてもよい。補正処理は、負荷トルクに基づいて初期値をどのように補正してもよい。補正処理は、例えば、負荷トルクが大きいほど大きい値の駆動指令値が算出されるように初期値を補正してもよい。
ある実施形態における電動工具が、上記のモータ、上記の出力軸、上記の速度検出部、上記のトルク検出部、上記の制御回路及び上記の駆動回路を備え、制御回路が上記の初期値算出処理及び補正処理を実行するのであれば、このような電動工具は、負荷トルク増大に起因するモータの回転速度の低下を抑制することが可能となる。なお、ここでいう「負荷トルク増大に起因するモータの回転速度の低下」とは、より詳しくは、例えば、負荷トルクの増大に起因してモータの回転速度が低下することにより目標回転速度との差が大きくなること、を意味していてもよい。なお、モータの回転(及び回転速度)とは、詳しくは、例えば後述するロータの回転(及び回転速度)を意味する。
加えて/あるいは、補正処理は、初期値に補正値を加算することを含んでいてもよい。補正値は、トルク検出部により検出された負荷トルクの増加に応じて増加してもよい。ある実施形態における電動工具が、上記の補正処理を実行する制御回路を備えているのであれば、このような電動工具は、負荷トルクの増大に起因するモータの回転速度の低下を効率的に抑制することができる。
加えて/あるいは、駆動回路は、電力供給経路に設けられたスイッチング素子を含んでいてもよい。電力供給経路は、電力源とモータとを接続する。加えて/あるいは、駆動指令値はデューティ比であってもよい。加えて/あるいは、制御回路は、駆動処理を実行してもよい。駆動処理は、デューティ比を有するパルス幅変調信号に従ってスイッチング素子を周期的にオンまたはオフすることを含む。ある実施形態における電動工具が、上記の特徴を有する駆動回路及び制御回路を備えているのであれば、このような電動工具では、制御回路は定回転制御を効率的に行うことができる。さらに、制御回路は、補正処理において、デューティ比の初期値を負荷トルクに基づいて補正する。そのため、制御回路は、負荷トルクが考慮された適正な駆動指令値(即ちデューティ比)を容易に算出することができる。
加えて/あるいは、制御回路は、補正処理を実行すべき補正条件が成立していることに応じて補正処理を実行してもよい。加えて/あるいは、制御回路は、補正条件が成立していないことに応じて、補正処理を回避してもよい。制御回路は、補正条件が成立していないことに応じて、さらに、初期値算出処理により算出された初期値に基づく駆動指令値を算出してもよい。即ち、補正条件が成立していない場合は、例えば、初期値を駆動指令値として算出してもよい。ある実施形態における電動工具が、上記の特徴を有する制御回路を備えているのであれば、このような電動工具は、制御回路のリソースの有効利用が可能となる。
加えて/あるいは、補正条件は、目標回転速度が閾値以下であることに応じて成立してもよい。ある実施形態における電動工具が、上記の特徴を有する制御回路を備えているのであれば、このような電動工具は、負荷トルクによって回転速度が低下しやすい低速域において負荷トルクに起因する回転速度の低下を抑制することができる。
加えて/あるいは、速度検出部は、信号出力回路を備えてもよい。信号出力回路は、モータのロータが一定角度回転する毎に変化する信号を出力する。加えて/あるいは、速度検出部は、速度検出回路を備えてもよい。速度検出回路は、信号出力回路から出力された前記信号に基づいて回転速度を検出する。ある実施形態における電動工具が、上記の特徴を有する速度検出部を備えているのであれば、このような電動工具は、検出回転速度が更新されてから次に再び更新されるまでの期間(即ちロータが一定角度回転する期間)に負荷トルクが増大しても、補正処理により、その負荷トルクの増大に起因する回転速度の低下を抑制することができる。
加えて/あるいは、制御回路は、補正処理を所定の補正実行周期で周期的に繰り返し実行してもよい。加えて/あるいは、補正実行周期は、ロータが所定の回転速度以下で回転している場合にロータが一定角度回転するのに要する時間よりも短くてもよい。トルク検出部は、負荷トルクを連続的に(換言すればリアルタイムに)または離散的に検出するように構成されていてもよい。負荷トルクが離散的に検出される場合、負荷トルクが検出される間隔は、補正実行周期よりも短くてもよい。ある実施形態における電動工具が、上記の特徴を有する制御回路を備えているのであれば、このような電動工具では、負荷トルク増大によって回転速度が低下しやすい低速域において、負荷トルクの増大に起因する回転速度の低下を効率よく抑制することができる。
加えて/あるいは、制御回路は、目標回転速度が閾値以下である場合に補正処理を実行してもよい。つまり、補正条件は、目標回転速度が閾値以下であることに応じて成立してもよい。また、制御回路は、補正処理を実行する場合、補正処理を、所定の補正実行周期で周期的に繰り返し実行してもよい。加えて/あるいは、補正実行周期は、ロータが前記閾値以下の回転速度で回転している場合にロータが一定角度回転するのに要する時間よりも短くてもよい。ある実施形態における電動工具が、上記の信号出力回路及び速度検出回路を有する速度検出部を備えると共に上記特徴を有する制御回路を備えているのであれば、このような電動工具では、閾値以下の速度域において、負荷トルクの増大に起因する回転速度の低下を効率よく抑制することができる。
加えて/あるいは、信号出力回路は、ホールセンサを含んでいてもよい。
加えて/あるいは、ある実施形態における電動工具は、さらに、回転力伝達部を備えてもよい。回転力伝達部は、モータの回転力を出力軸に伝達する。加えて/あるいは、トルク検出部は、トルクセンサを備えてもよい。トルクセンサは、回転力伝達部または出力軸に設けられている。トルクセンサは、負荷トルクによって回転力伝達部または出力軸に生じる機械的なねじれ、に応じた信号を出力する。加えて/あるいは、トルク検出部は、トルクセンサから出力された信号に基づいて負荷トルクを検出する。ある実施形態における電動工具が、上記の特徴を有する回転力伝達部及びトルク検出部を備えているのであれば、このような電動工具は、実際の負荷トルクを直接(またはほぼ直接)検出できる。そのため、制御回路は、実際の負荷トルクに応じた、精度の高い補正処理を行うことができる。
加えて/あるいは、トルク検出部は、電流検出回路を備えてもよい。電流検出回路は、モータに流れる電流を検出する。加えて/あるいは、トルク検出部は、トルク検出回路を備えてもよい。トルク検出回路は、電流検出回路により検出された電流の値に基づいて負荷トルクを検出する。ある実施形態における電動工具が、上記の特徴を有するトルク検出部を備えているのであれば、このような電動工具は、トルクセンサを用いることなく負荷トルクを検出することができる。
加えて/あるいは、トルク検出部は、電力供給経路における所定部位の電圧の降下量に基づいて負荷トルクを検出してもよい。前記降下量は、モータに電力が供給されていないときの前記所定部位の電圧とモータに電力が供給されているときの前記所定部位の電圧との差に対応する。ある実施形態における電動工具が、上記の特徴を有するトルク検出部を備えているのであれば、このような電動工具は、トルクセンサ及び/または電流検出回路を用いることなく負荷トルクを検出することができる。
ある実施形態では、上記の特徴はどのように組み合わされてもよい。ある実施形態では、上記の特徴いずれかは除外されてもよい。
[2.特定の例示的な実施形態]
以下、本開示の例示的な実施形態について、図面を参照しながら説明する。
(2-1)電動工具の構成
図1~図3に示す本実施形態の電動工具1は、例えば、充電式スクリュードライバとして構成されている。充電式スクリュードライバは、例えば、ネジなどの締結部品を回転させるために用いられてもよい。本実施形態の電動工具1は、後述するバッテリ101(図4参照)の電力によって駆動される。
図1及び図2に示すように、電動工具1は、本体2を備える。本体2は、ハウジング3を備える。ハウジング3は、左右に分割された第1半割ハウジング3a及び第2半割ハウジング3bを備える。第1半割ハウジング3aと第2半割ハウジング3bとが組み合わされてハウジング3が形成されている。図3は、第1半割ハウジング3aが取り外された電動工具1を示している。
本体2は、第1収容部5と、グリップ6と、第2収容部7とを備える。第1収容部5は、モータ11(図3参照)と、駆動機構12(図3参照)とを収容している。第1収容部5は、さらに、方向設定スイッチ9と、チャックスリーブ10とが設けられている。
チャックスリーブ10は、各種の先端工具(またはツール)が択一的に離脱可能に取り付けられる。各種の先端工具はそれぞれどのような機能を有していてもよい。各種の先端工具は例えば図1に例示されたプラスドライバビット10aであってもよい。チャックスリーブ10に装着された先端工具は、モータ11の回転力を受けて駆動(例えば回転)される。
モータ11は、本実施形態では例えばブラシレスモータである。モータ11が発生する回転駆動力(回転力)は、駆動機構12に伝達される。図3に示すように、モータ11は、ロータ19を備える。本実施形態のロータ19は、永久磁石型である。モータ11の回転とは、詳しくはロータ19の回転を意味する。駆動機構12は、例えば、減速機構(不図示)を備える。減速機構は、モータ11の回転駆動力を、モータ11の回転速度よりも低い回転速度に減速してチャックスリーブ10へ伝達する。
方向設定スイッチ9は、モータ11の回転方向(延いてはチャックスリーブ10の回転方向)を選択するために設けられている。電動工具の使用者は、方向設定スイッチ9を操作することによって、第1回転方向(例えば正転またCW(ClockWise))または第2回転方向(例えば逆転またはCCW(Counter-ClockWise))を選択できる。方向設定スイッチ9は、方向設定信号を出力する。方向設定信号は、方向設定スイッチ9により選択されている回転方向を示す。
方向設定スイッチ9は、例えば、使用者の手動操作により少なくとも第1位置及び第2位置のいずれかに択一的に設定されてもよい。方向設定スイッチ9が第1位置に設定されることに応じてモータ11の回転方向が第1回転方向に設定されてもよい。方向設定スイッチ9が第2位置に設定されることに応じてモータ11の回転方向が第2回転方向に設定されてもよい。第1位置及び第2位置それぞれに対応するモータ11の回転方向は予め固定されていてもよい。逆に、第1位置及び第2位置それぞれに、任意の動作条件が設定され得てもよい。動作条件は、例えば、モータ11の回転方向を少なくとも含んでいてもよい。動作条件は、さらに、モータ11の目標回転速度(ひいてはチャックスリーブ10の目標回転速度)及び/またはモータ11の停止条件を含んでいてもよい。この場合、方向設定スイッチ9の位置に対応した動作条件に従ってモータ11が駆動されてもよい。
グリップ6は、第1収容部5から延設されている。グリップ6は、例えば使用者により把持される。グリップ6は、トリガスイッチ8が設けられている。使用者は、グリップ6を把持しながら、トリガスイッチ8を手動操作する(例えば引く)ことができる。トリガスイッチ8を引くことは、本実施形態では、トリガスイッチ8を図3における左方向へ移動させる(または本体2へ押し込む)ことに対応する。
トリガスイッチ8は、手動操作されることによりオンする。トリガスイッチ8は、手動操作されていない場合はオフする。トリガスイッチ8は、トリガ検出信号を出力する。トリガ検出信号は、トリガスイッチ8がオフされているか否かを示す。トリガ検出信号は、さらに、トリガスイッチ8が手動操作されている場合における操作量を示していてもよい。
第2収容部7は、グリップ6から延設されている。第2収容部7の底部は、バッテリパック100が離脱可能に取り付けられる。図3に示すように、第2収容部7は、コントローラ30を収容している。
図3に示すように、第1収容部5は、さらに、トルクセンサ13が設けられている。トルクセンサ13は、モータ11に直接または間接的に加わる負荷トルクを検出するために設けられている。チャックスリーブ10に装着された先端工具によって各種の作業が行われると、モータ11は、作業対象物から、先端工具、チャックスリーブ10及び駆動機構12を介して負荷トルクを受ける。トルクセンサ13は、この負荷トルクに応じた信号(以下、「トルク検出信号」と称する)を出力する。
トルクセンサ13は、負荷トルクを検出可能などの位置に設けられてもよい。トルクセンサ13は、例えばチャックスリーブ10または駆動機構12に設けられてもよい。本実施形態では、トルクセンサ13は例えば駆動機構12に設けられている。トルクセンサ13は、トルク検出信号をどのように(例えばどのような原理で)生成してもよい。また、トルク検出信号はどのような形態の信号であってもよい。本実施形態のトルクセンサ13は、例えば、モータ11の回転をチャックスリーブ10に伝達するための不図示のシャフトの機械的なねじれ量に応じたアナログの電圧を生成する。この電圧がトルク検出信号として出力される。
本実施形態のトルクセンサ13は、実際の負荷トルクに応じた(即ち実際のシャフトのねじれ量に応じた)トルク検出信号をリアルタイムに(つまり連続的に)出力する。よって、ある時点でトルクセンサ13から出力されたトルク検出信号は、その時点の(またはほぼその時点の)実際の負荷トルクを示している。
(2-2)電動工具の電気的構成
電動工具1の電気的構成について、図4を参照して補足的に説明する。図4は、バッテリパック100が本体2に装着された状態の電動工具1を示している。
バッテリパック100は、バッテリ101を備える。バッテリ101は、例えば2次電池であってもよい。バッテリ101は、例えば、リチウムイオン電池であってもよい。バッテリ101は、リチウムイオン電池とは異なる2次電池であってもよい。
電動工具1は、前述のモータ11、トリガスイッチ8、方向設定スイッチ9、トルクセンサ13、表示部16及び入力I/F17を備える。「I/F」はインタフェースの略称である。
モータ11は、バッテリ101から後述する駆動回路31を介して供給されるバッテリ電力により駆動される。バッテリ101から供給されるバッテリ電力は、駆動回路31により三相電力に変換されてモータ11へ供給される。
モータ11は、第1巻線21,第2巻線22及び第3巻線23を備える。本実施形態では、第1~第3巻線21~23が例えばデルタ結線されている。ただし、第1~第3巻線21~23はデルタ結線以外の結線方法で結線されていてもよい。モータ11は、第1端子11a、第2端子11b及び第3端子11cを備えている。三相電力は、第1~第3端子11a~11cに入力され、第1~第3端子11a~11cを介して第1~第3巻線21~23へ供給される。
電動工具1は、さらに、回転位置検出部25を備える。回転位置検出部25は、回転位置情報を出力する。回転位置情報は、モータ11の回転位置、詳しくはロータ19の回転位置を示す。回転位置情報は、第1位置信号Hu、第2位置信号Hv及び第3位置信号Hwを含む。回転位置情報は、後述する第1制御回路32に入力される。
本実施形態の回転位置検出部25は、3つのホールセンサ、即ち、第1ホールセンサ26、第2ホールセンサ27及び第3ホールセンサ28を備えている。第1~第3ホールセンサ26~28は、ロータ19の周囲に設けられている。具体的には、第1~第3ホールセンサ26~28は、ロータ19の回転軸を中心にロータ19の回転方向に沿って互いに電気角120度に相当する角度を隔てて配置されている。
第1ホールセンサ26は、第1ホール素子(不図示)を有し、第1位置信号Huを出力する。第1位置信号Huは、第1ホールセンサ26(詳しくは第1ホール素子)とロータ19との相対的位置関係に応じて変化する。第2ホールセンサ27は、第2ホール素子(不図示)を有し、第2位置信号Hvを出力する。第2位置信号Hvは、第2ホールセンサ27(詳しくは第2ホール素子)とロータ19との相対的位置関係に応じて変化する。第3ホールセンサ28は、第3ホール素子(不図示)を有し、第3位置信号Hwを出力する。第3位置信号Hwは、第3ホールセンサ28(詳しくは第3ホール素子)とロータ19との相対的位置関係に応じて変化する。
第1~第3位置信号Hu,Hv,Hwはそれぞれ、本実施形態では二値のデジタル信号である。即ち、第1~第3位置信号Hu,Hv,Hwはそれぞれ、ハイレベルまたはローレベルにされる。第1~第3位置信号Hu,Hv,Hwのそれぞれのレベルは、ロータ19が電気角180度に相当する角度回転する毎に変化する。また、第1~第3位置信号Hu,Hv,Hwは互いに120°の位相差を有する。そのため、本実施形態では、ロータ19が電気角60°回転する毎に、第1~第3位置信号Hu,Hv,Hwのいずれか1つのレベルが変化する。
電動工具1は、さらに、コントローラ30を備える。コントローラ30は、本体2にバッテリパック100が装着されている場合に、電力供給経路50によってバッテリ101と電気的に接続される。コントローラ30は、バッテリ101から電力供給経路50を介してバッテリ101の電力(以下、「バッテリ電力」と称する)が供給される。電力供給経路50は、バッテリ101の正極から駆動回路31に至る正極経路51と、バッテリ101の負極から駆動回路31に至る負極経路52とを含む。電力供給経路50は、さらに、後述する第1経路61、第2経路62、第3経路63、第4経路64、第5経路65及び第6経路66を含む。第1~第6経路61~66は駆動回路31に設けられている。
コントローラ30は、駆動回路31を備える。駆動回路31は、モータ11の第1~第3端子11a~11cに接続されている。駆動回路31は、入力されたバッテリ電力から、モータ11を駆動するための三相駆動電力を生成して、モータ11に供給する。
本実施形態の駆動回路31は、三相フルブリッジ回路を備える。三相フルブリッジ回路は、第1スイッチUHと、第2スイッチULと、第3スイッチVHと、第4スイッチVLと、第5スイッチWHと、第6スイッチWLとを備える。第1~第6スイッチUH,UL,VH,VL,WH,WLの各々はどのようなスイッチであってもよい。本実施形態では、第1~第6スイッチUH,UL,VH,VL,WH,WLの各々は、例えばnチャネル金属酸化物半導体電界効果トランジスタ(MOSFET)である。
駆動回路31は、前述の第1~第6経路61~66を備える。第1経路61は、第1端子11aを正極経路51に(ひいてはバッテリ101の正極に)接続する。なお、第1端子11aからバッテリの正極に至る経路を第1経路61とみなしてもよい。第2経路62は、第1端子11aを負極経路52に(ひいてはバッテリ101の負極に)接続する。なお、第1端子11aからバッテリの負極に至る経路を第2経路62とみなしてもよい。第3経路63は、第2端子11bを正極経路51に(ひいてはバッテリ101の正極に)接続する。なお、第2端子11bからバッテリの正極に至る経路を第3経路63とみなしてもよい。第4経路64は、第2端子11bを負極経路52に(ひいてはバッテリ101の負極に)接続する。なお、第2端子11bからバッテリの負極に至る経路を第4経路64とみなしてもよい。第5経路65は、第3端子11cを正極経路51に(ひいてはバッテリ101の正極に)接続する。なお、第3端子11cからバッテリの正極に至る経路を第5経路65とみなしてもよい。第6経路66は、第3端子11cを負極経路52に(ひいてはバッテリ101の負極に)接続する。なお、第3端子11cからバッテリの負極に至る経路を第6経路66とみなしてもよい。
第1スイッチUHは、第1経路61に設けられている。第1スイッチUHは、第1制御回路32から第1駆動信号を受けている場合にオンし、第1駆動信号を受けていない場合はオフする。第1経路61は、第1スイッチUHがオンされている場合は第1スイッチUHを介して導通する。第1経路61は第1スイッチUHがオフされている場合は第1スイッチUHにより遮断される。第1スイッチUHのソースとドレインとの間には、第1ダイオードD1が接続されている。
第2スイッチULは、第2経路62に設けられている。第2スイッチULは、第1制御回路32から第2駆動信号を受けている場合にオンし、第2駆動信号を受けていない場合はオフする。第2経路62は、第2スイッチULがオンされている場合は第2スイッチULを介して導通する。第2経路62は第2スイッチULがオフされている場合は第2スイッチULにより遮断される。第2スイッチULのソースとドレインとの間には、第2ダイオードD2が接続されている。
第3スイッチVHは、第3経路63に設けられている。第3スイッチVHは、第1制御回路32から第3駆動信号を受けている場合にオンし、第3駆動信号を受けていない場合はオフする。第3経路63は、第3スイッチVHがオンされている場合は第3スイッチVHを介して導通する。第3経路63は第3スイッチVHがオフされている場合は第3スイッチVHにより遮断される。第3スイッチVHのソースとドレインとの間には、第3ダイオードD3が接続されている。
第4スイッチVLは、第4経路64に設けられている。第4スイッチVLは、第1制御回路32から第4駆動信号を受けている場合にオンし、第4駆動信号を受けていない場合はオフする。第4経路64は、第4スイッチVLがオンされている場合は第4スイッチVLを介して導通する。第4経路64は第4スイッチVLがオフされている場合は第4スイッチVLにより遮断される。第4スイッチVLのソースとドレインとの間には、第4ダイオードD4が接続されている。
第5スイッチWHは、第5経路65に設けられている。第5スイッチWHは、第1制御回路32から第5駆動信号を受けている場合にオンし、第5駆動信号を受けていない場合はオフする。第5経路65は、第5スイッチWHがオンされている場合は第5スイッチWHを介して導通する。第5経路65は第5スイッチWHがオフされている場合は第5スイッチWHにより遮断される。第5スイッチWHのソースとドレインとの間には、第5ダイオードD5が接続されている。
第6スイッチWLは、第6経路66に設けられている。第6スイッチWLは、第1制御回路32から第6駆動信号を受けている場合にオンし、第6駆動信号を受けていない場合はオフする。第6経路66は、第6スイッチWLがオンされている場合は第6スイッチWLを介して導通する。第6経路66は第6スイッチWLがオフされている場合は第6スイッチWLにより遮断される。第6スイッチWLのソースとドレインとの間には、第6ダイオードD6が接続されている。
駆動回路31は、例えば3つの系統に区分できる。3つの系統は、例えばU相系統、V相系統及びW相系統を含む。U相系統は、第1,第2スイッチUH,ULおよび第1,第2経路61,62を含む。V相系統は、第3,第4スイッチVH,VLおよび第3,第4経路63,64を含む。W相系統は、第5,第6スイッチWH,WLおよび第5,第6経路65,66を含む。
コントローラ30は、電流検出部33を備える。電流検出部33は、モータ11に流れる電流の値(以下、「モータ電流値」と称する)を検出するために設けられている。本実施形態の電流検出部33は、例えば負極経路52に設けられている。バッテリ101からモータ11へ電力が供給されると、負極経路52に電流が流れる。電流検出部33は、負極経路52に流れる電流に応じた信号(以下、「電流検出信号」と称する)を出力する。電流検出信号は、負極経路52に流れる電流の値を示す。本実施形態の電流検出信号は、負極経路52を流れる電流の値に応じた電圧値を有する。電流検出信号は、第1制御回路32に入力される。
コントローラ30は、電圧検出部34を備える。電圧検出部34は、電力供給経路50における所定の電圧検出点Pvの電圧値を検出するために設けられている。本実施形態では、電圧検出点Pvは、例えばコントローラ30内に存在している。電圧検出点Pvは、コントローラ30内の正極経路51における、駆動回路31の近傍に設けられていてもよい。電圧検出部34は、電圧検出点Pvの電圧に応じた信号(以下、「電圧検出信号」と称する)を出力する。電圧検出信号は、電圧検出点Pvの電圧の値を示す。電圧検出信号は、第1制御回路32に入力される。
コントローラ30は、第1制御回路32を備える。第1制御回路32は、例えば、CPU32a及びメモリ32bを備える。メモリ32bは、例えばROM、RAM、NVRAM、フラッシュメモリなどの半導体メモリを有していてもよい。即ち、本実施形態の第1制御回路32は、マイクロコンピュータを備えている。
第1制御回路32は、非遷移的実体的記録媒体に格納されたプログラムを実行することにより各種機能を実現する。本実施形態では、メモリ32bが、プログラムを格納した非遷移的実体的記録媒体に該当する。本実施形態では、メモリ32bには、後述するモータ制御処理(図7参照)及びデューティ比演算処理(図8参照)のプログラムが格納されている。
第1制御回路32により実現される各種機能の一部または全部は、プログラムの実行によって(即ち、ソフトウェア処理によって)達成されてもよいし、一つあるいは複数のハードウェアによって達成されてもよい。例えば、第1制御回路32は、マイクロコンピュータに代えて、またはマイクロコンピュータに加えて、複数の電子部品を含むロジック回路を備えていてもよいし、ASIC及び/またはASSPなどの特定用途向け集積回路を備えていてもよいし、任意の論理回路を構築可能な例えばFPGAなどのプログラマブルロジックデバイスを備えていてもよい。
第1制御回路32は、回転位置検出部25から回転位置情報(即ち第1~第3位置信号Hu,Hv,Hw)が入力される。第1制御回路32は、第1~第3位置信号Hu,Hv,Hwのうちのいずれかのレベルが変化する毎に(つまりロータ19が電気角60°回転する毎に)、前回レベル変化が生じたタイミング及び/または前回よりもさらに前にレベル変化が生じたタイミングから、今回レベル変化が生じたタイミングまでの時間に基づいて、モータ11の回転速度を検出する。
より具体的には、本実施形態では、第1~第3位置信号Hu,Hv,Hwのうちのいずれかのレベルが変化する毎にCPU32aの処理に割り込み(以下、「ホールセンサ割込」と称する)が入る。CPU32aは、ホールセンサ割込を受けると、モータ11の回転速度を算出する。そして、次に再びホールセンサ割込が入るまで、その算出した回転速度を、モータ11の現在の回転速度であると認識する。以下の説明で「認識回転速度」とは、ホールセンサ割込を受けて算出された回転速度を意味する。つまり、本実施形態では、認識回転速度は、ホールセンサ割込が入る毎に(即ちロータ19が電気角60°回転する毎に)更新される。
第1制御回路32は、トリガスイッチ8からトリガ検出信号が入力される。第1制御回路32は、トリガ検出信号に基づいて、トリガスイッチ8がオンされているか否かを検出できる。
第1制御回路32は、方向設定スイッチ9から方向設定信号が入力される。第1制御回路32は、方向設定信号に基づいて、第1回転方向及び第2回転方向のどちらが選択されているかを検出できる。
第1制御回路32は、トルクセンサ13からトルク検出信号が入力される。第1制御回路32は、トルク検出信号に基づいて負荷トルクを検出できる。前述の通り、トルクセンサ13からは、実際の負荷トルクがリアルタイムで反映されたトルク検出信号が連続的に出力される。そのため、第1制御回路32は、実際の負荷トルクをリアルタイムで検出することができる。
コントローラ30は、電源回路35を備える。電源回路35には、バッテリ101からバッテリ電力が入力される。電源回路35は、当該電源回路35に入力されたバッテリ電力から、制御電圧Vcを有する電源電力を生成して出力する。制御電圧Vcは例えば一定の電圧値を有する。電源回路35で生成された電源電力は、第1制御回路32を含むコントローラ30内の各部へ供給される。第1制御回路32はその電源電力によって動作する。本実施形態では、電源電力は、回転位置検出部25にも供給され、前述の第1~第3位置信号Hu,Hv,Hwの生成に用いられる。
電動工具1は、さらに、第2制御回路40を備える。第2制御回路40は、入力I/F17及び表示部16に接続されている。入力I/F17は、使用者により操作される1以上のスイッチを備える。本実施形態の入力I/F17は例えば4つのスイッチを備える。表示部16は、各種画像やテキストなどを表示可能である。
第2制御回路40は、モータ11の駆動に用いられる駆動設定を決定し、第1制御回路32に伝える。駆動設定は、各種設定項目を含む。各種設定項目は、例えば、モータ11の目標回転速度、締結完了条件などを含む。本実施形態では、後述するように、定回転制御が行われる。定回転制御では、モータ11の回転速度が目標回転速度に一致するようにモータ11が制御される。
締結完了条件は、回転中のモータ11を停止させるべき条件である。より具体的には、締結完了条件は、モータのブレーキ処理を開始すべき条件である。ブレーキ処理は、モータ11の回転を停止させるための制御である。第1制御回路32によりブレーキ処理が行われると、モータ11の回転が停止される。
本実施形態では、トリガスイッチ8がオンされるとモータ11が回転を開始する。そして、モータ11の回転中に停止条件が成立すると、ブレーキ処理が開始される。停止条件は、本実施形態では例えば、トリガスイッチ8がオフされるか、もしくは前述の締結完了条件が成立することに応じて、成立する。よって、モータ11の回転中に締結完了条件が成立した場合は、仮にトリガスイッチ8がオンされていても、停止条件が成立してブレーキ処理が開始され、これによりモータ11が停止される。
締結完了条件はどのように決められてもよい。本実施形態では、締結完了条件は、例えば、目標トルク、駆動時間及び/または締付回転角度を含む。締結完了条件に例えば目標トルクが含まれている場合は、モータ11の回転開始後、負荷トルクが目標トルクに到達すると締結完了条件が成立する。締結完了条件に例えば駆動時間が含まれている場合は、モータ11の回転開始から当該駆動時間が経過すると締結完了条件が成立する。締結完了条件に例えば目標トルク及び駆動時間が含まれている場合は、モータ11の回転開始後、負荷トルクが目標トルクに到達するかまたは回転開始から当該駆動時間が経過すると締結完了条件が成立する。
使用者は、入力I/F17を介して、各種設定項目を個別にまたはまとめて選択することができる。使用者により選択された各種設定項目が駆動設定に決定されると、第2制御回路40は、決定された駆動設定を第1制御回路32に通知する。
使用者は、例えば、第1~第N目標回転速度の中から1つを、目標回転速度として選択できてもよい。「N」は2以上の自然数である。第1~第N目標回転速度はそれぞれ、例えば20000rpm~1000rpmの範囲内の回転速度であってもよい。第1~第N目標回転速度のうちの少なくとも1つは、閾値以下であってもよい。閾値は、例えば5000rpmであってもよい。
本実施形態の第2制御回路40は、例えば、表示部16に、駆動設定のN種類のオプションを表示する。N種類のオプションは上記第1~第N目標回転速度をそれぞれ含んでいる。使用者は、入力I/F17を介して、いずれか1つのオプションを選択できる。第2制御回路40は、使用者によりオプションが選択されると、その選択されたオプションを駆動設定に決定して、その駆動設定を第1制御回路32に通知する。また、本実施形態では、特定の1つのオプションがデフォルトオプションとして設定されている。第2制御回路40は、起動すると、起動後の初期処理として、デフォルトオプションを駆動設定に決定して第1制御回路32へ通知する。
(2-3)定回転制御
第1制御回路32は、トリガスイッチ8がオンされると、定回転制御を実行することにより、モータ11を、方向設定スイッチ9により設定されている回転方向へ回転する。
具体的には、第1制御回路32は、第2制御回路40から前述の駆動設定を取得する。駆動設定には目標回転速度が含まれている。第1制御回路32は、モータ11の回転速度が目標回転速度に一致するように、駆動回路31からモータ11へ供給する電力を制御する。
本実施形態の定回転制御は、回転速度フィードバック制御とトルクフィードバック制御とを含む。なお、以下の説明では、「フィードバック」のことを「FB」と略称する。回転速度FB制御は、本実施形態では例えば比例積分制御により行われる。トルクFB制御は、本実施形態では例えば比例制御により行われる。
回転速度FB制御では、初期値算出処理が行われる。具体的には、モータ11の回転速度が目標回転速度に一致するように、駆動指令値の初期値が算出される。駆動指令値は、モータ11へ供給すべき電力を示す。本実施形態の駆動指令値は、デューティ比を含む。このデューティ比を以下「駆動デューティ比」と称する。つまり、初期値算出処理は、換言すれば、駆動デューティ比の初期値を算出する処理である。初期値算出処理では、回転位置情報に基づいて算出された前述の認識回転速度と目標回転速度との差(以下、「速度差」と称する)に応じて駆動デューティ比の初期値を算出する。例えば、速度差が大きいほど駆動デューティ比が大きくなるように初期値が算出されてもよい。なお、初期値は、後述する速度差比例デューティ比SPDuと速度差積分デューティ比SIDuとの和に対応する。
トルクFB制御では、補正処理が行われる。具体的には、回転速度FB制御で算出された初期値が、トルク検出信号に基づいて検出された負荷トルクに基づいて補正される。
補正処理の主な目的の1つは、負荷トルクの増大によってモータ11の回転速度が目標速度よりも低下するかまたはモータ11が停止することを抑制することにある。
即ち、本実施形態では、認識回転速度は、モータ11が一定の回転角度(本実施形態では例えば電気角60°に相当する回転角)回転する毎に更新される。そのため、仮に、あるタイミングで認識回転速度が更新された後、例えば大きな負荷トルクがかかるなどしてモータ11の回転速度が認識回転速度から大きく低下しても、第1制御回路32は、モータ11の回転速度が認識回転速度であるものと見なす。そのため、実際には駆動デューティ比を上昇させるべき状況であるにもかかわらず、実際の回転速度に見合った十分な駆動デューティ比が算出されない。これにより、モータ11の出力トルクが不足して、目標回転速度との差が大きくなり、ひいてはモータ11が停止してしまう可能性がある。
特に低速回転中は、認識回転速度の更新間隔が長くなる。そのため、例えば、低速回転中にモータ11に大きな負荷トルクがかかってモータ11が減速すると、実際の回転速度が認識回転速度よりも低いという状況が長時間発生する。さらに、実際の回転速度と認識回転速度との際も増加していく可能性がある。そのため、特に低速回転中は、負荷トルクによってモータ11の回転速度が急減するかまたはモータ11がロックする可能性が高い。
そこで、本実施形態では、回転速度FB制御に加えてトルクFB制御を行うことにより、負荷トルクに見合ったより適切な駆動デューティ比を算出するようにしている。補正処理では、例えば、負荷トルクが大きいほど駆動デューティ比が大きくなるように、初期値が補正される。具体的には、本実施形態では、補正値を算出して、その補正値を初期値に加算する。補正値は、後述するトルク比例デューティ比TPDuに対応する。補正値は、負荷トルクの増加に従って増加する。
なお、トルクFB制御は、定回転制御実行中に常に行われてもよいが、本実施形態では、補正条件が成立している場合に行われる。補正条件が成立していない場合は、トルクFB制御は行われない。この場合、回転速度FB制御により算出された初期値が、駆動デューティ比として算出される。補正条件が成立している場合は、トルクFB制御により補正された初期値が駆動デューティ比として算出される。
補正条件はどのように設定されてもよい。補正条件は、例えば、目標回転速度が前述の閾値以下に設定されている場合に成立してもよい。
第1制御回路32は、駆動デューティ比の算出を、所定の制御周期で周期的に繰り返し行う。制御周期は、ロータ19が所定の回転速度以下で回転している場合にロータ19が一定の回転角度を回転するのに要する時間よりも短い。つまり、制御周期は、ロータ19が所定の回転速度以下で回転している場合における認識回転速度の更新間隔(換言すればホールセンサ割込の間隔)よりも短い。所定の回転速度は、前述の閾値と同じであってもよいし異なっていてもよい。制御周期は、補正条件が成立する目標回転速度の最大値でモータ11が回転している場合における認識回転速度の更新間隔よりも短い。より具体的には、制御周期は、当該更新間隔の1/2以下であってもよい。
定回転制御において、第1制御回路32は、制御周期毎に、駆動デューティ比を算出して、その駆動デューティ比に基づいて駆動回路31を駆動する。第1制御回路32は、ローサイドPWM処理及び/またはハイサイドPWM処理によって駆動回路31を駆動する。
ローサイドPWM処理は、3つのハイサイドスイッチのうちのいずれか1つのハイサイドスイッチをオンに維持した状態で、そのハイサイドスイッチ(以下、「オン維持ハイサイドスイッチ」と称する)が属する系統とは異なる系統のいずれか1つのローサイドスイッチ(以下、「PWM駆動ローサイドスイッチ」と称する)をPWM駆動することを含む。
「ハイサイドスイッチ」とは、第1,第3,第5スイッチUH,VH,WHのそれぞれを示す。「3つのハイサイドスイッチ」とは、第1,第3,第5スイッチUH,VH,WHを意味する。また、「ローサイドスイッチ」とは、第2,第4,第6スイッチUL,VL,WLのそれぞれを示す。「3つのローサイドスイッチ」とは、第2,第4,第6スイッチUL,VL,WLを意味する。
PWM駆動とは、駆動対象のスイッチ(ここではPWM駆動ローサイドスイッチ)をパルス幅変調信号に従って周期的にオン及びオフすることを意味する。パルス幅変調信号は、前述の駆動デューティ比を有する。つまり、PWM駆動とは、算出された駆動デューティ比を有するパルス幅変調信号によって駆動対象のスイッチを駆動することを示す。
ハイサイドPWM処理は、3つのローサイドスイッチのうちのいずれか1つのローサイドスイッチをオンに維持した状態で、そのローサイドスイッチ(以下、「オン維持ローサイドスイッチ」と称する)が属する系統とは異なる系統のいずれか1つのハイサイドスイッチ(以下、「PWM駆動ハイサイドスイッチ」と称する)をPWM駆動することを含む。
第1制御回路32は、第1スイッチUHをオン維持ハイサイドスイッチとして機能させる場合は、第1スイッチUHをオンに維持するための第1駆動信号を第1スイッチUHに出力する。第1制御回路32は、第1スイッチUHをPWM駆動ハイサイドスイッチとして機能させる場合は、第1駆動信号として前述のパルス幅変調信号を第1スイッチUHに出力する。第3,第5スイッチVH,WHをそれぞれオン維持ハイサイドスイッチまたはPWM駆動ハイサイドスイッチとして機能させる場合についても同様である。
第1制御回路32は、第2スイッチULをオン維持ローサイドスイッチとして機能させる場合は、第2スイッチULをオンに維持するための第2駆動信号を第2スイッチULに出力する。第1制御回路32は、第2スイッチULをPWM駆動ローサイドスイッチとして機能させる場合は、第2駆動信号として前述のパルス幅変調信号を第2スイッチULに出力する。第4,第6スイッチVL,WLをそれぞれオン維持ローサイドスイッチまたはPWM駆動ローサイドスイッチとして機能させる場合についても同様である。
第1制御回路32は、ローサイドPWM処理を行うように構成されている場合は、モータ11の回転位置(即ち回転角)に応じて、オン維持ハイサイドスイッチとPWM駆動ローサイドスイッチとの組み合わせを適宜切り替えながら、モータ11を回転させる。
第1制御回路32は、ハイサイドPWM処理を行うように構成されている場合は、モータ11の回転位置(即ち回転角)に応じて、オン維持ローサイドスイッチとPWM駆動ハイサイドスイッチとの組み合わせを適宜切り替えながら、モータ11を回転させる。
第1制御回路32は、ローサイドPWM処理とハイサイドPWM処理とを適宜切り替えながらモータ11を回転させてもよい。
(2-4)トルクFB制御を含む定回転制御の実行例
図5を参照して、トルクFB制御を含む定回転制御が実行されている場合の、モータ11の回転速度、回転位置情報、負荷トルク及び駆動デューティ比の一例を示す。図5に例示するように、時刻t1で負荷トルクが増加し始める。そのため、時刻t1の直後、モータの実回転速度(即ち実際の回転速度)は目標回転速度から低下していく。これにより、回転位置情報の更新間隔(即ち認識回転速度の更新間隔)も長くなる。例えば、時刻t1で回転位置情報が更新された後、次に更新される時刻t2までの間隔が長くなる。そのため、時刻t1から時刻t2までの間に、認識回転速度と実回転速度との差が広がっていく。
しかし、トルクFB制御によって、制御周期毎に、負荷トルクに応じた駆動デューティ比の補正が行われる。そのため、目標回転速度と認識回転速度との差が変化しなくても、負荷トルクの増加に従って駆動デューティ比が増加(詳しくは補正値が増加)していく。これにより、モータ11は、負荷トルクの増大に見合ったトルクを出力できる。その結果、時刻t1から一時的に実回転速度と目標回転速度との差が大きくなっていくものの、トルクFB制御の効果によって、例えば時刻t2あたりで実回転速度の低下が収まる。そして、負荷トルクが引き続き増大していっても、実回転速度の低下が抑制されて、実回転速度が目標回転速度に近づいていく。
図6は、図5との比較のために、トルクFB制御が行われない場合の、モータ11の回転速度、回転位置情報、負荷トルク及び駆動デューティ比の一例を示す。図6に例示するように、時刻t1で負荷トルクが増加し始めると、モータの実回転速度が目標回転速度から低下していく。これにより、回転位置情報の更新間隔も長くなる。しかし、回転位置情報が更新されるまでは、認識回転速度は変わらず、よって駆動デューティ比も変化しない。駆動デューティ比が更新されるのは、時刻t2,t3などの、回転位置情報の更新タイミングである。そのため、実回転速度の低下に駆動デューティ比の増加が追いつかず、モータ11からは負荷トルクに見合った適正なトルクが出力されない。よって、実回転速度は負荷トルク増大に従って低下していく。
(2-5)モータ制御処理
図7を参照して、第1制御回路32が実行(詳しくはCPU32aが実行)するモータ制御処理を説明する。前述の定回転制御は、このモータ制御処理の中で行われる。第1制御回路32は、起動すると、モータ制御処理を実行する。
第1制御回路32は、モータ制御処理を開始すると、S110で、初期化処理を行う。初期化処理は、例えば、CPU32aにおける各ポートの設定を含む。初期設定は、例えば、第2制御回路40から駆動設定(例えば前述のデフォルトオプション)を取得して、第1制御回路32において、その駆動設定に含まれている目標回転速度及び締結完了条件などを設定することを含む。
S120では、第1制御回路32は、第2制御回路40から駆動設定が入力されたか否か判断する。第2制御回路40は、使用者により駆動設定が変更されると、その変更された駆動設定を通知する。駆動設定が入力されていない場合は、本処理はS140に移行する。駆動設定が入力された場合は、本処理はS130に移行する。
S130では、第1制御回路32は、駆動設定変更処理を実行する。具体的には、S120で入力された駆動設定に基づいて、第1制御回路32における目標回転速度及び締結完了条件などの設定を更新する。S130の処理の実行後は本処理はS140に移行する。
S140では、第1制御回路32は、トリガスイッチ8がオンされているか否か判断する。トリガスイッチ8がオンされていない場合は、本処理はS120に移行する。トリガスイッチ8がオンされている場合は、本処理はS150に移行する。S150では、第1制御回路32は、モータ11を駆動する。具体的には、前述の定回転制御を開始する。定回転制御の実行中は、図8に示すデューティ比演算処理が並行して行われる。
定回転制御を開始した後(即ち定回転制御の実行中)、第1制御回路32は、S160で、停止条件が成立したか否か判断する。停止条件が成立していない場合は、本処理はS150に移行し、定回転制御を継続する。停止条件が成立した場合は、本処理はS170に移行する。
S170では、第1制御回路32は、定回転制御を終了して、ブレーキ処理を実行する。具体的には、本実施形態では例えば短絡ブレーキをかける。短絡ブレーキは、モータ11の第1~第3端子11a~11cのうちいずれか2つまたは全てを、駆動回路31を介して短絡させることを意味する。具体的には、全てのハイサイドスイッチをオフに固定した状態で、いずれか2つまたは3つのローサイドスイッチをオンに固定する。
ブレーキ処理によりモータ11が停止すると、本処理はS180に移行する。S180では、第1制御回路32は、トリガスイッチ8がオフされているか否か判断する。トリガスイッチ8がオンされている場合は、第1制御回路32は、S170で、ブレーキ処理を継続する。トリガスイッチ8がオフされている場合は、本処理はS120に移行する。
(2-6)デューティ比演算処理
図8を参照して、第1制御回路32が実行(詳しくはCPU32aが実行)するデューティ比演算処理を説明する。第1制御回路32は、図7のS150でモータ11を駆動している間(即ち定回転制御を実行している間)、定回転制御と並行して(例えばマルチタスクで)、デューティ比演算処理を実行する。第1制御回路32は、デューティ比演算処理を、前述の制御周期で周期的に繰り返し実行する。
第1制御回路32は、デューティ比演算処理を開始すると、S210で、速度差を算出する。速度差は、目標回転速度から認識回転速度を減算することにより算出される。
S220では、第1制御回路32は、S210で算出された速度差に基づいて、速度差比例デューティ比SPDu及び速度差積分デューティ比SIDuを算出する。速度差比例デューティ比SPDuは、速度差に基づく比例制御演算により算出されるデューティ比である。ごく簡単に言えば、例えば、速度差に比例した成分を含むように速度差比例デューティ比SPDuが算出される。速度差積分デューティ比SIDuは、速度差に基づく積分制御演算により算出されるデューティ比である。ごく簡単に言えば、例えば、速度差の積分値に応じた成分を含むように速度差積分デューティ比SIDuが算出される。つまり、S220は、いわゆる比例積分制御に対応する処理に該当する。また、S220は、回転速度FB制御に対応する処理に該当する。
S230では、第1制御回路32は、補正条件が成立しているか否か判断する。補正条件が成立していない場合は、本処理はS260に移行する。補正条件が成立している場合は、本処理はS240に移行する。
S240では、第1制御回路32は、現在の負荷トルクを取得する。例えば、第1制御回路32は、現時点でトルクセンサ13から入力されたトルク検出信号に基づいて負荷トルクを算出し、その負荷トルクを現在の負荷トルクとして取得する。
S250では、第1制御回路32は、S240で取得した負荷トルクに基づいて、トルク比例デューティ比TPDuを算出する。トルク比例デューティ比TPDuは、負荷トルクに基づく比例制御演算により算出されるデューティ比である。ごく簡単に言えば、例えば、負荷トルクに比例した成分を含むようにトルク比例デューティ比TPDuが算出される。つまり、S250は、いわゆる比例制御に対応する処理に該当する。また、S250は、トルクFB制御に対応する処理に該当する。
S260では、第1制御回路32は、駆動デューティ比を算出する。駆動デューティ比は、例えば、S220で算出された速度差比例デューティ比SPDuと、S220で算出された速度差積分デューティ比SIDuと、S250で算出されたトルク比例デューティ比TPDuとを加算することにより得られる。S260の処理において、速度差比例デューティ比SPDuと速度差積分デューティ比SIDuとを加算する処理は、前述の初期値算出処理に該当する。S260において、さらにトルク比例デューティ比TPDuを加算する処理は、前述の補正処理に該当する。
なお、S230で補正条件が成立しなかった場合、即ちトルク比例デューティ比TPDuが算出されていない場合は、S260では、速度差比例デューティ比SPDuと速度差積分デューティ比SIDuとを加算した値(即ち前述の初期値)を駆動デューティ比として算出する。この場合のS260の処理は、前述の初期値算出処理に該当する。
S270では、定回転制御で用いる駆動デューティ比を、S260で算出した駆動デューティ比に更新する。
(2-7)実施形態と本開示との対応関係
チャックスリーブ10は本開示における出力軸の一例に相当する。駆動機構12は本開示における回転力伝達部の一例に相当する。トルクセンサ13及び第1制御回路32は本開示におけるトルク検出部の一例に相当する。回転位置検出部25及び第1制御回路32は本開示における速度検出部の一例に相当する。第1制御回路32は本開示における制御回路の一例に相当する。第1~第6スイッチUH~WLの各々は本開示におけるスイッチング素子の一例に相当する。PWM駆動は本開示における駆動処理の一例に相当する。回転位置検出部25、または第1~第3ホールセンサ26~28の各々は本開示における信号出力回路の一例に相当する。第1制御回路32は本開示における速度検出回路及びトルク検出回路の一例に相当する。制御周期は本開示における補正実行周期の一例に相当する。
S260の処理は本開示における初期値算出処理及び補正処理の一例に相当する。なお、S260においてトルク比例デューティ比TPDuの加算が行われない場合は、当該S260の処理は本開示における初期値算出処理の一例に相当する。
[3.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
(3-1)第1制御回路32は、負荷トルクをどのように取得してもよい。第1制御回路32は、例えば、電流検出部33から入力される電流検出信号に基づいて(つまりモータ電流値に基づいて)負荷トルクを検出してもよい。モータ電流値は、概ね、負荷トルクに応じて変化する。即ち、負荷トルクが増加するに従ってモータ電流値も増加する。そのため、モータ電流値に基づいて負荷トルクを算出(または推定)することができる。そこで、第1制御回路32は、図8のS240の処理では、電流検出信号に基づいて負荷トルクを算出し、その算出した負荷トルクを取得してもよい。この場合、トルクセンサ13が電動工具1から省かれてもよい。逆に言えば、トルクセンサ13を備えている場合は、電流検出部33は省かれてもよい。
また例えば、第1制御回路32は、電圧検出部34から入力される電圧検出信号に基づいて(つまり電圧検出点Pvの電圧値に基づいて)負荷トルクを検出してもよい。電圧検出点Pvの電圧値は、負荷トルクに応じて変化し得る。即ち、電力供給経路50は、抵抗成分を含む。バッテリ101の正極から電圧検出点Pvまでの経路にも抵抗成分が含まれる。そのため、バッテリ101からモータ11へ電流が流れると、電圧検出点Pvの電圧は、厳密には、バッテリ101の正極の電圧よりも低くなる。バッテリ101の正極と電圧検出点Pvとの電位差(即ち、バッテリ101の正極から電圧検出点Pvまでの電圧の降下量)は、モータ11に供給される電流が増加するに従って大きくなる。そのため、電圧検出点Pvの電圧値に基づいて負荷トルクを算出(または推定)することができる。具体的には、例えば、バッテリ101からモータ11へ電流が流れていない場合の電圧検出点Pvの電圧値を基準にして、その基準の電圧値と電圧検出点Pvの現在の電圧値との差に基づいて、現在の負荷トルクを算出(または推定)することができる。そこで、第1制御回路32は、図8のS240の処理では、電圧検出信号に基づいて負荷トルクを算出し、その算出した負荷トルクを取得してもよい。この場合も、トルクセンサ13が電動工具1から省かれてもよい。逆に言えば、トルクセンサ13を備えている場合は、電圧検出部34は省かれてもよい。
(3-2)トルクセンサ13は、どのような原理でトルク検出信号を生成するように構成されていてもよい。トルク検出信号はどのような形態を有していてもよい。トルク検出信号はアナログ信号であってもよいしデジタル信号であってもよい。トルク検出信号は連続的でなく例えば離散的に(例えば周期的に)出力されてもよい。ただしこの場合、トルク検出信号の出力周期は、回転位置情報の更新周期より短い。
(3-3)定回転制御において、回転速度FB制御は、比例積分制御とは異なる制御方法により行われてもよい。トルクFB制御についても、比例制御とは異なる制御方法により行われてもよい。
(3-4)回転位置検出部25は、どのように構成されていてもよいし、どのような形態の回転位置情報を出力してもよい。例えば、回転位置検出部25は、ホールセンサとは異なる種類のセンサを備えていてもよい。回転位置検出部25は例えばロータリエンコーダを備えていてもよい。回転位置情報はロータ19の回転位置に応じてどのように変化してもよい。回転位置情報はどのような信号を含んでいてもよい。回転位置情報は、一以上のデジタル信号を含んでいてもよいし、一以上のアナログ信号を含んでいてもよい。
(3-5)第1制御回路32は、回転位置検出部25を用いずにモータ11の回転速度を検出してもよい。例えば、モータ11の第1~第3端子11a~11cのそれぞれの電圧(詳しくは誘起電圧)を検出し、それら電圧に基づいてモータ11の回転位置を検出してもよい。そして、そのようにして検出された回転位置の変化に基づいて回転速度を算出してもよい。
(3-6)本開示は、充電式スクリュードライバとは異なる様々な種類の電動工具に適用可能である。例えば、充電式ドライバドリルに本開示を適用してもよい。また、本開示は、バッテリを電源とする電動工具への適用に限定されない。本開示は、例えば交流電力が供給されるように構成された電動工具にも適用可能である。
(3-7)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。
1…電動工具、8…トリガスイッチ、10…チャックスリーブ、11…モータ、12…駆動機構、13…トルクセンサ、19…ロータ、25…回転位置検出部、26…第1ホールセンサ、27…第2ホールセンサ、28…第3ホールセンサ、30…コントローラ、31…駆動回路、32…第1制御回路、33…電流検出部、34…電圧検出部、50…電力供給経路、101…バッテリ、UH…第1スイッチ、UL…第2スイッチ、VH…第3スイッチ、VL…第4スイッチ、WH…第5スイッチ、WL…第6スイッチ。

Claims (12)

  1. モータと、
    先端工具が装着され、前記モータの回転力を受けて駆動されるように構成された出力軸と、
    前記モータの回転速度を検出するように構成された速度検出部と、
    前記モータの負荷トルクを検出するように構成されたトルク検出部と、
    前記回転速度が目標回転速度に一致するように、前記モータへ供給すべき電力を示す駆動指令値を算出するように構成された制御回路であって、
    前記速度検出部により検出された前記回転速度である検出回転速度と前記目標回転速度との差に応じて前記駆動指令値の初期値を算出する初期値算出処理と、
    前記初期値算出処理により算出された前記初期値を、前記トルク検出部により検出された前記負荷トルクに基づいて補正し、その補正した値を前記駆動指令値として算出する補正処理と、
    を実行するように構成された制御回路と、
    前記制御回路により算出された前記駆動指令値に応じた電力を前記モータへ供給することにより前記モータを駆動するように構成された駆動回路と、
    を備える電動工具。
  2. 請求項1に記載の電動工具であって、
    前記補正処理は、前記初期値に補正値を加算することを含み、前記補正値は、前記トルク検出部により検出された前記負荷トルクの増加に応じて増加する、電動工具。
  3. 請求項1または請求項2に記載の電動工具であって、
    前記駆動回路は、電力源と前記モータとを接続する電力供給経路に設けられたスイッチング素子を含み、
    前記駆動指令値はデューティ比であり、
    前記制御回路は、さらに、前記デューティ比を有するパルス幅変調信号に従って前記スイッチング素子を周期的にオンまたはオフする駆動処理、を実行するように構成されている、
    電動工具。
  4. 請求項1~請求項3のいずれか1項に記載の電動工具であって、
    前記制御回路は、前記補正処理を実行すべき補正条件が成立していることに応じて前記補正処理を実行するように構成されており、
    前記制御回路は、前記補正条件が成立していないことに応じて、前記補正処理を回避して、前記初期値算出処理により算出された前記初期値に基づく前記駆動指令値を算出するように構成されている、
    電動工具。
  5. 請求項4に記載の電動工具であって、
    前記補正条件は、前記目標回転速度が閾値以下であることに応じて成立する、電動工具。
  6. 請求項1~請求項5のいずれか1項に記載の電動工具であって、
    前記速度検出部は、
    前記モータのロータが一定角度回転する毎に変化する信号を出力するように構成された信号出力回路と、
    前記信号出力回路から出力された前記信号に基づいて前記回転速度を検出するように構成された速度検出回路と
    を備える電動工具。
  7. 請求項6に記載の電動工具であって、
    前記制御回路は、前記補正処理を所定の補正実行周期で周期的に繰り返し実行するように構成されており、
    前記補正実行周期は、前記ロータが所定の回転速度以下で回転している場合に前記ロータが前記一定角度回転するのに要する時間よりも短い、
    電動工具。
  8. 請求項1~請求項3のいずれか1項に記載の電動工具であって、
    前記制御回路は、前記目標回転速度が閾値以下である場合に、前記補正処理を所定の補正実行周期で周期的に繰り返し実行するように構成されており、
    前記速度検出部は、
    前記モータのロータが一定角度回転する毎に変化する信号を出力するように構成された信号出力回路と、
    前記信号出力回路から出力された前記信号に基づいて前記回転速度を検出するように構成された速度検出回路と
    を備え、
    前記補正実行周期は、前記ロータが前記閾値以下の回転速度で回転している場合に前記ロータが前記一定角度回転するのに要する時間よりも短い、
    電動工具。
  9. 請求項6~請求項8のいずれか1項に記載の電動工具であって、
    前記信号出力回路は、ホールセンサを含む、電動工具。
  10. 請求項1~請求項9のいずれか1項に記載の電動工具であって、
    さらに、前記モータの回転力を前記出力軸に伝達するように構成された回転力伝達部を備え、
    前記トルク検出部は、
    前記回転力伝達部または前記出力軸に設けられたトルクセンサであって、前記負荷トルクによって前記回転力伝達部または前記出力軸に生じる機械的なねじれに応じた信号を出力するように構成されたトルクセンサと、
    前記トルクセンサから出力された前記信号に基づいて前記負荷トルクを検出するように構成されたトルク検出回路と、
    を備える電動工具。
  11. 請求項1~請求項9のいずれか1項に記載の電動工具であって、
    前記トルク検出部は、
    前記モータに流れる電流を検出するように構成された電流検出回路と、
    前記電流検出回路により検出された電流の値に基づいて前記負荷トルクを検出するように構成されたトルク検出回路と、
    を備える電動工具。
  12. 請求項1~請求項9のいずれか1項に記載の電動工具であって、
    前記トルク検出部は、電力源と前記モータとを接続する電力供給経路における所定部位の電圧の降下量に基づいて前記負荷トルクを検出するように構成されており、前記降下量は、前記モータに前記電力が供給されていないときの前記所定部位の電圧と前記モータに前記電力が供給されているときの前記所定部位の電圧との差に対応する、
    電動工具。
JP2021164979A 2021-10-06 2021-10-06 電動工具 Pending JP2023055528A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021164979A JP2023055528A (ja) 2021-10-06 2021-10-06 電動工具
CN202211087803.6A CN115940701A (zh) 2021-10-06 2022-09-07 电动工具
DE102022125644.8A DE102022125644A1 (de) 2021-10-06 2022-10-05 Technik zum steuern eines motors in einem elektrokraftwerkzeug
US17/960,276 US12011810B2 (en) 2021-10-06 2022-10-05 Technique for controlling motor in electric power tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021164979A JP2023055528A (ja) 2021-10-06 2021-10-06 電動工具

Publications (1)

Publication Number Publication Date
JP2023055528A true JP2023055528A (ja) 2023-04-18

Family

ID=85570661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021164979A Pending JP2023055528A (ja) 2021-10-06 2021-10-06 電動工具

Country Status (4)

Country Link
US (1) US12011810B2 (ja)
JP (1) JP2023055528A (ja)
CN (1) CN115940701A (ja)
DE (1) DE102022125644A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1014213S1 (en) * 2021-05-21 2024-02-13 Bosch Power Tools (China) Co., Ltd. Power hammer
USD1019324S1 (en) * 2021-11-15 2024-03-26 Doc's Industries Incorporated Screw drill holder
USD1027594S1 (en) * 2022-01-20 2024-05-21 Kurtis Mitthun Drill

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591131B2 (ja) 2011-01-05 2014-09-17 株式会社マキタ 電動工具
JP6297854B2 (ja) * 2014-02-18 2018-03-20 株式会社マキタ 回転打撃工具
JP6523101B2 (ja) * 2015-08-24 2019-05-29 株式会社マキタ 回転打撃工具
JP7132707B2 (ja) * 2017-10-17 2022-09-07 株式会社マキタ 電動作業機

Also Published As

Publication number Publication date
CN115940701A (zh) 2023-04-07
DE102022125644A1 (de) 2023-04-06
US12011810B2 (en) 2024-06-18
US20230107745A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP2023055528A (ja) 電動工具
US8931576B2 (en) Power tool for performing soft-start control appropriated for motor load
US10322498B2 (en) Electric power tool
JP5408535B2 (ja) 電動工具
US9438141B2 (en) Braking apparatus for electric power tool
JP5182562B2 (ja) 電動工具
JP5242974B2 (ja) 電動工具
JP6297854B2 (ja) 回転打撃工具
US20130068491A1 (en) Electric power tool
US10644634B2 (en) Electric power tool
JP5333881B2 (ja) 電動工具
JP5408416B2 (ja) 電動工具
CN106553162B (zh) 马达的控制装置
JP2011020187A (ja) 電動工具
WO2015093056A1 (en) Motor-drive controlling device, power tool, and motor-drive controlling method
US11770079B2 (en) Electric working machine
JP2011005588A (ja) 電動工具
EP2818281B1 (en) Electric power tool
US20230125520A1 (en) Power tool and control method thereof
CN115733393A (zh) 电动作业机
JP6953113B2 (ja) 工具
JP2023055529A (ja) 電動工具
CN114346970A (zh) 电动工具、马达控制方法及非暂时性存储介质
EP3730247B1 (en) Electric power tool
JP2023071389A (ja) 電動作業機