JP2023046573A - Heat pump type temperature adjustment device - Google Patents

Heat pump type temperature adjustment device Download PDF

Info

Publication number
JP2023046573A
JP2023046573A JP2021155242A JP2021155242A JP2023046573A JP 2023046573 A JP2023046573 A JP 2023046573A JP 2021155242 A JP2021155242 A JP 2021155242A JP 2021155242 A JP2021155242 A JP 2021155242A JP 2023046573 A JP2023046573 A JP 2023046573A
Authority
JP
Japan
Prior art keywords
heat
heat exchange
temperature control
heat medium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021155242A
Other languages
Japanese (ja)
Inventor
智 金子
Satoshi Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2021155242A priority Critical patent/JP2023046573A/en
Priority to PCT/JP2022/031569 priority patent/WO2023047863A1/en
Priority to CN202280060747.9A priority patent/CN117980167A/en
Publication of JP2023046573A publication Critical patent/JP2023046573A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

To make it possible to adjust temperature by changing the temperature of a heat medium in accordance with the thermal load situation of a temperature adjustment object without complicating the structure of a heat medium circuit.SOLUTION: A temperature adjustment device includes a compressor, a first heat exchange part functioning as a radiator, a decompression device, and a second heat exchange part functioning as a heat sink. The temperature adjustment device has a refrigerant circuit which circulates coolant discharged by the compressor in the first heat exchange part, the decompression device, and the second heat exchange part in this order, a heat medium circuit on a high temperature side where a heat medium heat exchanging with coolant in the first heat exchange part circulates, and a heat medium circuit on a low temperature side where the heat medium exchanging heat with the coolant in the second heat medium circuit circulates, and adjusts the temperature of a plurality of temperature adjustment objects via the heat medium. The first heat exchange part and the second heat exchange part are provided with a plurality of heat exchange elements. The heat medium circuit has a switch part which is capable of switching a serial mode in which the heat medium continuously passes the heat exchange element selected from a plurality of heat exchange elements and exchanges heat with the temperature adjustment objects, and a parallel mode in which the heat medium individually passes the heat exchange elements and exchanges heat with the temperature adjustment objects.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプ式温調装置に関するものである。 The present invention relates to a heat pump type temperature control device.

従来、ヒートポンプの放熱と吸熱を利用し、熱媒体回路(例えば、水回路)を介して対象物の温度調整を行う温調装置が知られている(下記特許文献1参照)。このような従来技術によると、圧縮機から吐出した冷媒を循環させる冷媒回路に、放熱部となる水冷媒熱交換器、膨張弁、吸熱部となる水冷媒熱交換器を設け、放熱部を介して高温側熱媒体回路の熱媒体を加熱し、吸熱部を介して低温側熱媒体回路の熱媒体を冷却している。 2. Description of the Related Art Conventionally, there is known a temperature control device that utilizes heat dissipation and heat absorption of a heat pump to adjust the temperature of an object through a heat medium circuit (for example, a water circuit) (see Patent Document 1 below). According to such conventional technology, a refrigerant circuit that circulates the refrigerant discharged from the compressor is provided with a water-refrigerant heat exchanger as a heat radiating part, an expansion valve, and a water-refrigerant heat exchanger as a heat absorbing part. The heat medium in the high temperature side heat medium circuit is heated through the heat absorbing portion, and the heat medium in the low temperature side heat medium circuit is cooled through the heat absorbing portion.

特開2020-40429号公報Japanese Patent Application Laid-Open No. 2020-40429

前述した温調装置において、水冷媒熱交換器が放熱部と吸熱部で各1つ設けられている場合、高温側熱媒体回路と低温側熱媒体回路における熱媒体の温度は各々1つの温度になる。このような温調装置で、温調対象物の熱負荷状況に応じて、様々な温度帯の熱媒体を生成するには、高温の熱媒体と低温の熱媒体を適宜の割合で混合する、或いは高温側熱媒体回路と低温側熱媒体回路との間で相互に熱交換することが行われている。しかしながら、高温熱媒体と低温熱媒体の混合や高温側熱媒体回路と低温側熱媒体回路間の熱交換を行うためには、複雑な回路構成が必要になると共に、高温側の熱媒体温度と低温側の熱媒体温度を独立して調整することができない問題が生じる。 In the temperature control device described above, when one water-refrigerant heat exchanger is provided for each of the heat radiating part and the heat absorbing part, the temperature of the heat medium in the high temperature side heat medium circuit and the low temperature side heat medium circuit is one temperature. Become. In such a temperature control device, in order to generate heat medium in various temperature ranges according to the heat load status of the object to be temperature controlled, a high-temperature heat medium and a low-temperature heat medium are mixed in an appropriate ratio. Alternatively, mutual heat exchange is performed between the high temperature side heat medium circuit and the low temperature side heat medium circuit. However, in order to mix the high-temperature heat medium and the low-temperature heat medium and to exchange heat between the high-temperature side heat medium circuit and the low-temperature side heat medium circuit, a complicated circuit configuration is required, and the temperature of the high-temperature side heat medium A problem arises that the temperature of the heat medium on the low temperature side cannot be adjusted independently.

これに対して、温調装置の出力調整を行うことで、熱媒体の温度を変化させることが考えられる。しかしながら、冷媒回路の出力調整を行った場合に熱媒体回路の流量を変えないと温度追従性が悪くなり、熱媒体回路の流量を低下させて温度追従性を高めようとすると、熱交換効率が低下してエネルギー消費効率(COP:Coefficient Of Performance)が悪化する。このため、温調装置の出力調整では、効率よく温調装置を運転しながら、熱媒体の温度を多様に変化させることができない問題があった。 On the other hand, it is conceivable to change the temperature of the heat medium by adjusting the output of the temperature control device. However, if the flow rate of the heat medium circuit is not changed when the output of the refrigerant circuit is adjusted, the temperature followability deteriorates. It lowers and the energy consumption efficiency (COP: Coefficient Of Performance) deteriorates. Therefore, in adjusting the output of the temperature control device, there is a problem that the temperature of the heat medium cannot be changed in various ways while operating the temperature control device efficiently.

本発明は、このような問題に対処することを課題としている。すなわち、熱媒体回路の構成を煩雑にすること無く、温調対象物の熱負荷状況に応じて熱媒体の温度を変えて温調できるようにすること、高温側熱媒体回路の熱媒体温度と低温側熱媒体回路の熱媒体温度を独立して調整できるようにすること、温調装置を効率よく運転しながら、様々な温度帯での温調を可能にすること、などが本発明の課題である。 An object of the present invention is to address such problems. That is, without complicating the configuration of the heat medium circuit, the temperature of the heat medium can be changed according to the heat load of the object to be temperature-regulated, and the temperature of the heat medium in the high-temperature side heat medium circuit can be adjusted. It is an object of the present invention to independently adjust the temperature of the heat medium in the low-temperature side heat medium circuit, and to enable temperature control in various temperature ranges while operating the temperature control device efficiently. is.

このような課題を解決するために、本発明は、以下の構成を具備するものである。
圧縮機、放熱器として機能する第1熱交換部、減圧装置、吸熱器として機能する第2熱交換部を具備し、前記圧縮機から吐出した冷媒を、前記第1熱交換部、前記減圧装置、前記第2熱交換部の順に循環させる冷媒回路と、前記第1熱交換部にて前記冷媒と熱交換した熱媒体が循環する高温側の熱媒体回路と前記第2熱交換部にて前記冷媒と熱交換した熱媒体が循環する低温側の熱媒体回路を有し、前記熱媒体を介して複数の温調対象の温度調整を行う温調装置であって、前記第1熱交換部と前記第2熱交換部は、それぞれ複数の熱交換要素を備え、前記熱媒体回路は、前記熱媒体が前記複数の熱交換要素のうち選択した前記熱交換要素を連続して通過して前記温調対象と熱交換する直列モードと、前記熱媒体が前記熱交換要素を個別に通過して前記温調対象と熱交換する並列モードとを切り替え可能な切替部を有することを特徴とするヒートポンプ式温調装置。
In order to solve such problems, the present invention has the following configurations.
A compressor, a first heat exchange section functioning as a radiator, a decompression device, and a second heat exchange section functioning as a heat absorber are provided. , a refrigerant circuit that circulates in order of the second heat exchange section; A temperature control device having a heat medium circuit on a low temperature side in which a heat medium that has exchanged heat with a refrigerant circulates, and performs temperature control of a plurality of temperature control targets via the heat medium, the first heat exchange unit and Each of the second heat exchange sections includes a plurality of heat exchange elements, and the heat medium circuit continuously passes the heat medium through the heat exchange element selected from the plurality of heat exchange elements to obtain the temperature. A heat pump type, characterized by having a switching unit capable of switching between a series mode in which heat is exchanged with an object to be adjusted and a parallel mode in which the heat medium individually passes through the heat exchange elements and exchanges heat with the object to be temperature adjusted. temperature control device.

このような特徴を有するヒートポンプ式温調装置は、直列モードと並列モードの切替えで熱媒体の温度を変化させることができるので、熱媒体回路の構成を煩雑にすること無く、温調対象物の熱負荷状況に応じて熱媒体の温度を変えて温調することができる。 The heat pump type temperature control device having such characteristics can change the temperature of the heat medium by switching between the series mode and the parallel mode. The temperature can be adjusted by changing the temperature of the heat medium according to the heat load condition.

また、高温側と低温側の熱媒体回路でそれぞれ直列モードと並列モードの切替えを行うことで、高温側と低温側の熱媒体回路における熱媒体の温度を夫々で独立して調整することができる。また、冷媒回路や熱媒体回路の出力調整を行わないで熱媒体の温度を変化させることができるので、温調装置を効率よく運転しながら、様々な温度帯での温調が可能になる。 Further, by switching between the series mode and the parallel mode in the heat medium circuits on the high temperature side and the low temperature side, respectively, the temperature of the heat medium in the heat medium circuits on the high temperature side and the low temperature side can be adjusted independently. . Moreover, since the temperature of the heat medium can be changed without adjusting the outputs of the refrigerant circuit and the heat medium circuit, it is possible to control the temperature in various temperature ranges while efficiently operating the temperature control device.

本発明の実施形態に係るヒートポンプ式温調装置の概略構成を示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a schematic configuration of a heat pump type temperature control device according to an embodiment of the present invention; 熱媒体回路の直列モードと並列モードの説明図((a)が直列モード、(b)が並列モード)。Explanatory drawing of the series mode and parallel mode of a heat-medium circuit ((a) is a series mode, (b) is a parallel mode). 第1熱交換部又は第2熱交換部の構成例を示した説明図。Explanatory drawing which showed the structural example of the 1st heat exchange part or the 2nd heat exchange part. 電動車両用の温調装置の構成例を示した説明図。Explanatory drawing which showed the structural example of the temperature control apparatus for electric vehicles. 図4に示した温調装置の温調モードAを示した説明図。FIG. 5 is an explanatory view showing a temperature control mode A of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードA’を示した説明図。FIG. 5 is an explanatory view showing a temperature control mode A' of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードBを示した説明図。FIG. 5 is an explanatory view showing a temperature control mode B of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードCを示した説明図。FIG. 5 is an explanatory view showing a temperature control mode C of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードC’を示した説明図。FIG. 5 is an explanatory diagram showing a temperature control mode C' of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードDを示した説明図。FIG. 5 is an explanatory view showing a temperature control mode D of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードEを示した説明図。FIG. 5 is an explanatory view showing a temperature control mode E of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードFを示した説明図。FIG. 5 is an explanatory view showing a temperature control mode F of the temperature control device shown in FIG. 4; 図4に示した温調装置の温調モードF’を示した説明図。FIG. 5 is an explanatory diagram showing a temperature control mode F' of the temperature control device shown in FIG. 4; 第1熱交換部と第2熱交換部における複数の熱交換要素の熱交換量の設定例を示した説明図。FIG. 4 is an explanatory diagram showing a setting example of heat exchange amounts of a plurality of heat exchange elements in a first heat exchange section and a second heat exchange section; 電動車両用の温調装置の制御装置を示した説明図。Explanatory drawing which showed the control apparatus of the temperature control apparatus for electric vehicles.

以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same reference numerals in different figures denote portions having the same function, and duplication of description in each figure will be omitted as appropriate.

図1に示すように、ヒートポンプ式温調装置(以下、温調装置)1は、冷媒回路2と熱媒体回路3を備えている。 As shown in FIG. 1 , a heat pump type temperature control device (hereinafter referred to as temperature control device) 1 includes a refrigerant circuit 2 and a heat medium circuit 3 .

冷媒回路2は、圧縮機10、第1熱交換部11、減圧装置12、第2熱交換部13を備えており、ヒートポンプを構成している。冷媒回路2において、圧縮機10から吐出した冷媒は、第1熱交換部11、減圧装置12、第2熱交換部13の順に循環する。第1熱交換部11は、圧縮機10で圧縮された高温冷媒が熱を放出する放熱器として機能する。第2熱交換部13は、減圧装置12で減圧された低温冷媒が熱を吸収する吸熱器として機能する。 The refrigerant circuit 2 includes a compressor 10, a first heat exchange section 11, a pressure reducing device 12, and a second heat exchange section 13, and constitutes a heat pump. In the refrigerant circuit 2, the refrigerant discharged from the compressor 10 circulates through the first heat exchange section 11, the decompression device 12, and the second heat exchange section 13 in this order. The first heat exchange unit 11 functions as a radiator through which the high-temperature refrigerant compressed by the compressor 10 releases heat. The second heat exchange unit 13 functions as a heat absorber in which the low-temperature refrigerant decompressed by the decompression device 12 absorbs heat.

熱媒体回路3は、冷媒回路2の冷媒と熱交換する熱媒体が循環する。熱媒体回路3は、第1熱交換部11において高温の冷媒と熱媒体が熱交換する高温側の熱媒体回路3Aと、第2熱交換部13において低温の冷媒と熱媒体が熱交換する低温側の熱媒体回路3Bを有する。 A heat medium that exchanges heat with the refrigerant in the refrigerant circuit 2 circulates in the heat medium circuit 3 . The heat medium circuit 3 includes a high temperature side heat medium circuit 3A in which heat is exchanged between the high temperature refrigerant and the heat medium in the first heat exchange section 11, and a low temperature side heat exchange circuit 3A in which the low temperature refrigerant and the heat medium exchange heat in the second heat exchange section 13. side heat medium circuit 3B.

第1熱交換部11は、複数の熱交換要素11A,11Bを備え、第2熱交換部13は、複数の熱交換要素13A,13Bを備える。図1に示した例では、第1熱交換部11と第2熱交換部13は、それぞれ2つの熱交換要素11A,11B(13A,13B)を備えているが、これに限らず、それぞれ3つ以上の熱交換要素を備えるようにしてもよい。熱交換要素11A,11B(13A,13B)は、そこを通過する冷媒と熱媒体が互いに熱交換する冷媒・熱媒体熱交換器である。 The first heat exchange section 11 includes a plurality of heat exchange elements 11A and 11B, and the second heat exchange section 13 includes a plurality of heat exchange elements 13A and 13B. In the example shown in FIG. 1, each of the first heat exchange section 11 and the second heat exchange section 13 includes two heat exchange elements 11A and 11B (13A and 13B). More than one heat exchange element may be provided. The heat exchange elements 11A, 11B (13A, 13B) are refrigerant/heat medium heat exchangers in which the refrigerant and heat medium passing therethrough exchange heat with each other.

熱媒体回路3は、ポンプPによって循環する熱媒体を介して複数の温調対象M1~M4の温度調整を行う。そのために、熱媒体回路3は、複数の熱交換部T1~T4を有している。図示の例では、熱交換部T1,T2は、高温側の熱媒体回路3Aにおいて温調対象M1,M2を加熱するために設けられており、熱交換部T3,T4は、低温側の熱媒体回路3Bにおいて温調対象M3,M4を冷却するために設けられている。なお、複数の熱交換要素11A,11B(13A,13B)は、複数の温調対象M1~M4に対応して設けられている。 The heat medium circuit 3 performs temperature control of a plurality of temperature control targets M1 to M4 via a heat medium circulated by the pump P. FIG. Therefore, the heat medium circuit 3 has a plurality of heat exchange portions T1 to T4. In the illustrated example, the heat exchange sections T1 and T2 are provided to heat the temperature control targets M1 and M2 in the heat medium circuit 3A on the high temperature side, and the heat exchange sections T3 and T4 are provided to heat the heat medium on the low temperature side. It is provided to cool the temperature control targets M3 and M4 in the circuit 3B. A plurality of heat exchange elements 11A, 11B (13A, 13B) are provided corresponding to a plurality of temperature control targets M1 to M4.

この熱媒体回路3は、直列モードと並列モードの切り替えを行う切替部4を備えている。図1に示した例では、切替部4は、熱媒体流路の開閉弁V1,V2,V3,V4,V4’,V5,V6,V7,V8,V8’によって構成されている。 The heat medium circuit 3 has a switching section 4 for switching between a series mode and a parallel mode. In the example shown in FIG. 1, the switching unit 4 is configured by opening/closing valves V1, V2, V3, V4, V4', V5, V6, V7, V8, and V8' of the heat medium flow path.

図2は、熱媒体回路3における直列モードと並列モードの切り替え状態を示している。図2では、高温側の熱媒体回路3Aのみを例示しているが、低温側の熱媒体回路3Bにおいても同様の切り替えが可能になる。 FIG. 2 shows a switching state between series mode and parallel mode in the heat medium circuit 3 . Although FIG. 2 illustrates only the heat medium circuit 3A on the high temperature side, similar switching is possible in the heat medium circuit 3B on the low temperature side.

直列モードは、図2(a)に示すように、熱媒体が複数の熱交換要素11B,11Aを連続して通過して温調対象M1又は温調対象M2と熱交換する回路状態になる。図2は、2つの熱交換要素11A,11Bを備える例を示しているが、3つ以上の熱交換要素が存在する場合には、直列モードは、そのうちの選択した熱交換要素を連続して通過して温調対象と熱交換する回路状態になる。 In the series mode, as shown in FIG. 2A, the heat medium continuously passes through the heat exchange elements 11B and 11A to exchange heat with the temperature control target M1 or the temperature control target M2. Although FIG. 2 shows an example with two heat exchange elements 11A, 11B, if there are three or more heat exchange elements, the series mode will serialize selected ones of them. It becomes a circuit state that passes through and exchanges heat with the temperature control target.

図2(a)に示した熱媒体回路3Aでは、開閉弁V1,V2を閉にし、開閉弁V3,V4,V4’を開にすることで、ポンプPから吐出した熱媒体は、熱交換要素11Bと熱交換要素11Aを連続して通過して温調対象用の熱交換部T1と熱交換部T2を通過する。この際、熱媒体回路3Aを循環する熱媒体は、熱交換要素11Bと熱交換要素11Aを連続して通過することで、より長い流路で高温の冷媒と熱交換することになり、より高温の熱媒体になる。開閉弁V4,V4’は、熱交換要素11Bと熱交換要素11Aを連続して通過する熱媒体が熱交換部T1と熱交換部T2に選択的に流れるようにするための開閉弁であり、開閉弁V4’を閉にし、開閉弁V4を開にすることで、熱媒体は熱交換部T1を選択して通過し、開閉弁V4’を開にし、開閉弁V4を閉にすることで、熱媒体は熱交換部T2を選択して通過する。 In the heat medium circuit 3A shown in FIG. 2(a), the on-off valves V1, V2 are closed and the on-off valves V3, V4, V4' are opened, so that the heat medium discharged from the pump P is transferred to the heat exchange element 11B and the heat exchange element 11A, and then pass through the heat exchange section T1 and the heat exchange section T2 for temperature control. At this time, the heat medium circulating in the heat medium circuit 3A continuously passes through the heat exchange element 11B and the heat exchange element 11A, thereby exchanging heat with the high-temperature refrigerant in a longer flow path. become a heat carrier for The on-off valves V4 and V4' are on-off valves for allowing the heat medium continuously passing through the heat exchange elements 11B and 11A to selectively flow to the heat exchange section T1 and the heat exchange section T2, By closing the on-off valve V4' and opening the on-off valve V4, the heat medium selectively passes through the heat exchange section T1, and by opening the on-off valve V4' and closing the on-off valve V4, The heat medium selectively passes through the heat exchange section T2.

ここでの熱交換部T1と熱交換部T2の選択は、温調対象M1と温調対象M2の夫々に加熱要求が有るか否かで選択される。この選択で、加熱要求が無い温調対象に対して熱媒体が流れないようにすることで、加熱要求が有る温調対象に対して効率よく高温熱媒体を流すことができ、加熱要求が有る温調対象の加熱効率を高めることができる。 The selection of the heat exchange portion T1 and the heat exchange portion T2 here is made depending on whether or not there is a heating request for each of the temperature control target M1 and the temperature control target M2. With this selection, by preventing the heat medium from flowing to the temperature control target that does not require heating, the high-temperature heat medium can efficiently flow to the temperature control target that requires heating, and there is a heating request. It is possible to increase the heating efficiency of the temperature control target.

これに対して、並列モードは、図2(b)に示すように、熱媒体が複数の熱交換要素11A又は熱交換要素11Bを個別に通過して温調対象M1又は温調対象M2と熱交換する。図2(b)に示した熱媒体回路3Aにおいては、開閉弁V1,V2,V4’を開にし、開閉弁V3,V4を閉にすることで、熱交換要素11Aを通過する熱媒体が温調対象用の熱交換部T2を通過し、また、熱交換要素11Bを通過する熱媒体が温調対象用の熱交換部T1を通過する。この際、熱媒体回路3Aを循環する熱媒体は、熱交換要素11A又は熱交換要素11Bを個別に通過して冷媒と熱交換するので、直列モードにおける温度帯より低い温度帯の高温熱媒体になる。この際にも、開閉弁V4’を閉にし、開閉弁V1を開にすることで、熱媒体は熱交換部T1を選択して通過し、開閉弁V4’を開にし、開閉弁V1を閉にすることで、熱媒体は熱交換部T2を選択して通過する。 On the other hand, in the parallel mode, as shown in FIG. 2(b), the heat medium individually passes through the plurality of heat exchange elements 11A or 11B to separate the temperature control target M1 or temperature control target M2 from heat. Exchange. In the heat medium circuit 3A shown in FIG. 2(b), the on-off valves V1, V2, V4' are opened, and the on-off valves V3, V4 are closed, so that the heat medium passing through the heat exchange element 11A is heated. The heat medium passing through the heat exchange section T2 for temperature control and the heat exchange element 11B passes through the heat exchange section T1 for temperature control. At this time, the heat medium circulating in the heat medium circuit 3A individually passes through the heat exchange element 11A or the heat exchange element 11B and exchanges heat with the refrigerant. Become. Also at this time, by closing the on-off valve V4' and opening the on-off valve V1, the heat medium selectively passes through the heat exchange portion T1, opening the on-off valve V4', and closing the on-off valve V1. By doing so, the heat medium selectively passes through the heat exchange section T2.

低温側の熱媒体回路3Bにおいても同様に直列モードと並列モードの切り替えが可能になる。直列モードでは、開閉弁V5,V6を閉にし、開閉弁V7,V8,V8’を開にすることで、ポンプPから吐出した熱媒体は、熱交換要素13Aと熱交換要素13Bを連続して通過して温調対象用の熱交換部T3,T4を通過する。これにより、直列モードでは、熱媒体は、熱交換要素13A,13Bを通過してより低温の熱媒体になる。また、並列モードでは、開閉弁V5,V6,V8’を開にし、開閉弁V7,V8を閉にすることで、熱交換要素13Aを通過する熱媒体が温調対象用の熱交換部T3を通過し、また、熱交換要素13Bを通過する熱媒体が温調対象用の熱交換部T4を通過する。これにより、並列モードでは、直列モードにおける温度帯より高い温度帯の低温熱媒体になる。なお、熱媒体回路3Bにおける開閉弁V8’は、熱媒体回路3Aにおける開閉弁V4’と同様に熱交換部T3,T4を選択する機能を有する。 Similarly, the heat medium circuit 3B on the low temperature side can be switched between the series mode and the parallel mode. In the series mode, the on-off valves V5 and V6 are closed and the on-off valves V7, V8 and V8' are opened, so that the heat medium discharged from the pump P flows through the heat exchange elements 13A and 13B continuously. It passes through heat exchanging parts T3 and T4 for temperature control. Thereby, in series mode, the heat medium passes through the heat exchange elements 13A and 13B to become a lower temperature heat medium. Further, in the parallel mode, by opening the on-off valves V5, V6, V8′ and closing the on-off valves V7, V8, the heat medium passing through the heat exchange element 13A passes through the heat exchange part T3 for temperature control. The heat medium that passes through and passes through the heat exchange element 13B passes through the heat exchange section T4 for the temperature control target. As a result, in the parallel mode, the low-temperature heat medium has a temperature range higher than that in the series mode. The on-off valve V8' in the heat medium circuit 3B has the same function as the on-off valve V4' in the heat medium circuit 3A to select the heat exchange portions T3 and T4.

ここでの熱交換部T3と熱交換部T4の選択は、温調対象M3と温調対象M4の夫々に冷却要求が有るか否かで選択される。この選択で、冷却要求が無い温調対象に対して熱媒体が流れないようにすることで、冷却要求が有る温調対象に対して効率よく低温熱媒体を流すことができ、冷却要求の有る温調対象の冷却効率を高めることができる。 The selection of the heat exchange portion T3 and the heat exchange portion T4 here is made depending on whether or not there is a cooling request for each of the temperature control target M3 and the temperature control target M4. This selection prevents the heat medium from flowing to a temperature control target that does not require cooling. It is possible to increase the cooling efficiency of the temperature control target.

このように、本発明の実施形態に係る温調装置1は、冷媒回路2の放熱機能を有する第1熱交換部11と吸熱機能を有する第2熱交換部13を夫々複数の熱交換要素とし、第1熱交換部11と第2熱交換部13にて冷媒と熱交換する熱媒体回路において、前述した直列モードと並列モードの切り替えを可能にしている。これよると、温調装置1は、複数の熱交換要素の数に応じて、熱媒体回路3を循環する熱媒体の温度帯を多様化することができ、熱負荷状況の異なる温調対象に対して、それに応じた温度帯の熱媒体を対応させて、所望の温度調整を行うことができる。 As described above, the temperature control device 1 according to the embodiment of the present invention uses the first heat exchange section 11 having a heat radiation function and the second heat exchange section 13 having a heat absorption function of the refrigerant circuit 2 as a plurality of heat exchange elements. In the heat medium circuit that exchanges heat with the refrigerant in the first heat exchange section 11 and the second heat exchange section 13, it is possible to switch between the series mode and the parallel mode described above. According to this, the temperature control device 1 can diversify the temperature range of the heat medium circulating in the heat medium circuit 3 according to the number of the plurality of heat exchange elements. On the other hand, it is possible to adjust the desired temperature by matching the heat medium of the temperature range corresponding to it.

温調装置1は、温調装置1の出力調整(圧縮機10の回転数調整やポンプPの流量調整)を行うことなく、前述した直列モードと並列モードの切り替えで、熱媒体回路3を循環する熱媒体の温度帯を多様化することができる。これにより、出力調整に伴う温度追従性の悪化やエネルギー消費効率の悪化を招くことなく、効率の良い装置の運転で、多様な温度帯の熱媒体を生成することができる。 The temperature control device 1 circulates in the heat medium circuit 3 by switching between the series mode and the parallel mode described above without adjusting the output of the temperature control device 1 (adjusting the rotation speed of the compressor 10 and adjusting the flow rate of the pump P). It is possible to diversify the temperature range of the heat medium to be used. As a result, it is possible to generate heat medium in various temperature ranges by efficient operation of the device without causing deterioration in temperature followability and deterioration in energy consumption efficiency accompanying output adjustment.

温調装置1は、高温側の熱媒体回路3Aの熱媒体と冷温側の熱媒体回路3Bの熱媒体を混合させたり、高温側の熱媒体回路3Aと低温側の熱媒体回路3Bとの間で相互に熱交換させたりすることなく、多様な温度帯の熱媒体を生成する。これにより、熱媒体回路3の回路構成が複雑になることを避けることができる。また、高温側の熱媒体回路3Aと低温側の熱媒体回路3Bに、それぞれ直列モードと並列モードの切り替えを設定することで、高温側の熱媒体回路3Aの熱媒体温度と低温側の熱媒体回路3Bの熱媒体温度を独立して調整することできる。 The temperature control device 1 mixes the heat medium in the heat medium circuit 3A on the high temperature side and the heat medium in the heat medium circuit 3B on the cold temperature side, or mixes the heat medium in the heat medium circuit 3A on the high temperature side and the heat medium circuit 3B on the low temperature side. To generate heat medium in various temperature ranges without exchanging heat with each other. This can avoid complicating the circuit configuration of the heat medium circuit 3 . In addition, by setting the switching between the series mode and the parallel mode in the heat medium circuit 3A on the high temperature side and the heat medium circuit 3B on the low temperature side, respectively, the heat medium temperature of the heat medium circuit 3A on the high temperature side and the heat medium on the low temperature side The heat carrier temperature of circuit 3B can be adjusted independently.

直列モードへの切り替えは、例えば、高温側の熱媒体回路3Aにおいては、温調対象M1,M2と熱交換する熱媒体の目標温度が、第1熱交換部11における1つの熱交換要素(11A又は11B)で熱交換した熱媒体の温度より高い場合に行われ、低温側の熱媒体回路3Bにおいては、温調対象M3,M4と熱交換する熱媒体の目標温度が、第2熱交換部13における1つの熱交換要素(13A又は13B)で熱交換した熱媒体の温度より低い場合に行われる。
ここで1つの熱交換要素とは、連続した1つの熱媒体流路を構成する単体であり、切換部(分岐手段や流路切替手段など)を含まない熱交換要素のことをいう。
Switching to the series mode is performed, for example, in the heat medium circuit 3A on the high temperature side, when the target temperature of the heat medium that exchanges heat with the temperature control targets M1 and M2 is set to one heat exchange element (11A or 11B), and in the heat medium circuit 3B on the low temperature side, the target temperature of the heat medium that exchanges heat with the temperature control targets M3 and M4 is the second heat exchange section This is done when the temperature is lower than the temperature of the heat medium heat-exchanged in one heat exchange element (13A or 13B) in 13.
Here, one heat exchange element is a single unit constituting one continuous heat medium flow path, and refers to a heat exchange element that does not include a switching section (branching means, flow path switching means, etc.).

図3は、第1熱交換部11(第2熱交換部13も同様)の構成例を示している。この例では、第1熱交換部11が、複数の熱交換要素を1ケースに収めた熱交換モジュールにて構成されている。 FIG. 3 shows a configuration example of the first heat exchange section 11 (the same applies to the second heat exchange section 13). In this example, the first heat exchange section 11 is composed of a heat exchange module in which a plurality of heat exchange elements are housed in one case.

図3において、第1熱交換部11は、ケース100の内部に分割された複数の熱媒体流路101,102が形成され、熱媒体流路101の内部に外表面が熱媒体と接する冷媒流路110が形成され、熱媒体流路102の内部に外表面が熱媒体と接する冷媒流路111が形成されている。冷媒は、ケース100外から熱媒体流路101内の冷媒流路110に流れ、冷媒流路110から熱媒体流路102内の冷媒流路111に流れ、冷媒流路111からケース100外に流れる。これの例においては、ケース100内の複数の熱媒体流路101,102に対応して、冷媒流路110,111を有する複数の熱交換要素11A,11Bが形成されている。 In FIG. 3, the first heat exchange section 11 has a plurality of divided heat medium flow paths 101 and 102 formed inside a case 100. Inside the heat medium flow path 101, there is a coolant flow whose outer surface is in contact with the heat medium. A passage 110 is formed, and a coolant passage 111 whose outer surface is in contact with the heat medium is formed inside the heat medium passage 102 . The coolant flows from outside the case 100 into the coolant channel 110 inside the heat medium channel 101, flows from the coolant channel 110 into the coolant channel 111 inside the heat medium channel 102, and flows out of the case 100 from the coolant channel 111. . In this example, a plurality of heat exchange elements 11A, 11B having refrigerant flow paths 110, 111 are formed corresponding to the plurality of heat medium flow paths 101, 102 inside the case 100. FIG.

第1熱交換部11と第2熱交換部13の一方又は両方を、前述したように、複数の熱交換要素を1つのケース100に収めた熱交換モジュールにすることで、温調装置1の構成をコンパクト化することができる。 One or both of the first heat exchange section 11 and the second heat exchange section 13 is a heat exchange module in which a plurality of heat exchange elements are housed in one case 100 as described above, so that the temperature control device 1 The configuration can be made compact.

図4には、温調装置1の具体的な構成例を示す。図4に示した温調装置1は、車両用温調装置であり、電動車両の熱管理システムとして採用することができる。図4に示す温調装置1の熱媒体回路3は、温調対象用の熱交換部T01~T07を備えると共に、外気と熱交換する外部熱交換部T10を備える。ここでの温調対象用の熱交換部T01~T07は、例えば、熱交換部T01,T02が車室内のシートなどに設置される個別空調装置M01,M02用であり、熱交換部T03が車両部品M03(例えば、インバータ)温調用であり、熱交換部T04が車両部品M04(例えば、モーター)温調用であり、熱交換部T05がバッテリM05温調用であり、熱交換部T06,T07が室内空調装置M06用である。 FIG. 4 shows a specific configuration example of the temperature control device 1. As shown in FIG. The temperature control device 1 shown in FIG. 4 is a vehicle temperature control device, and can be employed as a heat management system for an electric vehicle. The heat medium circuit 3 of the temperature control device 1 shown in FIG. 4 includes heat exchange units T01 to T07 for temperature control, and an external heat exchange unit T10 that exchanges heat with the outside air. Here, the heat exchange units T01 to T07 for temperature control are, for example, the heat exchange units T01 and T02 for the individual air conditioners M01 and M02 installed on seats in the vehicle interior, and the heat exchange unit T03 is for the vehicle. A part M03 (for example, an inverter) is for temperature control, a heat exchange part T04 is for vehicle part M04 (for example, a motor) temperature control, a heat exchange part T05 is for battery M05 temperature control, and heat exchange parts T06 and T07 are for indoor use. It is for the air conditioner M06.

図4における冷媒回路2は、圧縮機10、第1熱交換部11、減圧装置12、第2熱交換部13を備え、放熱器として機能する第1熱交換部11が、3個の熱交換要素11A,11B,11Cを備え、吸熱器として機能する第2熱交換部13が、4個の熱交換要素13A,13B,13C,13Dを備える。図において、冷媒の流れを矢印付きの太二重線で示している。 The refrigerant circuit 2 in FIG. 4 includes a compressor 10, a first heat exchange section 11, a decompression device 12, and a second heat exchange section 13. A second heat exchange section 13 that includes elements 11A, 11B, and 11C and functions as a heat absorber includes four heat exchange elements 13A, 13B, 13C, and 13D. In the figure, the flow of the refrigerant is indicated by a thick double line with an arrow.

図4における熱媒体回路3の切替部4は、三方弁V01~V14と開閉弁V20~V25と流量制御機能付き三方弁V30によって構成される。この切替部4の切り替えにより、図4に示した温調装置1は、以下に示す各種の温調モードを選択的に実行できる。図5~図13において、切替部4の弁の黒塗りは閉状態を示し、弁の白塗りは開状態を示す。また、図示の矢印付きの黒色太線は高温熱媒体が流れる熱媒体回路3Aを示し、矢印付きの灰色太線は低温熱媒体が流れる熱媒体回路3Bを示す。図示された矢印付きの細破線は不使用状態の熱媒体流路を示す。 The switching unit 4 of the heat medium circuit 3 in FIG. 4 is composed of the three-way valves V01 to V14, the on-off valves V20 to V25, and the three-way valve V30 with flow control function. By switching the switching unit 4, the temperature control device 1 shown in FIG. 4 can selectively execute various temperature control modes described below. 5 to 13, the black-painted valves of the switching unit 4 indicate the closed state, and the white-painted valves indicate the open state. In addition, the thick black line with an arrow in the drawing indicates the heat medium circuit 3A through which the high-temperature heat medium flows, and the gray thick line with an arrow indicates the heat medium circuit 3B in which the low-temperature heat medium flows. A thin dashed line with an arrow indicates a heat medium flow path in an unused state.

図5に示した温調モードAでは、高温側の熱媒体回路3Aは、個別空調装置M01,M02の熱交換部T01,T02、室内空調装置M06の熱交換部T06,T07、バッテリM05温調用の熱交換部T05に高温の熱媒体を流して、個別空調装置M01,M02と室内空調装置M06(例えば、HVACユニット)の暖房運転を行い、バッテリM05の加熱を行っている。この際、熱媒体回路3Aには、ECH(Electron Cyclotron Heating:電子サイクロトロン加熱)などの加熱装置を必要に応じて適宜の位置(図示の例では、熱交換要素11Bの出口側流路)に設け、高温の熱媒体を補助的に加熱するようにしてもよい。 In the temperature control mode A shown in FIG. 5, the heat medium circuit 3A on the high temperature side includes the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, the heat exchange units T06 and T07 of the indoor air conditioner M06, and the battery M05 for temperature control. A high-temperature heat medium is supplied to the heat exchange portion T05 of the air conditioner M01, M02 and the indoor air conditioner M06 (for example, the HVAC unit) to perform heating operation, thereby heating the battery M05. At this time, in the heat medium circuit 3A, a heating device such as ECH (Electron Cyclotron Heating) is provided at an appropriate position (in the illustrated example, the outlet side flow path of the heat exchange element 11B) as necessary. , a high-temperature heat medium may be additionally heated.

温調モードAにおける高温側の熱媒体回路3Aは、並列モードで熱交換要素11Aを個別に通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02の暖房運転を行い、並列モードで熱交換要素11Bを個別に通過する熱媒体が熱交換部T06,T07を通過することで、室内空調装置M06を暖房運転し、並列モードで熱交換要素11Cを個別に通過する熱媒体が熱交換部T05を通過することで、バッテリM05の加熱を行っている。 In the heat medium circuit 3A on the high temperature side in the temperature control mode A, the heat medium individually passing through the heat exchange elements 11A in the parallel mode passes through the heat exchange units T01 and T02, so that the heating operation of the individual air conditioners M01 and M02 is performed. is performed, and the heat medium that individually passes through the heat exchange elements 11B in the parallel mode passes through the heat exchange units T06 and T07, thereby performing the heating operation of the indoor air conditioner M06 and individually passing through the heat exchange elements 11C in the parallel mode. The battery M05 is heated by the heat medium passing through the heat exchange portion T05.

また、温調モードAにおける低温側の熱媒体回路3Bは、インバータやモーターといった車両部品M03,M04温調用の熱交換部T03,T04、外気と熱交換する外部熱交換器T10に低温の熱媒体を流している。そして、温調モードAでは、並列モードで熱交換要素13Aを個別に通過する熱媒体が外部熱交換器T10を通過することで外気吸熱を行い、直列モードで熱交換要素13Bと熱交換要素13Cを連続して通過する熱媒体が熱交換部T03,T04を通過することで、インバータやモーターといった車両部品M03,M04の冷却を行いながら車両部品M03,M04の排熱を吸熱(回収)している。 The heat medium circuit 3B on the low temperature side in the temperature control mode A includes vehicle parts M03 and M04 such as inverters and motors, heat exchange units T03 and T04 for temperature control, and an external heat exchanger T10 that exchanges heat with outside air. is flowing. In the temperature control mode A, the heat medium that individually passes through the heat exchange elements 13A in the parallel mode absorbs heat from the outside air by passing through the external heat exchanger T10, and the heat exchange elements 13B and 13C in the series mode. By passing through the heat exchange units T03 and T04, the heat medium continuously passing through the heat exchangers T03 and T04 absorbs (recovers) exhaust heat from the vehicle components M03 and M04 while cooling the vehicle components M03 and M04 such as inverters and motors. there is

温調モードAでは、高温側の熱媒体回路3Aが並列モードで個別空調装置M01,M02の熱交換部T01,T02と室内空調装置M06の熱交換部T06,T07とバッテリM05温調用の熱交換部T05にそれぞれ熱媒体を流している。これによると、熱交換要素11A,11B,11Cの夫々の熱交換量に応じて、夫々の温調対象に供給する熱媒体の温度帯を多様化することができる。 In the temperature control mode A, the heat medium circuit 3A on the high temperature side is in parallel mode, and the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, the heat exchange units T06 and T07 of the indoor air conditioner M06, and the battery M05 heat exchange for temperature control. A heat medium is flown through each of the portions T05. According to this, it is possible to diversify the temperature zone of the heat medium supplied to each of the temperature control targets according to the amount of heat exchanged by each of the heat exchange elements 11A, 11B, and 11C.

また、温調モードAにおける低温側の熱媒体回路3Bは、熱交換要素13Bと熱交換要素13Cを連続して通過する熱媒体が熱交換部T03,T04を通過することで、十分に低い温度帯の熱媒体で車両部品M03,M04を冷却することができる。そして、並列モードで熱交換要素13Aを通過する熱媒体が外部熱交換器T10において吸熱する吸熱量に対して、直列モードで熱交換要素13Bと熱交換要素13Cを通過する熱媒体が熱交換部T03,T04にて吸熱する吸熱量を大きくすることができるので、外気温が低い場合の排熱回収吸熱を効果的に行うことができる。 In addition, in the heat medium circuit 3B on the low temperature side in the temperature control mode A, the heat medium continuously passing through the heat exchange elements 13B and 13C passes through the heat exchange portions T03 and T04, so that the temperature is sufficiently low. The vehicle parts M03 and M04 can be cooled by the band heat medium. Then, the heat medium passing through the heat exchange element 13B and the heat exchange element 13C in the series mode absorbs heat in the external heat exchanger T10, while the heat medium passing through the heat exchange element 13A in the parallel mode absorbs heat in the heat exchange part. Since the amount of heat absorbed at T03 and T04 can be increased, the exhaust heat can be effectively recovered and absorbed when the outside air temperature is low.

図6に示した温調モードA’では、高温側の熱媒体回路3Aは、個別空調装置M01,M02の熱交換部T01,T02とバッテリM05温調用の熱交換部T05に高温の熱媒体を流し、個別空調装置M01,M02の暖房運転を行いながら、バッテリM05の加熱を行っている。また、低温側の熱媒体回路3Bは、車両部品M03,M04温調用の熱交換部T03,T04と外部熱交換器T10に低温の熱媒体を流し、車両部品M03,M04を冷却(排熱回収吸熱)しながら外気吸熱を行っている。 In the temperature control mode A' shown in FIG. 6, the high temperature side heat medium circuit 3A supplies a high temperature heat medium to the heat exchange units T01 and T02 of the individual air conditioners M01 and M02 and the heat exchange unit T05 for temperature control of the battery M05. The battery M05 is heated while the individual air conditioners M01 and M02 are being operated for heating. In addition, the heat medium circuit 3B on the low temperature side flows a low temperature heat medium through the heat exchange portions T03 and T04 for adjusting the temperature of the vehicle parts M03 and M04 and the external heat exchanger T10 to cool the vehicle parts M03 and M04 (exhaust heat recovery). outside air absorbs heat while absorbing heat).

温調モードA’の熱媒体回路3Aは、直列モードで熱交換要素11Bを通過する熱媒体が連続して熱交換要素11Aを通過することで、より高温の熱媒体が個別空調装置M01,M02の熱交換部T01,T02を通過する。また、並列モードで熱交換要素11Cを個別に通過することで、比較的温度の低い熱媒体がバッテリM05温調用の熱交換部T05を通過する。このように、温調モードA’では、直列モードと並列モードの選択により、個別空調装置M01,M02の熱交換部T01,T02を流れる熱媒体とバッテリM05温調用の熱交換部T05を流れる熱媒体の温度帯を異なる値にしている。温調モードA’における低温側の熱媒体回路3Bは、温調モードAの熱媒外回路3Bと同様である。 In the heat medium circuit 3A in the temperature control mode A', the heat medium passing through the heat exchange element 11B in the series mode continuously passes through the heat exchange element 11A, so that the heat medium having a higher temperature is supplied to the individual air conditioners M01 and M02. heat exchange parts T01 and T02. Further, by individually passing through the heat exchange elements 11C in the parallel mode, the heat medium having a relatively low temperature passes through the heat exchange section T05 for adjusting the temperature of the battery M05. Thus, in the temperature control mode A′, the heat medium flowing through the heat exchange units T01 and T02 of the individual air conditioners M01 and M02 and the heat flowing through the heat exchange unit T05 for temperature control of the battery M05 are selected by selecting the series mode or the parallel mode. The temperature zone of the media is set to different values. The heat medium circuit 3B on the low temperature side in the temperature control mode A' is the same as the heat medium external circuit 3B in the temperature control mode A.

図7に示した温調モードBでは、高温側の熱媒体回路3Aは、個別空調装置M01,M02の熱交換部T01,T02、バッテリM05温調用の熱交換部T05、室内空調装置M06のヒーターコアとして機能し空気を加熱する熱交換部T06に高温の熱媒体を流し、低温側の熱媒体回路3Bは、車両部品M03,M04温調用の熱交換部T03,T04、室内空調装置M06のクーラーコアとして機能し空気を冷却する熱交換部T07、外部熱交換器T10に低温の熱媒体を流している。 In the temperature control mode B shown in FIG. 7, the heat medium circuit 3A on the high temperature side includes the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, the heat exchange unit T05 for temperature control of the battery M05, and the heater of the indoor air conditioner M06. A high-temperature heat medium flows through a heat exchange section T06 that functions as a core and heats air, and the heat medium circuit 3B on the low temperature side includes heat exchange sections T03 and T04 for adjusting the temperature of vehicle parts M03 and M04, and a cooler for an indoor air conditioner M06. A low-temperature heat medium is passed through a heat exchange section T07 that functions as a core and cools air, and an external heat exchanger T10.

温調モードBでは、並列モードで熱交換要素11Aを個別に通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02の暖房運転を行い、並列モードで熱交換要素11Cを個別に通過する熱媒体が熱交換部T05を通過することで、バッテリM05の加熱を行っている。また、温調モードBでは、室内空調装置M06のヒーターコアになる熱交換部T06に並列モードで熱交換要素11Bを個別に通過する高温の熱媒体を流し、室内空調装置M06のクーラーコアになる熱交換部T07に並列モードで熱交換要素13Bを個別に通過する低温の熱媒体を流すことで、室内空調装置M06が除湿運転を行っている。 In the temperature control mode B, the heat medium individually passing through the heat exchange elements 11A in the parallel mode passes through the heat exchange units T01 and T02, thereby performing the heating operation of the individual air conditioners M01 and M02, and performing heat exchange in the parallel mode. The battery M05 is heated by the heat medium individually passing through the elements 11C passing through the heat exchange portion T05. In the temperature control mode B, the high-temperature heat medium passing through the heat exchange elements 11B individually flows in the parallel mode to the heat exchange section T06, which becomes the heater core of the indoor air conditioner M06, and becomes the cooler core of the indoor air conditioner M06. The indoor air conditioner M06 performs a dehumidifying operation by flowing a low-temperature heat medium that individually passes through the heat exchange elements 13B in the parallel mode to the heat exchange unit T07.

更に、温調モードBは、並列モードで熱交換要素13Cを個別に通過する熱媒体が車両部品M03,M04温調用の熱交換部T03,T04を通過し、並列モードで熱交換要素13Aを個別に通過する熱媒体が外部熱交換器T10を通過することで、車両部品M03,M04を冷却(排熱回収吸熱)しながら外気吸熱を行っている。 Furthermore, in temperature control mode B, the heat medium that individually passes through the heat exchange elements 13C in the parallel mode passes through the heat exchange parts T03 and T04 for temperature control of the vehicle parts M03 and M04, and the heat exchange elements 13A individually pass in the parallel mode. The heat medium passing through the external heat exchanger T10 cools the vehicle components M03 and M04 (exhaust heat recovery and absorption) while absorbing heat from the outside air.

図8に示した温調モードCでは、高温側の熱媒体回路3Aは、個別空調装置M01,M02の熱交換部T01,T02、室内空調装置M06の熱交換部T06,T07に高温の熱媒体を流し、低温側の熱媒体回路3Bは、車両部品M03,M04温調用の熱交換部T03,T04、バッテリM05温調用の熱交換部T05、外部熱交換器T10に低温の熱媒体を流している。 In the temperature control mode C shown in FIG. 8, the heat medium circuit 3A on the high temperature side supplies a high-temperature heat medium to the heat exchange units T01 and T02 of the individual air conditioners M01 and M02 and to the heat exchange units T06 and T07 of the indoor air conditioner M06. The heat medium circuit 3B on the low temperature side flows the low temperature heat medium to the vehicle parts M03 and M04 temperature control heat exchange parts T03 and T04, the battery M05 temperature control heat exchange part T05, and the external heat exchanger T10. there is

温調モードCでは、並列モードで熱交換要素11Aを個別に通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02の暖房運転を行い、直列モードで熱交換要素11Cと熱交換要素11Bを連続して通過する熱媒体が熱交換部T06,T07を通過することで、室内空調装置M06の暖房運転を行っている。また、温調モードCでは、並列モードで熱交換要素13Dを個別に通過する熱媒体が熱交換部T05を通過することで、バッテリM05の冷却を行い、直列モードで熱交換要素13Bと熱交換要素13Cを連続して通過する熱媒体が熱交換部T03,T04を通過することで、車両部品M03,M04の冷却(排熱回収吸熱)を行っており、並列モードで熱交換要素13Aを個別に通過する熱媒体が外部熱交換器T10を通過することで、外気吸熱を行っている。 In the temperature control mode C, the heat medium that individually passes through the heat exchange elements 11A in the parallel mode passes through the heat exchange units T01 and T02, thereby performing the heating operation of the individual air conditioners M01 and M02, and the heat exchange in the series mode. Heating operation of the indoor air conditioner M06 is performed by the heat medium continuously passing through the element 11C and the heat exchange element 11B passing through the heat exchange portions T06 and T07. Further, in the temperature control mode C, the heat medium that individually passes through the heat exchange elements 13D in the parallel mode passes through the heat exchange unit T05, thereby cooling the battery M05, and heat exchange with the heat exchange elements 13B in the series mode. The heat medium continuously passing through the element 13C passes through the heat exchange portions T03 and T04, thereby cooling the vehicle parts M03 and M04 (exhaust heat recovery and absorption), and the heat exchange element 13A is individually operated in the parallel mode. The heat medium passing through the outside air absorbs heat by passing through the external heat exchanger T10.

図9に示した温調モードC’では、高温側の熱媒体回路3Aは、個別空調装置M01,M02の熱交換部T01,T02に高温の熱媒体を流し、低温側の熱媒体回路3Bは、温調モードCと同様に、バッテリM05温調用の熱交換部T05、車両部品M03,M04温調用の熱交換部T03,T04、外部熱交換器T10に低温の熱媒体を流している。 In the temperature control mode C′ shown in FIG. 9, the heat medium circuit 3A on the high temperature side causes the high temperature heat medium to flow through the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, and the heat medium circuit 3B on the low temperature side As in the temperature control mode C, a low-temperature heat medium is supplied to the battery M05 temperature control heat exchange section T05, the vehicle parts M03 and M04 temperature control heat exchange sections T03 and T04, and the external heat exchanger T10.

温調モードC’では、直列モードで熱交換要素11Cと熱交換要素11Bと熱交換要素11Aを連続して通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02の暖房運転を行っている。ここでは、3つの熱交換要素を連続して通過させることで、温調モードCの熱交換部T01,T02を通過する熱媒体よりも高い温度の熱媒体を生成することができる。温調モードC’の熱媒体回路3Bは、温調モードCと同様である。 In the temperature control mode C′, the heat medium that continuously passes through the heat exchange elements 11C, 11B, and 11A in the series mode passes through the heat exchange units T01 and T02, so that the individual air conditioners M01, Heating operation of M02 is being performed. Here, the heat medium having a temperature higher than that of the heat medium passing through the heat exchange sections T01 and T02 in the temperature control mode C can be generated by continuously passing through the three heat exchange elements. The heat medium circuit 3B in the temperature control mode C' is the same as in the temperature control mode C.

図10に示した温調モードDでは、高温側の熱媒体回路3Aは、個別空調装置M01,M02の熱交換部T01,T02、室内空調装置M06のヒーターコアになる熱交換部T06に高温の熱媒体を流し、低温側の熱媒体回路3Bは、車両部品M03,M04温調用の熱交換部T03,T04、バッテリM05温調用の熱交換部T05、室内空調装置M06のクーラーコアになる熱交換部T07、外部熱交換器T10に低温の熱媒体を流している。 In the temperature control mode D shown in FIG. 10, the heat medium circuit 3A on the high temperature side supplies high temperatures to the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, and to the heat exchange unit T06 serving as the heater core of the indoor air conditioner M06. A heat medium circuit 3B on the low-temperature side includes heat exchange parts T03 and T04 for adjusting the temperature of the vehicle parts M03 and M04, a heat exchange part T05 for adjusting the temperature of the battery M05, and a cooler core for the indoor air conditioner M06. A low-temperature heat medium is passed through the section T07 and the external heat exchanger T10.

温調モードDでは、並列モードで熱交換要素11Aを個別に通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02の暖房運転を行っている。また、並列モードで熱交換要素13Aを個別に通過する熱媒体が外部熱交換器T10を通過することで外気吸熱を行い、並列モードで熱交換要素13Cを個別に通過する熱媒体が熱交換部T03,T04を通過することで、車両部品M03,M04の冷却(排熱回収吸熱)を行い、並列モードで個別に熱交換要素13Dを通過する熱媒体が熱交換部T05を通過することで、バッテリM05の冷却を行っている。 In the temperature control mode D, the heating operation of the individual air conditioners M01 and M02 is performed by the heat medium individually passing through the heat exchange elements 11A in the parallel mode passing through the heat exchange units T01 and T02. In addition, the heat medium that individually passes through the heat exchange elements 13A in parallel mode absorbs heat from the outside air by passing through the external heat exchanger T10, and the heat medium that individually passes through the heat exchange elements 13C in the parallel mode is the heat exchange unit. By passing through T03 and T04, the vehicle components M03 and M04 are cooled (exhaust heat recovery and absorption), and the heat medium individually passing through the heat exchange element 13D in the parallel mode passes through the heat exchange section T05, The battery M05 is cooled.

また、温調モードDでは、直列モードで熱交換要素11Cと熱交換要素11Bを連続して通過する熱媒体が室内空調装置M06の熱交換部T06を通過し、並列モードで熱交換要素13Bを個別に通過する熱媒体が室内空調装置M06の熱交換部T07を通過することで、室内空調装置M06の除湿暖房運転を行っている。 Further, in the temperature control mode D, the heat medium continuously passing through the heat exchange elements 11C and 11B in the series mode passes through the heat exchange section T06 of the indoor air conditioner M06, and passes through the heat exchange element 13B in the parallel mode. The heat medium passing individually passes through the heat exchange section T07 of the indoor air conditioner M06, thereby performing the dehumidifying and heating operation of the indoor air conditioner M06.

図11に示した温調モードEでは、高温側の熱媒体回路3Aは、車両部品M03,M04温調用の熱交換部T03,T04、室内空調装置M06のヒーターコアになる熱交換部T06、外部熱交換器T10に高温の熱媒体を流し、低温側の熱媒体回路3Bは、個別空調装置M01,M02の熱交換部T01,T02、バッテリM05温調用の熱交換部T05、室内空調装置M06のクーラーコアになる熱交換部T07に低温の熱媒体を流している。 In the temperature control mode E shown in FIG. 11, the heat medium circuit 3A on the high temperature side includes heat exchange portions T03 and T04 for temperature control of the vehicle parts M03 and M04, a heat exchange portion T06 serving as a heater core for the indoor air conditioner M06, and an external heat exchanger T06. A high-temperature heat medium flows through the heat exchanger T10, and the heat medium circuit 3B on the low-temperature side includes the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, the heat exchange unit T05 for adjusting the temperature of the battery M05, and the heat exchange unit T05 of the indoor air conditioner M06. A low-temperature heat medium is passed through the heat exchanging portion T07 which serves as a cooler core.

温調モードEでは、並列モードで熱交換要素11Aを個別に通過する熱媒体が外部熱交換器T10を通過することで外気放熱を行っている。また、並列モードで熱交換要素13Cを個別に通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02の冷房運転を行い、並列モードで熱交換要素13Dを個別に通過する熱媒体が熱交換部T05を通過することで、バッテリM05の冷却を行っている。 In the temperature control mode E, the heat medium that individually passes through the heat exchange elements 11A in the parallel mode passes through the external heat exchanger T10 to radiate heat to the outside air. In parallel mode, the heat medium that individually passes through the heat exchange elements 13C passes through the heat exchange units T01 and T02, thereby performing the cooling operation of the individual air conditioners M01 and M02, and the heat exchange elements 13D in the parallel mode. The battery M05 is cooled by the heat medium passing through the heat exchange portion T05.

温調モードEにおいては、車両部品M03,M04温調用の熱交換部T03,T04を通過する熱媒体は外部熱交換器T10を通過することで放熱され、車両部品M03,M04を外気放熱により冷却している。また、直列モードで熱交換要素11Cと熱交換要素11Bを連続して通過する熱媒体が室内空調装置M06の熱交換部T06を通過し、直列モードで熱交換要素13Aと熱交換要素13Bを連続して通過する熱媒体が室内空調装置M06の熱交換部T07を通過することで、室内空調装置M06を除湿運転している。 In the temperature control mode E, the heat medium passing through the heat exchange parts T03 and T04 for temperature control of the vehicle parts M03 and M04 is radiated by passing through the external heat exchanger T10, and the vehicle parts M03 and M04 are cooled by outside air heat radiation. are doing. In addition, the heat medium that continuously passes through the heat exchange elements 11C and 11B in the series mode passes through the heat exchange section T06 of the indoor air conditioner M06, and continues through the heat exchange elements 13A and 13B in the series mode. The dehumidifying operation of the indoor air conditioner M06 is performed by the heat medium passing through the indoor air conditioner M06 passing through the heat exchange section T07.

図12に示した温調モードFでは、高温側の熱媒体回路3Aは、車両部品M03,M04温調用の熱交換部T03,T04、外部熱交換器T10に高温の熱媒体を流し、低温側の熱媒体回路3Bは、個別空調装置M01,M02の熱交換部T01,T02、バッテリM05温調用の熱交換部T05、室内空調装置M06の熱交換部T06,T07に低温の熱媒体を流している。 In the temperature control mode F shown in FIG. 12, the heat medium circuit 3A on the high temperature side causes the high temperature heat medium to flow through the heat exchange units T03 and T04 for temperature control of the vehicle parts M03 and M04 and the external heat exchanger T10. In the heat medium circuit 3B, a low-temperature heat medium flows through the heat exchange units T01 and T02 of the individual air conditioners M01 and M02, the heat exchange unit T05 for adjusting the temperature of the battery M05, and the heat exchange units T06 and T07 of the indoor air conditioner M06. there is

温調モードFでは、直列モードで熱交換要素11Cと熱交換要素11Bと熱交換要素11Aを連続して通過する熱媒体が外部熱交換器T10を通過することで外気放熱され、熱交換部T03,T04を通過する熱媒体は外部熱交換器T10を通過することで、車両部品M03,M04を外気放熱により冷却している。 In the temperature control mode F, the heat medium continuously passing through the heat exchange element 11C, the heat exchange element 11B, and the heat exchange element 11A in the series mode passes through the external heat exchanger T10 to radiate heat to the outside air, and the heat exchange part T03 , T04 passes through the external heat exchanger T10, thereby cooling the vehicle parts M03 and M04 by radiating heat from the outside air.

また、温調モードFでは、直列モードで熱交換要素13Aと熱交換要素13Bを連続して通過する熱媒体が熱交換部T07,T06を通過することで、室内空調装置M06を冷房運転し、並列モードで熱交換要素13Cを個別に通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02を冷房運転し、並列モードで熱交換要素13Dを個別に通過する熱媒体が熱交換部T05を通過することでバッテリM05の冷却を行っている。 In the temperature control mode F, the heat medium continuously passing through the heat exchange elements 13A and 13B in the series mode passes through the heat exchange units T07 and T06, thereby cooling the indoor air conditioner M06. The heat medium individually passing through the heat exchange elements 13C in the parallel mode passes through the heat exchange units T01 and T02, thereby cooling the individual air conditioners M01 and M02, and individually passing through the heat exchange elements 13D in the parallel mode. The battery M05 is cooled by the heat medium passing through the heat exchange portion T05.

図13に示した温調モードF’では、高温側の熱媒体回路3Aは、温調モードFと同様である。温調モードFにおける低温側の熱媒体回路3Bは、直列モードで熱交換要素13Aと熱交換要素13Bと熱交換要素13Cを通過する熱媒体が熱交換部T01,T02を通過することで、個別空調装置M01,M02を冷房運転し、並列モードで熱交換要素13Dを個別に通過する熱媒体が熱交換部T05を通過することでバッテリM05の冷却を行っている。 In temperature control mode F' shown in FIG. 13, the heat medium circuit 3A on the high temperature side is the same as in temperature control mode F. In the heat medium circuit 3B on the low temperature side in the temperature control mode F, the heat medium passing through the heat exchange elements 13A, 13B, and 13C in the series mode passes through the heat exchange units T01 and T02, thereby The air conditioners M01 and M02 are operated for cooling, and the heat medium individually passing through the heat exchange elements 13D in the parallel mode passes through the heat exchange section T05, thereby cooling the battery M05.

前述した各種の温調モードでは、熱媒体回路3Aの直列モードでは、複数の熱交換要素11A,11B,11Cのうち選択された要素の数に応じてより高い温度帯の熱媒体を生成することができ、熱媒体回路3Bの直列モードでは、複数の熱交換要素13A,13B,13C,13Dのうち選択された要素の数に応じてより低い温度帯の熱媒体を生成することができる。また、熱媒体回路3A(3B)の並列モードでは、複数の熱交換要素11A,11B,11C(13A,13B,13C,13D)における個別の要素の熱交換量に応じて多様性のある温度帯の熱媒体を生成することができる。 In the various temperature control modes described above, in the serial mode of the heat medium circuit 3A, heat medium in a higher temperature range is generated according to the number of elements selected from among the plurality of heat exchange elements 11A, 11B, and 11C. , and in the series mode of the heat medium circuit 3B, a heat medium having a lower temperature range can be generated according to the number of elements selected from among the plurality of heat exchange elements 13A, 13B, 13C, and 13D. In addition, in the parallel mode of the heat medium circuit 3A (3B), a variety of temperature zones according to the heat exchange amounts of the individual elements in the plurality of heat exchange elements 11A, 11B, 11C (13A, 13B, 13C, 13D) of heat transfer medium can be generated.

なお、バッテリM05へ流す熱媒体の目標温度は、暖房時には個別空調装置M01,M02や室内空調装置M06へ流す熱媒体の目標温度より低く、冷房時には個別空調装置M01,M02や室内空調装置M06へ流す熱媒体の目標温度より高くなる。このため、従来の温調装置では、空調用の熱媒体の目標温度とバッテリ温調用の熱媒体の目標温度の両方を満足するために回路構成や制御が複雑化していた。これに対して、本発明の実施形態に係る温調装置1は、切替部4の切り替えで直列モードと並列モードを切り替えるだけで、回路構成や制御を複雑にすること無く、前述した空調とバッテリ温調における異なる温度帯の目標温度に対応する熱媒体の生成が可能になる。 The target temperature of the heat medium flowing to the battery M05 is lower than the target temperature of the heat medium flowing to the individual air conditioners M01, M02 and the indoor air conditioner M06 during heating, and the target temperature of the heat medium flowing to the individual air conditioners M01, M02 and the indoor air conditioner M06 Higher than the target temperature of the flowing heat medium. Therefore, in the conventional temperature control device, the circuit configuration and control are complicated in order to satisfy both the target temperature of the heat medium for air conditioning and the target temperature of the heat medium for battery temperature control. On the other hand, the temperature control device 1 according to the embodiment of the present invention simply switches between the series mode and the parallel mode by switching the switching unit 4, so that the air conditioning and the battery can be controlled without complicating the circuit configuration and control. It is possible to generate a heat medium corresponding to target temperatures in different temperature zones in temperature control.

この際、高温側の熱媒体回路3Aにおいて、直列モードでは、例えば温調モードA’のように、冷媒回路2の冷媒の循環方向下流側の熱交換要素(例えば熱交換要素11B)を通過する熱媒体が冷媒の循環方向上流側の熱交換要素(例えば熱交換要素11A)を通過する。また、低温側の熱媒体回路3Bにおいて、直列モードでは、例えば温調モードAのように、冷媒回路2の冷媒の循環方向上流側の熱交換要素(例えば熱交換要素13B)を通過する熱媒体が冷媒の循環方向下流側の熱交換要素(例えば熱交換要素13C)を通過する。 At this time, in the heat medium circuit 3A on the high temperature side, in the series mode, for example, like the temperature control mode A', the heat exchange element (for example, the heat exchange element 11B) on the downstream side of the refrigerant circulation direction of the refrigerant circuit 2 is passed. The heat medium passes through the heat exchange element (for example, heat exchange element 11A) on the upstream side in the refrigerant circulation direction. In addition, in the heat medium circuit 3B on the low temperature side, in the series mode, for example, like the temperature control mode A, the heat medium passing through the heat exchange element (for example, the heat exchange element 13B) on the upstream side in the refrigerant circulation direction of the refrigerant circuit 2 passes through the downstream heat exchange element (for example, the heat exchange element 13C) in the refrigerant circulation direction.

第1熱交換部11での冷媒の放熱は、冷媒の上流側の方が冷媒と熱媒体の温度差が取りやすいため、高温側の熱媒体回路3Aの直列モードでは、冷媒の循環方向下流側の熱交換要素を通過する熱媒体を冷媒の循環方向上流側の熱交換要素に流すことで、より熱媒体の温度を上げることができる。 Since the temperature difference between the refrigerant and the heat medium is more likely to be taken on the upstream side of the refrigerant, the heat dissipation of the refrigerant in the first heat exchange section 11 is more likely to occur on the upstream side of the refrigerant. The temperature of the heat medium can be further increased by causing the heat medium passing through the heat exchange elements of 1 to flow to the heat exchange element on the upstream side in the circulation direction of the refrigerant.

これに対して、第2熱交換部13では、冷媒の圧損により、冷媒の下流側でより冷媒温度が低くなり、熱媒体との温度差が取りやすい。このため、低温側の熱媒体回路3Bの直列モードでは、冷媒の循環方向上流側の熱交換要素を通過する熱媒体を冷媒の循環方向下流側の熱交換要素に流すことで、より熱媒体の温度を下げることができる。 On the other hand, in the second heat exchange section 13, due to the pressure loss of the refrigerant, the temperature of the refrigerant becomes lower on the downstream side of the refrigerant, and the temperature difference with the heat medium can be easily taken. Therefore, in the series mode of the heat medium circuit 3B on the low temperature side, the heat medium passing through the heat exchange element on the upstream side in the refrigerant circulation direction is caused to flow through the heat exchange element on the downstream side in the refrigerant circulation direction, thereby increasing the amount of heat medium. You can lower the temperature.

但し、低温側の熱媒体回路3Bにおいて、第2熱交換部13における出口側で過熱度がつくような回路とする場合は、冷媒の循環方向下流側の熱交換要素を通過する熱媒体を冷媒の循環方向上流側の熱交換要素に流し、且つ第2熱交換部13における冷媒の流れ方向と熱媒体の流れ方向を対向流とすることで、より熱媒体の温度を下げることができる。なお、図1における熱媒体回路3Bは、第2熱交換部13での冷媒の流れと熱媒体の流れが対向流になっていないが、前述した第2熱交換部13における出口側で過熱度がつくような回路では、減圧装置12から出た冷媒が熱交換要素13Bを経由して熱交換要素13Aを通過し圧縮機10に入るようにすることで、冷媒の循環方向下流側の熱交換要素を通過する熱媒体を冷媒の循環方向上流側の熱交換要素に流し、且つ冷媒の流れと熱媒体の流れを対向流にすることができる。 However, in the heat medium circuit 3B on the low temperature side, when the circuit is such that the degree of superheat is increased on the outlet side of the second heat exchange section 13, the heat medium passing through the heat exchange element on the downstream side in the refrigerant circulation direction is replaced by the refrigerant. The temperature of the heat medium can be further lowered by flowing the refrigerant to the heat exchange element on the upstream side in the circulation direction and making the flow direction of the refrigerant and the flow direction of the heat medium in the second heat exchange section 13 countercurrent. In the heat medium circuit 3B in FIG. 1, the flow of the refrigerant and the flow of the heat medium in the second heat exchange section 13 do not flow in opposite directions, but the degree of superheat is In such a circuit, the refrigerant discharged from the pressure reducing device 12 passes through the heat exchange element 13B, passes through the heat exchange element 13A, and enters the compressor 10, so that the heat exchange on the downstream side in the circulation direction of the refrigerant The heat medium passing through the element can flow to the heat exchange element on the upstream side in the circulation direction of the refrigerant, and the flow of the refrigerant and the flow of the heat medium can be countercurrent.

図5~図13に示した温調装置1は、バッテリM05温調用の熱交換部T05を、高温側の熱媒体回路3A又は低温側の熱媒体回路3Bにおいて、冷媒回路2の冷媒の循環方向最下流側の熱交換要素(高温側であれば熱交換要素11C、低温側であれば熱交換要素13D)に接続して、バッテリM05の温調を行っている。 In the temperature control device 1 shown in FIGS. 5 to 13, the heat exchange portion T05 for temperature control of the battery M05 is set in the heat medium circuit 3A on the high temperature side or the heat medium circuit 3B on the low temperature side in the refrigerant circulation direction of the refrigerant circuit 2. It is connected to the most downstream heat exchange element (the heat exchange element 11C on the high temperature side and the heat exchange element 13D on the low temperature side) to control the temperature of the battery M05.

電動車両用の温調装置1では、温調対象の1つであるバッテリM05は車両駆動用の電源になる。車両駆動用電源としてのバッテリM05は、バッテリM05の性能を確保するために、適正な温度範囲(例えば、10℃~40℃)に調整する必要がある。特にバッテリ温度が適正な温度範囲を超えた場合、バッテリM05の劣化が生じるため、加熱時に特に注意が必要になる。図5~図13に示した温調装置1は、並列モードで、バッテリM05温調用の熱交換部T05を、バッテリM05加熱時に熱交換要素11Cに接続することで、熱交換量が比較的低い冷媒循環方向最下流側の熱交換要素が使用されることになり、過剰加熱を抑止して、バッテリ温度を適正な温度範囲に調整しやすくなる。 In the temperature control device 1 for an electric vehicle, the battery M05, which is one of temperature control targets, serves as a power source for driving the vehicle. The battery M05 as a power source for driving the vehicle needs to be adjusted to an appropriate temperature range (for example, 10° C. to 40° C.) in order to ensure the performance of the battery M05. Especially when the battery temperature exceeds the proper temperature range, deterioration of the battery M05 occurs, so special care must be taken when heating. The temperature control device 1 shown in FIGS. 5 to 13, in the parallel mode, connects the heat exchange part T05 for temperature control of the battery M05 to the heat exchange element 11C when the battery M05 is heated, so that the heat exchange amount is relatively low. Since the heat exchange element on the most downstream side in the refrigerant circulation direction is used, it becomes easier to suppress excessive heating and adjust the battery temperature to an appropriate temperature range.

図5~図13に示した温調装置1の第1熱交換部11又は第2熱交換部13に設けられる複数の熱交換要素は、夫々の熱交換要素の熱交換量を様々に設定することで、直列モードと並列モードの切り替えにより、上述の実施例よりも熱媒体の多様な温度帯が可能になる。 A plurality of heat exchange elements provided in the first heat exchange section 11 or the second heat exchange section 13 of the temperature control device 1 shown in FIGS. Therefore, by switching between the series mode and the parallel mode, a wider variety of temperature zones for the heat medium than in the above-described embodiment is possible.

図14には、複数の熱交換要素の熱交換量の設定例を示している。図示の例では、第1熱交換部11において、複数の熱交換要素11A~11Cの夫々の熱交換量が、冷媒回路2の冷媒の循環方向上流側の熱交換要素ほど大きくなっている。また、第2熱交換部13において、複数の熱交換要素13A~13Dの夫々の熱交換量が、冷媒回路2の冷媒の循環方向下流側の熱交換要素ほど大きくなっている。このように、複数の熱交換要素の熱交換量を設定することで、直列モードと並列モードの切り替えにより、多様な温度帯の熱媒体を生成することができる。 FIG. 14 shows a setting example of the heat exchange amount of a plurality of heat exchange elements. In the illustrated example, in the first heat exchange section 11, the heat exchange amount of each of the plurality of heat exchange elements 11A to 11C increases toward the upstream side of the refrigerant circuit 2 in the refrigerant circulation direction. In the second heat exchange section 13, the heat exchange amount of each of the plurality of heat exchange elements 13A to 13D increases toward the downstream side of the refrigerant circuit 2 in the refrigerant circulation direction. By setting the heat exchange amounts of the plurality of heat exchange elements in this way, it is possible to generate heat medium in various temperature ranges by switching between the series mode and the parallel mode.

前述した直列モードと並列モードの切り替えや各種の温調モードを実行するための切替部4の切り替えは、図15に示すように、温調装置1が備える制御装置200によって行うことができる。電動車両(EV)に備えられる温調装置1の制御装置200は、EVの制御を行う各種ECU(Electronic Control Unit)に車載ネットワークLを介して接続された一つのECUとして構成される。制御装置200は、CPU(Central Processing Unit)201、ROM(Read Only Memory)202、RAM(Random Access Memory)203、入出力I/F(Interface)204、車内通信I/F(Interface)205などを備え、各ハードウェアは、バス206を介して相互に接続されている。 Switching between the series mode and the parallel mode and switching of the switching unit 4 for executing various temperature control modes can be performed by a control device 200 included in the temperature control device 1, as shown in FIG. A control device 200 of a temperature control device 1 provided in an electric vehicle (EV) is configured as one ECU connected via an in-vehicle network L to various ECUs (Electronic Control Units) that control the EV. The control device 200 includes a CPU (Central Processing Unit) 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, an input/output I/F (Interface) 204, an in-vehicle communication I/F (Interface) 205, and the like. Each piece of hardware is interconnected via a bus 206 .

CPU201は、ROM202に記憶されている各種プログラムを実行することにより、制御装置200の切り替え制御を実行する。ROM202は、不揮発性メモリである。例えば、ROM202は、CPU201により実行されるプログラム、CPU201がプログラムを実行するために必要なデータ等を記憶する。RAM203は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の主記憶装置である。例えば、RAM203は、CPU201がプログラムを実行する際に利用する作業領域として機能する。入出力I/F204は、EVに設置される各種センサやモニタに接続され、CPU201にデータを入力すると共に、CPU201が演算処理したデータを出力する。車内通信I/F205は、車載ネットワークLに接続されることで、EVに設定された他のECUとのデータ送受信を制御する。 The CPU 201 executes switching control of the control device 200 by executing various programs stored in the ROM 202 . ROM 202 is a non-volatile memory. For example, the ROM 202 stores programs executed by the CPU 201, data necessary for the CPU 201 to execute the programs, and the like. A RAM 203 is a main storage device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory). For example, the RAM 203 functions as a work area used when the CPU 201 executes programs. The input/output I/F 204 is connected to various sensors and monitors installed in the EV, inputs data to the CPU 201 , and outputs data processed by the CPU 201 . The in-vehicle communication I/F 205 is connected to the in-vehicle network L to control data transmission/reception with other ECUs set in the EV.

制御装置200は、入出力I/F204や車内通信I/F205を介して、温調対象の熱負荷状況に関するデータ或いはEVの運転状況に関するデータが入力されることで、CPU201が実行するプログラムによって、前述した温調モードの切替え制御を実行する。 The control device 200 receives data about the heat load condition of the temperature control target or data about the driving condition of the EV via the input/output I/F 204 and the in-vehicle communication I/F 205, and by the program executed by the CPU 201, The temperature control mode switching control described above is executed.

この際、制御装置200は、温調対象の熱負荷状況に関するデータ或いはEVの運転状況に関するデータから、温調対象に加熱要求或いは冷却要求が有るか否かを判断し、要求が無い温調対象に対応する熱交換要素を出た熱媒体を、要求の有る温調対象に対応する熱交換要素に流す直列モードを実行する。これにより、加熱要求或いは冷却要求が無い温調対象に対して熱媒体を流す熱ロスを無くして、高い効率で温調対象の加熱要求又は冷却要求に応えることができるようになる。 At this time, the control device 200 determines whether or not there is a heating request or a cooling request for the temperature control target based on the data regarding the heat load status of the temperature control target or the data regarding the operating status of the EV. A series mode is executed in which the heat medium exiting the heat exchange element corresponding to is flowed to the heat exchange element corresponding to the desired temperature control object. As a result, the heat loss caused by flowing the heat medium to the temperature control target that does not require heating or cooling can be eliminated, and the heating demand or cooling demand of the temperature control target can be met with high efficiency.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the specific configuration is not limited to these embodiments, and design modifications and the like are made within the scope of the present invention. is included in the present invention. In addition, each of the above-described embodiments can be combined by utilizing each other's techniques unless there is a particular contradiction or problem in the purpose, configuration, or the like.

1:温調装置,2:冷媒回路,3,3A,3B:熱媒体回路,4:切替部,
10:圧縮機,11:第1熱交換部,12:減圧装置,13:第2熱交換部,
11A~11C,13A~13D:熱交換要素,
T1~T4,T01~T07:熱交換部,T10:外部熱交換器,
P:ポンプ,V1~V8,V20~V25:開閉弁,V01~V14:三方弁,
V30:流量制御機能付き三方弁,M1~M4:温調対象,
M01,M02:個別空調装置,M03,M04:車両部品,
M05:バッテリ,M06:室内空調装置,
100:ケース,101,102:熱媒体流路,110,111:冷媒流路,
200:制御装置,201:CPU,202:ROM,203:RAM,
204:入出力I/F,205:車内通信I/F,206:バス,
L:車載ネットワーク
1: temperature control device, 2: refrigerant circuit, 3, 3A, 3B: heat medium circuit, 4: switching unit,
10: compressor, 11: first heat exchange section, 12: decompression device, 13: second heat exchange section,
11A-11C, 13A-13D: heat exchange elements,
T1 to T4, T01 to T07: heat exchange unit, T10: external heat exchanger,
P: pump, V1 to V8, V20 to V25: on-off valve, V01 to V14: three-way valve,
V30: three-way valve with flow control function, M1 to M4: temperature control target,
M01, M02: individual air conditioners, M03, M04: vehicle parts,
M05: battery, M06: indoor air conditioner,
100: case, 101, 102: heat medium flow path, 110, 111: refrigerant flow path,
200: control device, 201: CPU, 202: ROM, 203: RAM,
204: input/output I/F, 205: in-vehicle communication I/F, 206: bus,
L: In-vehicle network

Claims (12)

圧縮機、放熱器として機能する第1熱交換部、減圧装置、吸熱器として機能する第2熱交換部を具備し、前記圧縮機から吐出した冷媒を、前記第1熱交換部、前記減圧装置、前記第2熱交換部の順に循環させる冷媒回路と、
前記第1熱交換部にて前記冷媒と熱交換した熱媒体が循環する高温側の熱媒体回路と前記第2熱交換部にて前記冷媒と熱交換した熱媒体が循環する低温側の熱媒体回路を有し、前記熱媒体を介して複数の温調対象の温度調整を行う温調装置であって、
前記第1熱交換部と前記第2熱交換部は、それぞれ複数の熱交換要素を備え、
前記熱媒体回路は、前記熱媒体が前記複数の熱交換要素のうち選択した前記熱交換要素を連続して通過して前記温調対象と熱交換する直列モードと、前記熱媒体が前記熱交換要素を個別に通過して前記温調対象と熱交換する並列モードとを切り替え可能な切替部を有することを特徴とするヒートポンプ式温調装置。
A compressor, a first heat exchange section functioning as a radiator, a decompression device, and a second heat exchange section functioning as a heat absorber are provided. , a refrigerant circuit that circulates in order of the second heat exchange part;
A heat medium circuit on the high temperature side in which the heat medium that has exchanged heat with the refrigerant in the first heat exchange section circulates, and a heat medium on the low temperature side in which the heat medium that has exchanged heat with the refrigerant in the second heat exchange section circulates. A temperature control device having a circuit and performing temperature control of a plurality of temperature control targets via the heat medium,
The first heat exchange section and the second heat exchange section each include a plurality of heat exchange elements,
The heat medium circuit has a series mode in which the heat medium continuously passes through the heat exchange element selected from the plurality of heat exchange elements to exchange heat with the temperature control target, and a series mode in which the heat medium exchanges heat with the temperature control target. A heat pump type temperature control device, comprising a switching section capable of switching between a parallel mode in which heat is exchanged with the temperature control target by passing through individual elements.
前記切替部は、前記温調対象の熱負荷状況に応じて、前記直列モードと前記並列モードとが切り替えられることを特徴とする請求項1記載のヒートポンプ式温調装置。 2. The heat pump temperature control device according to claim 1, wherein the switching unit switches between the series mode and the parallel mode according to a heat load condition of the temperature control target. 前記切替部は、複数の前記温調対象の熱負荷状況から前記温調対象に加熱要求が有るか否かを判断し、加熱要求の無い前記温調対象に対応する前記熱交換要素を出た熱媒体を、加熱要求の有る温調対象に対応する前記熱交換要素に流すことで、前記直列モードを実行することを特徴とする請求項2記載のヒートポンプ式温調装置。 The switching unit determines whether or not there is a heating request for the temperature control target based on the heat load conditions of the plurality of temperature control targets, and selects the heat exchange element corresponding to the temperature control target for which there is no heating request. 3. The heat pump type temperature control device according to claim 2, wherein the serial mode is executed by flowing a heat medium through the heat exchange element corresponding to a temperature control target requiring heating. 前記切替部は、複数の前記温調対象の熱負荷状況から前記温調対象の冷却要求が有るか否かを判断し、冷却要求の無い前記温調対象に対応する前記熱交換要素を出た熱媒体を、冷却要求の有る温調対象に対応する前記熱交換要素に流すことで、前記直列モードを実行することを特徴とする請求項2記載のヒートポンプ式温調装置。 The switching unit determines whether or not there is a cooling request for the temperature control target from the heat load status of the plurality of temperature control targets, and outputs the heat exchange element corresponding to the temperature control target for which there is no cooling request. 3. The heat pump type temperature control device according to claim 2, wherein the serial mode is executed by flowing a heat medium through the heat exchange element corresponding to a temperature control target requiring cooling. 前記高温側の熱媒体回路において、前記温調対象と熱交換する熱媒体の目標温度が、前記第1熱交換部における1つの前記熱交換要素で熱交換した熱媒体の温度より高い場合に、前記直列モードに切替えられることを特徴とする請求項1又は2記載のヒートポンプ式温調装置。 In the heat medium circuit on the high temperature side, when the target temperature of the heat medium that exchanges heat with the temperature control target is higher than the temperature of the heat medium that exchanges heat with one of the heat exchange elements in the first heat exchange section, 3. The heat pump type temperature control device according to claim 1, wherein the serial mode is switched. 前記低温側の熱媒体回路において、前記温調対象と熱交換する熱媒体の目標温度が、前記第2熱交換部における1つの前記熱交換要素で熱交換した熱媒体の温度より低い場合に、前記直列モードに切替えられることを特徴とする請求項1又は2記載のヒートポンプ式温調装置。 In the heat medium circuit on the low temperature side, when the target temperature of the heat medium that exchanges heat with the temperature control target is lower than the temperature of the heat medium that exchanges heat with one of the heat exchange elements in the second heat exchange section, 3. The heat pump type temperature control device according to claim 1, wherein the serial mode is switched. 前記高温側の熱媒体回路において、前記直列モードでは、前記冷媒の循環方向下流側の前記熱交換要素を通過する熱媒体が前記冷媒の循環方向上流側の前記熱交換要素を通過することを特徴とする請求項1~6のいずれか1項記載のヒートポンプ式温調装置。 In the high-temperature-side heat medium circuit, in the series mode, the heat medium passing through the heat exchange element on the downstream side in the refrigerant circulation direction passes through the heat exchange element on the upstream side in the refrigerant circulation direction. The heat pump type temperature control device according to any one of claims 1 to 6. 前記低温側の熱媒体回路において、前記直列モードでは、前記冷媒の循環方向上流側の前記熱交換要素を通過する熱媒体が前記冷媒の循環方向下流側の前記熱交換要素を通過することを特徴とする請求項1~7のいずれか1項記載のヒートポンプ式温調装置。 In the heat medium circuit on the low temperature side, in the series mode, the heat medium passing through the heat exchange element on the upstream side in the refrigerant circulation direction passes through the heat exchange element on the downstream side in the refrigerant circulation direction. The heat pump type temperature control device according to any one of claims 1 to 7. 前記第1熱交換部において、前記複数の熱交換要素の夫々の熱交換量は、前記冷媒の循環方向上流側の前記熱交換要素ほど大きくなっていること特徴とする請求項1~8のいずれか1項記載のヒートポンプ式温調装置。 9. The heat exchange element according to any one of claims 1 to 8, wherein in the first heat exchange section, the heat exchange amount of each of the plurality of heat exchange elements increases toward the upstream side in the circulation direction of the refrigerant. 1. The heat pump type temperature control device according to claim 1. 前記第2熱交換部において、前記複数の熱交換要素の夫々の熱交換量は、前記冷媒の循環方向下流側の前記熱交換要素ほど大きくなっていることを特徴とする1~9のいずれか1項記載のヒートポンプ式温調装置。 10. Any one of 1 to 9, wherein in the second heat exchange section, the amount of heat exchanged by each of the plurality of heat exchange elements increases toward the downstream side of the heat exchange element in the circulation direction of the refrigerant. 2. The heat pump type temperature control device according to item 1. 前記温調対象の1つは車両駆動用バッテリであり、車両駆動用バッテリ温調用の熱交換部は、前記高温側の熱媒体回路において、前記冷媒の循環方向最下流側の前記熱交換要素に接続されていることを特徴とする請求項1~10のいずれか1項記載のヒートポンプ式温調装置。 One of the temperature control targets is a vehicle drive battery, and the heat exchange unit for vehicle drive battery temperature control is located in the heat exchange element on the most downstream side in the refrigerant circulation direction in the high temperature side heat medium circuit. 11. The heat pump type temperature control device according to any one of claims 1 to 10, characterized in that it is connected. 前記第1熱交換部と前記第2熱交換部の一方又は両方は、前記複数の熱交換要素を1ケースに収めた熱交換モジュールにて構成されていることを特徴とする請求項1~11のいずれか1項記載のヒートポンプ式温調装置。
One or both of the first heat exchange section and the second heat exchange section are configured by a heat exchange module containing the plurality of heat exchange elements in one case. The heat pump type temperature control device according to any one of the above.
JP2021155242A 2021-09-24 2021-09-24 Heat pump type temperature adjustment device Pending JP2023046573A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021155242A JP2023046573A (en) 2021-09-24 2021-09-24 Heat pump type temperature adjustment device
PCT/JP2022/031569 WO2023047863A1 (en) 2021-09-24 2022-08-22 Heat pump–type temperature control device
CN202280060747.9A CN117980167A (en) 2021-09-24 2022-08-22 Heat pump type temperature regulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021155242A JP2023046573A (en) 2021-09-24 2021-09-24 Heat pump type temperature adjustment device

Publications (1)

Publication Number Publication Date
JP2023046573A true JP2023046573A (en) 2023-04-05

Family

ID=85720510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021155242A Pending JP2023046573A (en) 2021-09-24 2021-09-24 Heat pump type temperature adjustment device

Country Status (3)

Country Link
JP (1) JP2023046573A (en)
CN (1) CN117980167A (en)
WO (1) WO2023047863A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123105B2 (en) * 1972-07-20 1976-07-14
JP2007278624A (en) * 2006-04-07 2007-10-25 Denso Corp Heat pump cycle
FR2945478B1 (en) * 2009-05-13 2015-07-17 Valeo Systemes Thermiques VENTILATION, HEATING AND / OR AIR CONDITIONING INSTALLATION COMPRISING FOUR HEAT EXCHANGERS
JP6380265B2 (en) * 2014-07-23 2018-08-29 株式会社デンソー Refrigeration cycle equipment
JP6922856B2 (en) * 2017-08-10 2021-08-18 株式会社デンソー Refrigeration cycle equipment
JP2019206215A (en) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioning device

Also Published As

Publication number Publication date
WO2023047863A1 (en) 2023-03-30
CN117980167A (en) 2024-05-03

Similar Documents

Publication Publication Date Title
KR102382721B1 (en) Integrated heat management system of vehicle
US20090193830A1 (en) Air conditioning system for vehicle
KR102573227B1 (en) Heat management system of vehicle
JP2019155930A (en) Heat circulation system for vehicle
CN114312205A (en) Thermal management system, control method of thermal management system and electric automobile
JP2005306300A (en) Air conditioner for vehicle
WO2023047863A1 (en) Heat pump–type temperature control device
CN113459760A (en) Heat request adjustment device and adjustment method, non-transitory storage medium, and vehicle
WO2022270593A1 (en) Heat medium temperature adjustment system
US20220396117A1 (en) Cooling System for Vehicle
WO2022064930A1 (en) Heat management system
CN212400825U (en) Thermal management system of electric vehicle
CN218054788U (en) Integrated vehicle-mounted air conditioning system and vehicle
KR102513033B1 (en) Air conditioning system with dual HVAC heat exchanger for vehicle
WO2023112633A1 (en) Vehicle air-conditioning device
WO2023203942A1 (en) Heat medium circuit
WO2023203943A1 (en) Vehicular air conditioning device
WO2023228645A1 (en) Vehicle air-conditioning device
WO2023120022A1 (en) Heat management system
WO2022250020A1 (en) Vehicle heat management system
US20230001763A1 (en) Air conditioning system for electric vehicle
WO2021261320A1 (en) Vehicle cooling device
CN115431697A (en) Electric automobile heat pump system and electric automobile
KR20240017608A (en) Integrated thermal management system
JP2023183719A (en) Vehicle air-conditioning device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810