JP2023042399A - Circularly polarized antenna and communication device - Google Patents

Circularly polarized antenna and communication device Download PDF

Info

Publication number
JP2023042399A
JP2023042399A JP2021149676A JP2021149676A JP2023042399A JP 2023042399 A JP2023042399 A JP 2023042399A JP 2021149676 A JP2021149676 A JP 2021149676A JP 2021149676 A JP2021149676 A JP 2021149676A JP 2023042399 A JP2023042399 A JP 2023042399A
Authority
JP
Japan
Prior art keywords
excitation
layer
axis direction
circularly polarized
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021149676A
Other languages
Japanese (ja)
Inventor
滋 牧野
Shigeru Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2021149676A priority Critical patent/JP2023042399A/en
Publication of JP2023042399A publication Critical patent/JP2023042399A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

To provide a compact, wideband circularly polarized antenna and a communication device using the antenna.SOLUTION: A circularly polarized antenna 100 includes a metal layer 20, a plurality of radiating element layers 12 arranged to face the metal layer 20, and a plurality of non-contact excitation elements arranged between the metal layer 20 and the plurality of radiating element layers 12 or on the plurality of radiation element layers 12 via dielectric layers 31 and 32. The plurality of non-contact excitation elements has a phase difference of π/2 from each other.SELECTED DRAWING: Figure 1

Description

本発明は、円偏波特性を有する小型アンテナに関する。 The present invention relates to a compact antenna having circular polarization characteristics.

互いに直交する偏波が等振幅で±π/2の位相差を有していると円偏波が出現する。
近年、移動体通信や衛星通信の発展に伴い円偏波アンテナが着目されているが、一般的には直線偏波のアンテナが2個必要であるために円偏波アンテナのサイズが大きくなる問題がある。
Circularly polarized waves appear when polarized waves orthogonal to each other have equal amplitude and a phase difference of ±π/2.
In recent years, with the development of mobile communications and satellite communications, attention has been paid to circularly polarized antennas. However, since two linearly polarized antennas are generally required, the size of circularly polarized antennas increases. There is

本出願人は先に、薄くて小型化を図った直線偏波特性を有するアンテナ(薄型アンテナ)を提案している(特許文献1,2)。
本発明は、上記技術をベースに円偏波特性を有するアンテナに展開したものである。
The present applicant has previously proposed an antenna (thin antenna) that is thin and has linearly polarized wave characteristics (Patent Documents 1 and 2).
The present invention is based on the above technology and is developed into an antenna having circularly polarized wave characteristics.

特許第6452477号公報Japanese Patent No. 6452477 特開2021-10097号公報Japanese Patent Application Laid-Open No. 2021-10097

本発明は、小型でかつ広帯域な円偏波アンテナの提供を目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a compact and wideband circularly polarized antenna.

本発明に係る円偏波アンテナは、金属層と、前記金属層に対向配置した複数の放射素子層と、前記金属層と前記複数の放射素子層の間又は前記複数の放射素子層の上に誘電体層を介して配置した複数の非接触励振素子とを有し、前記複数の非接触励振素子は相互にπ/2の位相差を有していることを特徴とする。 A circularly polarized antenna according to the present invention comprises a metal layer, a plurality of radiating element layers arranged opposite to the metal layer, and between the metal layer and the plurality of radiating element layers or on the plurality of radiating element layers: and a plurality of non-contact excitation elements arranged with dielectric layers interposed therebetween, wherein the plurality of non-contact excitation elements have a phase difference of π/2 with each other.

ここで金属層とは、金属板あるいは各種基板に金属薄膜を形成したもの等、所定の広さ及び外形形状を有する。
放射素子層は、導電体層であり複数の放射素子層を所定の間隔(スリット)を設けて平面状に配置し、誘電体層を介して金属層と対向配置してある。
誘電体層は樹脂板等の誘電材でもよく、空気層でもよい。
したがって、金属層と放射素子層との間に非接触励振素子を配設する構造としては、金属層の上に第1誘電体層を配置し、この第1誘電体層の上に複数の非接触励振素子を配置し、この複数の非接触励振素子の上に第2誘電体層を配置し、さらに第2誘電体層の上に複数の放射素子を配置した積層構造になる。
なお、この第1及び第2誘電体層は空気層であってもよい。
また、この複数の非接触励振素子は、放射素子層の上側に誘電体層を介して配置しても同様の作用が生じる。
Here, the metal layer has a predetermined width and external shape, such as a metal plate or a metal thin film formed on various substrates.
The radiating element layer is a conductive layer, and a plurality of radiating element layers are arranged in a plane with a predetermined interval (slit) provided, and are arranged to face the metal layer via the dielectric layer.
The dielectric layer may be a dielectric material such as a resin plate, or may be an air layer.
Therefore, as a structure for arranging the non-contact excitation element between the metal layer and the radiating element layer, a first dielectric layer is arranged on the metal layer, and a plurality of non-contact elements are arranged on the first dielectric layer. A laminated structure is formed by arranging a contact excitation element, disposing a second dielectric layer on the plurality of non-contact excitation elements, and further disposing a plurality of radiation elements on the second dielectric layer.
The first and second dielectric layers may be air layers.
Also, the plurality of non-contact excitation elements can be arranged above the radiating element layer with a dielectric layer interposed therebetween to produce the same effect.

非接触励振素子はスルーホール等を介して、外部と電気接続された給電点を有し、放射素子層に励振を発現させるための励振アンテナとして作用する。 The non-contact excitation element has a feed point electrically connected to the outside via a through hole or the like, and acts as an excitation antenna for causing excitation in the radiation element layer.

複数の放射素子層に円偏波特性を発現させる態様としては、次のような構造例が挙げられる。
前記複数の放射素子層は第1放射素子層と、前記第1放射素子層に対してX軸方向に配置した第2放射素子層と、前記第1放射素子層に対してY軸方向に配置した第3放射素子層とからなり、前記複数の非接触励振素子は、前記X軸方向に配置した第1励振素子と前記Y軸方向に配置した第2励振素子とからなる。
The following structural example can be given as a mode for exhibiting circularly polarized wave characteristics in a plurality of radiating element layers.
The plurality of radiation element layers includes a first radiation element layer, a second radiation element layer arranged in an X-axis direction with respect to the first radiation element layer, and a Y-axis direction with respect to the first radiation element layer. The plurality of non-contact excitation elements are composed of first excitation elements arranged in the X-axis direction and second excitation elements arranged in the Y-axis direction.

あるいは、前記複数の放射素子層は第1,第2,第3及び第4放射素子層の4つの放射素子層をX軸方向2列、Y軸方向2列に配置してあり、前記複数の非接触励振素子はX軸方向に配置した第1励振素子とY軸方向に配置した第2励振素子からなる。
この場合に、非接触励振素子は2つに限定されず、複数の非接触励振素子は第1,第2,第3及び第4励振素子の4つが順次、π/2位相差を有しながら、第1励振素子は前記第1及び第2放射素子層に跨がり、第2励振素子は前記第1及び第3放射素子層に跨がり、第3励振素子は前記第3及び第4放射素子層に跨がり、第4励振素子は前記第4及び第2放射素子層に跨がって配設されていてもよい。
Alternatively, in the plurality of radiation element layers, four radiation element layers of first, second, third and fourth radiation element layers are arranged in two rows in the X-axis direction and two rows in the Y-axis direction, The non-contact excitation element consists of a first excitation element arranged in the X-axis direction and a second excitation element arranged in the Y-axis direction.
In this case, the number of non-contact excitation elements is not limited to two, and four of the plurality of non-contact excitation elements, ie, the first, second, third and fourth excitation elements, are sequentially arranged while having a π/2 phase difference. , a first excitation element straddles the first and second radiation element layers, a second excitation element straddles the first and third radiation element layers, and a third excitation element straddles the third and fourth radiation element layers Straddling the layers, the fourth excitation element may be disposed straddling the fourth and second radiation element layers.

本発明に係る円偏波アンテナの詳細は後述するが、薄くて小型であり、広帯域であることから各種の移動体用等の通信アンテナに適用できる。
例えば、移動通信機器,電子機器,車載機器等、広い分野に展開できる。
Although the details of the circularly polarized wave antenna according to the present invention will be described later, it is thin and compact, and has a wide band, so it can be applied to communication antennas for various mobile bodies.
For example, it can be deployed in a wide range of fields such as mobile communication equipment, electronic equipment, and vehicle-mounted equipment.

円偏波アンテナの実施例1、外観図を示す。1 shows an external view of a circularly polarized antenna according to a first embodiment; FIG. 実施例1のアンテナの分解図を示し、(a)は放射素子層の配置図、(b)は励振素子の配置図、(c)は金属層の外形を示す。1 shows an exploded view of the antenna of Example 1, where (a) is a layout diagram of a radiation element layer, (b) is a layout diagram of an excitation element, and (c) is an outline of a metal layer. 実施例1のアンテナのX軸方向断面図を示す。1 shows a cross-sectional view of the antenna of Example 1 in the X-axis direction. FIG. 実施例1のアンテナ特性の解析値を示す。4 shows analytical values of antenna characteristics of Example 1. FIG. 実施例1のアンテナの放射パターンを示す。4 shows the radiation pattern of the antenna of Example 1. FIG. 円偏波アンテナの実施例2、外観図を示す。Example 2 of a circularly polarized antenna, the external view is shown. 実施例2のアンテナの分解図を示し、(a)は放射素子層の配置図、(b)は励振素子層の配置図、(c)は金属層の外形を示す。2 shows an exploded view of the antenna of Example 2, where (a) is a layout diagram of a radiation element layer, (b) is a layout diagram of an excitation element layer, and (c) is an outline of a metal layer. 実施例2のアンテナ特性の解析値を示す。4 shows analytical values of antenna characteristics of Example 2. FIG. 実施例2のアンテナの放射パターンを示す。4 shows the radiation pattern of the antenna of Example 2. FIG. 円偏波アンテナの実施例3,外観図を示す。Example 3 of the circularly polarized antenna, the external view is shown. 実施例3のアンテナの分解図を示し、(a)は放射素子層の配置図、(b)は励振素子の配置図、(c)は金属層の外形を示す。3 shows an exploded view of the antenna of Example 3, where (a) is a layout diagram of a radiating element layer, (b) is a layout diagram of an excitation element, and (c) is an outline of a metal layer. 実施例3のアンテナ特性の解析値を示す。4 shows analytical values of antenna characteristics of Example 3. FIG. 実施例3のアンテナの放射パターンを示す。3 shows the radiation pattern of the antenna of Example 3. FIG. 実施例4のアンテナ構造例を示す。4 shows an example of the antenna structure of Example 4. FIG. 実施例5のアンンテナ構造例を示す。12 shows an example of the antenna structure of Example 5. FIG. 比較例のアンテナ、外観図を示す。The antenna of a comparative example and an external view are shown. 比較例のアンテナの分解図を示し、(a)はパッチタイプの放射素子を示し、(b)は金属層の外形を示す。The exploded view of the antenna of a comparative example is shown, (a) shows a patch type radiating element, (b) shows the outline of a metal layer. 比較例のアンテナの断面図を示す。FIG. 4 shows a cross-sectional view of an antenna of a comparative example; 比較例のアンテナ特性の解析値を示す。Analytical values of antenna characteristics of a comparative example are shown. 比較例のアンテナの放射パターンを示す。4 shows a radiation pattern of an antenna of a comparative example;

本発明に係る円偏波アンテナの構成例を図に基づいて説明するが、本実施例に限定されない。 A configuration example of the circularly polarized antenna according to the present invention will be described with reference to the drawings, but the present invention is not limited to this example.

図1~3に実施例1として3枚の放射素子層と2つの励振素子から2点給電タイプの円偏波アンテナ100の構成例を示す。
図1に円偏波アンテナ100の外観図を示す。
アンテナの構成の説明上、放射素子層の配置方向をXY平面で表現し、X軸方向とこれに直交する方向をY軸方向と表示する。
図2(c)に示すようにL,L:81.2mmの銅板からなるL型の金属層20の上に同じ外形形状の第1誘電体層31を重ね、その上に図2(b)に示すようにX軸方向に配置した第1励振素子41,Y軸方向に配置した第2励振素子42を有し、その上に第2誘電体層32を重ねる。
さらにその上に図2(a)に示すようにW,W:36.6mmの正方形の放射素子層を3枚配置した積層構造になっている。
そのX軸方向断面図を図3に示す。
1 to 3 show a configuration example of a circularly polarized wave antenna 100 of a two-point feeding type using three radiation element layers and two excitation elements as a first embodiment.
FIG. 1 shows an external view of a circularly polarized antenna 100. As shown in FIG.
In order to explain the configuration of the antenna, the arrangement direction of the radiating element layer is expressed on the XY plane, and the X-axis direction and the direction orthogonal thereto are indicated as the Y-axis direction.
As shown in FIG. 2(c), a first dielectric layer 31 having the same external shape is superimposed on an L-shaped metal layer 20 made of a copper plate with L X and L Y of 81.2 mm, and then a first dielectric layer 31 is placed thereon. As shown in b), it has a first drive element 41 arranged in the X-axis direction and a second drive element 42 arranged in the Y-axis direction, and the second dielectric layer 32 is laid thereon.
Furthermore, as shown in FIG. 2(a), three square radiation element layers with W X and W Y of 36.6 mm are arranged thereon to form a laminated structure.
FIG. 3 shows a cross-sectional view thereof in the X-axis direction.

第1励振素子41及び第2励振素子42は、パターニング等により幅d:1.0mm,長さL:29.0mmの線状に形成され、給電点F,Fは図3に示すようにスルーホール等により外部と電気接続されている。
放射素子層は厚さ0.018mmの銅箔で形成され、それぞれW,W:36.6mmの正方形の第1放射素子層11とスリットS:8mmを介してX軸方向に配置した第2放射素子層12及びスリットS:8mmを介して、Y軸方向に配置した第3放射素子層13をL型に配置した例になっている。
第1励振素子41は、第1放射素子層11と第2放射素子層12とに跨がって、かつ、第1,第2放射素子層11,12の中央部に沿ってX軸方向に配置してある。
第2励振素子42は同様にして第1放射素子層11と第3放射素子層13とにわたって、Y軸方向に配置してある。
第1励振素子41及び第2励振素子42とは3枚の放射素子層11,12,13に対して非接触型の励振アンテナとして作用し、図2(b)で説明すると第1励振素子41の左端部に設けた給電点Fに対して第2励振素子42の下端部に給電点Fを有している。
実施例1では、第1誘電体層31及び第2誘電体層32として厚みt,t:0.96mmのNPC-F260A(日本ピラー工業株式会社)多層板を用いた。
したがって、アンテナ全体の厚みTは約1.92mmとなる。
ここで、第1放射素子層11を共有し、この第1放射素子層11と第2放射素子層12にてX軸方向約1/2波長、第1放射素子層11と第3放射素子層13にてY軸方向約1/2波長になるように設定し、第1励振素子41と第2励振素子42とを90°位相差配置したことにより、従来の2つの直線偏波を用いた円偏波アンテナよりも小型になる。
The first excitation element 41 and the second excitation element 42 are formed linearly with a width d 1 of 1.0 mm and a length L 1 of 29.0 mm by patterning or the like, and feeding points F 1 and F 2 are shown in FIG. As shown, it is electrically connected to the outside through through holes or the like.
The radiation element layer is formed of copper foil with a thickness of 0.018 mm, and is arranged in the X-axis direction via a square first radiation element layer 11 with W X and W Y of 36.6 mm and a slit S 1 of 8 mm. This is an example in which the third radiation element layer 13 arranged in the Y-axis direction is arranged in an L shape through the second radiation element layer 12 and the slit S 2 : 8 mm.
The first excitation element 41 straddles the first radiation element layer 11 and the second radiation element layer 12 and extends along the central portions of the first and second radiation element layers 11 and 12 in the X-axis direction. placed.
The second excitation element 42 is similarly arranged in the Y-axis direction across the first radiation element layer 11 and the third radiation element layer 13 .
The first excitation element 41 and the second excitation element 42 act as a non-contact excitation antenna for the three radiating element layers 11, 12, and 13, and the first excitation element 41 will be described with reference to FIG. A feeding point F2 is provided at the lower end of the second exciting element 42 with respect to the feeding point F1 provided at the left end of the second excitation element 42 .
In Example 1, as the first dielectric layer 31 and the second dielectric layer 32, an NPC-F260A (Nippon Pillar Industry Co., Ltd.) multi-layer board having thicknesses t 1 and t 2 of 0.96 mm was used.
Therefore, the thickness T of the entire antenna is approximately 1.92 mm.
Here, the first radiation element layer 11 is shared, and the first radiation element layer 11 and the second radiation element layer 12 emit approximately half the wavelength in the X-axis direction, the first radiation element layer 11 and the third radiation element layer 12 . 13 is set to be about half the wavelength in the Y-axis direction, and the first excitation element 41 and the second excitation element 42 are arranged with a 90° phase difference, so that conventional two linearly polarized waves are used. Smaller than a circularly polarized antenna.

実施例1の円偏波のアンテナ特性の解析値を図4に示し、放射パターンを図5に示す。
図4及び図5にてfree(in free space)は自由空間での解析値を示し、on(on metal)は導体上での解析値を示す。
2.4GH帯域において、VSWR3以下の帯域幅,free:2.40~2.52GH,on metal:2.41~2.52GHであり、軸比特性3以下の帯域幅free:2.27~2.53GH,on metal:2.0~2.52GH,2.57~3.0GHであった。
また、放射パターンを図5に示す。
図5で、LHCPは左旋円偏波,RHCPは右旋偏波を示し、広帯域で利得の高い円偏波が得られている。
FIG. 4 shows analytical values of the antenna characteristics of the circularly polarized wave of Example 1, and FIG. 5 shows the radiation pattern.
In FIGS. 4 and 5, free (in free space) indicates an analytical value in free space, and on (on metal) indicates an analytical value on a conductor.
In the 2.4 GH Z band, the bandwidth is VSWR 3 or less, free: 2.40 to 2.52 GH Z , on metal: 2.41 to 2.52 GH Z , and the bandwidth free: 3 or less in the axial ratio characteristic. 27 to 2.53 GH Z , on metal: 2.0 to 2.52 GH Z , 2.57 to 3.0 GH Z.
Also, the radiation pattern is shown in FIG.
In FIG. 5, LHCP indicates left-handed circularly polarized waves and RHCP indicates right-handed circularly polarized waves, and circularly polarized waves with a wide band and high gain are obtained.

比較のために図16,図17に示したパッチアンテナにて評価した。
,L:73mmの正方形の金属層20の上に同外形の誘電体層30を重ね、その上にL:36.5mm,カット寸法V:3.7mmにて対向する角部を切り欠いたパッチ型の放射素子層111を設け、給電点Fは図17(a)に示すように下辺部からa:11.58mmの位置に図18に示すようにスルーホールにて外部と電気接続した。
アンテナの厚みT:2mmとした。
この比較例パッチアンテナのアンテナ特性を図19に放射パターンを図20に示す。
VSWR3以下の帯域幅2.4~2.5GH,軸比特性3以下の帯域幅2.44~2.45軸比特性と非常に狭く、実用的でない。
これに対して、実施例1の円偏波アンテナは広帯域であり、小型のアンテナが実現している。
For comparison, the patch antennas shown in FIGS. 16 and 17 were evaluated.
A dielectric layer 30 having the same outer shape is placed on a metal layer 20 having a square shape of LX and LY of 73 mm. A notched patch-type radiating element layer 111 is provided, and the feeding point F is located at a distance of 11.58 mm from the lower side as shown in FIG. connected.
Antenna thickness T: 2 mm.
FIG. 19 shows the antenna characteristics of this comparative patch antenna, and FIG. 20 shows its radiation pattern.
A bandwidth of 2.4 to 2.5 GH Z with a VSWR of 3 or less and an axial ratio of 2.44 to 2.45 with an axial ratio characteristic of 3 or less are extremely narrow and impractical.
On the other hand, the circularly polarized antenna of Example 1 has a wide band and a small antenna is realized.

図6に実施例2として4枚の放射素子層と、2つの励振素子からなる2点給電構造の例を示す。
,L:75.9mm,第1放射素子層11に対してX軸方向2列,Y軸方向2列の第2放射素子層12,第3放射素子層13,第4放射素子層14を配置した。
スリット部S,S:2.5mm。
第1励振素子41,第2励振素子42はd:1.0mm,L:29.0mmに設定し、アンテナの厚みT:1.92mmに設定した。
実施例2のアンテナ特性を図8に、放射パターンを図9に示す。
VSWR,軸比特性ともに広帯域になっている。
VSWR3以下の帯域幅free:2.34~2.49GH,on metal:2.35~2.49GHであり、特に軸比特性3以下の帯域幅がfree,on metalともに2.0~3.0GHと広くなっている。
FIG. 6 shows an example of a two-point feeding structure composed of four radiating element layers and two excitation elements as a second embodiment.
L X , L Y : 75.9 mm, second radiation element layer 12, third radiation element layer 13, and fourth radiation element layer arranged in two rows in the X-axis direction and two rows in the Y-axis direction with respect to the first radiation element layer 11 14 were placed.
Slit portions S 1 , S 2 : 2.5 mm.
The first excitation element 41 and the second excitation element 42 are set to d 1 : 1.0 mm, L 1 : 29.0 mm, and the thickness T of the antenna is set to 1.92 mm.
FIG. 8 shows the antenna characteristics of Example 2, and FIG. 9 shows the radiation pattern.
Both VSWR and axial ratio characteristics are wideband.
VSWR 3 or less bandwidth free: 2.34 to 2.49 GH Z , on metal: 2.35 to 2.49 GH Z , especially the bandwidth of axial ratio characteristic 3 or less is 2.0 to 3 for both free and on metal .0GHZ is wide.

実施例3のアンテナを図10、図11に示す。
本実施例3は4つの励振素子、第1~第4励振素子43,42,43,44を旋回配置した例である。
なお、L,L:69.12mm,S,S:0.5mmとした。
また、図11(b)にて寸法LX1は、Wの1/2である。
実施例2では、図7(b)に示すように、X軸方向の第1励振素子41とY軸方向の第2励振素子42による2点給電構造であったのに対して、実施例3は図11(b)に示すように、左側端部に給電点Fを有するX軸方向の第1励振素子41に対して、下側端部に給電点Fを有する第2励振素子42の他に、第3放射素子層13と第4放射素子層14とに跨がり、Y軸方向中央部に沿ってX軸方向に配置し、右側端部に給電点Fを有する第3励振素子43と、さらに第4放射素子層14から第2放射素子層12の中央部に沿って跨がり、上側端部に給電点Fを有する第4励振素子44を全体として旋回するように配置したものである。
このようにすると、図12にアンテナ特性の解析値、放射パターンを図13に示すように、高利得の広帯域円偏波アンテナが得られる。
The antenna of Example 3 is shown in FIGS. 10 and 11. FIG.
The third embodiment is an example in which four excitation elements, first to fourth excitation elements 43, 42, 43, and 44, are arranged in a circular fashion.
In addition, LX , LY : 69.12 mm, S1 , S2 : 0.5 mm.
Also, in FIG. 11(b), the dimension L X1 is 1/2 of W X .
In Example 2, as shown in FIG. 7(b), a two-point feeding structure was adopted, which is composed of the first excitation element 41 in the X-axis direction and the second excitation element 42 in the Y-axis direction. As shown in FIG. 11(b), the first excitation element 41 in the X-axis direction has the feeding point F1 at the left end, and the second excitation element 42 having the feeding point F2 at the lower end. In addition, a third excitation device straddles the third radiation element layer 13 and the fourth radiation element layer 14, is arranged in the X-axis direction along the center in the Y-axis direction, and has a feeding point F3 at the right end. An element 43 and a fourth exciting element 44 extending from the fourth radiating element layer 14 along the central portion of the second radiating element layer 12 and having a feed point F4 at the upper end are arranged to rotate as a whole. It is what I did.
In this way, a high-gain wideband circularly polarized antenna can be obtained as shown in FIG. 12 for the analytical values of the antenna characteristics and in FIG. 13 for the radiation pattern.

実施例4のアンテナ構造例を図14に示す。
本実施例は、図1,2に示した実施例1における非接触励振素子をダイポール素子型の励振素子とした例である。
この場合には、実施例1における第1励振素子41を第1素子41aと第2素子41bとの一対からなるダイポール素子であり、一対の給電点F,Fをスルーホール等にて外部と電気接続させてある。
第2励振素子42も第1素子42aと第2素子42bとの一対のダイポール素子にし、一対の給電点F,Fを有する。
An example of the antenna structure of Example 4 is shown in FIG.
This embodiment is an example in which the non-contact excitation element in the first embodiment shown in FIGS. 1 and 2 is a dipole element type excitation element.
In this case, the first excitation element 41 in the first embodiment is a dipole element consisting of a pair of the first element 41a and the second element 41b, and the pair of feeding points F 1 and F 1 are connected to the outside through a through hole or the like. is electrically connected to
The second excitation element 42 is also a pair of dipole elements consisting of a first element 42a and a second element 42b, and has a pair of feeding points F2 and F2 .

実施例5のアンテナ構成例を図15に示す。
実施例1が金属層20と放射素子層との間に非接触励振素子を配置したのに対して、本実施例は放射素子層の上に誘電体層を介して、非接触励振素子を配置した例であり、このように非接触励振素子は放射素子層の上側に配置しても円偏波アンテナとして作用する。
また、図15に示した非接触励振素子の例は、実施例5と同様にダイポール素子とした例になっている。
FIG. 15 shows an example of the antenna configuration of Example 5. In FIG.
While the non-contact excitation element is arranged between the metal layer 20 and the radiation element layer in the first embodiment, the non-contact excitation element is arranged on the radiation element layer via the dielectric layer in this embodiment. In this example, the non-contact excitation element functions as a circularly polarized antenna even if it is arranged above the radiation element layer.
Also, the example of the non-contact excitation element shown in FIG. 15 is an example of a dipole element as in the fifth embodiment.

11 第1放射素子層
12 第2放射素子層
13 第3放射素子層
20 金属層
31 第1誘電体層
32 第2誘電体層
41 第1励振素子
42 第2励振素子
100 円偏波アンテナ
給電点
給電点
11 First radiation element layer 12 Second radiation element layer 13 Third radiation element layer 20 Metal layer 31 First dielectric layer 32 Second dielectric layer 41 First excitation element 42 Second excitation element 100 Circularly polarized antenna F 1 Feeding point F 2 feeding points

Claims (5)

金属層と、前記金属層に対向配置した複数の放射素子層と、前記金属層と前記複数の放射素子層の間又は前記複数の放射素子層の上に誘電体層を介して配置した複数の非接触励振素子とを有し、
前記複数の非接触励振素子は相互にπ/2の位相差を有していることを特徴とする円偏波アンテナ。
a metal layer, a plurality of radiating element layers facing the metal layer, and a plurality of radiating element layers disposed between the metal layer and the plurality of radiating element layers or on the plurality of radiating element layers with dielectric layers interposed therebetween. and a non-contact excitation element,
A circularly polarized wave antenna, wherein the plurality of non-contact excitation elements have a phase difference of π/2 with each other.
前記複数の放射素子層は第1放射素子層と、前記第1放射素子層に対してX軸方向に配置した第2放射素子層と、前記第1放射素子層に対してY軸方向に配置した第3放射素子層とからなり、
前記複数の非接触励振素子は、前記X軸方向に配置した第1励振素子と前記Y軸方向に配置した第2励振素子とからなることを特徴とする請求項1記載の円偏波アンテナ。
The plurality of radiation element layers includes a first radiation element layer, a second radiation element layer arranged in an X-axis direction with respect to the first radiation element layer, and a Y-axis direction with respect to the first radiation element layer. and a third radiating element layer,
2. The circularly polarized wave antenna according to claim 1, wherein said plurality of non-contact excitation elements comprise first excitation elements arranged in said X-axis direction and second excitation elements arranged in said Y-axis direction.
前記複数の放射素子層は第1,第2,第3及び第4放射素子層の4つの放射素子層をX軸方向2列、Y軸方向2列に配置してあり、
前記複数の非接触励振素子はX軸方向に配置した第1励振素子とY軸方向に配置した第2励振素子からなることを特徴とする請求項1記載の円偏波アンテナ。
the plurality of radiation element layers are composed of four radiation element layers of first, second, third and fourth radiation element layers arranged in two rows in the X-axis direction and two rows in the Y-axis direction;
2. The circularly polarized antenna according to claim 1, wherein said plurality of non-contact excitation elements comprise first excitation elements arranged in the X-axis direction and second excitation elements arranged in the Y-axis direction.
前記複数の非接触励振素子は第1,第2,第3及び第4励振素子の4つが順次、π/2位相差を有しながら、第1励振素子は前記第1及び第2放射素子層に跨がり、
第2励振素子は前記第1及び第3放射素子層に跨がり、
第3励振素子は前記第3及び第4放射素子層に跨がり、
第4励振素子は前記第4及び第2放射素子層に跨がって配設されていることを特徴とする請求項3記載の円偏波アンテナ。
Four of the plurality of non-contact excitation elements, that is, first, second, third and fourth excitation elements, sequentially have a π/2 phase difference, and the first excitation element is the first and second radiation element layers. straddling the
a second excitation element straddling the first and third radiation element layers;
a third excitation element straddling the third and fourth radiation element layers;
4. The circularly polarized wave antenna according to claim 3, wherein the fourth excitation element is arranged across the fourth and second radiation element layers.
請求項1~4のいずれかの円偏波アンテナを用いた通信装置。 A communication device using the circularly polarized antenna according to any one of claims 1 to 4.
JP2021149676A 2021-09-14 2021-09-14 Circularly polarized antenna and communication device Pending JP2023042399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021149676A JP2023042399A (en) 2021-09-14 2021-09-14 Circularly polarized antenna and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021149676A JP2023042399A (en) 2021-09-14 2021-09-14 Circularly polarized antenna and communication device

Publications (1)

Publication Number Publication Date
JP2023042399A true JP2023042399A (en) 2023-03-27

Family

ID=85717323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021149676A Pending JP2023042399A (en) 2021-09-14 2021-09-14 Circularly polarized antenna and communication device

Country Status (1)

Country Link
JP (1) JP2023042399A (en)

Similar Documents

Publication Publication Date Title
Yang et al. Dual-band circularly-polarized square microstrip antenna
JP5983760B2 (en) Array antenna
KR960016369B1 (en) Planar antenna
He et al. A cavity-backed endfire dipole antenna array using substrate-integrated suspended line technology for 24 GHz band applications
US20120068900A1 (en) Dielectric Waveguide Slot Antenna
JP4418375B2 (en) Antenna device
US8188928B2 (en) Antenna module and design method thereof
JP2007529946A (en) High gain antenna for microwave frequencies.
JP2008048090A (en) Patch antenna
CN109565112B (en) Antenna device
US20120154235A1 (en) Circularly polarised antenna
US8228235B2 (en) High gain antenna for microwave frequencies
Kim et al. A shared‐aperture S/X dual broadband microstrip antenna with one perforated patch
JP6145785B1 (en) Antenna device
US11189936B2 (en) Slot-fed dual horse shoe circularly-polarized broadband antenna
JP2826224B2 (en) Microstrip antenna
JP2023042399A (en) Circularly polarized antenna and communication device
CN101459284A (en) Antenna device
JP6761480B2 (en) Antenna, module board and module
Sahoo et al. Dual band circularly polarized dielectric resonator antenna for X-band applications
JP3492764B2 (en) Dual-polarized planar antenna
Ghalib et al. Collocated MIMO travelling wave SIW slot array antennas for millimetre waves
KR20070079761A (en) Antenna module of mobile wireless devices for satellite communication
Du et al. A circularly polarized pyramidal horn antenna based on substrate integrated waveguide
JP2013135262A (en) Antenna device and electronic apparatus