JP2023013445A - Hydrogen gas measuring method and hydrogen gas measuring apparatus - Google Patents

Hydrogen gas measuring method and hydrogen gas measuring apparatus Download PDF

Info

Publication number
JP2023013445A
JP2023013445A JP2021117630A JP2021117630A JP2023013445A JP 2023013445 A JP2023013445 A JP 2023013445A JP 2021117630 A JP2021117630 A JP 2021117630A JP 2021117630 A JP2021117630 A JP 2021117630A JP 2023013445 A JP2023013445 A JP 2023013445A
Authority
JP
Japan
Prior art keywords
hydrogen gas
cylinder
measuring
pressure
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021117630A
Other languages
Japanese (ja)
Other versions
JP6981706B1 (en
Inventor
弘一郎 大森
Koichiro Omori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021117630A priority Critical patent/JP6981706B1/en
Application granted granted Critical
Publication of JP6981706B1 publication Critical patent/JP6981706B1/en
Publication of JP2023013445A publication Critical patent/JP2023013445A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

To provide a method of precisely calculating hydrogen gas quantity supplied to on-vehicle cylinder from a difference between hydrogen gas pressure within a measuring cylinder which is measured on a measuring cylinder charging process and a hydrogen gas pressure within the measuring cylinder measured on a hydrogen gas supplying process in consideration that high-pressure hydrogen gas has unstable flow rate and measurement of high-pressure hydrogen gas quantity in terms of flow rate brings about poor reliability.SOLUTION: A hydrogen gas measuring method includes a measuring cylinder preparation process of preparing a measuring cylinder which has a predetermined volume and a predetermined pressure resistance, a measuring cylinder charging process of charging hydrogen gas to the measuring cylinder up to a predetermined pressure and measuring a hydrogen gas pressure within the measuring cylinder after charging and a hydrogen gas supplying process of supplying hydrogen gas to the on-vehicle cylinder from the measuring cylinder after the measuring cylinder charging process and measuring the hydrogen gas pressure within the measuring cylinder after the supply. Therein, a hydrogen gas quantity supplied to the on-vehicle cylinder is calculated from a difference between the hydrogen gas pressure within the measuring cylinder measured on the measuring cylinder charging process and the hydrogen gas pressure within the measuring cylinder measured on the hydrogen gas supplying process.SELECTED DRAWING: Figure 1

Description

本発明は、水素ガス計量方法、及び水素ガス計量装置に関するものである。 TECHNICAL FIELD The present invention relates to a hydrogen gas measuring method and a hydrogen gas measuring device.

日本のエネルギー資源として、水素ガスへの関心は高い。水素ガスはLPGからの分離、褐炭からの分離、石炭からの分解、都市ガスからの分離、水の電気分解など様々な製造法で得られ、液化水素にして貯蔵されて液化水素基地へ輸送される。 As an energy resource in Japan, interest in hydrogen gas is high. Hydrogen gas is obtained by various production methods such as separation from LPG, separation from lignite, decomposition from coal, separation from city gas, electrolysis of water, etc. It is stored as liquefied hydrogen and transported to a liquefied hydrogen base. be.

液化水素基地から供給スタンドへの搬送には、液化水素か、主には高圧水素ガスのボンベに入れたカードルで行われる。 Transportation from the liquefied hydrogen terminal to the supply station is carried out in liquefied hydrogen, or mainly in cadles contained in cylinders of high-pressure hydrogen gas.

供給スタンドでは高圧水素ガスのボンベを集結したカードルに貯蔵され圧縮された約20MPaの水素ガスが、高圧圧縮機で昇圧されて80―100MPaの高圧水素ガスとして数本のボンベで構成された蓄圧器に保存される。 At the supply station, approximately 20 MPa of hydrogen gas is stored and compressed in a cardle that collects high-pressure hydrogen gas cylinders, and is pressurized by a high-pressure compressor to produce 80-100 MPa of high-pressure hydrogen gas in a pressure accumulator composed of several cylinders. stored in

蓄圧器の最高充填圧力は100MPaが実用化されているが、将来はさらに高い圧力になる。これから車載ボンベに供給される。 The maximum filling pressure of the pressure accumulator is 100 MPa in practical use, but the pressure will be higher in the future. It will be supplied to on-board cylinders from now on.

一方車載ボンベにおいては容積が140-150リッターの、最高充填圧力35MPa及び70MPaのボンベが使われており、将来的にはさらに高性能のボンベも使われ得る。現在は70MPaの最大充填圧力が主流になりつつある。
現在のボンベ容積の主流は140リッターである。技術の進歩に伴いさまざまの容積が生まれ得るが、車輛の大きさの制限があるので140リッターから150リッターが普及すると考える。これの2台または3台を車載する場合もある。
On the other hand, for onboard cylinders, cylinders with a volume of 140 to 150 liters and a maximum filling pressure of 35 MPa and 70 MPa are used, and even higher performance cylinders may be used in the future. Currently, the maximum filling pressure of 70 MPa is becoming mainstream.
The current mainstream cylinder volume is 140 liters. As technology progresses, various volumes can be created, but due to vehicle size limitations, we believe that 140 to 150 liters will become popular. Two or three of these may be mounted on the vehicle.

車載ボンベにおいて最高充填圧力以上の充填は禁止され、また、危険であり、絶対に行ってはいけないという使用条件がある。一方顧客は満圧充填を望み、供給スタンドに来るとき、車載ボンベは空ではなく、残量不明の水素ガスが残っていることになる。
その上で満圧充填を含む様々な充填量の要求が生まれる。また、供給スタンドにおいては、その供給は短時間に行うことが求められ、なお計量が正確であることが求められる。
It is prohibited to fill a vehicle-mounted cylinder with a pressure higher than the maximum filling pressure. On the other hand, the customer wants to fill up to full pressure, and when they arrive at the supply station, the on-board cylinder will not be empty, but there will be an unknown amount of hydrogen gas left.
In addition, various filling volume requirements are created, including full pressure filling. In addition, at the supply stand, the supply is required to be performed in a short time, and the weighing is required to be accurate.

車載ボンベの最高充填圧力は70MPaか35MPaとされている。容積が事前に判る時が多いが、判らない時もあり得る。また、供給スタンドに来た時の、車載ボンベの水素ガスの残量は車載の圧力計で概略は判るものの、信頼できる値は供給スタンド側では不明であることになる。このような車載残量圧が不明であることの多い条件の中での水素ガス供給である。 The maximum filling pressure of a vehicle-mounted cylinder is 70 MPa or 35 MPa. There are many times when the volume is known in advance, but there are times when it is not. In addition, although the remaining amount of hydrogen gas in the on-vehicle cylinder can be roughly determined by the on-vehicle pressure gauge when arriving at the supply stand, the reliable value is unknown at the supply stand. Hydrogen gas is supplied under such conditions that the vehicle residual pressure is often unknown.

水素ガスの供給時に計量するためには、色々の技術がある。特許文献1には、蓄圧器を早く満圧にするために2台の蓄圧器を用い、その中の1台を選択して早く高圧を作る方法が示されている。特許文献2は超音波を使用したドプラー効果で流量を計測する方法である。特許文献3は重量変化で計測する方法である、特許文献4は最も普及に近いコリオリ流量計の活用がある。
従来の技術 の主要なものとして、以下の特許文献がある。
Various techniques exist for metering hydrogen gas as it is supplied. Patent Literature 1 discloses a method of using two pressure accumulators to quickly fill the pressure accumulators, and selecting one of them to quickly create a high pressure. Patent document 2 is a method of measuring a flow rate by the Doppler effect using ultrasonic waves. Patent document 3 is a method of measuring by a change in weight, and patent document 4 uses a Coriolis flowmeter, which is the most popular.
The following patent documents are known as major conventional technologies.

特開2016-205439号公報JP 2016-205439 A 特開2004-347494号公報JP 2004-347494 A 特開平6-159594号公報JP-A-6-159594 特表2018-507414号公報Japanese Patent Publication No. 2018-507414

従来の充填法の場合、コリオリ流量計などの流量計を使い、流量調整弁を使用して流量を調整し、車載ボンベが目的の圧力になる時点で開閉弁を閉じることが行われていたが、圧力が変化し、流速が変化する中で流量を計測するという方法には計量誤差が生まれやすく、また、流量を絞っていないと開閉弁の動作で正確に流れの停止が出来ないため、短時間の充填には不向きであるという問題があった。 In the conventional filling method, a flow meter such as a Coriolis flow meter was used to adjust the flow rate using a flow adjustment valve, and the opening and closing valve was closed when the vehicle cylinder reached the target pressure. , The method of measuring the flow rate while the pressure changes and the flow velocity changes is likely to cause measurement errors. There was a problem that it is unsuitable for filling time.

車載ボンベは車載ボンベの最高充填圧力を越えてはいけないうえ、消費者は満圧充填を短時間で行うことを望む。さらに、その計量は正確でなければならない。このような条件内での充填を行うために、車載ボンベの容積と最高充填圧力は車種から判断できる時もあるが、容積につては不明である場合もある。充填時に車載ボンベに残っている水素ガスの残量は、車載の圧力計の数値で知ることができる場合もあるが、必ずしもこの車載の圧力計の数値が正しく、又は正確であるとは限らない。 On-board cylinders should not exceed the maximum filling pressure of the on-board cylinders, and consumers want full pressure filling in a short time. Moreover, the weighing must be accurate. In order to perform filling within these conditions, the capacity and maximum filling pressure of the on-board cylinder can sometimes be determined from the type of vehicle, but there are cases where the capacity is unknown. The remaining amount of hydrogen gas remaining in the vehicle cylinder at the time of filling can sometimes be known from the value of the vehicle pressure gauge, but the value of this vehicle pressure gauge is not always correct or accurate. .

流量計での充填量の計測には、主に使用されているコリオリ流量計のほかに、超音波によるドプラー効果を利用した流量計もある。これによりガソリンなどの液体を詰めるが如く、水素ガス供給ホースにより車載ボンベに水素ガスの充填を行うのである。 In addition to the Coriolis flowmeter, which is mainly used, to measure the filling amount with a flowmeter, there is also a flowmeter that uses the Doppler effect of ultrasonic waves. In this way, the vehicle-mounted cylinder is filled with hydrogen gas through the hydrogen gas supply hose, just like filling a liquid such as gasoline.

上記の特許文献1~4に開示された計量方法では、計測の正確さと、車載ボンベの最高充填圧力を越えずに急速に満充填を行うことは難しかった。 With the weighing methods disclosed in Patent Literatures 1 to 4, it is difficult to achieve accurate measurement and to rapidly fill the cylinder without exceeding the maximum filling pressure of the vehicle-mounted cylinder.

コリオリ流量計においては原理は優れているが、高圧の水素ガスが高速でU字パイプを流れる時に発生するコリオリ力による微小なねじれの歪量を測るのであり、コリオリ流量計の方法には計量の精度が悪いという問題が残っている。現状の精度は4~8パーセントであり、1パーセントを目標に研究は続けられているが、未だ届いていないのである。 The principle of the Coriolis flowmeter is excellent, but it measures the amount of minute twisting caused by the Coriolis force generated when high-pressure hydrogen gas flows through a U-shaped pipe at high speed. The problem of poor accuracy remains. The current accuracy is 4 to 8 percent, and although research is continuing with the target of 1 percent, it has not yet been achieved.

コリオリ流量計の流量計測の精度が悪くなることは、変化する流量の大きさに対して歪量が小さくて検知が正確に行えないことに加え、蓄圧器から高圧水素ガスを送り出すとき、蓄圧器の内部の圧力が減増することと、その減圧による流速の変化と、断熱膨張の温度変化のために、流量調整弁があるものの流量が変動し、これで流量計の計測値が流量と正しく比例しないことにあると思われる。 The deterioration of the flow measurement accuracy of the Coriolis flowmeter is due to the fact that the amount of distortion is small with respect to the magnitude of the changing flow rate, and detection cannot be performed accurately. Due to the decrease in internal pressure, the change in flow velocity due to the pressure reduction, and the temperature change due to adiabatic expansion, the flow rate fluctuates even though there is a flow control valve. I think it's because it's not proportional.

水素燃料電池自動車の普及初期である現状では、顧客の車輛が続けて供給スタンドを訪れるという充填はされておらず、その供給と供給の間に蓄圧器の昇圧がされるので、圧力変化による問題が出にくいが、将来、燃料電池自動車が普及すると、供給スタンドで水素供給を必要とする車両台数が増えて、供給スタンドでの供給頻度が多くなる。それに従い蓄圧器の圧力変化も大きくなることが考えられる。高圧圧縮機にはそれぞれ固有の能力があるが、いずれも昇圧には時間を要するからである。 At present, in the early stage of the spread of hydrogen fuel cell vehicles, customers' vehicles do not continuously visit the supply station for filling, and the accumulator is boosted between supplies, so there is a problem due to pressure change. However, as fuel cell vehicles become more popular in the future, the number of vehicles requiring hydrogen supply at supply stations will increase, and the frequency of supply at supply stations will increase. Accordingly, it is conceivable that the pressure change in the pressure accumulator also increases. This is because each high-pressure compressor has its own capacity, but it takes time to boost the pressure.

将来いずれは、これらの問題は克服されるはずだが、水素ガスの流量を計るということに対する消費者の計量に対する信頼性が必要であるので、さらに優れた計量の方法が求められている。
While these problems should eventually be overcome in the future, the need for consumer metering confidence in metering hydrogen gas flow requires a better method of metering.

本発明に係る水素ガス計量方法は、車両に搭載された車載ボンベに供給する水素ガス量の計量方法であって、予め所定の容積と所定の耐圧強度を有する計量ボンベを準備する計量ボンベ準備工程と、前記計量ボンベに所定の圧力まで水素ガスを充填し、充填後の前記計量ボンベ内の水素ガス圧を計測する計量ボンベ充填工程と、前記計量ボンベ充填工程の後に、前記計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記計量ボンベ内の水素ガス圧を計測する水素ガス供給工程とを有し、前記計量ボンベ充填工程において計測した計量ボンベ内の水素ガス圧と、前記水素ガス供給工程において計測した計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出することを特徴とする。 A hydrogen gas measuring method according to the present invention is a method for measuring the amount of hydrogen gas to be supplied to a vehicle-mounted cylinder mounted on a vehicle, and includes a measuring cylinder preparation step of preparing a measuring cylinder having a predetermined volume and a predetermined pressure resistance in advance. a measuring cylinder filling step of filling the measuring cylinder with hydrogen gas to a predetermined pressure and measuring the hydrogen gas pressure in the measuring cylinder after filling; A hydrogen gas supply step of supplying hydrogen gas to the cylinder and measuring the hydrogen gas pressure in the measuring cylinder after supply, wherein the hydrogen gas pressure in the measuring cylinder measured in the measuring cylinder filling process and the hydrogen It is characterized by calculating the amount of hydrogen gas supplied to the vehicle-mounted cylinder from the difference from the hydrogen gas pressure in the measuring cylinder measured in the gas supply process.

本発明に係る水素ガス計量方法では、計量ボンベ充填工程において所定の容積を有する計量ボンベに所定の圧力まで水素ガスを充填し、次に、水素ガス供給工程において計量ボンベから車載ボンベに水素ガスを供給し、計量ボンベ充填工程において計測した計量ボンベ内の水素ガス圧と、水素ガス供給工程において計測した計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出するように構成されている。このため、車載ボンベに供給した水素ガス量を正確に、かつ安全に算出することができる。 In the hydrogen gas measuring method according to the present invention, a measuring cylinder having a predetermined volume is filled with hydrogen gas to a predetermined pressure in the measuring cylinder filling step, and then hydrogen gas is supplied from the measuring cylinder to the vehicle-mounted cylinder in the hydrogen gas supply step. The amount of hydrogen gas supplied to the on-board cylinder is calculated from the difference between the hydrogen gas pressure in the measuring cylinder measured in the measuring cylinder filling process and the hydrogen gas pressure in the measuring cylinder measured in the hydrogen gas supply process. is configured to Therefore, it is possible to accurately and safely calculate the amount of hydrogen gas supplied to the in-vehicle cylinder.

本発明に係る水素ガス計量方法では、前記車載ボンベ内の水素ガス圧が所定の圧力に到達するまで、前記計量ボンベ充填工程と前記水素ガス供給工程とを繰り返し行うことを特徴としてもよい。これにより、車載ボンベに水素ガスを供給して、車載ボンベ内の圧力を所定の圧力とすることができる。 The hydrogen gas measuring method according to the present invention may be characterized in that the measuring cylinder filling step and the hydrogen gas supplying step are repeatedly performed until the hydrogen gas pressure in the vehicle-mounted cylinder reaches a predetermined pressure. Thereby, hydrogen gas can be supplied to the vehicle-mounted cylinder, and the pressure in the vehicle-mounted cylinder can be set to a predetermined pressure.

また、本発明に係る水素ガス計量方法は、車両に搭載された車載ボンベに供給する水素ガス量の計量方法であって、予め所定の容積と所定の耐圧強度を有する計量ボンベを準備する計量ボンベ準備工程と、前記計量ボンベに所定の圧力まで水素ガスを充填し、充填後の前記計量ボンベ内の水素ガス圧を計測する第1計量ボンベ充填工程と、前記第1計量ボンベ充填工程後に、前記計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記計量ボンベ内の水素ガス圧を計測する第1水素ガス供給工程と、前記第1水素ガス供給工程後に、前記第1水素ガス供給工程において計測された水素ガス圧に応じて、充填する水素ガス圧を決定し、決定された水素ガス圧まで前記計量ボンベに水素ガスを充填する第2計量ボンベ充填工程と、前記第2計量ボンベ充填工程後に、前記計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記計量ボンベ内の水素ガス圧を計測する第2水素ガス供給工程とを有することができる。さらに、前記第1計量ボンベ充填工程において計測した前記計量ボンベ内の水素ガス圧と前記第1水素ガス供給工程において計測した前記計量ボンベ内の水素ガス圧との差分、及び、前記第2計量ボンベ充填工程において計測した前記計量ボンベ内の水素ガス圧と前記第2水素ガス供給工程において計測した前記計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出することを特徴としてもよい。 Further, the hydrogen gas measuring method according to the present invention is a method for measuring the amount of hydrogen gas to be supplied to a vehicle-mounted cylinder mounted on a vehicle, wherein a measuring cylinder having a predetermined volume and a predetermined pressure resistance strength is prepared in advance. a preparation step; a first measuring cylinder filling step of filling the measuring cylinder with hydrogen gas to a predetermined pressure and measuring the hydrogen gas pressure in the measuring cylinder after filling; a first hydrogen gas supply step of supplying hydrogen gas from a measuring cylinder to the vehicle-mounted cylinder and measuring the hydrogen gas pressure in the measuring cylinder after supply; a second measuring cylinder filling step of determining the hydrogen gas pressure to be filled according to the hydrogen gas pressure measured in the process, and filling the measuring cylinder with hydrogen gas up to the determined hydrogen gas pressure; A second hydrogen gas supply step of supplying hydrogen gas from the measuring cylinder to the vehicle-mounted cylinder after the filling process and measuring the hydrogen gas pressure in the measuring cylinder after supply. Furthermore, the difference between the hydrogen gas pressure in the measuring cylinder measured in the first measuring cylinder filling step and the hydrogen gas pressure in the measuring cylinder measured in the first hydrogen gas supply step, and the second measuring cylinder Calculating the amount of hydrogen gas supplied to the vehicle-mounted cylinder from the difference between the hydrogen gas pressure in the measuring cylinder measured in the filling process and the hydrogen gas pressure in the measuring cylinder measured in the second hydrogen gas supply process. It may be a feature.

本発明に係る水素ガス計量方法では、第1水素ガス供給工程後に、第1水素ガス供給工程において計測された水素ガス圧に応じて、充填する水素ガス圧を決定し、決定された水素ガス圧まで計量ボンベに水素ガスを充填する第2計量ボンベ充填工程を含み、第2計量ボンベ充填工程後に、計量ボンベから車載ボンベに水素ガスを供給するように構成されているので、短時間で効率よく所望の圧力まで車載ボンベに水素ガスを供給することができると同時に、短時間で計量作業を完了することができる。 In the hydrogen gas measuring method according to the present invention, after the first hydrogen gas supply step, the hydrogen gas pressure to be filled is determined according to the hydrogen gas pressure measured in the first hydrogen gas supply step, and the determined hydrogen gas pressure It includes a second measuring cylinder filling process for filling the measuring cylinder with hydrogen gas up to the second measuring cylinder filling process, and after the second measuring cylinder filling process, the hydrogen gas is supplied from the measuring cylinder to the on-vehicle cylinder, so it is efficient in a short time. Hydrogen gas can be supplied to a vehicle-mounted cylinder up to a desired pressure, and at the same time, a weighing operation can be completed in a short time.

また、本発明に係る水素ガス計量方法では、前記計量ボンベ準備工程において、予め前記車載ボンベ内の水素ガス圧の値を計測し、車載ボンベ残留水素ガス圧として記録する残留水素ガス圧記録工程を備え、計量ボンベ充填工程において前記計量ボンベに充填する水素ガスの圧力を、前記車載ボンベ残留水素ガス圧に応じて決定し、当該決定された水素ガス圧まで前記計量ボンベに水素ガスを充填することを特徴としてもよい。予め計量ボンベ準備工程において車載ボンベ残留水素ガス圧を計測し、車載ボンベ残留水素ガス圧に応じて計量ボンベに充填する水素ガスの圧力を決定し、当該決定された水素ガス圧まで計量ボンベに水素ガスを充填するので、短時間で効率よく所望の圧力まで車載ボンベに水素ガスを供給することができると同時に、短時間で計量作業を完了することができる。 Further, in the hydrogen gas measuring method according to the present invention, the measuring cylinder preparation step includes a residual hydrogen gas pressure recording step of measuring in advance the value of the hydrogen gas pressure in the vehicle-mounted cylinder and recording it as the vehicle-mounted cylinder residual hydrogen gas pressure. determining the pressure of the hydrogen gas to be filled in the measuring cylinder in the measuring cylinder filling step according to the residual hydrogen gas pressure in the on-vehicle cylinder, and filling the measuring cylinder with hydrogen gas up to the determined hydrogen gas pressure. may be characterized. In the measurement cylinder preparation process, the residual hydrogen gas pressure in the on-board cylinder is measured in advance, the pressure of the hydrogen gas to be filled in the measurement cylinder is determined according to the residual hydrogen gas pressure in the on-board cylinder, and hydrogen is supplied to the measurement cylinder up to the determined hydrogen gas pressure. Since the gas is filled, the hydrogen gas can be efficiently supplied to the vehicle-mounted cylinder up to the desired pressure in a short period of time, and at the same time, the weighing operation can be completed in a short period of time.

また、本発明に係る水素ガス計量方法では、前記車載ボンベ残留水素ガス圧は、前記車両に備えられた圧力計から入手することを特徴としてもよい。 Further, the hydrogen gas measuring method according to the present invention may be characterized in that the residual hydrogen gas pressure in the in-vehicle cylinder is obtained from a pressure gauge provided in the vehicle.

また、本発明に係る水素ガス計量方法は、車両に搭載された車載ボンベに供給する水素ガス量の計量方法であって、予め所定の容積と所定の耐圧強度を有する第1の計量ボンベ及び第2の計量ボンベを含む複数の計量ボンベを準備する計量ボンベ準備工程と、前記第1の計量ボンベに所定の圧力まで水素ガスを充填し、充填後の前記第1の計量ボンベ内の水素ガス圧を計測する第1計量ボンベ充填工程と、前記第1計量ボンベ充填工程後に、前記第1の計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記第1の計量ボンベ内の水素ガス圧を計測する第1水素ガス供給工程と、前記第1水素ガス供給工程後に、前記第1水素ガス供給工程において計測された水素ガス圧に応じて、充填する水素ガス圧を決定し、決定された水素ガス圧まで前記第2の計量ボンベに水素ガスを充填する第2計量ボンベ充填工程と、前記第2計量ボンベ充填工程後に、前記第2の計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記第2の計量ボンベ内の水素ガス圧を計測する第2水素ガス供給工程とを有することができる。
さらに、前記第1計量ボンベ充填工程において計測した前記第1の計量ボンベ内の水素ガス圧と前記第1水素ガス供給工程において計測した前記第1の計量ボンベ内の水素ガス圧との差分、及び、前記第2計量ボンベ充填工程において計測した前記第2の計量ボンベ内の水素ガス圧と前記第2水素ガス供給工程において計測した前記第2の計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出することを特徴としてもよい。
Further, a hydrogen gas measuring method according to the present invention is a method for measuring the amount of hydrogen gas to be supplied to a vehicle-mounted cylinder mounted on a vehicle, and includes a first measuring cylinder having a predetermined volume and a predetermined pressure resistance strength in advance, and a first measuring cylinder having a predetermined volume and a predetermined pressure resistance. a measuring cylinder preparation step of preparing a plurality of measuring cylinders including No. 2 measuring cylinder, filling the first measuring cylinder with hydrogen gas to a predetermined pressure, and hydrogen gas pressure in the first measuring cylinder after filling; and after the first measuring cylinder filling step, supplying hydrogen gas from the first measuring cylinder to the vehicle-mounted cylinder, and hydrogen gas in the first measuring cylinder after supply A first hydrogen gas supply step for measuring the pressure, and after the first hydrogen gas supply step, the hydrogen gas pressure to be filled is determined according to the hydrogen gas pressure measured in the first hydrogen gas supply step. supplying hydrogen gas from the second measuring cylinder to the vehicle-mounted cylinder after the second measuring cylinder filling step of filling the second measuring cylinder with hydrogen gas up to the hydrogen gas pressure of the second measuring cylinder, and after the second measuring cylinder filling step; and a second hydrogen gas supply step of measuring the hydrogen gas pressure in the second metering cylinder after supply.
Furthermore, the difference between the hydrogen gas pressure in the first measuring cylinder measured in the first measuring cylinder filling step and the hydrogen gas pressure in the first measuring cylinder measured in the first hydrogen gas supply step, and , from the difference between the hydrogen gas pressure in the second measuring cylinder measured in the second measuring cylinder filling process and the hydrogen gas pressure in the second measuring cylinder measured in the second hydrogen gas supply process, It may be characterized by calculating the amount of hydrogen gas supplied to the cylinder.

本発明に係る水素ガス計量方法では、第1の計量ボンベから車載ボンベに水素ガスを供給する第1水素ガス供給工程後に、第1水素ガス供給工程において計測された水素ガス圧に応じて、充填する水素ガス圧を決定し、決定された水素ガス圧まで、第1の計量ボンベと異なる第2の計量ボンベに水素ガスを充填する第2計量ボンベ充填工程を備えており、第2計量ボンベ充填工程後に、第2の計量ボンベから車載ボンベに水素ガスを供給するので、第1の計量ボンベに繰り返し充填して車載ボンベに水素ガスを供給する方法よりも、さらに短時間で効率よく所望の圧力まで車載ボンベに水素ガスを供給することができる。合わせて、短時間で計量作業を完了することができる。 In the hydrogen gas measurement method according to the present invention, after the first hydrogen gas supply step of supplying hydrogen gas from the first measurement cylinder to the vehicle-mounted cylinder, the filling is performed according to the hydrogen gas pressure measured in the first hydrogen gas supply step. a second measuring cylinder filling step of determining the hydrogen gas pressure to be used and filling a second measuring cylinder different from the first measuring cylinder with hydrogen gas up to the determined hydrogen gas pressure; After the process, hydrogen gas is supplied from the second measuring cylinder to the vehicle-mounted cylinder, so the desired pressure can be obtained more efficiently in a short time than the method of repeatedly filling the first measurement cylinder and supplying hydrogen gas to the vehicle-mounted cylinder. Hydrogen gas can be supplied to on-board cylinders up to In addition, the weighing work can be completed in a short time.

本発明に係る水素ガス計量方法では、前記計量ボンベの容積が、前記車載ボンベの容積の2倍以下であることを特徴としてもよい。計量ボンベの容積を、車載ボンベの容積の2倍以下とすることで、計量ボンベ充填工程と水素ガス供給工程との計量ボンベ内の水素ガス圧の変化を精度よく検知することができるので、車載ボンベに供給した水素ガス量をより正確に算出することができる。 The hydrogen gas measuring method according to the present invention may be characterized in that the volume of the measuring cylinder is twice or less the volume of the vehicle-mounted cylinder. By making the volume of the measuring cylinder less than twice the volume of the vehicle-mounted cylinder, it is possible to accurately detect changes in the hydrogen gas pressure in the measuring cylinder between the filling process of the measuring cylinder and the hydrogen gas supply process. The amount of hydrogen gas supplied to the cylinder can be calculated more accurately.

また、本発明に係る水素ガス計量装置は、車両に搭載された車載ボンベに供給する水素ガス量を計量するための水素ガス計量装置であって、水素ガスを貯蔵するための蓄圧器に接続され、所定の容積と所定の耐圧強度を有する計量ボンベと、前記計量ボンベから前記車載ボンベに水素ガスを供給するための水素ガス供給配管と、前記蓄圧器と前記計量ボンベの間に配置された水素ガス開閉弁と、前記計量ボンベと前記車載ボンベの間に配置された水素ガス供給弁とを備える。また、前記計量ボンベは、当該前記計量ボンベ内の水素ガス圧を計測するための圧力計を有している。さらに、前記水素ガス開閉弁を開いて、前記計量ボンベに所定の圧力まで水素ガスを充填し、前記計量ボンベに充填後に、前記水素ガス開閉弁を閉じた後に前記水素ガス供給弁を開いて、前記水素ガス供給配管を用いて前記計量ボンベから前記車載ボンベに水素ガスを供給し、前記車載ボンベへの水素ガスの供給前と供給後の前記計量ボンベ内の水素ガス圧の差分から、前記車載ボンベに供給した水素ガス量を算出するように構成されている。 Further, a hydrogen gas measuring device according to the present invention is a hydrogen gas measuring device for measuring the amount of hydrogen gas supplied to a vehicle-mounted cylinder mounted on a vehicle, and is connected to a pressure accumulator for storing hydrogen gas. , a measuring cylinder having a predetermined volume and a predetermined pressure resistance, a hydrogen gas supply pipe for supplying hydrogen gas from the measuring cylinder to the vehicle-mounted cylinder, and hydrogen disposed between the pressure accumulator and the measuring cylinder. A gas on-off valve and a hydrogen gas supply valve arranged between the metering cylinder and the vehicle-mounted cylinder are provided. Moreover, the measuring cylinder has a pressure gauge for measuring the hydrogen gas pressure in the measuring cylinder. Furthermore, the hydrogen gas on-off valve is opened, the measuring cylinder is filled with hydrogen gas to a predetermined pressure, and after filling the measuring cylinder, the hydrogen gas on-off valve is closed and the hydrogen gas supply valve is opened, Using the hydrogen gas supply pipe, hydrogen gas is supplied from the measuring cylinder to the vehicle-mounted cylinder, and from the difference in hydrogen gas pressure in the measurement cylinder before and after the supply of hydrogen gas to the vehicle-mounted cylinder, the vehicle-mounted It is configured to calculate the amount of hydrogen gas supplied to the cylinder.

本発明に係る水素ガス計量装置では、計量ボンベに所定の圧力まで水素ガスを充填し、計量ボンベに充填後に、水素ガス開閉弁を閉じた後に水素ガス供給弁を開いて、水素ガス供給配管を用いて計量ボンベから車載ボンベに水素ガスを供給し、車載ボンベへの水素ガスの供給前と供給後の計量ボンベ内の水素ガス圧の差分から、車載ボンベに供給した水素ガス量を算出するように構成されているので、車載ボンベに供給した水素ガス量を正確に、かつ安全に算出することができる水素ガス計量装置を提供することができる。 In the hydrogen gas measuring device according to the present invention, the measuring cylinder is filled with hydrogen gas to a predetermined pressure, and after filling the measuring cylinder, the hydrogen gas on-off valve is closed, the hydrogen gas supply valve is opened, and the hydrogen gas supply pipe is connected. to calculate the amount of hydrogen gas supplied to the on-board cylinder from the difference in hydrogen gas pressure in the measuring cylinder before and after the supply of hydrogen gas to the on-board cylinder. Therefore, it is possible to provide a hydrogen gas metering device that can accurately and safely calculate the amount of hydrogen gas supplied to a vehicle-mounted cylinder.

また、本発明に係る水素ガス計量装置は、車両に搭載された車載ボンベに供給する水素ガス量を計量するための水素ガス計量装置であって、水素ガスを貯蔵するための蓄圧器に接続され、予め所定の容積と所定の耐圧強度を有する第
1の計量ボンベ及び第2の計量ボンベを含む複数の計量ボンベと、前記複数の計量ボンベから前記車載ボンベに水素ガスを供給するための水素ガス供給配管と、前記蓄圧器と前記複数の計量ボンベの間に配置された水素ガス開閉弁と、前記複数の計量ボンベと前記車載ボンベの間に配置された水素ガス供給弁とを備えることができる。
また、前記複数の計量ボンベは、開閉弁を介して並列に接続されており、前記複数の計量ボンベのそれぞれは、当該前記計量ボンベ内の水素ガス圧を計測するための圧力計を有している。さらに、前記水素ガス開閉弁を開いて、前記第1の計量ボンベに所定の圧力まで水素ガスを充填し、前記第1の計量ボンベに充填後に、前記水素ガス開閉弁を閉じた後に前記水素ガス供給弁を開いて、前記水素ガス供給配管を用いて前記第1の計量ボンベから前記車載ボンベに水素ガスを供給することができる。また、前記車載ボンベに水素ガスを供給後に、前記第1の計量ボンベ内の水素圧力を計測し、計測された水素ガス圧に応じて、前記第2の計量ボンベに充填する水素ガス圧を決定し、前記水素ガス開閉弁を開いて、決定された水素ガス圧まで前記第2の計量ボンベに水素ガスを充填し、前記第2の計量ボンベに充填後に、前記水素ガス開閉弁を閉じた後に前記水素ガス供給弁を開いて、前記水素ガス供給配管を用いて前記第2の計量ボンベから前記車載ボンベに水素ガスを供給することができる。前記第1の計量ボンベから前記車載ボンベへの水素ガスの供給前と供給後の前記計量ボンベ内の水素ガス圧の差分、及び前記第2計量ボンベから前記車載ボンベへの水素ガスの供給前と供給後の前記計量ボンベ内の水素ガス圧の差分から、前記車載ボンベに供給した水素ガス量を算出するように構成されていることを特徴としてもよい。
Further, a hydrogen gas measuring device according to the present invention is a hydrogen gas measuring device for measuring the amount of hydrogen gas supplied to a vehicle-mounted cylinder mounted on a vehicle, and is connected to a pressure accumulator for storing hydrogen gas. , a second chamber having a predetermined volume and a predetermined compressive strength.
a plurality of measuring cylinders including one measuring cylinder and a second measuring cylinder; a hydrogen gas supply pipe for supplying hydrogen gas from the plurality of measuring cylinders to the vehicle-mounted cylinder; the pressure accumulator; and the plurality of measuring cylinders and a hydrogen gas on-off valve disposed between the plurality of measuring cylinders and the hydrogen gas supply valve disposed between the plurality of measuring cylinders and the vehicle-mounted cylinder.
Further, the plurality of measuring cylinders are connected in parallel via an on-off valve, and each of the plurality of measuring cylinders has a pressure gauge for measuring the hydrogen gas pressure in the measuring cylinder. there is Furthermore, the hydrogen gas on-off valve is opened to fill the first measuring cylinder with hydrogen gas to a predetermined pressure, and after filling the first measuring cylinder, the hydrogen gas on-off valve is closed and the hydrogen gas is By opening the supply valve, hydrogen gas can be supplied from the first metering cylinder to the vehicle-mounted cylinder using the hydrogen gas supply line. Further, after supplying the hydrogen gas to the vehicle-mounted cylinder, the hydrogen pressure in the first measuring cylinder is measured, and the hydrogen gas pressure to be filled in the second measuring cylinder is determined according to the measured hydrogen gas pressure. Then, the hydrogen gas on-off valve is opened to fill the second measuring cylinder with hydrogen gas up to the determined hydrogen gas pressure, and after filling the second measuring cylinder, the hydrogen gas on-off valve is closed. By opening the hydrogen gas supply valve, hydrogen gas can be supplied from the second metering cylinder to the vehicle-mounted cylinder using the hydrogen gas supply pipe. Difference between hydrogen gas pressure in the measuring cylinder before and after supply of hydrogen gas from the first measuring cylinder to the vehicle-mounted cylinder, and before supply of hydrogen gas from the second measuring cylinder to the vehicle-mounted cylinder It may be characterized in that the amount of hydrogen gas supplied to the vehicle-mounted cylinder is calculated from the difference in hydrogen gas pressure in the measuring cylinder after supply.

本発明に係る水素ガス計量装置では、第1の計量ボンベから車載ボンベに水素ガスを供給後に、第1の計量ボンベ内の水素圧力を計測し、計測された水素ガス圧に応じて、第2の計量ボンベに充填する水素ガス圧を決定し、水素ガス開閉弁を開いて、決定された水素ガス圧まで第1の計量ボンベと異なる第2の計量ボンベに水素ガスを充填し、第2の計量ボンベに充填後に、水素ガス開閉弁を閉じた後に水素ガス供給弁を開いて、水素ガス供給配管を用いて第2の計量ボンベから車載ボンベに水素ガスを供給するように構成されているので、第1の計量ボンベに繰り返し充填して車載ボンベに水素ガスを供給する場合よりも、さらに短時間で効率よく所望の圧力まで車載ボンベに水素ガスを供給できる水素ガス計量装置を提供することができる。
In the hydrogen gas measuring device according to the present invention, after supplying hydrogen gas from the first measuring cylinder to the vehicle-mounted cylinder, the hydrogen pressure in the first measuring cylinder is measured, and according to the measured hydrogen gas pressure, the second Determine the hydrogen gas pressure to be filled in the measuring cylinder, open the hydrogen gas on-off valve, fill the second measuring cylinder different from the first measuring cylinder with hydrogen gas up to the determined hydrogen gas pressure, After filling the metering cylinder, the hydrogen gas on-off valve is closed and then the hydrogen gas supply valve is opened to supply hydrogen gas from the second metering cylinder to the vehicle-mounted cylinder using the hydrogen gas supply pipe. To provide a hydrogen gas metering device capable of supplying hydrogen gas to a vehicle-mounted cylinder up to a desired pressure more efficiently in a short time than when supplying hydrogen gas to a vehicle-mounted cylinder by repeatedly filling a first metering cylinder. can.

本発明に係る水素ガス計量方法では、計量ボンベ充填工程において所定の容積を有する計量ボンベに所定の圧力まで水素ガスを充填し、次に、水素ガス供給工程において計量ボンベから車載ボンベに水素ガスを供給し、計量ボンベ充填工程において計測した計量ボンベ内の水素ガス圧と、水素ガス供給工程において計測した計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出するように構成されている。このため、車載ボンベに供給した水素ガス量を正確に、かつ安全に算出することができる。
In the hydrogen gas measuring method according to the present invention, a measuring cylinder having a predetermined volume is filled with hydrogen gas to a predetermined pressure in the measuring cylinder filling step, and then hydrogen gas is supplied from the measuring cylinder to the vehicle-mounted cylinder in the hydrogen gas supply step. The amount of hydrogen gas supplied to the on-board cylinder is calculated from the difference between the hydrogen gas pressure in the measuring cylinder measured in the measuring cylinder filling process and the hydrogen gas pressure in the measuring cylinder measured in the hydrogen gas supply process. is configured to Therefore, it is possible to accurately and safely calculate the amount of hydrogen gas supplied to the in-vehicle cylinder.

図1は、第1の実施形態に係る水素ガス計量装置を概略的に示す図である。FIG. 1 is a diagram schematically showing a hydrogen gas metering device according to a first embodiment. 図2は、第1の実施形態に係る水素ガス計量装置において、複数の計量ボンベを持つ場合の装置を概略的に示す図である。FIG. 2 is a diagram schematically showing the hydrogen gas metering device according to the first embodiment when it has a plurality of metering cylinders. 図3は、第1の実施形態に係る水素ガス計量方法の装置を備えた水素ガス供給システムを概略的に示す図である。FIG. 3 is a diagram schematically showing a hydrogen gas supply system equipped with a device for measuring hydrogen gas according to the first embodiment. 図4は、計量ボンベへの充填圧力を車載ボンベの最高充填圧力以下にした場合の、水素ガス計量方法の各工程を示すフローチャートを示す図である。FIG. 4 is a flowchart showing each step of the hydrogen gas weighing method when the filling pressure of the weighing cylinder is set to the maximum filling pressure of the vehicle-mounted cylinder or less. 図5は、本発明の方法の準備工程で車載残量圧を知り、或いは1回目の供給工程で車載残量圧を計測し、1回目の充填工程或いは2回目の充填工程に必要な水素ガス圧を知り、それを反映させて行う工程を示すフローチャートの図である。Fig. 5 shows the hydrogen gas required for the first filling process or the second filling process by knowing the vehicle residual pressure in the preparation process of the method of the present invention, or measuring the vehicle residual pressure in the first supply process. FIG. 10 is a flow chart showing the process of knowing the pressure and taking it into account. 図6は、計量ボンベ充填工程における水素ガス計量装置の開閉弁の開閉操作とそれによる水素ガスの流路を示す図である。FIG. 6 is a diagram showing the opening and closing operation of the on-off valve of the hydrogen gas metering device in the metering cylinder filling process and the resulting flow path of the hydrogen gas. 図7は、計量ボンベ充填工程における水素ガス計量装置の水素ガス供給ホース内に水素ガスを満たして供給量算出の初期圧を計測する方法の、開閉弁の開閉操作とそれによる水素ガスの流路を示す図である。Fig. 7 shows the opening and closing operation of the on-off valve and the resulting hydrogen gas flow path in the method of filling the hydrogen gas supply hose of the hydrogen gas metering device in the metering cylinder filling process and measuring the initial pressure for calculating the supply amount. It is a figure which shows. 図8は、水素ガス供給工程における水素ガス計量装置の開閉弁の開閉操作とそれによる水素ガスの流路を示す図である。FIG. 8 is a diagram showing the opening and closing operation of the on-off valve of the hydrogen gas metering device in the hydrogen gas supply process and the resulting hydrogen gas flow path. 図9は、水素ガス供給工程における水素ガス計量装置の2回目の供給工程のための2回目の計量ボンベ充填工程を行う、開閉弁の開閉操作とそれによる水素ガスの流路を示す図である。FIG. 9 is a diagram showing the opening and closing operation of the on-off valve and the flow path of the hydrogen gas resulting from the opening and closing operation of the on-off valve for performing the second weighing cylinder filling process for the second supply process of the hydrogen gas measuring device in the hydrogen gas supply process. . 図10は、計量ボンベ準備工程において、車載ボンベの車載残量圧を初回計量ボンベ充填工程の前に計測する方法における、開閉弁の開閉操作とそれによる水素ガスの流路を示す図である。FIG. 10 is a diagram showing the opening and closing operation of the on-off valve and the flow path of the hydrogen gas resulting therefrom in the method of measuring the vehicle residual pressure of the vehicle-mounted cylinder before the initial measurement cylinder filling process in the measurement cylinder preparation process. 図11は、計量ボンベの圧力と車載ボンベの圧力が、計量ボンベ準備工程、計量ボンベ充填工程、水素ガス供給工程を通して、変化する過程を示した図である。FIG. 11 is a diagram showing a process in which the pressure of the weighing cylinder and the pressure of the vehicle-mounted cylinder change through the weighing cylinder preparation process, the weighing cylinder filling process, and the hydrogen gas supply process. 図12は、車載ボンベの水素ガスの残量を計量ボンベ準備工程で入手した場合に、計量ボンベの圧力と車載ボンベの圧力が、変化する過程を示した図である。FIG. 12 is a diagram showing a process in which the pressure of the weighing cylinder and the pressure of the vehicle-mounted cylinder change when the remaining amount of hydrogen gas in the vehicle-mounted cylinder is obtained in the weighing cylinder preparation process. 図13は、水素ガス計量方法における水素ガス供給により、車載ボンベの圧力が変化する状況を示したグラフである。FIG. 13 is a graph showing a situation in which the pressure of the on-vehicle cylinder changes due to the supply of hydrogen gas in the hydrogen gas metering method.

いくつかの実施形態に係わる水素ガス計量方法、及び水素ガス計量装置について、図面を参照しつつ説明する、以下の説明では、図面の説明において同一の要素には同一の符号を付ける。 A hydrogen gas measuring method and a hydrogen gas measuring device according to some embodiments will be described with reference to the drawings.

[第1の実施形態]
図1、及び図2に、第1の実施形態に係る水素ガス計量装置を概略的に示す。また、図3は、水素ガス計量装置1を含む水素ガス計量システムを説明するための図である。
[First embodiment]
1 and 2 schematically show a hydrogen gas metering device according to a first embodiment. FIG. 3 is a diagram for explaining a hydrogen gas metering system including the hydrogen gas metering device 1. As shown in FIG.

本実施形態に係わる水素ガス計量装置1について説明する前に、水素ガス計量装置1を含む水素ガス計量システムについて説明する。図3を参照すると、本実施形態に係わる水素ガス計量装置1を含む水素ガス供給システムが示されている、図3において、通常、供給スタンドには水素ガスを充填した複数のボンベを集結したカードル11が搬入される。これからいくつかの開閉弁v13、v14、を経由して、高圧圧縮機9により300リッターボンベを数台使用した大容積で約100MPaの最高充填圧力を持った蓄圧器8に開閉弁v2を経由して送られる。蓄圧器8からは、開閉弁v3、流量調整弁5a、プレクーラー7とフィルター6b、開閉弁v8(又は、開閉弁v8、v9、v10)を経て、本実施形態に係わる水素ガス計量装置1に入る。本実施形態において、開閉弁v3、及び開閉弁v8(又は、開閉弁v8、v9、v10)が、水素ガス開閉弁に相当する。
次に本実施形態の水素ガス計量装置1ついて以下に説明する。
Before describing the hydrogen gas measuring device 1 according to this embodiment, a hydrogen gas measuring system including the hydrogen gas measuring device 1 will be described. Referring to FIG. 3, a hydrogen gas supply system including a hydrogen gas metering device 1 according to this embodiment is shown. In FIG. 11 is brought in. From this, via several on-off valves v13 and v14, the high-pressure compressor 9 uses several 300-liter cylinders to reach the pressure accumulator 8, which has a maximum filling pressure of about 100 MPa and has a large capacity, via the on-off valve v2. sent. From the pressure accumulator 8, through the on-off valve v3, the flow control valve 5a, the precooler 7 and the filter 6b, the on-off valve v8 (or the on-off valves v8, v9, v10), to the hydrogen gas measuring device 1 according to this embodiment come in. In this embodiment, the on-off valve v3 and the on-off valve v8 (or the on-off valves v8, v9, and v10) correspond to hydrogen gas on-off valves.
Next, the hydrogen gas metering device 1 of this embodiment will be described below.

図1の水素ガス計量装置1は、蓄圧器8から車載ボンベ14に供給する水素ガスの流路にあるものである。計量を流量方式で行う場合は、蓄圧器8から車載ボンベ14への流路の中に流量計があるが、本方法の場合は流量計を置かず、それに代えて計量ボンベを置くのである。
計量は液体においては体積で行うが、水素ガスの場合は体積と比例する水素ガス圧の計測で行うのであり、まず水素ガスを計量ボンベに入れて水素ガス圧を計測し、出して水素ガス圧を計測して、その差圧を知って計量するのである。
The hydrogen gas metering device 1 of FIG. 1 is located in the flow path of hydrogen gas supplied from the pressure accumulator 8 to the vehicle cylinder 14 . When metering is performed by the flow rate method, there is a flow meter in the flow path from the pressure accumulator 8 to the vehicle-mounted cylinder 14, but in the case of this method, no flow meter is placed, and a metering cylinder is placed instead.
Liquids are measured by volume, but hydrogen gas is measured by measuring the hydrogen gas pressure, which is proportional to the volume. is measured, and the differential pressure is known and weighed.

この水素ガス計量装置1の流路の構成は、機器の配置と、供給スタンドのデザインで変わり得るので、原理を表すように図示する。各機器は今後進歩するが、その機器を組み込む場合も同じである。 The configuration of the flow path of this hydrogen gas metering device 1 can be changed depending on the arrangement of equipment and the design of the supply stand, so it is illustrated to represent the principle. Each device will advance in the future, but so will the case of incorporating that device.

図1の蓄圧器8にはその入側にある高圧圧縮機9から開閉弁v2を経由して水素ガスの流路がつながっている。また、出側にある開閉弁v3の後の流路にはフィルター6a、流量調整弁5a、プレクーラー7とフィルター6b、開閉弁v8があり、計量ボンベ2aが1台ある。 The pressure accumulator 8 in FIG. 1 is connected to a hydrogen gas flow path from a high-pressure compressor 9 on its inlet side via an on-off valve v2. In addition, in the passage after the on-off valve v3 on the outlet side, there are a filter 6a, a flow control valve 5a, a pre-cooler 7 and a filter 6b, an on-off valve v8, and one weighing cylinder 2a.

計量ボンベ2aにはその元バルブになる開閉弁v5の直近に、圧力計3aと温度計4aを備える。供給路の途中には貯留槽10につながる安全弁19と、流量調整弁5bと圧力計3dとが設けられている。また、計量ボンベ2aから車載ボンベ14に接続するための配管の途中にある、流量調整弁5bと圧力計3dと車載ボンベ14との間は、水素ガス供給ホース16により接続されている。また、水素ガス供給ホース16の車載ボンベ14側には、開閉弁v11と充填カプラーホース側12が設けられている。車載ボンベ14の開閉弁v12にある充填カプラー車載側13があり。水素ガス供給工程s103においては、充填カプラー車載側13と充填カプラーホース側12が接続される。 The metering cylinder 2a is provided with a pressure gauge 3a and a thermometer 4a in the immediate vicinity of the on-off valve v5 which is the original valve. A safety valve 19 connected to the storage tank 10, a flow control valve 5b, and a pressure gauge 3d are provided in the middle of the supply path. A hydrogen gas supply hose 16 connects between the flow control valve 5b, the pressure gauge 3d, and the vehicle-mounted cylinder 14 in the middle of the piping for connecting the weighing cylinder 2a to the vehicle-mounted cylinder 14. FIG. Further, on the vehicle cylinder 14 side of the hydrogen gas supply hose 16, an on-off valve v11 and a filling coupler hose side 12 are provided. There is a filling coupler on-vehicle side 13 at the on-off valve v12 of the on-vehicle cylinder 14. In the hydrogen gas supply step s103, the charging coupler vehicle side 13 and the charging coupler hose side 12 are connected.

また、図2の如く複数の計量ボンベを持つ場合は、各計量ボンベに各工程の分担ができ、準備時間を減らすことが出来る、或いは開閉弁を介して並列に接続された計量ボンベを用いることで、後述するように、計量ボンベ充填工程と水素ガス供給工程の組み合わせの自由度が増し、車載ボンベへの好適な水素ガスの供給が可能になる。さらに、充填と供給の速度が速くなり、また、様々な工程内での手順の選択が可能で、これも全体の効率に寄与する。なお、本実施形態において、開閉弁v5(又は、開閉弁v5、v6、v7)が、水素ガス供給弁に相当する。 Also, when there are multiple weighing cylinders as shown in Fig. 2, each weighing cylinder can be assigned to each process and preparation time can be reduced, or weighing cylinders connected in parallel via open/close valves can be used. As will be described later, the degree of freedom in combining the weighing cylinder filling process and the hydrogen gas supply process is increased, and hydrogen gas can be suitably supplied to the vehicle-mounted cylinder. In addition, the speed of filling and feeding is increased and the selection of procedures within the various processes is also possible, which also contributes to the overall efficiency. In this embodiment, the on-off valve v5 (or on-off valves v5, v6, v7) corresponds to the hydrogen gas supply valve.

次に、水素ガス計量方法について、いくつかの実施形態を用いて詳細に説明する。 Next, the hydrogen gas metering method will be described in detail using several embodiments.

[第2の実施形態]
上記の図1及び図2の水素ガス計量装置1を用いて、車輛に搭載された車載ボンベ14に供給し、供給された水素ガス量を計測するための方法について、図4を用いて説明する。図4は、第2の実施形態の水素ガス計量方法を説明するためのフローチャートを示している。
[Second embodiment]
A method for supplying hydrogen gas to a vehicle-mounted cylinder 14 mounted on a vehicle and measuring the amount of supplied hydrogen gas using the hydrogen gas measuring device 1 shown in FIGS. 1 and 2 will be described with reference to FIG. . FIG. 4 shows a flow chart for explaining the hydrogen gas metering method of the second embodiment.

図4に示すように、本実施形態の水素ガス計量方法は、計量ボンベ準備工程と、計量ボンベ充填工程と、水素ガス供給工程と、車載ボンベ14に供給した水素ガス量を算出する供給量算出工程とを有する。
以下、各工程について詳細に説明する。
As shown in FIG. 4, the hydrogen gas measuring method of the present embodiment includes a weighing cylinder preparation process, a weighing cylinder filling process, a hydrogen gas supply process, and a supply amount calculation for calculating the amount of hydrogen gas supplied to the vehicle-mounted cylinder 14. and a step.
Each step will be described in detail below.

(計量ボンベ準備工程)
計量ボンベ準備工程s101(以下、準備工程と言う)は、例えば容積140リッターの計量ボンベ2(計量ボンベ2a)を準備する。計量ボンベ2の最高充填圧力は、例えば、70MPa及び100MPaとすることができる。
(Weighing cylinder preparation process)
In the measuring cylinder preparation step s101 (hereinafter referred to as the preparation process), for example, a measuring cylinder 2 (measuring cylinder 2a) having a volume of 140 liters is prepared. The maximum filling pressure of the metering cylinder 2 can be set to 70 MPa and 100 MPa, for example.

本実施形態において、計量ボンベ2の最高充填圧力は、車載ボンベの最高充填圧力とほぼ同じか、又は車載ボンベの最高充填圧力値より大きい値から車載ボンベの最高充填圧力の約1.5倍以下の範囲に設定されている。また、前記計量ボンベの容積は、車載ボンベの容積の2倍以下とすることができる。 In this embodiment, the maximum filling pressure of the metering cylinder 2 is approximately the same as the maximum filling pressure of the vehicle-mounted cylinder, or from a value greater than the maximum filling pressure value of the vehicle-mounted cylinder to about 1.5 times or less of the maximum filling pressure of the vehicle-mounted cylinder. is set in the range of Also, the volume of the weighing cylinder can be set to twice or less the volume of the vehicle-mounted cylinder.

本実施形態においては、計量ボンベ充填工程での充填圧力は、常に車載ボンベの最高充填圧力を越えないので、車載ボンベ14の水素ガスの残量の圧力(以下、車載残量圧と言う)や車載ボンベ14の容積を知る必要はない。 In the present embodiment, the filling pressure in the weighing cylinder filling process does not always exceed the maximum filling pressure of the on-board cylinder, so the pressure of the residual amount of hydrogen gas in the on-board cylinder 14 (hereinafter referred to as the on-board residual pressure) or There is no need to know the volume of the onboard cylinder 14 .

(計量ボンベ充填工程)
次に、計量ボンベ充填工程s102(以下、充填工程s102と言う)について説明する。
(Weighing cylinder filling process)
Next, the weighing cylinder filling step s102 (hereinafter referred to as filling step s102) will be described.

充填工程s102は、計量ボンベに定めた圧力の水素ガスを充填する工程である。
通常、車載ボンベ14の車載残量圧は、不明であるので、計量ボンベに充填する水素ガス圧力は、車載ボンベ14の最高充填圧力(例えば、70MPa)とほぼ同じ圧力、又は、車載ボンベ14の最高充填圧力以下とすることが好ましい。
The filling step s102 is a step of filling the measuring cylinder with hydrogen gas at a predetermined pressure.
Normally, the on-vehicle residual pressure of the on-vehicle cylinder 14 is unknown. It is preferable to set it to below the maximum filling pressure.

図6に、充填工程s102において行われる水素ガス計量装置1の開閉弁の開閉操作とそれによる水素ガスの流路を示す。図6において、充填工程s102における、開閉弁v3とv8の操作と流量調整弁5aと、それで出来る水素ガスの流路を、開閉弁の開の記号と流路に白線を入れた黒太線で示す。図6は蓄圧器8から開閉弁v3、フィルター6a、流量調整弁5a、プレクーラー7、フィルター6b、開閉弁v8を経て計量ボンベ2a、に水素ガスが送られる状況を示している。 FIG. 6 shows the opening/closing operation of the opening/closing valve of the hydrogen gas metering device 1 performed in the filling step s102 and the resulting hydrogen gas flow path. In FIG. 6, the operation of the on-off valves v3 and v8, the flow rate adjustment valve 5a, and the hydrogen gas flow path formed by them in the filling step s102 are indicated by the open on-off valve symbol and the thick black line with white lines in the flow path. . FIG. 6 shows a state in which hydrogen gas is sent from the accumulator 8 to the weighing cylinder 2a via the on-off valve v3, the filter 6a, the flow control valve 5a, the precooler 7, the filter 6b, and the on-off valve v8.

計量ボンベ2aにはその元バルブ近くに、圧力計3aと温度計4aが備わっている。この白線を入れた黒太線で示す流路により計量ボンベ2a、に水素ガスが送られ、圧力計3aの指示により、開閉弁v3とv8が閉じられる。これにより、所定の圧力の水素ガスが計量ボンベ2aに充填される。 The measuring cylinder 2a is equipped with a pressure gauge 3a and a thermometer 4a near its base valve. Hydrogen gas is sent to the measuring cylinder 2a through the flow path indicated by the thick black line with the white line, and the on-off valves v3 and v8 are closed according to the indication of the pressure gauge 3a. As a result, the measuring cylinder 2a is filled with hydrogen gas of a predetermined pressure.

なお、計量ボンベ2aから、水素ガス供給ホース16を接続して、車載ボンベに、水素ガスを供給するときに、水素ガス供給ホース16に水素ガスが充填されていない場合や、計量ボンベ2aに充填された水素ガス圧よりも低い場合は、車載ボンベに、水素ガスを供給する前に、水素ガス供給ホース16内を、計量ボンベ2aに充填された水素ガス圧と略同じ圧力の水素ガスを充填しておくことができる。 In addition, when the hydrogen gas supply hose 16 is connected from the measuring cylinder 2a to supply hydrogen gas to the vehicle-mounted cylinder, if the hydrogen gas supply hose 16 is not filled with hydrogen gas or if the measuring cylinder 2a is filled with hydrogen gas, If the hydrogen gas pressure is lower than the hydrogen gas pressure set, the inside of the hydrogen gas supply hose 16 is filled with hydrogen gas having substantially the same pressure as the hydrogen gas pressure filled in the weighing cylinder 2a before supplying the hydrogen gas to the on-vehicle cylinder. can be kept.

また、充填工程s102の中の、所定の圧力の水素ガスが計量ボンベ2aに充填された後であって、車載ボンベ14に水素ガスを供給するための工程(水素ガス供給工程)の前に、水素ガス供給ホース16内を、計量ボンベ2に充填された水素ガス圧と略同じ圧力の水素ガスに充填することが出来る。以下に、図7を参照しながら、水素ガスを供給する前に、水素ガス供給ホース16内を、計量ボンベ2に充填された水素ガス圧と略同じ圧力の水素ガスを充填するための方法を説明する。 Further, in the filling step s102, after the measuring cylinder 2a is filled with hydrogen gas of a predetermined pressure and before the step of supplying hydrogen gas to the vehicle-mounted cylinder 14 (hydrogen gas supply step), The inside of the hydrogen gas supply hose 16 can be filled with hydrogen gas having substantially the same pressure as the hydrogen gas pressure with which the weighing cylinder 2 is filled. A method for filling the hydrogen gas supply hose 16 with hydrogen gas having substantially the same pressure as the hydrogen gas pressure filled in the weighing cylinder 2 before supplying the hydrogen gas will be described below with reference to FIG. explain.

図7において、充填カプラーホース側12の開閉弁v11を閉めた状態で、計量ボンベ2aの供給側の開閉弁v5を開ける方法である。なお、本実施形態における開閉弁v5が、水素ガス供給弁に相当する。これにより水素ガス供給ホース16の内部が計量ボンベ2aと同圧になるので、この供給ホース16の内部を計量ボンベ2a内の圧力と同圧にしたときの圧力を充填工程s102の圧力とすることができる。水素ガス供給ホース16内を、計量ボンベ2aに充填された水素ガス圧と略同じ圧力の水素ガスを充填する工程は、初めて、又は車載ボンベ14に低圧に供給したあとに、車載ボンベに水素ガスを供給する場合に行うもので、続けて70MPaの水素ガス供給工程を行う時は不要である。 In FIG. 7, the opening/closing valve v5 on the supply side of the weighing cylinder 2a is opened while the opening/closing valve v11 on the filling coupler hose side 12 is closed. The on-off valve v5 in this embodiment corresponds to the hydrogen gas supply valve. As a result, the inside of the hydrogen gas supply hose 16 has the same pressure as the measuring cylinder 2a, so the pressure when the inside of this supply hose 16 is made to have the same pressure as the inside of the measuring cylinder 2a is used as the pressure in the filling step s102. can be done. The process of filling the inside of the hydrogen gas supply hose 16 with hydrogen gas having substantially the same pressure as the hydrogen gas pressure filled in the weighing cylinder 2a is performed for the first time or after supplying the hydrogen gas to the in-vehicle cylinder 14 at a low pressure. , and is not required when the 70 MPa hydrogen gas supply step is subsequently performed.

(水素ガス供給工程)
次に、車載ボンベ14に水素ガスを供給するための水素ガス供給工程s103(以下、供給工程s103と言う)について説明する。
(Hydrogen gas supply process)
Next, the hydrogen gas supply step s103 (hereinafter referred to as the supply step s103) for supplying hydrogen gas to the vehicle-mounted cylinder 14 will be described.

図8は、供給工程s103において行われる水素ガス計量装置1の開閉弁の開閉操作とそれによる水素ガスの流路を示す。図8において、開閉弁v5、v11とv12は開かれ、車載ボンベ14に水素ガスが供給される。この供給工程s103の結果、車載ボンベ14の水素圧力と計量ボンベ2aの水素圧力は同圧になる。これに従い、水素ガスを供給した後の車載ボンベ14の圧力は、計量ボンベ2aに設けられた圧力計3aで計測することができる。 FIG. 8 shows the opening/closing operation of the opening/closing valve of the hydrogen gas metering device 1 performed in the supply step s103 and the resulting hydrogen gas flow path. In FIG. 8, on-off valves v5, v11 and v12 are opened, and hydrogen gas is supplied to the in-vehicle cylinder 14. In FIG. As a result of this supply step s103, the hydrogen pressure in the vehicle-mounted cylinder 14 and the hydrogen pressure in the weighing cylinder 2a become the same. Accordingly, the pressure of the vehicle-mounted cylinder 14 after supplying the hydrogen gas can be measured by the pressure gauge 3a provided on the weighing cylinder 2a.

供給工程s103において、水素ガスが供給された後の車載ボンベ14の水素ガスの圧力が、所望の圧力に到達した場合は、ここで供給工程は終了する。一方、水素ガスが供給された後の車載ボンベ14の水素ガスの圧力が、所望の圧力に到達していない場合は、続けて、充填工程s102と供給工程s103と供給量算出工程s104を、車載ボンベ14の水素ガスの圧力が、所望の圧力に到達するまで行う。必要なら充填工程s102と供給工程s103と供給量算出工程s104を繰り返す。 In the supply step s103, if the pressure of the hydrogen gas in the vehicle-mounted cylinder 14 after the hydrogen gas is supplied reaches the desired pressure, the supply step ends here. On the other hand, if the pressure of the hydrogen gas in the in-vehicle cylinder 14 after the hydrogen gas is supplied does not reach the desired pressure, the filling step s102, the supply step s103, and the supply amount calculation step s104 are performed continuously. This is done until the pressure of the hydrogen gas in the cylinder 14 reaches the desired pressure. If necessary, the filling step s102, the supply step s103, and the supply amount calculation step s104 are repeated.

次に、図11の(A)部に、本実施形態の水素ガス計量方法を用いて、計量ボンベ2aから車載ボンベ14に水素ガスを供給した時の各工程における計量ボンベと車載ボンベの圧力の変化の様子を示す。なお、図11には、比較のために、後で説明する他の実施形態における車載ボンベの圧力の変化の様子も合わせて記載してある。また、説明を正確にするために、この図11は計量ボンベと車載ボンベの容積が等しい場合である。 Next, in part (A) of FIG. 11, using the hydrogen gas measuring method of the present embodiment, the pressure of the measuring cylinder and the on-vehicle cylinder in each process when hydrogen gas is supplied from the measuring cylinder 2a to the on-vehicle cylinder 14 is shown. Shows the state of change. For comparison, FIG. 11 also shows how the pressure of the vehicle-mounted cylinder changes in another embodiment, which will be described later. Also, to make the explanation more accurate, FIG. 11 shows the case where the volumes of the weighing cylinder and the vehicle-mounted cylinder are the same.

図11において、(イ)は、計量ボンベの水素ガス圧力、(ロ)は、車載ボンベの水素ガス圧力を示す。また、各棒グラフの縦軸は圧力値、横幅はボンベの容積の値を概略的に表している。また、棒グラフにおいて、工程の前の圧力を斜線の面に、工程の後の圧力を点々の面に塗ってある。太実線の横線は、各工程により出来た圧力値を指している。 In FIG. 11, (a) indicates the hydrogen gas pressure of the weighing cylinder, and (b) indicates the hydrogen gas pressure of the vehicle-mounted cylinder. In addition, the vertical axis of each bar graph roughly represents the pressure value, and the horizontal width roughly represents the value of the volume of the cylinder. In the bar graph, the pressure before the process is plotted on the shaded area, and the pressure after the process is plotted on the dotted area. The horizontal line of the thick solid line indicates the pressure value produced by each process.

なお、図11の点線で囲んだ領域には、(参考)として、棒グラフを説明するための図を挿入してある。 It should be noted that a figure for explaining the bar graph is inserted as (reference) in the area surrounded by the dotted line in FIG. 11 .

図11の(A)部に、本実施形態の水素ガス計量方法を用いて、計量ボンベ2から車載ボンベ14に水素ガスを供給した時の車載ボンベの圧力の変化の様子を示す。図11(A)部に示すように、計量ボンベ2aの最高充填圧が70MPaでこれの満圧が1回目の充填工程s102であり、たまたま車載残量圧が30MPaであった場合、1回目の供給工程s103で車載ボンベ14と計量ボンベ2aの圧力が50MPaになり、さらに2回目の供給工程s103を行い車載ボンベ14の水素ガス圧が60MPaになる状態を示している Part (A) of FIG. 11 shows how the pressure of the vehicle-mounted cylinder changes when hydrogen gas is supplied from the weighing cylinder 2 to the vehicle-mounted cylinder 14 using the hydrogen gas measuring method of the present embodiment. As shown in part (A) of FIG. 11, the maximum filling pressure of the weighing cylinder 2a is 70 MPa, and the full pressure is the first filling step s102. In the supply step s103, the pressures of the vehicle-mounted cylinder 14 and the weighing cylinder 2a become 50 MPa.

図13のグラフの折れ線(A)は1回目の供給、2回目の供給、3回目の供給と繰り返すことで。車載ボンベの圧力が、最高充填圧力に近づく様子を示している。次第に最高充填圧力に近づくが、これを越えることはないことを示している。図13の折れ線(A)は始めの車載ボンベ14の圧力が30MPaであった場合、折れ線(A‘)は10MPaであった場合である。いずれもこの車載ボンベ14の準備工程s101での圧力は1回目の供給工程s103が終わるまで解らないものであり、また、この第2の実施形態においては、それを知る必要がないのである。 The broken line (A) in the graph of FIG. 13 is obtained by repeating the first supply, the second supply, and the third supply. It shows how the pressure of the on-board cylinder approaches the maximum filling pressure. It gradually approaches the maximum filling pressure, but does not exceed it. The polygonal line (A) in FIG. 13 is for the case where the initial pressure of the vehicle-mounted cylinder 14 is 30 MPa, and the polygonal line (A') is for the case where it is 10 MPa. In either case, the pressure of the vehicle-mounted cylinder 14 in the preparation step s101 is not known until the first supply step s103 is completed, and there is no need to know it in the second embodiment.

この第2の実施形態は、第1の実施形態の装置を使用して行う、計量ボンベの充填圧を車載ボンベの最高充填圧力以下とする基本となる方法である。計量ボンベは1台でもよく、ここでは、計量ボンベには、車載ボンベに使用されている最高充填圧力70MPa、容積140リッターのものと同一規格のボンベを使用するとする。 This second embodiment is a basic method of setting the filling pressure of the metering cylinder to the maximum filling pressure of the vehicle-mounted cylinder or less, which is performed using the apparatus of the first embodiment. One weighing cylinder may be used, and here, it is assumed that the weighing cylinder has the same standard as that used for vehicle-mounted cylinders, with a maximum filling pressure of 70 MPa and a volume of 140 liters.

先ず、準備工程s101を経た計量ボンベに1回目の充填工程s102として満圧の70MPaに水素ガスを充填し、圧力計3aが示す計量ボンベの圧力を計測する。これを1回目の供給工程s103として車載ボンベに供給する。ここで車載ボンベの最高充填圧力は70MPaであり容積は解っているが、車載ボンベに残っている水素ガス量は不明であるが、それは解らなくて良いのである。また、容積が不明の場合も解らなくて良いのである。 First, in the first filling step s102, the measuring cylinder that has undergone the preparation step s101 is filled with hydrogen gas to a full pressure of 70 MPa, and the pressure of the measuring cylinder indicated by the pressure gauge 3a is measured. This is supplied to the in-vehicle cylinder as the first supply step s103. Here, the maximum filling pressure of the vehicle-mounted cylinder is 70 MPa, and the volume is known, but the amount of hydrogen gas remaining in the vehicle-mounted cylinder is unknown, but it does not have to be known. Moreover, even if the volume is unknown, it does not have to be known.

車載ボンベ14への1回目の供給工程が終わると、計量ボンベ2aから供給された水素ガス量が1回目の充填工程s102と1回目の供給工程s103で計測された水素ガス圧の差圧から算出される。
1回目の供給工程の後の車載ボンベ14の水素ガス圧は、70MPaに届かない。そこで次は2回目の充填工程s102と2回目の供給工程s103を行い、これの差圧を計測し、これを繰り返す。
When the first supply process to the onboard cylinder 14 is completed, the amount of hydrogen gas supplied from the weighing cylinder 2a is calculated from the pressure difference between the hydrogen gas pressures measured in the first filling process s102 and the first supply process s103. be done.
The hydrogen gas pressure in the vehicle-mounted cylinder 14 after the first supply process does not reach 70 MPa. Therefore, next, the second filling process s102 and the second supply process s103 are performed, the pressure difference between them is measured, and this is repeated.

充填工程と供給工程を1回目、2回目と、さらに必要な場合は3回目、4回目と繰り返すことによる車載ボンベ14の圧力変化の過程は、図11の(A)部と図13の折れ線(A)に示すとおりである。図13では、この1回目の充填工程s102と1回目の供給工程s103を2回目、3回目と繰り返すことにより、車載ボンベ14の圧力が上昇する状態を示したのが、図13の折れ線(A)と(A‘)である。図13の折れ線(A)は1回目供給工程s103により車載ボンベ14の圧力が50MPaになり、それにより車載残量圧が30MPaであったと解った場合。図13の折れ線(A‘)は1回目供給工程s103により車載ボンベ14の圧力が40MPaになり、それにより車載残量圧が10MPaであったと解った場合である。 The process of the pressure change of the vehicle cylinder 14 by repeating the filling process and the supply process for the first time, the second time, and if necessary, the third time and the fourth time is shown in FIG. A) is as shown. In FIG. 13, the polygonal line (A ) and (A′). The polygonal line (A) in FIG. 13 indicates the case where the pressure of the vehicle cylinder 14 becomes 50 MPa in the first supply step s103, and the vehicle residual pressure is found to be 30 MPa. The polygonal line (A') in FIG. 13 indicates the case where the pressure of the vehicle cylinder 14 becomes 40 MPa in the first supply step s103, and the vehicle residual pressure is found to be 10 MPa.

供給は常に70MPa以下の計量ボンベの供給圧力から始まるので、計量ボンベと車載ボンベの圧力が平衡になる圧力は常に70MPaを越えることはなく、2回目の供給工程、3回目の供給工程の繰り返しで、70MPaに工程ごとに近づくので、希望圧に届いた所で供給の繰り返しをやめる。
全ての工程での水素ガス圧の計測値の差圧の合計を計量値とする。
Since the supply always starts from the supply pressure of the weighing cylinder of 70 MPa or less, the pressure at which the pressure of the weighing cylinder and the on-vehicle cylinder are balanced never exceeds 70 MPa. , 70 MPa at each step, so the repetition of the supply is stopped when the desired pressure is reached.
The measured value is the sum of the differential pressures of the hydrogen gas pressure measurements in all processes.

第2の実施形態は、70MPaには近づくが、70MPaにすることは出来ない反面、車載ボンベの最高充填圧力を越える危険が全くない。また、装置が簡便であるという特徴がある。 Although the second embodiment approaches 70 MPa, it cannot reach 70 MPa. Another feature is that the device is simple.

この第2の実施形態の方法において、計量ボンベの最高充填圧力は70MPaに拘らず。70MPa以上のボンベならいずれでも良い。この第2の実施形態の方法においては、車載ボンベと計量ボンベの容積の差を知る必要もない。充填工程s102の後の水素ガス圧と供給工程s103の後の水素ガス圧の差圧から車載ボンベの容積は算出できるのである。 In the method of this second embodiment, the maximum filling pressure of the weighing cylinder is 70 MPa. Any cylinder of 70 MPa or more may be used. In the method of this second embodiment, there is no need to know the difference in volume between the vehicle-mounted cylinder and the weighing cylinder. The volume of the onboard cylinder can be calculated from the differential pressure between the hydrogen gas pressure after the filling step s102 and the hydrogen gas pressure after the supply step s103.

充填工程においては、高い圧力の蓄圧器8から計量ボンベに定めた圧力に充填する必要があるが、この第2の実施形態の場合は、充填側流量調整弁5aで流量を絞って時間を掛けて充填できるので、開閉弁v8の開閉の応答により充填の停止を正確に行うことが出来る。一方、車載ボンベ14に対する供給工程においては、定めた圧力に充填されている計量ボンベからの供給であるので、供給側流量調整弁5bで流量を調整して供給工程を行わなくても開閉弁v11の開閉の応答が遅くても、車載ボンベ14への供給に支障がないのである。 In the filling process, it is necessary to fill the weighing cylinder from the high-pressure accumulator 8 to a predetermined pressure. Therefore, the filling can be accurately stopped in response to the opening and closing of the on-off valve v8. On the other hand, in the supply process to the in-vehicle cylinder 14, since the supply is from the weighing cylinder filled to a predetermined pressure, the flow rate is adjusted by the supply side flow rate adjustment valve 5b and the supply process is not performed. Even if the opening/closing response of is slow, the supply to the onboard cylinder 14 is not hindered.

[第3の実施形態]
再び、図5を用いて、第3の実施形態の水素ガス計量方法を説明する。図5に、第3の実施形態の水素ガス計量方法を説明するためのフローチャートを示す。第2の実施形態で説明した水素ガス計量方法では、水素ガス圧力が所望の圧力に到達するまで1回目の充填工程s102と、1回目の供給工程s103を2回目、3回目と繰り返し、車載ボンベ14の圧力を順次高め、最後に車載ボンベに供給した水素ガス量を算出するものである。
[Third embodiment]
The method for measuring hydrogen gas according to the third embodiment will be described again with reference to FIG. FIG. 5 shows a flowchart for explaining the hydrogen gas metering method of the third embodiment. In the hydrogen gas weighing method described in the second embodiment, the first filling step s102 and the first supply step s103 are repeated for the second time and the third time until the hydrogen gas pressure reaches the desired pressure. 14 pressure is gradually increased, and finally the amount of hydrogen gas supplied to the onboard cylinder is calculated.

一方、本第3の実施形態では、図5のフローチャートのs107の如く、車載残量圧を車載の圧力計から取得して、それに沿って、計量ボンベ2(2a、2b、2c)への充填工程s102の圧力を決め、これにより、繰り返しの回数を少なく供給工程s103を行う方法である。 On the other hand, in the third embodiment, as in s107 of the flowchart of FIG. In this method, the pressure of step s102 is determined, and thereby the supply step s103 is performed with a reduced number of repetitions.

充填工程と、供給工程の繰り返し回数を少なくして一気に最大充填圧力の満圧にする方法である。 In this method, the number of repetitions of the filling process and the supply process is reduced, and the maximum filling pressure is reached at once.

これは、車載ボンベ14の車載残量圧と最大充填圧力との差分の水素ガス量を計量ボンベに70MPaより多く充填して、1回の初回供給工程で、車載ボンベに目標の満圧を充填しようとするものであり、その例は図11の(B)部および(C)部の如くである。この図11の棒グラフの読み方は第2の実施形態に記載しているので記述を省略する。 This is done by filling more than 70 MPa of hydrogen gas, which is the difference between the in-vehicle residual pressure of the in-vehicle cylinder 14 and the maximum filling pressure, into the measuring cylinder, and filling the in-vehicle cylinder to the target full pressure in one initial supply process. Examples are shown in parts (B) and (C) of FIG. Since the reading of the bar graph in FIG. 11 is described in the second embodiment, the description is omitted.

車載残量圧と計量ボンベの最高耐圧強度と車載ボンベ14の容積によると、図11の(C)部の如く、1回目の供給工程で車載ボンベを満圧に出来る場合と、出来ない場合がある。1回目の供給工程で満圧に出来ない場合は図11の(B)部の棒グラフの如く2回目の充填工程と2回目の供給工程と繰り返す。 According to the onboard residual pressure, the maximum compressive strength of the measuring cylinder, and the volume of the onboard cylinder 14, as shown in part (C) of FIG. be. If the full pressure cannot be achieved in the first supply process, the second filling process and the second supply process are repeated as shown in the bar graph of part (B) of FIG.

準備工程、1回目の充填工程、1回目の供給工程、2回目の充填工程、2回目の供給工程、さらに繰り返す場合のすべての工程の差圧を全工程の後に合計して供給量を算出する。充填工程と供給工程の繰り返し回数を少なくして一気に最大充填圧力の満圧にする方法である。 Calculate the supply amount by totaling the differential pressure of all processes after the preparation process, the first filling process, the first feeding process, the second filling process, the second feeding process, and the case where it is repeated. . In this method, the number of repetitions of the filling process and the supply process is reduced, and the maximum filling pressure is reached at once.

図5のs107に示す如く、準備工程において車載残量圧を車載ボンベの圧力計から知ることが出来ることを利用し、充填工程における水素ガス圧を車載ボンベ14の最高充填圧力より高めることで行う。この第3の実施形態の場合は車載ボンベの圧力計から得た数値を安全サイドに修正して実施するが、この車載ボンベの圧力計の値が誤っていて、1回目の供給で車載ボンベの最高充填圧力を越える時は、安全弁19で、最高充填圧力を越えた分を貯留槽10に逃がす。 As shown in s107 of FIG. 5, in the preparation process, the fact that the vehicle residual pressure can be known from the pressure gauge of the vehicle cylinder is used, and the hydrogen gas pressure in the filling process is increased above the maximum filling pressure of the vehicle cylinder 14. . In the case of this third embodiment, the value obtained from the pressure gauge of the vehicle cylinder is corrected to the safe side, but the value of the pressure gauge of this vehicle cylinder is incorrect, and the first supply When the maximum filling pressure is exceeded, the safety valve 19 releases the amount exceeding the maximum filling pressure to the storage tank 10. - 特許庁

第2の実施形態においては、計量ボンベに最高充填圧力が車載ボンベ14と同じ70MPaかそれ以上のものを使用すれば十分であったが、第3の実施形態においては計量ボンベの最高充填圧力が93MPa或いは100MPa以上であることが望ましい。 In the second embodiment, it was sufficient to use a weighing cylinder with a maximum filling pressure of 70 MPa or more, which is the same as the vehicle-mounted cylinder 14, but in the third embodiment, the maximum filling pressure of the weighing cylinder is It is desirable to be 93 MPa or 100 MPa or more.

図11の(B)部と(C)部に示す棒グラフでは、計量ボンベ2(又は、計量ボンベ2a、2b、2c)の最高充填圧力が100MPaである場合を示している The bar graphs shown in parts (B) and (C) of FIG. 11 show the case where the maximum filling pressure of the measuring cylinder 2 (or the measuring cylinders 2a, 2b, and 2c) is 100 MPa.

計量ボンベ2の最高充填圧力がさらに高い、または計量ボンベの容積が大きい、または並列に複数の計量ボンベを使用することにより、1回目の供給で車載ボンベに目的の圧力を供給することが行える。 By increasing the maximum filling pressure of the measuring cylinder 2, increasing the volume of the measuring cylinder, or using multiple measuring cylinders in parallel, the target pressure can be supplied to the vehicle-mounted cylinder in the first supply.

本水素ガス計量方法は、圧力の高い計量ボンベ2と圧力の低い車載ボンベ14を流路でつなぐことで、2つの高圧ボンベが等圧になることを基本原理としている。従って、供給工程の前に車載ボンベ14の車載残量圧が判るならば、供給工程のための充填工程でのボンベへの充填圧力を70MPaより高くして良いことになる。 The basic principle of this hydrogen gas measuring method is that the two high-pressure cylinders have the same pressure by connecting the high-pressure measuring cylinder 2 and the low-pressure vehicle-mounted cylinder 14 with a flow path. Therefore, if the onboard residual pressure of the onboard cylinder 14 is known before the supply process, the filling pressure to the cylinder in the filling process for the supply process can be set higher than 70 MPa.

燃料電池自動車15には車載の圧力計があるのでこれを利用できるはずだが、顧客の持つ数値をそのまま信じることには、供給スタンド側として、万が一車載ボンベ14の最高充填圧力を越えることへの責任がある。水素ガス計量装置には安全弁19があるので、これにより最高充填圧力を越えることを回避できるが、その場合は貯留槽10に排出され、圧力の無駄であるばかりか、供給量に加算されてしまうという不都合がある。 Since the fuel cell vehicle 15 has an on-board pressure gauge, it should be possible to use it, but if the customer's numerical value is believed as it is, the supply stand side will be responsible for exceeding the maximum filling pressure of the on-board cylinder 14. There is Since the hydrogen gas metering device has a safety valve 19, it is possible to avoid exceeding the maximum filling pressure. There is an inconvenience.

図11の(B)部の棒グラフに示すように、車載残量圧が10MPaのように十分に低いと示されるときにこれは使用できるが、図11の(C)部の棒グラフのように車載残量圧が40MPaのように高い時には1回目の供給工程で満圧にすることは避けて、繰り返しを行うこともできる。 As shown in the bar graph of part (B) of FIG. 11, this can be used when the on-board residual pressure is indicated to be sufficiently low, such as 10 MPa, but the on-board When the residual pressure is as high as 40 MPa, it is possible to repeat the process by avoiding full pressure in the first supply step.

[第4の実施形態]
本実施形態では、図5の水素ガス計量方法のフローチャートの計量ボンベ準備工程S108において、車載残量圧を車載ボンベの圧力計によらず、水素ガス計量装置1において計測することにより取得する。
[Fourth embodiment]
In this embodiment, in the measuring cylinder preparation step S108 of the flowchart of the hydrogen gas measuring method of FIG.

図10にこれを行う時の開閉弁の開閉と、それにより生まれる流路を示す。この第4の実施形態の方法では、図1又は図3の水素ガス計量装置1及び、図10にある圧力計3dを使用する。充填カプラーホース側12と充填カプラー車載側13を接続して後の、車載残量圧計測のための開閉弁の開閉とそれにより生まれる水素ガスの流路は図10の通りになる。即ち、準備工程で充填カプラー車載側13と充填カプラーホース側12が接続された後、開閉弁v5を閉めて、開閉弁v11とv12を開くことで、車載ボンベ14と供給スタンドの水素ガスの流路がつながり、圧力計3dにより水素ガス計量装置1において車載残量圧を計測することができるのである。 FIG. 10 shows the opening and closing of the on-off valve and the flow path created thereby. In the method of the fourth embodiment, the hydrogen gas metering device 1 shown in FIG. 1 or 3 and the pressure gauge 3d shown in FIG. 10 are used. After the charging coupler hose side 12 and the charging coupler on-vehicle side 13 are connected, opening and closing of the on-off valve for measuring the on-vehicle residual pressure and the hydrogen gas flow path generated thereby are as shown in FIG. That is, after the charging coupler on-vehicle side 13 and the charging coupler hose side 12 are connected in the preparation process, the on-off valve v5 is closed and the on-off valves v11 and v12 are opened to allow the flow of hydrogen gas between the on-vehicle cylinder 14 and the supply stand. Thus, the pressure gauge 3d can be used to measure the on-vehicle residual pressure in the hydrogen gas metering device 1. FIG.

なお、車載残量圧を取得後の工程は、第3の実施形態の水素ガス計量方法と同じであるので、説明を省略するが、車載残量圧を供給スタンド側で計測しているので、1回目の供給工程で車載ボンベ14を満圧に出来る時、安全弁19を頼らずに実行できることについては異なるのである。 The process after obtaining the on-vehicle residual pressure is the same as the hydrogen gas measuring method of the third embodiment, so the explanation is omitted. It is different in that it can be executed without depending on the safety valve 19 when the on-vehicle cylinder 14 can be made full pressure in the first supply process.

図11の(B)部と(C)部の棒グラフのように、計量ボンベの最高充填圧力と車載残量圧によると1回目の供給工程で車載ボンベ14への供給を終わらせることも行い得る。 As shown in the bar graphs of parts (B) and (C) of FIG. 11, it is possible to end the supply to the on-board cylinder 14 in the first supply process according to the maximum filling pressure of the weighing cylinder and the on-board residual pressure. .

第4の実施形態は、準備工程において車載ボンベ14の車載残量圧を圧力計3dで計測してそれを使って、1回目の充填工程の圧力を決める方法である。 The fourth embodiment is a method of measuring the in-vehicle residual pressure of the in-vehicle cylinder 14 with a pressure gauge 3d in the preparation process and using it to determine the pressure in the first filling process.

図13の折れ線(C)は、車載残量圧が40MPaの場合を例にして示した、この第4の実施形態の水素ガス計量方法により供給を行った場合の車載ボンベ14の圧力変化である。第4の実施形態の場合は、車載残量圧が高い時は、1回目の供給工程で、車載ボンベ14は70MPaの満圧になる。計量ボンベの最高充填圧力がさらに高ければ、車載残量圧が低い場合も1回目の充填工程で満圧にすることが行える。また、計量ボンベを複数並列に使用することでも、1回目の充填工程で満圧にすることが行える。 The polygonal line (C) in FIG. 13 shows the pressure change of the on-vehicle cylinder 14 when the hydrogen gas measurement method of the fourth embodiment is used to supply hydrogen gas, showing the case where the on-vehicle residual pressure is 40 MPa. . In the case of the fourth embodiment, when the on-vehicle residual pressure is high, the on-vehicle cylinder 14 reaches full pressure of 70 MPa in the first supply process. If the maximum filling pressure of the metering cylinder is even higher, even if the onboard residual pressure is low, it can be filled to full pressure in the first filling process. Also, by using multiple weighing cylinders in parallel, it is possible to achieve full pressure in the first filling process.

[第5の実施形態]
本実施形態は、1回目の供給工程で計測された水素ガス圧の値を使用して、2回目の充填工程で充填する水素ガス圧を決める方法である。
[Fifth Embodiment]
This embodiment is a method of determining the hydrogen gas pressure to be filled in the second filling process using the value of the hydrogen gas pressure measured in the first supply process.

本実施形態では、図4の水素ガス計量方法のフローチャートの計量ボンベ準備工程s101から始める。図5のフローチャートの如く車載残量圧の計測を行わない。図4のフローチャートの如くまず、1回目の充填工程において車載ボンベの最大充填圧力と同じ圧力で充填し、その1回目の供給工程で計測される水素ガス圧により、1回目の供給工程後の車載残量圧を知り、この1回目の供給工程後の車載残量圧に基づいて2回目の充填工程の水素ガス圧を決定する方法である。決定された水素ガス圧に充填された計量ボンベから、車載ボンベに水素ガスを供給するための2回目の供給工程が行われる。なお、本実施形態において、1回目の充填工程が、第1計量ボンベ充填工程に該当し、1回目の供給工程が第1水素ガス供給工程に該当する。また、2回目の充填工程が、第2計量ボンベ充填工程に該当し、2回目の供給工程が第2水素ガス供給工程に該当する。 In this embodiment, the flow chart of the method for measuring hydrogen gas in FIG. 4 starts from the weighing cylinder preparation step s101. As shown in the flow chart of FIG. 5, the on-vehicle residual pressure is not measured. As shown in the flowchart in Fig. 4, first, in the first filling process, the vehicle cylinder is filled at the same maximum filling pressure as the maximum filling pressure, and the hydrogen gas pressure measured in the first supply process determines the in-vehicle gas pressure after the first supply process. In this method, the residual pressure is known and the hydrogen gas pressure for the second filling process is determined based on the vehicle residual pressure after the first supply process. A second supply step is performed to supply hydrogen gas from the weighing cylinder filled to the determined hydrogen gas pressure to the vehicle-mounted cylinder. In this embodiment, the first filling process corresponds to the first measuring cylinder filling process, and the first supply process corresponds to the first hydrogen gas supply process. Also, the second filling process corresponds to the second measuring cylinder filling process, and the second supply process corresponds to the second hydrogen gas supply process.

図12の棒グラフの(D)部と(E)部は、第5の実施形態の一例として計量ボンベ2aと車載ボンベ14の圧力変化を示した棒グラフで、グラフの読み方は第2の実施形態に解説を記載したので省略する。
図12にある(D)部と(E)部とも、いずれも準備工程では車載ボンベ14の車載残量圧は不明である。1回目の供給工程の結果の水素ガス圧の計測により始めの車載残量圧が判るもので、ここには計量ボンベ準備工程として車載残量圧が記載されているが、これは1回目の供給工程の結果わかった値であって、2回目の充填工程のために知りたいのは、1回目の供給工程による計測値であり、それにより、次の2回目の充填工程の圧力を決定するのである
Parts (D) and (E) of the bar graph in FIG. 12 are bar graphs showing pressure changes in the weighing cylinder 2a and the vehicle-mounted cylinder 14 as an example of the fifth embodiment. Since the explanation is described, it is omitted.
In both parts (D) and (E) in FIG. 12, the on-vehicle residual pressure of the on-vehicle cylinder 14 is unknown in the preparation process. By measuring the hydrogen gas pressure as a result of the first supply process, the initial residual pressure in the vehicle can be determined. The resulting value of the process, which we want to know for the second filling process, is the measured value from the first feeding process, which determines the pressure for the subsequent second filling process. be

図12にある棒グラフ(D)部は、計量ボンベ2(2a、2b、2c)と車載ボンベ14の容積が同じ場合を示し。図12にある棒グラフ(E)は車載ボンベ14の容積が、計量ボンベ2(2a、2b、2c)の2倍である時を示している。 The bar graph (D) part in FIG. 12 shows the case where the volumes of the weighing cylinders 2 (2a, 2b, 2c) and the vehicle-mounted cylinder 14 are the same. The bar graph (E) in FIG. 12 shows when the volume of the vehicle-mounted cylinder 14 is twice that of the weighing cylinders 2 (2a, 2b, 2c).

[第6の実施形態]
本実施形態は、車載ボンベ14の容積が大きい場合、または複数台の車載ボンベ14で容積の総量が大きい場合の方法である。
本実施形態は、図12の(E)部(F)部の如く、車載ボンベ14の容積が大きい場合である。図12の(E)部と(F)部において、計量ボンベの2倍の容積で記載してあるが、2回目の供給工程と2回目の充填工程の後、3回目、4回目と充填工程と供給工程の繰り返しが多いものの、第2実施形態から第5の実施形態と内容は同様である。
[Sixth embodiment]
This embodiment is a method when the volume of the vehicle-mounted cylinder 14 is large, or when the total volume of a plurality of vehicle-mounted cylinders 14 is large.
This embodiment is for the case where the volume of the vehicle-mounted cylinder 14 is large, as shown in (E) and (F) of FIG. 12 . In parts (E) and (F) of FIG. 12, the volume is twice that of the measuring cylinder, but after the second supply process and the second filling process, the third and fourth filling processes Although there are many repetitions of the supply process, the contents are the same as those of the second to fifth embodiments.

図12の(E)部は、本実施形態としての車載ボンベ14が計量ボンベ2(2a、2b、2c)の2倍の体積であり、それを第5の実施形態の方法で1回目の充填工程と1回目の供給工程を行った場合の圧力変化、図12の(F)部は第3、或いは第4の実施形態で準備工程と1回目の充填工程を行った場合の圧力変化である。 Part (E) of FIG. 12 shows that the vehicle-mounted cylinder 14 as the present embodiment has a volume twice that of the weighing cylinders 2 (2a, 2b, 2c), and it is filled for the first time by the method of the fifth embodiment. Part (F) in FIG. 12 shows pressure changes when the preparation step and the first filling step are performed in the third or fourth embodiment. .

図2の如く、計量ボンベを複数台備える水素ガス計量装置の場合には、車載残量圧が解って以降の充填工程と供給工程において、複数台の計量ボンベの中の1台1台を個別の圧力にして使用するほか、複数の計量ボンベを並列にして同時に使用するなども良い。 As shown in Figure 2, in the case of a hydrogen gas measuring device equipped with multiple measuring cylinders, in the filling process and supply process after the on-board residual pressure is known, each of the multiple measuring cylinders is individually controlled. In addition to using it at a pressure of , it is also good to use multiple weighing cylinders in parallel.

計量ボンベが3台の場合の活用の方法の一例は、準備工程で車載残量圧を計測し、それに相応しく、2台または計量ボンベ2a、2b、2cの3台を選び、これを並列にして、1回目の充填工程で相応しい圧力に充填し、これで1回目の供給工程を行う。それで不足の場合は2回目の充填工程と2回目の供給工程と続ける。 An example of how to utilize three measuring cylinders is to measure the residual pressure in the vehicle in the preparation process, select two or three measuring cylinders 2a, 2b, and 2c appropriately, and arrange them in parallel. , fill to the appropriate pressure in the first filling step, and then perform the first feeding step. If it is insufficient, the process continues with the second filling process and the second supply process.

他の一例は、同じく車載残量圧が計測されたあと、満圧の計量ボンベ1台または2台を満圧で使用し、他の1台で車載ボンベ14を満圧にするのに相応しい圧力に充填工程を行い、これで供給工程を行う。 Another example is to use one or two full-pressure measuring cylinders at full pressure after the on-vehicle residual pressure is measured, and use the other one to make the on-vehicle cylinder 14 full pressure. Then, the filling step is performed, and then the feeding step is performed.

さらに他の一例は、1台の計量ボンベで1回目の充填工程と1回目の供給工程を行い、それで解った車載残量圧に合わせて、複数台の計量ボンベを並列に使用して2回目の充填工程と2回目の供給工程を行うである。 Another example is to perform the first filling process and the first supply process with one weighing cylinder, and then use multiple weighing cylinders in parallel to perform the second filling process according to the residual pressure found in the vehicle. , and the second supply step.

第2の実施形態から第6の実施形態のように、様々な方法があり、顧客の車載ボンベ14の状況と顧客の希望と供給スタンドの条件に合わせて、さまざまの手順を行い得るが、その最適手順の選択はコンピューター制御盤にプログラムして行う。 As in the second to sixth embodiments, there are various methods, and various procedures can be performed according to the situation of the customer's vehicle cylinder 14, the customer's wishes, and the conditions of the supply stand. The selection of the optimal procedure is programmed into the computer control panel.

[第7の実施形態]
本実施形態は、車載ボンベの最高充填圧力が35MPaの車載ボンベに対応する方法である。
[Seventh embodiment]
This embodiment is a method for handling a vehicle-mounted cylinder having a maximum filling pressure of 35 MPa.

第2の実施形態から第6の実施形態まで、車載ボンベの最高充填圧力を70MPaとして記述してきたが、計量ボンベに70MPaの水素ガスがある時は、これを減圧しなければならない。その時に使用するのが、図1の貯留槽10である、計量ボンベ2aが70MPaである場合、v5、v15の開閉弁を開くことで計量ボンベから貯留槽10に水素ガスを回収して計量ボンベの圧力を下げ、再度充填工程と供給工程を行う。 In the second to sixth embodiments, the maximum filling pressure of the vehicle-mounted cylinder was described as 70 MPa, but when hydrogen gas of 70 MPa is present in the weighing cylinder, it must be decompressed. At that time, when the measuring cylinder 2a, which is the storage tank 10 in FIG. pressure is lowered, and the filling process and the feeding process are performed again.

また、他の方法として、計量ボンベに70MPaに水素ガスが既に充填されている場合、準備工程で、圧力計3dにより車載残量圧を計測し、その値に合わせて、計量ボンベの水素ガス圧を下げて、調整して、1回目の供給工程を行う。 As another method, when the measuring cylinder is already filled with hydrogen gas to 70 MPa, in the preparation process, the pressure gauge 3d is used to measure the residual pressure of the vehicle, and the hydrogen gas pressure of the measuring cylinder is adjusted according to the value. is lowered, adjusted, and the first feeding process is performed.

また、他の方法として、複数台の計量ボンベを備えている場合、1台を35MPaとして、常時準備し、これで1回目の供給を行い、その供給後の圧力により、他の高圧のボンベからの2回目の供給工程を行う、または1回目の供給を行ったボンベで2回目の充填工程と2回目の供給工程を行うのである。 As another method, if you have multiple weighing cylinders, prepare one at 35 MPa at all times, and perform the first supply with this. , or the second filling process and the second supply process are performed with the cylinder that has been supplied the first time.

[第8の実施形態]
本実施形態は、車載ボンベの容積も車載残量圧も不明の場合の方法である。
稀にだが、車載ボンベの容積が不明の車両が供給スタンドの来ることがあり得る、車載ボンベ14の容積が不明の場合は、第2の実施形態で充填を行うのが良いが、供給を急ぐ場合は、計量ボンベ準備工程と1回目の供給工程、或いは1回目の供給工程と2回目の供給工程で計測された2回の水素ガス圧計測値の差圧から容積を知ることが出来るので、その容積により次工程を行う
[Eighth Embodiment]
This embodiment is a method when neither the volume of the vehicle cylinder nor the vehicle residual pressure is unknown.
Although it is rare, a vehicle with an unknown volume of the on-board cylinder may come to a supply stand. If the volume of the on-board cylinder 14 is unknown, it is better to fill the vehicle with the second embodiment, but the supply is rushed. In this case, the volume can be known from the difference between the two hydrogen gas pressure measurements measured in the weighing cylinder preparation process and the first supply process, or the first supply process and the second supply process. Carry out the next process according to the volume

容積が解って以降の作業は、第2の実施形態から第7の実施形態と同様の工程であるので記述を省略する。 The work after the volume is known is the same as the steps in the second to seventh embodiments, so the description is omitted.

次に、上記で説明した各実施形態の水素ガス計量方法を用いて、車載ボンベに水素ガスを供給したときの車載ボンベの水素ガス圧の推移について図13のグラフを用いて説明する。 Next, the transition of the hydrogen gas pressure in the vehicle-mounted cylinder when hydrogen gas is supplied to the vehicle-mounted cylinder using the hydrogen gas measuring method of each embodiment described above will be described using the graph of FIG.

図13において、前述したとおり、折れ線(A)は、第2の実施形態による、図11の(A)部の圧力推移である。同様に、折れ線(A‘)は、第2の実施形態による圧力推移である(ただし図11には図示せず)。折れ線(C)は、第3の実施形態、及び第4の実施形態による図11の(C)部の圧力推移である。 In FIG. 13, as described above, the polygonal line (A) is the pressure transition in the portion (A) of FIG. 11 according to the second embodiment. Similarly, the polygonal line (A') is the pressure transition according to the second embodiment (not shown in FIG. 11). A polygonal line (C) is the pressure transition of the part (C) in FIG. 11 according to the third embodiment and the fourth embodiment.

図13の折れ線(B)は第3の実施形態、及び第4の実施形態による図11の(B)部の圧力推移をグラフ化したものであり、図13の折れ線(D)は第5の実施形態による図12の(D)部の圧力推移をグラフ化したものである。 Line (B) in FIG. 13 is a graph of the pressure transition in (B) of FIG. 11 according to the third and fourth embodiments, and line (D) in FIG. FIG. 13 is a graph of pressure transition in part (D) of FIG. 12 according to the embodiment.

好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。 Having illustrated and described the principles of the invention in a preferred embodiment, it will be appreciated by those skilled in the art that the invention may be varied in arrangement and detail without departing from such principles. The invention is not limited to the specific configurations disclosed in this embodiment. I therefore claim all modifications and variations that come within the scope and spirit of the following claims.

1:水素ガス計量方法の装置
2:計量ボンベ2(2a、2b、2c)
3:計量ボンベ2の圧力計(3a、3b、3c)
3d:供給側流量調整弁出口の圧力計
4:計量ボンベ2の温度計(4a、4b、4c)
5a:充填側流量調整弁
5b:供給側流量調整弁
6a:クーラー前フィルター
6b:クーラー後フィルター
7:プレクーラー
8:蓄圧器
9:高圧圧縮機
10:貯留槽
11:高圧水素輸送ボンベのカードル
12:充填カプラーホース側
13:充填カプラー車載側
14:車載ボンベ
15:燃料電池自動車
16:水素ガス供給ホース
v1~v15:開閉弁(v1、v2、v3、v4、v5、v6、v7、v8、v9、v10、v11、v12、v13、v14、v15)
17:コンピューター制御盤
18:水素ガス受入れカプラー
19:安全弁

1: Device for hydrogen gas weighing method 2: Measuring cylinder 2 (2a, 2b, 2c)
3: Pressure gauges of weighing cylinder 2 (3a, 3b, 3c)
3d: pressure gauge at the outlet of the flow control valve on the supply side 4: thermometer of the measuring cylinder 2 (4a, 4b, 4c)
5a: Filling side flow control valve 5b: Supply side flow control valve 6a: Filter before cooler 6b: Filter after cooler 7: Precooler 8: Pressure accumulator 9: High pressure compressor 10: Storage tank 11: Curdle 12 of high pressure hydrogen transport cylinder : Filling coupler hose side 13: Filling coupler vehicle side 14: Vehicle cylinder 15: Fuel cell vehicle 16: Hydrogen gas supply hose v1 to v15: On-off valve (v1, v2, v3, v4, v5, v6, v7, v8, v9 , v10, v11, v12, v13, v14, v15)
17: Computer control panel 18: Hydrogen gas receiving coupler 19: Safety valve

Claims (9)

車両に搭載された車載ボンベに供給する水素ガス量の計量方法であって、
予め所定の容積と所定の耐圧強度を有する計量ボンベを準備する計量ボンベ準備工程と、
前記計量ボンベに所定の圧力まで水素ガスを充填し、充填後の前記計量ボンベ内の水素ガス圧を計測する計量ボンベ充填工程と、
前記計量ボンベ充填工程の後に、前記計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記計量ボンベ内の水素ガス圧を計測する水素ガス供給工程と、を有し、
前記計量ボンベ充填工程において計測した計量ボンベ内の水素ガス圧と、前記水素ガス供給工程において計測した計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出することを特徴とする水素ガス計量方法。
A method for measuring the amount of hydrogen gas supplied to an in-vehicle cylinder mounted in a vehicle,
a weighing cylinder preparation step of preparing a weighing cylinder having a predetermined volume and a predetermined compressive strength in advance;
a measuring cylinder filling step of filling the measuring cylinder with hydrogen gas to a predetermined pressure and measuring the hydrogen gas pressure in the measuring cylinder after filling;
a hydrogen gas supply step of supplying hydrogen gas from the weighing cylinder to the vehicle-mounted cylinder after the weighing cylinder filling step, and measuring the hydrogen gas pressure in the weighing cylinder after supply;
Calculating the amount of hydrogen gas supplied to the vehicle-mounted cylinder from the difference between the hydrogen gas pressure in the measuring cylinder measured in the measuring cylinder filling process and the hydrogen gas pressure in the measuring cylinder measured in the hydrogen gas supply process. A hydrogen gas metering method characterized by:
前記車載ボンベ内の水素ガス圧が所定の圧力に到達するまで、前記計量ボンベ充填工程と前記水素ガス供給工程とを繰り返し行うことを特徴とする請求項1に記載の水素ガス計量方法。
2. The method of measuring hydrogen gas according to claim 1, wherein the step of filling the measuring cylinder and the step of supplying hydrogen gas are repeated until the hydrogen gas pressure in the vehicle-mounted cylinder reaches a predetermined pressure.
車両に搭載された車載ボンベに供給する水素ガス量の計量方法であって、
予め所定の容積と所定の耐圧強度を有する計量ボンベを準備する計量ボンベ準備工程と、
前記計量ボンベに所定の圧力まで水素ガスを充填し、充填後の前記計量ボンベ内の水素ガス圧を計測する第1計量ボンベ充填工程と、
前記第1計量ボンベ充填工程後に、前記計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記計量ボンベ内の水素ガス圧を計測する第1水素ガス供給工程と、
前記第1水素ガス供給工程後に、前記第1水素ガス供給工程において計測された水素ガス圧に応じて、充填する水素ガス圧を決定し、決定された水素ガス圧まで前記計量ボンベに水素ガスを充填する、第2計量ボンベ充填工程と、
前記第2計量ボンベ充填工程後に、前記計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記計量ボンベ内の水素ガス圧を計測する第2水素ガス供給工程と、を有し、
前記第1計量ボンベ充填工程において計測した前記計量ボンベ内の水素ガス圧と前記第1水素ガス供給工程において計測した前記計量ボンベ内の水素ガス圧との差分、及び、前記第2計量ボンベ充填工程において計測した前記計量ボンベ内の水素ガス圧と前記第2水素ガス供給工程において計測した前記計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出することを特徴とする水素ガス計量方法。
A method for measuring the amount of hydrogen gas supplied to an in-vehicle cylinder mounted in a vehicle,
a weighing cylinder preparation step of preparing a weighing cylinder having a predetermined volume and a predetermined compressive strength in advance;
a first measuring cylinder filling step of filling the measuring cylinder with hydrogen gas to a predetermined pressure and measuring the hydrogen gas pressure in the measuring cylinder after filling;
a first hydrogen gas supply step of supplying hydrogen gas from the measuring cylinder to the vehicle-mounted cylinder after the first measuring cylinder filling step, and measuring the hydrogen gas pressure in the measuring cylinder after supply;
After the first hydrogen gas supply step, the hydrogen gas pressure to be filled is determined according to the hydrogen gas pressure measured in the first hydrogen gas supply step, and the hydrogen gas is supplied to the measuring cylinder up to the determined hydrogen gas pressure. a second metering cylinder filling step of filling;
a second hydrogen gas supply step of supplying hydrogen gas from the weighing cylinder to the vehicle-mounted cylinder after the second weighing cylinder filling step, and measuring the hydrogen gas pressure in the weighing cylinder after supply;
The difference between the hydrogen gas pressure in the measuring cylinder measured in the first measuring cylinder filling process and the hydrogen gas pressure in the measuring cylinder measured in the first hydrogen gas supply process, and the second measuring cylinder filling process The amount of hydrogen gas supplied to the on-vehicle cylinder is calculated from the difference between the hydrogen gas pressure in the measuring cylinder measured in and the hydrogen gas pressure in the measuring cylinder measured in the second hydrogen gas supply step. Hydrogen gas metering method.
前記計量ボンベ準備工程において、予め前記車載ボンベ内の水素ガス圧の値を計測し、車載ボンベ残留水素ガス圧として記録する残留水素ガス圧記録工程を備え、
計量ボンベ充填工程において前記計量ボンベに充填する水素ガスの圧力を、前記車載ボンベ残留水素ガス圧に応じて決定し、当該決定された水素ガス圧まで前記計量ボンベに水素ガスを充填することを特徴とする請求項1~3のいずれか一項に記載の水素ガス計量方法。
In the weighing cylinder preparation step, a residual hydrogen gas pressure recording step of measuring the value of the hydrogen gas pressure in the vehicle cylinder in advance and recording it as the vehicle cylinder residual hydrogen gas pressure,
In the measuring cylinder filling step, the pressure of the hydrogen gas to be filled in the measuring cylinder is determined according to the residual hydrogen gas pressure in the vehicle cylinder, and the measuring cylinder is filled with hydrogen gas up to the determined hydrogen gas pressure. The hydrogen gas measuring method according to any one of claims 1 to 3.
前記車載ボンベ残留水素ガス圧は、前記車両に備えられた圧力計から入手することを特徴とする請求項4に記載の水素ガス計量方法。
5. The method of measuring hydrogen gas according to claim 4, wherein the residual hydrogen gas pressure in the vehicle cylinder is obtained from a pressure gauge provided in the vehicle.
車両に搭載された車載ボンベに供給する水素ガス量の計量方法であって、
予め所定の容積と所定の耐圧強度を有する第1の計量ボンベ及び第2の計量ボンベを含む複数の計量ボンベを準備する計量ボンベ準備工程と、
前記第1の計量ボンベに所定の圧力まで水素ガスを充填し、充填後の前記第1の計量ボンベ内の水素ガス圧を計測する第1計量ボンベ充填工程と、
前記第1計量ボンベ充填工程後に、前記第1の計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記第1の計量ボンベ内の水素ガス圧を計測する第1水素ガス供給工程と、
前記第1水素ガス供給工程後に、前記第1水素ガス供給工程において計測された水素ガス圧に応じて、充填する水素ガス圧を決定し、決定された水素ガス圧まで前記第2の計量ボンベに水素ガスを充填する第2計量ボンベ充填工程と、
前記第2計量ボンベ充填工程後に、前記第2の計量ボンベから前記車載ボンベに水素ガスを供給し、供給後の前記第2の計量ボンベ内の水素ガス圧を計測する第2水素ガス供給工程と、を有し、
前記第1計量ボンベ充填工程において計測した前記第1の計量ボンベ内の水素ガス圧と前記第1水素ガス供給工程において計測した前記第1の計量ボンベ内の水素ガス圧との差分、及び、前記第2計量ボンベ充填工程において計測した前記第2の計量ボンベ内の水素ガス圧と前記第2水素ガス供給工程において計測した前記第2の計量ボンベ内の水素ガス圧との差分から、車載ボンベに供給した水素ガス量を算出することを特徴とする水素ガス計量方法。
A method for measuring the amount of hydrogen gas supplied to an in-vehicle cylinder mounted in a vehicle,
a measuring cylinder preparation step of preparing in advance a plurality of measuring cylinders including a first measuring cylinder and a second measuring cylinder having a predetermined volume and a predetermined compressive strength;
A first measuring cylinder filling step of filling the first measuring cylinder with hydrogen gas to a predetermined pressure and measuring the hydrogen gas pressure in the first measuring cylinder after filling;
a first hydrogen gas supply step of supplying hydrogen gas from the first measuring cylinder to the vehicle-mounted cylinder after the first measuring cylinder filling step, and measuring the hydrogen gas pressure in the first measuring cylinder after supply; ,
After the first hydrogen gas supply step, the hydrogen gas pressure to be filled is determined according to the hydrogen gas pressure measured in the first hydrogen gas supply step, and the second measuring cylinder is charged to the determined hydrogen gas pressure. a second metering cylinder filling step for filling hydrogen gas;
a second hydrogen gas supply step of supplying hydrogen gas from the second measuring cylinder to the vehicle-mounted cylinder after the second measuring cylinder filling step, and measuring the hydrogen gas pressure in the second measuring cylinder after supply; , has
the difference between the hydrogen gas pressure in the first measuring cylinder measured in the first measuring cylinder filling step and the hydrogen gas pressure in the first measuring cylinder measured in the first hydrogen gas supply step; From the difference between the hydrogen gas pressure in the second measuring cylinder measured in the second measuring cylinder filling process and the hydrogen gas pressure in the second measuring cylinder measured in the second hydrogen gas supply process, A method for measuring hydrogen gas, comprising calculating the amount of supplied hydrogen gas.
前記計量ボンベの容積が、前記車載ボンベの容積の2倍以下であることを特徴とする請求項1~6のいずれか一項に記載の水素ガス計量方法。
The hydrogen gas measuring method according to any one of claims 1 to 6, wherein the volume of the measuring cylinder is twice or less than the volume of the vehicle-mounted cylinder.
車両に搭載された車載ボンベに供給する水素ガス量を計量するための水素ガス計量装置であって、
水素ガスを貯蔵するための蓄圧器に接続され、所定の容積と所定の耐圧強度を有する計量ボンベと、
前記計量ボンベから前記車載ボンベに水素ガスを供給するための水素ガス供給配管と、
前記蓄圧器と前記計量ボンベの間に配置された水素ガス開閉弁と、
前記計量ボンベと前記車載ボンベの間に配置された水素ガス供給弁と、を備え、
前記計量ボンベは、当該前記計量ボンベ内の水素ガス圧を計測するための圧力計を有しており、
前記水素ガス開閉弁を開いて、前記計量ボンベに所定の圧力まで水素ガスを充填し、
前記計量ボンベに充填後に、前記水素ガス開閉弁を閉じた後に前記水素ガス供給弁を開いて、前記水素ガス供給配管を用いて前記計量ボンベから前記車載ボンベに水素ガスを供給し、
前記車載ボンベへの水素ガスの供給前と供給後の前記計量ボンベ内の水素ガス圧の差分から、前記車載ボンベに供給した水素ガス量を算出するように構成されていることを特徴とする水素ガス計量装置。
A hydrogen gas measuring device for measuring the amount of hydrogen gas to be supplied to an in-vehicle cylinder mounted on a vehicle,
a measuring cylinder connected to a pressure accumulator for storing hydrogen gas and having a predetermined volume and a predetermined pressure resistance;
a hydrogen gas supply pipe for supplying hydrogen gas from the weighing cylinder to the vehicle-mounted cylinder;
a hydrogen gas on-off valve disposed between the pressure accumulator and the metering cylinder;
a hydrogen gas supply valve arranged between the metering cylinder and the vehicle-mounted cylinder;
The measuring cylinder has a pressure gauge for measuring the hydrogen gas pressure in the measuring cylinder,
opening the hydrogen gas on-off valve to fill the measuring cylinder with hydrogen gas to a predetermined pressure;
After filling the measuring cylinder, the hydrogen gas on-off valve is closed, the hydrogen gas supply valve is opened, and hydrogen gas is supplied from the measuring cylinder to the vehicle-mounted cylinder using the hydrogen gas supply pipe,
The amount of hydrogen gas supplied to the vehicle-mounted cylinder is calculated from the difference in hydrogen gas pressure in the weighing cylinder before and after hydrogen gas is supplied to the vehicle-mounted cylinder. gas metering device.
車両に搭載された車載ボンベに供給する水素ガス量を計量するための水素ガス計量装置であって、
水素ガスを貯蔵するための蓄圧器に接続され、予め所定の容積と所定の耐圧強度を有する第1の計量ボンベ及び第2の計量ボンベを含む複数の計量ボンベと、
前記複数の計量ボンベから前記車載ボンベに水素ガスを供給するための水素ガス供給配管と、
前記蓄圧器と前記複数の計量ボンベの間に配置された水素ガス開閉弁と、
前記複数の計量ボンベと前記車載ボンベの間に配置された水素ガス供給弁と、を備え、
前記複数の計量ボンベは、開閉弁を介して並列に接続されており、
前記複数の計量ボンベのそれぞれは、当該前記計量ボンベ内の水素ガス圧を計測するための圧力計を有しており、
前記水素ガス開閉弁を開いて、前記第1の計量ボンベに所定の圧力まで水素ガスを充填し、
前記第1の計量ボンベに充填後に、前記水素ガス開閉弁を閉じた後に前記水素ガス供給弁を開いて、前記水素ガス供給配管を用いて前記第1の計量ボンベから前記車載ボンベに水素ガスを供給し、
前記車載ボンベに水素ガスを供給後に、前記第1の計量ボンベ内の水素圧力を計測し、計測された水素ガス圧に応じて、前記第2の計量ボンベに充填する水素ガス圧を決定し、
前記水素ガス開閉弁を開いて、決定された水素ガス圧まで前記第2の計量ボンベに水素ガスを充填し、
前記第2の計量ボンベに充填後に、前記水素ガス開閉弁を閉じた後に前記水素ガス供給弁を開いて、前記水素ガス供給配管を用いて前記第2の計量ボンベから前記車載ボンベに水素ガスを供給し、
前記第1の計量ボンベから前記車載ボンベへの水素ガスの供給前と供給後の前記計量ボンベ内の水素ガス圧の差分、及び前記第2の計量ボンベから前記車載ボンベへの水素ガスの供給前と供給後の前記計量ボンベ内の水素ガス圧の差分から、前記車載ボンベに供給した水素ガス量を算出するように構成されていることを特徴とする水素ガス計量装置。
A hydrogen gas measuring device for measuring the amount of hydrogen gas to be supplied to an in-vehicle cylinder mounted on a vehicle,
a plurality of measuring cylinders including a first measuring cylinder and a second measuring cylinder connected to a pressure accumulator for storing hydrogen gas and having a predetermined volume and a predetermined pressure resistance;
a hydrogen gas supply pipe for supplying hydrogen gas from the plurality of weighing cylinders to the in-vehicle cylinder;
a hydrogen gas on-off valve arranged between the pressure accumulator and the plurality of measuring cylinders;
a hydrogen gas supply valve arranged between the plurality of metering cylinders and the vehicle-mounted cylinder;
The plurality of weighing cylinders are connected in parallel via an on-off valve,
Each of the plurality of measuring cylinders has a pressure gauge for measuring the hydrogen gas pressure in the measuring cylinder,
opening the hydrogen gas on-off valve to fill the first weighing cylinder with hydrogen gas to a predetermined pressure;
After filling the first measuring cylinder, the hydrogen gas on-off valve is closed, and then the hydrogen gas supply valve is opened to supply hydrogen gas from the first measuring cylinder to the vehicle-mounted cylinder using the hydrogen gas supply pipe. supply and
After supplying hydrogen gas to the vehicle-mounted cylinder, the hydrogen pressure in the first measuring cylinder is measured, and the hydrogen gas pressure to be filled in the second measuring cylinder is determined according to the measured hydrogen gas pressure,
opening the hydrogen gas on-off valve to fill the second metering cylinder with hydrogen gas up to the determined hydrogen gas pressure;
After filling the second measuring cylinder, the hydrogen gas on-off valve is closed, the hydrogen gas supply valve is opened, and hydrogen gas is supplied from the second measuring cylinder to the vehicle-mounted cylinder using the hydrogen gas supply pipe. supply and
Difference between hydrogen gas pressure in the measuring cylinder before and after supply of hydrogen gas from the first measuring cylinder to the vehicle-mounted cylinder, and before supply of hydrogen gas from the second measuring cylinder to the vehicle-mounted cylinder and a hydrogen gas metering device configured to calculate the amount of hydrogen gas supplied to the vehicle-mounted cylinder from the difference in hydrogen gas pressure in the metering cylinder after supply.
JP2021117630A 2021-07-16 2021-07-16 Hydrogen gas measuring method and hydrogen gas measuring device Active JP6981706B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021117630A JP6981706B1 (en) 2021-07-16 2021-07-16 Hydrogen gas measuring method and hydrogen gas measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021117630A JP6981706B1 (en) 2021-07-16 2021-07-16 Hydrogen gas measuring method and hydrogen gas measuring device

Publications (2)

Publication Number Publication Date
JP6981706B1 JP6981706B1 (en) 2021-12-17
JP2023013445A true JP2023013445A (en) 2023-01-26

Family

ID=79170164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021117630A Active JP6981706B1 (en) 2021-07-16 2021-07-16 Hydrogen gas measuring method and hydrogen gas measuring device

Country Status (1)

Country Link
JP (1) JP6981706B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932663A (en) * 1982-05-05 1984-02-22 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Device for supplying and distributing compressed gas
JP2001295994A (en) * 2000-04-11 2001-10-26 Air Liquide Japan Ltd Compressed gas transfer filling method
JP2007024152A (en) * 2005-07-14 2007-02-01 Tokiko Techno Kk Gas supply device
JP2010209980A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Gas supply device and gas station equipped with gas supply device
US20140174152A1 (en) * 2012-06-26 2014-06-26 Gasroad Co., Ltd Measurement system and method for charged amounts in a pressure container using pressure and volume
JP2020034089A (en) * 2018-08-30 2020-03-05 大陽日酸株式会社 Fuel gas filling system and fuel gas filling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932663A (en) * 1982-05-05 1984-02-22 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Device for supplying and distributing compressed gas
JP2001295994A (en) * 2000-04-11 2001-10-26 Air Liquide Japan Ltd Compressed gas transfer filling method
JP2007024152A (en) * 2005-07-14 2007-02-01 Tokiko Techno Kk Gas supply device
JP2010209980A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Gas supply device and gas station equipped with gas supply device
US20140174152A1 (en) * 2012-06-26 2014-06-26 Gasroad Co., Ltd Measurement system and method for charged amounts in a pressure container using pressure and volume
JP2020034089A (en) * 2018-08-30 2020-03-05 大陽日酸株式会社 Fuel gas filling system and fuel gas filling method

Also Published As

Publication number Publication date
JP6981706B1 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
US7152637B2 (en) Method and apparatus for dispensing compressed gas
US8360112B2 (en) Method and device for filling pressure gas containers
EP1818597A2 (en) Method for dispensing compressed gas
US11920733B2 (en) Method for diagnosing failure of flowmeter in measuring machine and hydrogen filling device
US8122918B2 (en) Pressure differential system for controlling high pressure refill gas flow into on board vehicle fuel tanks
KR101222874B1 (en) Fuel tank charge measure system by pressure and volume
US9016329B2 (en) Gas filling system, gas filling method, and vehicle
CN101315545B (en) Three-level charging-up system for hydrogenation station high-efficiency hydrogenation
WO1995030110A1 (en) Apparatus and method for controlling the charging of ngv cylinders from natural gas refueling stations
CN105020577A (en) LNG unloading method capable of achieving accurate measurement and LNG unloading measurement device
Büker et al. Investigations on pressure dependence of Coriolis mass flow meters used at hydrogen refueling stations
EP1693612A2 (en) System and method for dispensing compressed gas
JP5108081B2 (en) Gas supply device
JP6981706B1 (en) Hydrogen gas measuring method and hydrogen gas measuring device
JP5087356B2 (en) Liquefied gas filling system
CN115681802A (en) Method, device and equipment for filling compressed natural gas by using gas filling machine and storage medium
JP3412176B2 (en) Gas filling equipment
JP6695194B2 (en) Fuel gas filling system and fuel gas filling method
JP2011226558A (en) Device and method for filling gas
JP6136021B2 (en) Fuel gas filling system and fuel gas filling method
Dicken Temperature distribution within a compressed gas cylinder during filling
CN115388325B (en) Method and device for measuring hydrogenation and residual pressure of hydrogen fuel cell vehicle
JP2006266384A (en) Gas supply device
JP2006105307A (en) Gas supply device
WO2021256418A1 (en) Flowmeter failure determination method and hydrogen filling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R150 Certificate of patent or registration of utility model

Ref document number: 6981706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150