JP2023050990A - Cobalt-based alloy product and manufacturing method of cobalt-based alloy product - Google Patents

Cobalt-based alloy product and manufacturing method of cobalt-based alloy product Download PDF

Info

Publication number
JP2023050990A
JP2023050990A JP2021161399A JP2021161399A JP2023050990A JP 2023050990 A JP2023050990 A JP 2023050990A JP 2021161399 A JP2021161399 A JP 2021161399A JP 2021161399 A JP2021161399 A JP 2021161399A JP 2023050990 A JP2023050990 A JP 2023050990A
Authority
JP
Japan
Prior art keywords
based alloy
mass
alloy product
heat treatment
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021161399A
Other languages
Japanese (ja)
Inventor
滋信 江口
Shigenobu Eguchi
範夫 横場
Norio Yokoba
一男 相良
Kazuo Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2021161399A priority Critical patent/JP2023050990A/en
Publication of JP2023050990A publication Critical patent/JP2023050990A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

To provide a cobalt-based alloy product which is obtained by using a WAM method and materializes mechanical strength and high temperature strength equal to or higher than those of a conventional member produced by forging and so on, and a manufacturing method of a Co-based alloy product.SOLUTION: A Co-based alloy product of the present invention is a Co-based alloy laminated molded body including polycrystalline material made of a Co-based alloy including 0.001≤C<0.100 mass%, 9.0≤Cr<20.0 mass%, 2.0≤Al<5.0 mass%, 13.0≤W<20.0 mass% and 39.0≤Ni<55.0 mass%, the balance being Co and unavoidable impurities, and the polycrystalline material has, in a laminate direction of the Co-based alloy laminated molded body, crystalline grains of more han 60% are oriented in a<001>orientation.SELECTED DRAWING: Figure 2C

Description

本発明は、コバルト基合金造形物およびコバルト基合金製造物の製造方法に関する。 The present invention relates to a method of manufacturing a cobalt-based alloy shaped article and a cobalt-based alloy product.

コバルト(Co)基合金材は、ニッケル(Ni)基合金材とともに代表的な耐熱合金材料であり、超合金とも称されてタービン(例えば、ガスタービン、蒸気タービン)の高温部材に広く用いられている。Co基合金材は、Ni基合金材と比べて材料コストは高いものの耐食性や耐摩耗性が優れており、固溶強化し易いことから、タービン静翼や燃焼器部材として用いられてきた。 Cobalt (Co)-based alloy materials are typical heat-resistant alloy materials along with nickel (Ni)-based alloy materials, and are also called superalloys and are widely used for high-temperature components of turbines (e.g., gas turbines and steam turbines). there is Co-based alloy materials are higher in material cost than Ni-based alloy materials, but are superior in corrosion resistance and wear resistance, and are easily solid-solution-strengthened.

従来のCo基合金材として、例えば下記特許文献1がある。特許文献1には、成分組成が0.001≦C<0.100mass%、9.0≦Cr<20.0mass%、2.0≦Al<5.0mass%、13.0≦W<20.0mass%、及び、39.0≦Ni<55.0mass%、を含み、残部がCo及び不可避的不純物からなり、上記不可避的不純物の内、Mo、Nb、Ti、及び、Taは、それぞれ、Mo<0.010mass%、Nb<0.010mass%Ti<0.010mass%、及び、Ta<0.010mass%、であるCo基合金が開示されている。特許文献1には、従来のCo基合金に比べて高温強度が高く、かつ、熱間加工性が従来のCo基合金と同等以上であり、鍛造に適したCo基合金を提供できると記載されている。 As a conventional Co-based alloy material, there is, for example, Patent Document 1 below. In Patent Document 1, the component composition is 0.001≦C<0.100 mass%, 9.0≦Cr<20.0 mass%, 2.0≦Al<5.0 mass%, 13.0≦W<20. 0 mass% and 39.0 ≤ Ni < 55.0 mass%, the balance being Co and unavoidable impurities, and among the unavoidable impurities, Mo, Nb, Ti, and Ta are respectively Mo Co-based alloys with <0.010 mass%, Nb<0.010 mass% Ti<0.010 mass%, and Ta<0.010 mass% are disclosed. Patent Document 1 describes that it is possible to provide a Co-based alloy that has higher high-temperature strength than conventional Co-based alloys, has hot workability equal to or higher than that of conventional Co-based alloys, and is suitable for forging. ing.

特許第5582532号公報Japanese Patent No. 5582532

Xiangfang Xu, et al.: Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing, Material and Design 160 (2018) 1042-1051Xiangfang Xu, et al. : Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing, Material and Design 160 (2014-18)

近年、産業用製品の製造において、切削や鋳造などの従来の加工法では製造が難しい複雑な形状を簡便に製造できるプロセスとして、積層造形(Additive Manufacturing;AM)が適用されるようになってきている。AM法の中でも、ワイヤを原料とするワイヤ積層造形(Wire Additive Manufacturing、以下「WAM」と称する)は、造形速度が速い、設備コストが低い、材料の歩留まりが良い等の利点があり、大きな金属部品を作る手法として工業製造部門から注目されている。タービンの高温部材の製造にもこのWAM法を適用すべく、例えば非特許文献1にはINCONEL(ハンティントン アロイズ コーポレイションの登録商標)718等のNi基合金を用いた造形方法が検討されている。しかしながら、上記Ni基合金のWAM造形体は従来のNi基合金鍛造材に比べて機械的強度の低下が大きく、十分な特性が得られていない。したがって、WAMをタービン等の高温強度が要求される部材の製造に適用すべく、従来のNi基合金およびCo基合金を用いて鍛造等の方法で作製した部材と同等以上の機械的強度および高温強度を有するCo基合金を用いたWAM造形体の開発が望まれている。 In recent years, in the manufacture of industrial products, additive manufacturing (AM) has come to be applied as a process that can easily manufacture complicated shapes that are difficult to manufacture by conventional processing methods such as cutting and casting. there is Among the AM methods, wire additive manufacturing (hereinafter referred to as "WAM"), which uses wire as a raw material, has advantages such as a fast modeling speed, low equipment cost, and good material yield. It is attracting attention from the industrial manufacturing sector as a method of making parts. In order to apply the WAM method to the production of high-temperature members for turbines, for example, non-patent document 1 discusses a molding method using a Ni-based alloy such as INCONEL (registered trademark of Huntington Alloys Corporation) 718. However, the WAM molded body of the Ni-based alloy has a large decrease in mechanical strength as compared with the conventional Ni-based alloy forged material, and sufficient characteristics are not obtained. Therefore, in order to apply WAM to the manufacture of members that require high-temperature strength, such as turbines, mechanical strength and high-temperature It is desirable to develop WAM shaped bodies using Co-based alloys with strength.

本発明は、上記事情に鑑み、WAM法を用いて、従来のNi基合金およびCo基合金を用いて鍛造等で作製した部材と同等以上の機械的強度および高温強度を有し、かつ歩留まりの向上を実現するCo基合金製造物およびCo基合金製造物の製造方法を提供することを目的とする。 In view of the above circumstances, the present invention uses the WAM method to have mechanical strength and high-temperature strength equal to or higher than those of members manufactured by forging using conventional Ni-based alloys and Co-based alloys, and has a high yield. It is an object of the present invention to provide Co-based alloy products and methods of making Co-based alloy products that achieve improvements.

上記目的を達成するための本発明の一態様は、0.001≦C<0.100mass%、9.0≦Cr<20.0mass%、2.0≦Al<5.0mass%、13.0≦W<20.0mass%および39.0≦Ni<55.0mass%を含み、残部がCoおよび不可避不純物であるCo基合金からなる多結晶体を含むCo基合金積層造形体であり、上記多結晶体が、上記Co基合金積層造形体の積層方向に対し<001>方位へ優先配向していることを特徴とするCo基合金製造物である。 One aspect of the present invention for achieving the above object is 0.001≦C<0.100 mass%, 9.0≦Cr<20.0 mass%, 2.0≦Al<5.0 mass%, 13.0 A Co-based alloy laminate-molded body containing a polycrystalline body made of a Co-based alloy containing ≤ W < 20.0 mass% and 39.0 ≤ Ni < 55.0 mass%, the balance being Co and inevitable impurities, A Co-based alloy product characterized in that crystals are preferentially oriented in the <001> direction with respect to the stacking direction of the Co-based alloy additive-molded product.

また、上記目的を達成するための本発明の他の態様は、Co基合金からなるワイヤを準備する工程と、ワイヤを積層造形してCo基合金積層造形体を得る工程と、Co基合金積層造形体を1150℃未満の温度で固溶化熱処理する工程と、固溶化熱処理する工程後に時効熱処理してCo基合金製造物を得る工程と、を有し、上記積層造形の熱源は、CMT(Cold Metal Transfer)であることを特徴とするCo基合金製造物の製造方法である。 Further, another aspect of the present invention for achieving the above object includes the steps of preparing a wire made of a Co-based alloy, laminating and manufacturing the wire to obtain a Co-based alloy laminate-molded body, and laminating the Co-based alloy. A step of solution heat treating the shaped body at a temperature of less than 1150 ° C., and a step of aging heat treatment after the step of solution heat treating to obtain a Co-based alloy product. Metal Transfer) is a method for producing a Co-based alloy product.

本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the invention are described in the claims.

本発明によれば、WAM法を用いて、従来のNi基合金およびCo基合金を鍛造等の方法で作製した部材と同等以上の機械的強度および高温強度を実現するCo基合金製造物およびCo基合金製造物の製造方法を提供することができる。 According to the present invention, a WAM method is used to realize a Co-based alloy product and a Co-based alloy that achieve mechanical strength and high-temperature strength equal to or higher than those of members produced by conventional Ni-based alloys and Co-based alloys by methods such as forging. A method for manufacturing a base alloy product can be provided.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

EBSDによる逆極点図の試料座標系を定義する図Diagram defining sample coordinate system for inverse pole figure by EBSD 積層造形の熱源にCMTを用いた場合の逆極点図(X0方向)Inverse pole figure (X0 direction) when CMT is used as a heat source for additive manufacturing 積層造形の熱源にCMTを用いた場合の逆極点図(Y0方向)Inverse pole figure (Y0 direction) when CMT is used as a heat source for additive manufacturing 積層造形の熱源にCMTを用いた場合の逆極点図(Z0方向)Inverse pole figure (Z0 direction) when CMT is used as a heat source for additive manufacturing 積層造形の熱源にEBを用いた場合の逆極点図(X0方向)Inverse pole figure (X0 direction) when EB is used as a heat source for additive manufacturing 積層造形の熱源にEBを用いた場合の逆極点図(Y0方向)Inverse pole figure (Y0 direction) when EB is used as a heat source for additive manufacturing 積層造形の熱源にEBを用いた場合の逆極点図(Z0方向)Inverse pole figure (Z0 direction) when EB is used as a heat source for additive manufacturing 低サイクル疲労試験の試験方向(水平方向および垂直方向)を定義する図Diagram defining test directions (horizontal and vertical) for low-cycle fatigue testing 低サイクル疲労試験の試験片形状を示す図Diagram showing specimen shape for low-cycle fatigue test

以下、本発明のCo基合金製造物とその製造方法について、製造方法のフローに沿って説明する。なお、本明細書において、Co基合金ワイヤを積層造形して得た造形体であり、熱処理前の物を「Co基合金造形体」と称し、Co基合金造形体に固溶化熱処理および時効処理を施した物を「Co基合金製造物」と称する。 Hereinafter, the Co-based alloy product of the present invention and its manufacturing method will be described along the flow of the manufacturing method. In this specification, a shaped body obtained by additively manufacturing a Co-based alloy wire, and a body before heat treatment is referred to as a "Co-based alloy shaped body", and the Co-based alloy shaped body is subjected to solution heat treatment and aging treatment. is called a "Co-based alloy product".

上述したように、本発明のCo基合金製造物の製造方法は、(1)Co基合金からなるワイヤを準備する工程、(2)ワイヤを、CMTを熱源として積層造形してCo基合金造形体を得る工程(積層造形工程)、(3)Co基合金造形体を1150℃未満の温度で固溶化熱処理する工程(固溶化熱処理工程)および(4)固溶化熱処理する工程後に時効熱処理してCo基合金製造物を得る工程(時効処理工程)を有する。以下、各工程を詳述する。 As described above, the method for producing a Co-based alloy product of the present invention includes (1) the step of preparing a wire made of a Co-based alloy, (2) the wire is laminate-molded using CMT as a heat source, and the Co-based alloy is molded. (3) solution heat treatment of the Co-based alloy shaped body at a temperature below 1150°C (solution heat treatment); and (4) aging heat treatment after the solution heat treatment. It has a step of obtaining a Co-based alloy product (aging treatment step). Each step will be described in detail below.

(1)Co基合金ワイヤの準備
本発明のワイヤ積層造形のワイヤを構成するCo基合金製造物を構成するCo基合金の組成は、以下のような元素を含み、残部がCo及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
(1) Preparation of Co-based alloy wire The composition of the Co-based alloy that constitutes the Co-based alloy product that constitutes the wire for wire additive manufacturing of the present invention contains the following elements, the balance being Co and unavoidable impurities: consists of The types of additive elements, their component ranges, and the reasons for their limitations are as follows.

(a)0.001≦C<0.100mass%
Cは、W及びCrと結合し、粒内及び粒界の炭化物生成に寄与する。粒状の炭化物の粒界への析出は、主に粒界強化に有効であり、熱間加工性及び高温強度を向上させる。特に、粒界強度の改善によって高温における伸び及び絞りが改善されるので、引張特性及びクリープラプチャー特性を向上させる効果が大きい。このような効果を得るためには、C含有量は、0.001mass%以上である必要がある。C含有量は、さらに好ましくは、0.005mass%以上である。
(a) 0.001≦C<0.100 mass%
C combines with W and Cr and contributes to intragranular and grain boundary carbide formation. Precipitation of granular carbides on grain boundaries is mainly effective for grain boundary strengthening, and improves hot workability and high-temperature strength. In particular, the improvement in grain boundary strength improves elongation and reduction in area at high temperatures, so that the effect of improving tensile properties and creep rupture properties is large. In order to obtain such effects, the C content needs to be 0.001 mass% or more. The C content is more preferably 0.005 mass% or more.

一方、C含有量が過剰になると、炭化物の粒内生成の促進による粒内強度の上昇、及び、粒界へのフィルム状炭化物の析出によって、強度特性が低下する。従って、C含有量は、0.100mass%未満である必要がある。C含有量は、さらに好ましくは、0.050mass%未満である。 On the other hand, when the C content is excessive, the intragranular formation of carbide is promoted, which increases the intragranular strength, and the precipitation of film-like carbide on the grain boundary reduces the strength properties. Therefore, the C content should be less than 0.100 mass%. The C content is more preferably less than 0.050 mass%.

本発明に係るCo基合金は、Cr含有量及びW含有量に加えてC含有量を最適化にすることによって炭化物を最適な形状で粒界に析出させ、これによって高温延性を高め、著しい特性の改善を達成した点が大きな特徴である。ここで「炭化物」とは、CとCr及び/又はWを主成分とする種々の炭化物全般を指す。 By optimizing the C content in addition to the Cr content and W content, the Co-based alloy according to the present invention precipitates carbides in an optimal shape at the grain boundaries, thereby increasing hot ductility and achieving remarkable properties. A major feature is that the improvement of Here, "carbides" refer to all kinds of carbides containing C and Cr and/or W as main components.

(b)9.0≦Cr<20.0mass%
Crは、Oと結合し、表層に緻密なCr層を形成するため、耐酸化性の改善に有効である。Cr含有量が少ないと、緻密なCr層の生成が困難であり、十分な耐酸化性が得られない。また、Crは、Cと結合し、種々の炭化物を粒内及び粒界に生成するため、熱間加工性の向上及び高温延性の改善に寄与する。このような効果を得るためには、Cr含有量は、9.0mass%以上である必要がある。Cr含有量は、さらに好ましくは、10.0mass%、さらに好ましくは、10.5mass%以上である。
(b) 9.0≦Cr<20.0 mass%
Cr combines with O to form a dense Cr 2 O 3 layer on the surface layer, so it is effective in improving oxidation resistance. If the Cr content is low, it is difficult to form a dense Cr 2 O 3 layer, and sufficient oxidation resistance cannot be obtained. Moreover, Cr combines with C to form various carbides in grains and grain boundaries, which contributes to improvement of hot workability and high-temperature ductility. In order to obtain such effects, the Cr content must be 9.0 mass% or more. The Cr content is more preferably 10.0 mass%, more preferably 10.5 mass% or more.

一方、Cr含有量が過剰になると、融点が低下し、高温の機械的特性を低下させる原因となる。従って、Cr含有量は、20.0mass%未満である必要がある。Cr含有量は、さらに好ましくは、19.5mass%未満、さらに好ましくは、18.5mass%未満である。 On the other hand, when the Cr content is excessive, the melting point is lowered, which causes deterioration of high-temperature mechanical properties. Therefore, the Cr content should be less than 20.0 mass%. The Cr content is more preferably less than 19.5 mass%, more preferably less than 18.5 mass%.

本発明に係るCo基合金は、Cr含有量を最適化することによって炭化物を最適な形状で析出させ、これによって高温延性の著しい改善を達成した点が大きな特徴のひとつである。 One of the major characteristics of the Co-based alloy according to the present invention is that by optimizing the Cr content, carbides are precipitated in an optimum shape, thereby achieving a remarkable improvement in hot ductility.

(c)2.0≦Al<5.0mass%
Alは、Co(Al、W)のL12型金属間化合物相(γ´相)の安定化元素であり、準安定相であるγ´相を安定相として析出させ、高温強度特性を改善させるために必要な元素である。Al含有量が少ないと、強度特性を向上させるのに十分な量のγ´相を生成させることができない。また、Alは、Crと同じくAlの生成によって耐酸化性を改善する元素である。このような効果を得るためには、Al含有量は、2.0mass%以上である必要がある。Al含有量は、さらに好ましくは、2.5mass%以上、さらに好ましくは、3.0mass%以上である。
(c) 2.0≦Al<5.0 mass%
Al is an element that stabilizes the L12 type intermetallic compound phase (γ' phase) of Co 3 (Al, W), and precipitates the metastable γ' phase as a stable phase, improving high-temperature strength characteristics. It is an element necessary for If the Al content is low, it is not possible to form a sufficient amount of γ' phase to improve strength properties. Al, like Cr, is an element that improves oxidation resistance by forming Al 2 O 3 . In order to obtain such effects, the Al content needs to be 2.0 mass% or more. The Al content is more preferably 2.5 mass% or more, more preferably 3.0 mass% or more.

一方、Al含有量が過剰になると、融点が低下し、高温特性(熱間加工性及び高温延性)を低下させる原因となる。従って、Al含有量は、5.0mass%未満である必要がある。Al含有量は、さらに好ましくは、4.5mass%未満、さらに好ましくは、4.3mass%未満である。 On the other hand, if the Al content is excessive, the melting point is lowered, which causes deterioration of high temperature properties (hot workability and high temperature ductility). Therefore, the Al content should be less than 5.0 mass%. The Al content is more preferably less than 4.5 mass%, more preferably less than 4.3 mass%.

なお、「Co(Al、W)のL12型金属間化合物相(γ´相)」とは、Co、Al及びWのみからなるγ´相だけでなく、Coサイト及び/又は(Al、W)サイトの一部が他の元素に置換されたものも含まれる。 In addition, the "L 12 type intermetallic compound phase (γ' phase) of Co 3 (Al, W)" includes not only the γ' phase consisting only of Co, Al and W, but also the Co site and/or (Al, It also includes those in which a part of the W) site is replaced with another element.

(d)13.0≦W<20.0mass%
Wは、Co(Al、W)のL12型金属間化合物相(γ´相)の安定化元素であり、高温強度に効果のあるγ´相を生成するのに必要な元素である。W含有量が少ないと、強度を向上させるのに十分な量のγ´相を生成させることができない。また、Wは、Cと結合し、種々の炭化物を生成する。粒界炭化物の析出は、高温強度特性、特に高温延性(伸び、絞り)の向上に有効である。このような効果を得るためには、W含有量は、13.0mass%以上である必要がある。W含有量は、さらに好ましくは、14.5mass%以上、さらに好ましくは、15.0mass%以上である。
(d) 13.0≦W<20.0 mass%
W is an element that stabilizes the L12 type intermetallic compound phase (γ' phase) of Co 3 (Al, W), and is an element necessary for producing the γ' phase that is effective for high-temperature strength. If the W content is low, a sufficient amount of γ' phase to improve strength cannot be generated. Also, W combines with C to form various carbides. Precipitation of grain boundary carbides is effective in improving high-temperature strength properties, particularly high-temperature ductility (elongation, reduction of area). In order to obtain such effects, the W content needs to be 13.0 mass% or more. The W content is more preferably 14.5 mass% or more, still more preferably 15.0 mass% or more.

一方、W含有量が過剰になると、粒内及び粒界にAで表されるμ相に代表される有害相を形成し、熱間加工性が著しく低下する。従って、W含有量は、20.0mass%未満である必要がある。W含有量は、さらに好ましくは、19.0mass%未満、さらに好ましくは、18.0mass%未満である。 On the other hand, when the W content becomes excessive, harmful phases represented by μ phase represented by A 7 B 6 are formed in grains and grain boundaries, and hot workability is remarkably lowered. Therefore, the W content should be less than 20.0 mass%. The W content is more preferably less than 19.0 mass%, more preferably less than 18.0 mass%.

なお、「A化合物(μ相)」とは、Co由来の化合物であり、Aサイト(Coサイト)がNi、Cr、Al、Fe等により、また、Bサイト(Wサイト)がTa、Nb、Ti、Zr等により、それぞれ置換された化合物も含まれる。 The “A 7 B 6 compound (μ phase)” is a compound derived from Co 7 W 6 , and the A site (Co site) is Ni, Cr, Al, Fe, etc., and the B site (W site ) is substituted with Ta, Nb, Ti, Zr, etc., respectively.

(e)39.0≦Ni<55.0mass%
Niは、Coサイトを置換し、(Co、Ni)(Al、W)のL12型金属間化合物相を生成する。また、Niは、母相γ及び強化相γ´に均等に分配される。特に、γ’相のCoサイトがNiで置換されると、γ´相の固溶温度が上昇し、高温強度特性が向上する。このような効果を得るためには、Ni含有量は、39.0mass%以上である必要がある。Ni含有量は、さらに好ましくは、41.0mass%以上、さらに好ましくは、43.0mass%以上である。
(e) 39.0≦Ni<55.0 mass%
Ni replaces the Co sites and produces an L12-type intermetallic phase of (Co,Ni) 3 (Al,W). Also, Ni is evenly distributed in the parent phase γ and the strengthening phase γ'. In particular, when the Co site of the γ' phase is replaced with Ni, the solid solution temperature of the γ' phase rises and the high-temperature strength properties are improved. In order to obtain such effects, the Ni content needs to be 39.0 mass% or more. The Ni content is more preferably 41.0 mass% or more, more preferably 43.0 mass% or more.

一方、Ni含有量が過剰になると、母相γの融点が低下し、熱間加工性が低下する。従って、Ni含有量は、55.0mass%未満である必要がある。Ni含有量は、さらに好ましくは、52.0mass%未満、さらに好ましくは、50.0mass%未満である。 On the other hand, when the Ni content is excessive, the melting point of the matrix γ is lowered and the hot workability is lowered. Therefore, the Ni content should be less than 55.0 mass%. The Ni content is more preferably less than 52.0 mass%, more preferably less than 50.0 mass%.

(f)Mo≦3.0mass%
Moは、母相であるγ相の固溶強化に寄与するとともに、μ相を安定化させるため、Wと併せて添加することも有効である。但し、過剰な含有は耐酸化性を低下させる。これらを考慮して、Moは3.0mass%以下の範囲とする。
(f) Mo≤3.0 mass%
Mo contributes to solid-solution strengthening of the γ phase, which is the matrix phase, and stabilizes the μ phase, so it is effective to be added together with W. However, excessive content lowers the oxidation resistance. Considering these, Mo is set to a range of 3.0 mass% or less.

(g)Nb≦2.0mass%
(h)Ta≦2.0mass%
Nb及びTaは、γ´-(Ni,Co)(Al,W,Ti,Nb,Ta)を安定化させる。但し、過剰な含有は金属間化合物δ-Ni(Nb,Ta)を粒界に板状に析出させてクリープ強度を低下させてしまう。これらを考慮して、Nb及びTaはそれぞれ、2.0mass%以下の範囲内とする。
(g) Nb ≤ 2.0 mass%
(h) Ta≤2.0 mass%
Nb and Ta stabilize γ'-(Ni, Co) 3 (Al, W, Ti, Nb, Ta). However, an excessive content causes the intermetallic compound δ-Ni 3 (Nb, Ta) to precipitate in the grain boundary in the form of plates, thereby lowering the creep strength. Considering these, Nb and Ta are each set within a range of 2.0 mass% or less.

(i)Ti≦2.0mass%
Tiは、Nb及びTaと同様にγ´-(Ni,Co)(Al,W,Ti,Nb,Ta)を安定化させる。但し、過剰な含有は金属間化合物η-NiTiを粒界に板状に析出させてクリープ強度を低下させてしまう。これらを考慮して、Tiは2.0mass%以下の範囲内とする。
(i) Ti≤2.0 mass%
Ti, like Nb and Ta, stabilizes γ'-(Ni, Co) 3 (Al, W, Ti, Nb, Ta). However, an excessive content causes the plate-like intermetallic compound η-Ni 3 Ti to precipitate at the grain boundary, thereby lowering the creep strength. Considering these, Ti is made within the range of 2.0 mass% or less.

本発明に係るCo基合金は、上述した元素に加えて、以下のいずれか1以上の元素をさらに含んでいても良い。付加的な添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。 The Co-based alloy according to the present invention may further contain any one or more of the following elements in addition to the above elements. The types of additional additive elements, their component ranges, and the reasons for their limitations are as follows.

(j)0.001≦B<0.020mass%
(k)0.0001≦Zr<0.010mass%
B及びZrは、いずれも粒界の強化元素として働き、熱間加工性の改善を促す。このような効果を得るためには、B含有量は、0.001mass%が好ましい。また、Zr含有量は、0.0001mass%以上が好ましい。
(j) 0.001≦B<0.020 mass%
(k) 0.0001≦Zr<0.010 mass%
Both B and Zr act as grain boundary strengthening elements and promote the improvement of hot workability. In order to obtain such effects, the B content is preferably 0.001 mass%. Also, the Zr content is preferably 0.0001 mass% or more.

一方、B又はZrの含有量が過剰になると、いずれも加工性が低下する。従って、B含有量は、0.020mass%未満が好ましい。また、Zr含有量は、0.010mass%未満が好ましい。 On the other hand, when the content of B or Zr becomes excessive, the workability is lowered. Therefore, the B content is preferably less than 0.020 mass%. Also, the Zr content is preferably less than 0.010 mass%.

(l)Mg≦0.10mass%
(m)Ca≦0.20mass%
Mg及びCaは、いずれもSを固定し、熱間加工性の改善を促す。このような効果を得るためには、MgやCaを添加することが好ましい。
(l) Mg≤0.10 mass%
(m) Ca ≤ 0.20 mass%
Both Mg and Ca fix S and promote improvement in hot workability. In order to obtain such effects, it is preferable to add Mg or Ca.

一方、Mg又はCaの含有量がSに対して過剰になると、Mg又はCaの化合物を生成し、加工性を低下させる原因となる。従って、Mg含有量は、0.10mass%以下が好ましい。また、Ca含有量は、0.20mass%以下が好ましい。 On the other hand, when the content of Mg or Ca is excessive with respect to S, a compound of Mg or Ca is formed, which causes deterioration of workability. Therefore, the Mg content is preferably 0.10 mass% or less. Moreover, as for Ca content, 0.20 mass% or less is preferable.

(2)積層造形工程
本発明の製造方法では、Co基合金ワイヤのワイヤ積層造形の熱源は、CMT(Cold Metal Transfer)を用いる。積層条件は、後述するCo基合金の組織を得ることができれば特に限定は無いが、電子ビームを用いる場合、熱源の出力:42kW以下、造形速度:3.18kg/hr以上11.34kg/hr以下が好ましい。また、CMTを用いる場合、熱源の出力:42.6W以上28.75kW以下、造形速度:1.6kg/hr以上3.5kg/hr以下が好ましい。
(2) Laminate manufacturing process In the manufacturing method of the present invention, CMT (Cold Metal Transfer) is used as a heat source for wire lamination manufacturing of Co-based alloy wires. The lamination conditions are not particularly limited as long as the structure of the Co-based alloy described later can be obtained, but when using an electron beam, the output of the heat source: 42 kW or less, the molding speed: 3.18 kg / hr or more and 11.34 kg / hr or less. is preferred. When CMT is used, the output of the heat source is preferably 42.6 W or more and 28.75 kW or less, and the molding speed is preferably 1.6 kg/hr or more and 3.5 kg/hr or less.

また、熱源の出力P(kW)と単位時間当たりの積層量V(kg/hr)との関係が、0.0426<P<42かつ1.6<V<11.34を満たすように制御することが好ましい。 In addition, the relationship between the heat source output P (kW) and the amount of lamination per unit time V (kg/hr) is controlled so as to satisfy 0.0426<P<42 and 1.6<V<11.34. is preferred.

積層造形後のCo基合金造形体のCo基合金造形体は、Co基合金積層造形体の積層方向に対し<001>方位へ優先配向する特徴的な組織を有する。以下に、この特徴的な組織について、EBSD(電子線後方散乱回折:Electron Back Scattered Diffraction Pattern)による逆極点図を用いて説明する。逆極点図とは試料の座標系の特定の方向に着目し、どの結晶面の法線方位がその特定方向に向いているのかを示しており、試料全体の配向性を把握するのに適している
図1はEBSDによる逆極点図の試料座標系を定義する図である。図1に示すように、積層造形体1は、熱源の走査方向に沿って形成された複数の層2a~2gを積層方向に積層した構成を有している。
The Co-based alloy shaped body of the Co-based alloy shaped body after additive manufacturing has a characteristic structure that is preferentially oriented in the <001> direction with respect to the stacking direction of the Co-based alloy shaped body. This characteristic structure will be described below using an inverse pole figure by EBSD (Electron Back Scattered Diffraction Pattern). An inverse pole figure focuses on a specific direction of the coordinate system of the sample and indicates which crystal plane normal direction is directed in that specific direction, and is suitable for grasping the orientation of the entire sample. FIG. 1 is a diagram defining the sample coordinate system of the inverse pole figure by EBSD. As shown in FIG. 1, the layered product 1 has a configuration in which a plurality of layers 2a to 2g formed along the scanning direction of the heat source are stacked in the stacking direction.

図2A~2Cは積層造形の熱源にCMTを用いた場合の逆極点図である。試料の測定面は図1のX0Y0断面(積層方向に垂直な断面)である。図2Aは図1のX0方向、図2Bは図1のY0方向、図2Cは図1のZ0方向に沿った結晶方位分布を解析し、ステレオ投影図のUnit Triangleにプロットしたものである。同様に、図3A~3Cは積層造形の熱源にEB(電子ビーム)を用いた場合の逆極点図である。これらの図は、各結晶面がX0方向、Y0方向、Z0方向のどの向きに向いているのかを示したものである。例えば、図2Aを例に説明すると、<001>と<101>方位で色が濃く、<111>では色が薄いことから、各粒子において{001}{101}結晶面がX0方向に向いている粒子はあるが、{111}結晶面がX0方向に向いている粒子は少ないことを示している。
図2A~2Cおよび図3A~3Cに示すように、熱源にCMTを用いた図2A~2Cは、図2Cの積層方向(Z0方向)で見た場合に<001>方位で特に色が濃くなっている。これは結晶粒が<001>方位へ優先的に配向していることを示している。なお「優先的に配向している」とは、各結晶粒方位の60%以上、より好ましくは70%以上、さらに好ましくは75%以上が特定の方位(<001>方位)へ配向していることとみなす。一方、図3A~3CのEBでは、図3CのZ0方向で見た場合に、<001><101><111>の各方位で全体的に色が濃くなっている。これは結晶粒が特定の方位に配向しておらず、分散していることを示している。以上の結果から、CMTではEBに比べて結晶粒成長方向が特定の方位(<001>方位)へ配向しやすく、一方向凝固的な組織となっていると考えられる。
2A to 2C are inverse pole figures when CMT is used as a heat source for additive manufacturing. The measurement surface of the sample is the X0Y0 cross section (cross section perpendicular to the stacking direction) in FIG. 2A is the X0 direction of FIG. 1, FIG. 2B is the Y0 direction of FIG. 1, and FIG. 2C is the Z0 direction of FIG. Similarly, FIGS. 3A to 3C are inverse pole figures when EB (electron beam) is used as a heat source for lamination molding. These figures show which of the X0 direction, Y0 direction, and Z0 direction each crystal plane faces. For example, referring to FIG. 2A, the <001> and <101> orientations are darker, and the <111> orientations are lighter. Although there are some grains with the {111} crystal planes oriented in the X0 direction, there are few grains.
As shown in FIGS. 2A-2C and 3A-3C, FIGS. 2A-2C using CMT as a heat source are particularly dark in the <001> orientation when viewed in the stacking direction (Z0 direction) of FIG. 2C. ing. This indicates that the crystal grains are preferentially oriented in the <001> direction. Note that "preferentially oriented" means that 60% or more, more preferably 70% or more, and still more preferably 75% or more of each crystal grain orientation is oriented in a specific orientation (<001> orientation). regarded as a thing. On the other hand, in EB of FIGS. 3A to 3C, when viewed in the Z0 direction of FIG. 3C, the colors are darker overall in each of the <001><101><111> directions. This indicates that the crystal grains are not oriented in a specific direction and are dispersed. From the above results, it is considered that the crystal grain growth direction tends to be oriented in a specific orientation (<001> orientation) in CMT as compared to EB, resulting in a unidirectionally solidified structure.

(3)固溶化熱処理工程
Co基合金造形体を造形後、固溶化熱処理を行う。熱処理条件は、造形後の残留応力を解放するのに十分な温度以上で、かつ、上述した偏析セルが消失しない温度で行うことが好ましい。具体的には、800℃以上1150℃未満が好ましく、800℃以上1000℃未満がより好ましい。時間は、熱処理温度に応じて決定することが好ましい。熱処理条件の一例として、1050℃で2時間保持することができる。
(3) Solution heat treatment step After shaping the Co-based alloy shaped body, solution heat treatment is performed. It is preferable that the heat treatment be performed at a temperature higher than or equal to a temperature sufficient to release residual stress after molding and at a temperature at which the above-described segregation cells do not disappear. Specifically, the temperature is preferably 800°C or higher and lower than 1150°C, and more preferably 800°C or higher and lower than 1000°C. The time is preferably determined according to the heat treatment temperature. As an example of heat treatment conditions, the temperature can be held at 1050° C. for 2 hours.

(4)時効処理工程
固溶化熱処理工程後、時効処理工程を行う。熱処理条件は、従来の条件を適用することができ、500℃以上1100℃以下、1~100時間で行うことができる。また、温度を2種類にする2段時効を行ってもよい。熱処理条件の一例として、900℃で24時間保持後、800℃で24時間保持することができる。
(4) Aging treatment step After the solution heat treatment step, an aging treatment step is performed. Conventional heat treatment conditions can be applied, and the heat treatment can be performed at 500° C. or higher and 1100° C. or lower for 1 hour to 100 hours. Also, two-step aging may be performed at two different temperatures. As an example of the heat treatment conditions, after holding at 900° C. for 24 hours, it is possible to hold at 800° C. for 24 hours.

時効処理後、本発明のCo基合金製造物が得られる。時効処理によって、上述した特許文献1と同様に、Co基合金の母相であるγ相の結晶粒内にγ´相が整合析出し、析出強化機構を構成する。 After aging, the Co-based alloy product of the present invention is obtained. By aging treatment, the γ' phase coherently precipitates in the crystal grains of the γ phase, which is the parent phase of the Co-based alloy, as in Patent Document 1 described above, and constitutes a precipitation strengthening mechanism.

本発明のコバルト基合金造形物の製造方法によれば、高温強度を有する材料を用いて積層造形が可能である。造形体で部材を製作する場合、鍛造材から製作する場合よりも加工しろ(例えば切削加工で切削粉として廃棄される部分)を大幅に削減することができるため、生産性を高めて歩留まりを向上することができる。 According to the method for manufacturing a cobalt-based alloy modeled article of the present invention, additive manufacturing is possible using a material having high-temperature strength. When manufacturing parts from a molded body, it is possible to greatly reduce the machining margin (for example, the portion that is discarded as cutting powder in cutting) compared to manufacturing from forged materials, so productivity is improved and yield is improved. can do.

COWALOY合金を用いて、熱源にCMTを用いて作製した造形体とEBを用いて作製した造形体の室温における0.2%耐力、引張強さおよび破断伸びを測定した。測定は、積層造形体より試験部φ8mm、試験片長さ90mmの試験片を切り出し、この試験片を用いて行った。評価結果を表1に示す。表1中、Y方向およびZ方向は、図1のY0方向およびZ0方向に対応している。 Using the COWALOY alloy, the 0.2% proof stress, tensile strength and elongation at break of a shaped body produced using CMT as a heat source and a shaped body produced using EB as a heat source were measured. A test piece having a test portion of φ8 mm and a test piece length of 90 mm was cut out from the laminate-molded body, and the measurement was performed using this test piece. Table 1 shows the evaluation results. In Table 1, the Y direction and Z direction correspond to the Y0 direction and Z0 direction in FIG.

Figure 2023050990000002
Figure 2023050990000002

表1に示すように、積層造形の熱源にCMTを用いた場合もEBを用いた場合も、室温(22℃)において0.2%耐力が700MPa以上、引張強さが1000MPa以上を達成している。 As shown in Table 1, both when CMT and EB are used as heat sources for additive manufacturing, 0.2% proof stress of 700 MPa or more and tensile strength of 1000 MPa or more are achieved at room temperature (22 ° C.). there is

伸びに関しては、Z方向、Y方向いずれも積層造形の熱源にEBを用いた場合よりもCMTを用いた場合の方が高いことが分かった。特にCMTではY方向での伸びが大きく、Z方向とY方向の伸びの差がEBに比べて小さくなった。なお、Z方向(積層方向)に対するY方向(熱源の走査方向)の伸び(Y方向の伸びをZ方向の伸びで除した値)が0.7以上あると、異方性解消の観点から好ましい。CMTでY方向の伸びが大きくなったのは、上述したCMTを用いた場合の特徴的な組織(積層方向において60%以上の結晶粒が<001>方位へ配向)に関係しているものと考えられる。 It was found that the elongation in both the Z direction and the Y direction is higher when CMT is used than when EB is used as the heat source for lamination manufacturing. Especially in CMT, the elongation in the Y direction was large, and the difference in elongation between the Z and Y directions was smaller than in EB. In addition, it is preferable from the viewpoint of eliminating anisotropy that the elongation in the Y direction (scanning direction of the heat source) with respect to the Z direction (laminating direction) (the value obtained by dividing the elongation in the Y direction by the elongation in the Z direction) is 0.7 or more. . The reason why the Y-direction elongation of CMT is large is related to the characteristic structure (60% or more of the crystal grains are oriented in the <001> direction in the stacking direction) when using the CMT described above. Conceivable.

また、積層造形の熱源にCMTを用いた場合とEBを用いて作製した造形体に対して、低サイクル疲労特性を評価した。図4は低サイクル疲労試験に供した試験片の採取方向(水平方向および垂直方向)を定義する図であり、図5は低サイクル疲労試験の試験片形状を示す図である。試験は、JIS(JAPANESE INDUSTRIAL STANDARD) Z 2279 1992(金属材料の高温低サイクル疲労試験)に準じて行った。試験条件および使用設備は、以下の通りである。 In addition, the low-cycle fatigue characteristics were evaluated for a modeled body using CMT as a heat source for additive manufacturing and a modeled body manufactured using EB. FIG. 4 is a diagram defining the sampling directions (horizontal direction and vertical direction) of the test piece subjected to the low cycle fatigue test, and FIG. 5 is a diagram showing the shape of the test piece for the low cycle fatigue test. The test was conducted according to JIS (JAPANESE INDUSTRIAL STANDARD) Z 2279 1992 (high temperature low cycle fatigue test for metal materials). The test conditions and equipment used are as follows.

試験温度:800℃(大気中)
全ひずみ範囲:0.6(±0.3%), 0,8 (±0.4%), 1.0% (±0.5%)
歪み比:Rε=-1(両振り)
ひずみ速度:0.1%/sec(三角波)
打切りサイクル:20,000サイクル
※繰返しサイクルが2×10 サイクルを超え、2×10 サイクルでの非弾性ひずみ範囲が0.01%以下ならば、荷重制御(9Hz、正弦波)に切り替えを実施する
試験装置:MTS810 油圧サーボ疲労試験機、±100kN
伸び計:MTS 632.53F-14(GL=12.0mm)
加熱方式:電気抵抗加熱
熱電対:K熱電対
結果を表2に示す。
Test temperature: 800°C (in air)
Total strain range: 0.6 (±0.3%), 0,8 (±0.4%), 1.0% (±0.5%)
Strain ratio: Rε = -1 (double swing)
Strain rate: 0.1%/sec (triangular wave)
Aborted cycle: 20,000 cycles * If the repeated cycle exceeds 2 x 10 4 cycles and the inelastic strain range at 2 x 10 4 cycles is 0.01% or less, switch to load control (9 Hz, sine wave). Test equipment to be performed: MTS810 hydraulic servo fatigue tester, ±100 kN
Extensometer: MTS 632.53F-14 (GL=12.0mm)
Heating method: Electric resistance heating thermocouple: K thermocouple The results are shown in Table 2.

Figure 2023050990000003
Figure 2023050990000003

表2にはCOWALOYをCMTまたはEBを熱源として作製したWAM造形体、Alloy263の圧延材、およびWASPALOYの圧延材の低サイクル疲労試験結果を掲載している。表2に示すように、CMTを用いて作製したCOWALOY造形体は、全ひずみ範囲0.8%で比較すると、垂直方向に比べて水平方向の破断繰り返し数が小さくなった。EBで作成した造形体と比較すると、CMTでは垂直方向、水平方向ともに破断繰り返し数が大きくなった。特に水平方向の破断繰り返し数は、EBでは40だったのに対し、CMTは7635となり差が大きい。また表2のAlloy263やWASPALLOYの破断繰り返し数と比較すると、全ひずみ範囲0.6%において、Alloy263は3090、WASPALOYは7000に対して、CMTを熱源としたCOWALOY造形体は、水平方向の破断繰り返し数が20000以上である。全ひずみ範囲0.6%における垂直方向の破断繰り返し数は表2に記載がないものの、全ひずみ範囲0.8%の値から、水平方向よりも値が大きいと推察できる。
以上の結果から、CMTを熱源としたCOWALOY造形体の疲労特性は、EBに比べて特に水平方向の疲労特性が優れており、Alloy263およびWASPALOYよりも優れていることが分かる。CMTで水平方向の疲労特性が高いのは、水平方向の伸びがEBより大きくなったことと関係している。なおCOWALOYをタービン等の高温強度が要求される部材の製造に適用する場合、800℃における全ひずみ範囲0.6%の破断繰り返し数は、3000以上が好ましく、更に好ましくは8000以上とすることが好ましい。破断繰り返し数が3000より小さいと、十分な疲労特性が得られないため好ましくない。
CMTを熱源とした造形体の結晶方位が、積層方向において<001>方位に優先的に配向していると、なぜ走査方向の伸びや疲労特性がEBを熱源とした造形体に比べて高くなるのか要因は判明していない。但し、考えられる要因の1つとして、CMTでは垂直方向(積層方向)の亀裂の進展速度が遅くなることがあげられる。水平方向の低サイクル疲労試験では、造形体の走査方向に切り出した試験片を使用しており、亀裂の進展に伴う破断は積層方向に生じる傾向がある。CMTでは、積層方向において特定の方向、すなわち<001>方位に結晶面が優先的に配向しているため、水平方向の伸びがEBに比べて高くなった可能性がある。更に水平方向に引張・圧縮を繰り返す疲労試験において、積層方向で発生する亀裂の進展速度が遅くなり、EBを熱源とした造形体に比べて疲労強度が高くなったと考えられる。
Table 2 lists the low-cycle fatigue test results of WAM compacts made of COWALOY using CMT or EB as a heat source, alloy 263 rolled materials, and WASPALOY rolled materials. As shown in Table 2, the COWALOY shaped bodies made with CMT had lower cycles to failure in the horizontal direction than in the vertical direction when compared over a full strain range of 0.8%. In comparison with the shaped body made by EB, CMT showed a larger number of repeated fractures in both the vertical and horizontal directions. In particular, the number of repetitions to break in the horizontal direction was 40 for EB and 7635 for CMT, showing a large difference. In addition, when comparing the number of rupture cycles of Alloy263 and WASPALLOY in Table 2, in the total strain range of 0.6%, Alloy263 is 3090 and WASPALLOY is 7000. The number is 20000 or more. Although the number of rupture repetitions in the vertical direction in the total strain range of 0.6% is not listed in Table 2, it can be inferred from the value in the total strain range of 0.8% that the value is larger than in the horizontal direction.
From the above results, it can be seen that the fatigue property of the COWALOY shaped body using CMT as a heat source is superior to that of EB, especially in the horizontal direction, and is superior to Alloy263 and WASPALOY. The higher lateral fatigue properties of CMT are associated with greater lateral elongation than EB. When COWALOY is applied to the manufacture of members that require high-temperature strength, such as turbines, the number of rupture cycles at 800° C. in the total strain range of 0.6% is preferably 3000 or more, more preferably 8000 or more. preferable. If the number of repetitions to break is less than 3000, sufficient fatigue properties cannot be obtained, which is not preferable.
Why is the elongation in the scanning direction and fatigue properties higher than those of a model using EB as a heat source when the crystal orientation of the product using CMT as a heat source is preferentially oriented in the <001> orientation in the stacking direction? The reason for this has not been clarified. However, one of the possible factors is that CMT slows down the growth rate of cracks in the vertical direction (stacking direction). In the horizontal low-cycle fatigue test, specimens cut in the scanning direction of the compact are used, and fracture due to crack growth tends to occur in the stacking direction. In CMT, crystal planes are preferentially oriented in a specific direction, ie, <001> orientation, in the stacking direction, so there is a possibility that the horizontal elongation was higher than in EB. Furthermore, in a fatigue test in which tension and compression are repeated in the horizontal direction, the growth rate of cracks generated in the stacking direction is slowed, and it is considered that the fatigue strength is higher than that of the shaped body using EB as a heat source.

以上、説明したように、本発明によれば、WAMを用いて、従来のNi基合金およびCo基合金を鍛造等で作製した部材と同等以上の機械的強度および高温強度を有し、かつ歩留まりの向上を実現するCo基合金製造物およびCo基合金製造物の製造方法を提供できることが示された。 As described above, according to the present invention, WAM is used to have mechanical strength and high-temperature strength equal to or higher than those of members produced by conventional Ni-based alloys and Co-based alloys by forging or the like, and the yield is high. It has been shown that it is possible to provide a Co-based alloy product and a method for producing a Co-based alloy product that achieves an improvement in the

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

1…積層造形体、2a,2b,2c,2d,2e,2f,2g…層。 1... Laminated body, 2a, 2b, 2c, 2d, 2e, 2f, 2g... layers.

Claims (9)

0.001≦C<0.100mass%、
9.0≦Cr<20.0mass%、
2.0≦Al<5.0mass%、
13.0≦W<20.0mass%および
39.0≦Ni<55.0mass%を含み、残部がCoおよび不可避不純物であるCo基合金からなる多結晶体を含むCo基合金積層造形体であり、
前記多結晶体が、前記Co基合金積層造形体の積層方向において60%以上の結晶粒が<001>方位へ配向していることを特徴とするCo基合金製造物。
0.001≦C<0.100 mass%,
9.0≦Cr<20.0 mass%,
2.0≦Al<5.0 mass%,
A Co-based alloy additive manufacturing body containing a polycrystalline body made of a Co-based alloy containing 13.0 ≤ W < 20.0 mass% and 39.0 ≤ Ni < 55.0 mass%, the balance being Co and inevitable impurities ,
A Co-based alloy product, wherein 60% or more of the crystal grains of the polycrystalline body are oriented in the <001> orientation in the stacking direction of the Co-based alloy additive-molded body.
Mo≦3.0mass%、
Nb≦2.0mass%
Ti≦2.0mass%および
Ta≦2.0mass%のいずれか1種以上をさらに含む請求項1に記載のCo基合金製造物。
Mo≤3.0 mass%,
Nb≤2.0 mass%
2. The Co-based alloy product according to claim 1, further comprising at least one of Ti≤2.0 mass% and Ta≤2.0 mass%.
0.001≦B<0.020mass%、
0.0001≦Zr<0.010mass%、
Mg≦0.10mass%および
Ca≦0.20mass%のいずれか1種以上をさらに含む請求項1または2に記載のCo基合金製造物。
0.001≦B<0.020 mass%,
0.0001≦Zr<0.010 mass %,
3. The Co-based alloy product according to claim 1, further comprising at least one of Mg≤0.10 mass% and Ca≤0.20 mass%.
前記Co基合金積層造形体の熱源の走査方向における室温の破断のびが前記Co基合金積層造形体の積層方向の破断伸びに対して0.7以上であることを特徴とする請求項1から3のいずれか1項に記載のCo基合金製造物。 3. The breaking elongation at room temperature in the scanning direction of the heat source of the Co-based alloy additive manufacturing body is 0.7 or more with respect to the breaking elongation in the stacking direction of the Co-based alloy additive manufacturing body. A Co-based alloy product according to any one of Claims 1 to 3. 前記Co基合金積層造形体の800℃、全ひずみ範囲0.6%における破断繰り返し数が、3000以上であることを特徴とする請求項1から3のいずれか1項に記載のCo基合金製造物。 The Co-based alloy production according to any one of claims 1 to 3, wherein the Co-based alloy additive manufacturing product has a number of rupture cycles of 3000 or more at 800 ° C. and a total strain range of 0.6%. thing. Co基合金からなるワイヤを準備する工程と、
前記ワイヤを積層造形してCo基合金積層造形体を得る工程と、
前記Co基合金積層造形体を1150℃未満の温度で固溶化熱処理する工程と、
前記固溶化熱処理する工程後に時効熱処理してCo基合金製造物を得る工程と、を有し、
前記積層造形の熱源は、CMTであることを特徴とするCo基合金製造物の製造方法。
preparing a wire made of a Co-based alloy;
a step of laminating and manufacturing the wire to obtain a Co-based alloy lamination-molded body;
a step of subjecting the Co-based alloy additive-molded article to a solution heat treatment at a temperature of less than 1150°C;
a step of obtaining a Co-based alloy product by performing aging heat treatment after the step of solution heat treatment,
A method for producing a Co-based alloy product, wherein the heat source for the additive manufacturing is CMT.
前記Co基合金積層造形体は、前記Co基合金積層造形体の積層方向に対し〈001〉方位へ優先配向していることを特徴とする請求項6に記載のCo基合金製造物の製造方法。 7. The method for producing a Co-based alloy product according to claim 6, wherein the Co-based alloy layered structure is preferentially oriented in the <001> direction with respect to the stacking direction of the Co-based alloy layered structure. . 前記固溶化熱処理は、800℃以上1050℃以下であることを特徴とする請求項6に記載のCo基合金製造物の製造方法。 7. The method for producing a Co-based alloy product according to claim 6, wherein the solution heat treatment is performed at a temperature of 800[deg.] C. or higher and 1050[deg.] C. or lower. 前記時効熱処理は、900℃で24時間保持した後、800℃で24時間保持することを特徴とする請求項6に記載のCo基合金製造物の製造方法。 7. The method for producing a Co-based alloy product according to claim 6, wherein the aging heat treatment is carried out at 900[deg.] C. for 24 hours and then at 800[deg.] C. for 24 hours.
JP2021161399A 2021-09-30 2021-09-30 Cobalt-based alloy product and manufacturing method of cobalt-based alloy product Pending JP2023050990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021161399A JP2023050990A (en) 2021-09-30 2021-09-30 Cobalt-based alloy product and manufacturing method of cobalt-based alloy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021161399A JP2023050990A (en) 2021-09-30 2021-09-30 Cobalt-based alloy product and manufacturing method of cobalt-based alloy product

Publications (1)

Publication Number Publication Date
JP2023050990A true JP2023050990A (en) 2023-04-11

Family

ID=85805340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021161399A Pending JP2023050990A (en) 2021-09-30 2021-09-30 Cobalt-based alloy product and manufacturing method of cobalt-based alloy product

Country Status (1)

Country Link
JP (1) JP2023050990A (en)

Similar Documents

Publication Publication Date Title
JP6849128B2 (en) Mixed powder for metal lamination modeling
US20190024225A1 (en) Nickel-iron-aluminum-chromium based alloys, and products made therefrom
EP2503013B1 (en) Heat-resistant superalloy
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JPWO2019004176A1 (en) Manufacturing method of Ni-base superalloy wire and Ni-base superalloy wire
WO2020121367A1 (en) Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these
KR20170012080A (en) High temperature nickel-base superalloy for use in powder based manufacturing process
JP2013502511A (en) Nickel superalloys and parts made from nickel superalloys
US11421303B2 (en) Titanium alloy products and methods of making the same
EP3572541B1 (en) Nickel-base superalloy
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JP2018059184A5 (en)
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
Sonar et al. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications
JP2023050990A (en) Cobalt-based alloy product and manufacturing method of cobalt-based alloy product
KR20200094155A (en) Heat treatment for improved ductility of Ni-Cr-Co-Mo-Ti-Al alloy
CN113597476B (en) Method for manufacturing Co-based alloy structure
KR101346808B1 (en) The Titanium alloy improved mechanical properties and the manufacturing method thereof
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JP7237222B1 (en) Cobalt-based alloy shaped article and method for manufacturing cobalt-based alloy product
JP5929251B2 (en) Iron alloy
US20230094413A1 (en) Cobalt-based alloy product and method for producing cobalt-based alloy product
JP2013185249A (en) Iron alloy
Tian et al. Microstructure and properties of a novel Ni-Ti-Cr-Mo-Nb alloy fabricated in situ by dual-wire arc additive manufacturing
US20230332278A1 (en) Alloy Material, Alloy Product Formed of Alloy Material, and Mechanical Device Including Alloy Product

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220128