JP2023013338A - 三次元造形装置 - Google Patents

三次元造形装置 Download PDF

Info

Publication number
JP2023013338A
JP2023013338A JP2021117448A JP2021117448A JP2023013338A JP 2023013338 A JP2023013338 A JP 2023013338A JP 2021117448 A JP2021117448 A JP 2021117448A JP 2021117448 A JP2021117448 A JP 2021117448A JP 2023013338 A JP2023013338 A JP 2023013338A
Authority
JP
Japan
Prior art keywords
mirror
laser beam
end side
electron beam
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021117448A
Other languages
English (en)
Other versions
JP7021816B1 (ja
Inventor
浩一 天谷
Koichi Amaya
光慶 吉田
Mitsuyoshi Yoshida
翔太 佐々木
Shota Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuura Machinery Corp
Matsuura Kikai Seisakusho KK
Original Assignee
Matsuura Machinery Corp
Matsuura Kikai Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuura Machinery Corp, Matsuura Kikai Seisakusho KK filed Critical Matsuura Machinery Corp
Priority to JP2021117448A priority Critical patent/JP7021816B1/ja
Priority to JP2021167474A priority patent/JP7021818B1/ja
Application granted granted Critical
Publication of JP7021816B1 publication Critical patent/JP7021816B1/ja
Publication of JP2023013338A publication Critical patent/JP2023013338A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】テーブル面のスペースを有効に活用し、面積の小さいテーブル面においても余裕のあるスペースの下に設置し得るようなコンパクトなガルバノスキャナーを採用している三次元造形装置を提供すること。【解決手段】レーザビーム又は電子ビーム7の発振源1、ダイナミックフォーカスレンズ2、第1ミラー31及び第2ミラー32をフレーム5内に収容しているガルバノスキャナー3を1個又は複数個をテーブル4の上方に備えた三次元造形装置であって、当該ガルバノスキャナー3の長手方向の中途部位にてレーザビーム又は電子ビーム7を屈折反射するミラー6を設置するか、又は第1ミラー31の回動中心軸30を設置すると共に、前記フレーム5が前記ミラー6を支持する周囲、又は第1ミラー31の回動中心軸30を支持する周囲にて屈曲又は湾曲し、かつガルバノスキャナー3の先端領域が上側に傾斜することによって、前記課題を達成している三次元造形装置。【選択図】図4

Description

本発明は、ダイナミックフォーカスレンズを透過して順次集束するレーザビーム又は電子ビームを、二次元方向に走査するガルバノスキャナーを複数個採用している三次元造形装置を対象としている。
テーブル面上に積層した粉末層に対するレーザビーム又は電子ビームの照射によって焼結面を形成する三次元造形においては、焦点距離を調整し得るダイナミックフォーカスレンズを透過したレーザビーム又は電子ビームをガルバノスキャナーによって焼結面又はその近傍に集束するような走査(スキャニング)が行われている。
特許文献1に示すように、ガルバノスキャナー3は、レーザビーム又は電子ビーム発振源1、ダイナミックフォーカスレンズ2、第1ミラー31及び第2ミラー32を備えているが、レーザビーム又は電子ビーム発振源1の後端側とし、第1ミラー31の収容領域を先端側とするような長手方向を形成しており、かつ当該長手方向に沿ったフレーム内に前記各構成要素を包摂している。
特許文献1の図1、2、3、4においては、第2ミラー32が第1ミラー31の長手方向の延長上に包摂するが如き図示が行われているが、実際には殆ど大抵の場合、特許文献2に示すように、第2ミラー(X軸ガルバノミラー32a、42a、52a、62a)が第1ミラー(Y軸ガルバノミラー32b、42b、52b、62b)の収容領域から前記長手方向から交差する方向(但し、殆ど大抵の場合は直交方向)にて突設されている。
したがって、特許文献1及び同2に示す従前のガルバノスキャナーの場合には、少なくとも後端側領域をレーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とした上で、直線状の長手方向が採用されている。
上記直線状の長手方向を採用する基本的根拠は、レーザビーム又は電子ビームが発振源から第1ミラーに至るまで直進することにある。
しかしながら、レーザビーム又は電子ビームの発振源から第2ミラーに至るまでの距離は、テーブル面の前後左右方向と比肩するようなスケールであって、このようなスケールの長手方向を有するガルバノスキャナーをテーブル面の内側に複数個配置した場合には、長手方向の後端側が水平方向に即してテーブル面から突出するような場合が発生する。
にも拘らず、テーブル面から突出せず、しかもコンパクトであって面積の小さいテーブル面に適用し得るようなガルバノスキャナーの構成については、これまで検討されていない。
日本国特許公報第6713672号公報 日本国特許公報第6793806号公報
本発明は、テーブル面のスペースを有効に活用し、かつ面積の小さいテーブル面においても余裕のあるスペースの下に設置し得るようなガルバノスキャナーを採用している三次元造形装置の構成を提供することを課題としている。
前記課題を解決するため、本発明の基本構成は、
(1)粉末を走行を介してテーブル上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラーの収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビームに対する屈折反射を行うミラーを設置すると共に、前記フレームが当該ミラーを支持する部位の周囲にて屈曲又は湾曲している三次元造形装置、
(2)粉末を走行を介してテーブル上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第2ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラーの回動中心軸を設置すると共に、前記フレームが第1ミラーの回動中心軸を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置、
からなる。
特許文献1に示すように、従来技術のガルバノスキャナーにおける長手方向は、直線状、即ち一次元の形状であって、たとえ先端側における第2ミラーの突出領域が当該長手方向に対して交差するとしても、突設領域の寸法は長手方向の寸法よりも明らかに小さいため、長手方向が基本的に一次元の形状であることを左右しない。
これに対し、基本構成(1)及び(2)におけるガルバノスキャナーは、長手方向が中途部位において屈曲又は湾曲しており、異なる方向を形成していることから、二次元状の形状である。
したがって、1個のガルバノスキャナーを採用した場合、テーブル面のスペースを二次元の形状によって有効に活用することができる。
しかも、レーザビーム又は電子ビームの発振源と先端側の第2ミラーとの距離において、基本構成(1)及び(2)のガルバノスキャナーは、明らかに特許文献1及び同2のようなガルバノスキャナーよりも短距離である。
その結果、基本構成(1)及び(2)のガルバノスキャナーは、面積が小さいテーブル面のスペースを有効に活用することができる。
これらの効果は、1個のガルバノスキャナーを採用した場合、又は複数個のガルバノスキャナーを採用した場合においても共通している。
即ち、複数個のガルバノスキャナーを採用している特許文献1及び同2等による従来技術の場合よりも狭い面積のテーブルを有効に活用することができる。
実施例1の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが屈曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 実施例2の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが屈曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 実施例3の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが湾曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 基本構成(1)及び(2)を1個のガルバノスキャナーに即して説明する平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。 尚、(a)のRは、屈折反射を行うミラーを支持するフレームにおける部位を示しており、この点は図7(a)及び図8(a)の場合も同様である。 ガルバノスキャナーにおける後端側領域に対し先端側領域が上側に傾斜している実施形態を示す後端側の長手方向及び先端側の長手方向の各側面図であって、(a)は、基本構成(1)の場合を示し、(b)は、基本構成(2)の場合を示す。 第2ミラーの反射の中心位置が回動中心軸及びその近傍であって、かつ第2ミラーの反射領域が、回動段階における上端及び下端の範囲内にある実施形態を示す側面図である。 複数個のガルバノスキャナーにおける各第2ミラーの回動中心軸の中央位置を、テーブル面の中心位置を基準として水平方向に即して等距離に配列している実施形態を示す平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。 複数個のガルバノスキャナーの先端側の長手方向を平行であると共に、隣り合うガルバノスキャナーにおける長手方向を逆方向に設定している実施例を2個のガルバノスキャナーに即して説明する平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。
基本構成(1)は、図4(a)に示すように、粉末を走行を介してテーブル4上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビーム7を走査するガルバノスキャナー3を備えた三次元造形装置であって、ガルバノスキャナー3は、レーザビーム又は電子ビーム7の発振源1、レーザビーム又は電子ビーム7を透過するダイナミックフォーカスレンズ2、当該透過方向と直交する方向の回動中心軸30を介して回動する第1ミラー31及び第1ミラー31の回動と独立した状態にて前記第1ミラー31における回動中心軸30の方向と直交状態にあり、かつ水平方向の回動中心軸30を介して回動する第2ミラー32をそれぞれフレーム5内に配列すると共に、レーザビーム又は電子ビーム7の発振源1を収容している領域を後端側とし、第1ミラー31を収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラー32の収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビーム7に対する屈折反射を行うミラー6を設置すると共に、前記フレーム5が当該ミラー6を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置である。
尚、図4(a)及び後述する図7(a)に示すように、第2ミラー32が先端側の長手方向から突設する方向と、フレーム5において長手方向の後端側領域が突設する方向とが同一方向を形成しているが、後述する図8(a)に示すように、双方の突設方向を逆方向に設定することも当然可能である。
図4(a)に示すように、基本構成(1)においては、フレーム5がレーザビーム又は電子ビーム7を屈折反射するミラー6を支持する部位の周囲にて屈曲又は湾曲しているが、このような屈曲又は湾曲に基づく技術的意義については、既に効果の項において説明した通りである。
基本構成(2)は、図4(b)に示すように、粉末を走行を介してテーブル4上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビーム7を走査するガルバノスキャナー3を備えた三次元造形装置であって、ガルバノスキャナー3は、レーザビーム又は電子ビーム7の発振源1、レーザビーム又は電子ビーム7を透過するダイナミックフォーカスレンズ2、当該透過方向と直交する方向の回動中心軸30を介して回動する第1ミラー31及び第1ミラー31の回動と独立した状態にて前記第1ミラー31における回動中心軸30の方向と直交状態にあり、かつ水平方向の回動中心軸30を介して回動する第2ミラー32をそれぞれフレーム5内に配列すると共に、レーザビーム又は電子ビーム7の発振源1を収容している領域を後端側とし、第2ミラー32を収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラー31の回動中心軸30を設置すると共に、前記フレーム5が第1ミラー31の回動中心軸30を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置である。
図4(b)に示すように、基本構成(2)は、フレーム5が第1ミラー31の回動中心軸30を支持する部位の周囲にて屈曲又は湾曲しているが、このような屈曲又は湾曲に基づく技術的意義については、既に効果の項において説明した通りである。
基本構成(1)及び(2)において、ガルバノスキャナー3のフレーム5が屈曲又は湾曲する角度は、前記先端側領域及び後端側領域を含む屈曲及び湾曲していない直線方向の交差角度を基準とした場合に、通常90°である。
但し、90°に限定する必要はなく、屈曲又は湾曲する角度として前記基準によって60°~120°の範囲の角度においても、基本構成(1)及び(2)の構成及び効果を確保することができる。
基本構成(1)及び(2)において、フレーム5が屈曲又は湾曲する領域は、長手方向の後端側及び先端側から等距離であって、かつ屈曲又は湾曲の中心位置として後端側及び先端側から等距離の位置を選択する場合が多い。
しかしながら、フレーム5が屈曲又は湾曲する領域については、長手方向の後端から長手方向の全距離の1/3以上の領域内にあり、かつ長手方向の先端から長手方向の全距離の1/3以上の領域内を好適に選択することができる。
このような領域であっても、基本構成(1)及び(2)の構成及び効果を発揮することができる。
基本構成(1)及び(2)のガルバノスキャナー3は、基本的には水平方向に設置される場合が多い。
但し、基本構成(1)においては、図5(a)に示すように、ガルバノスキャナー3における前記後端側領域に対し、前記先端側領域が上側に傾斜すると共に、前記屈折反射を行うミラー6を、当該傾斜角度だけ鉛直方向に対し偏差するように設置した上で、かつ第2ミラー32の突設方向を当該傾斜角度と同一角度にて上側に傾斜し、しかも第1ミラー31の回動中心軸30を鉛直方向に設定していることを特徴とする実施形態を採用することができ、基本構成(2)においては、図5(b)に示すように、ガルバノスキャナー3における前記後端側領域に対し、前記先端側領域が上側に傾斜しており、かつ中途部位において設置されている第1ミラー31の回動中心軸30を、当該傾斜角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビーム7が第1ミラー31によって当該傾斜方向に反射することを可能としていることを特徴とする実施形態を採用することができる。
図5(a)に示す実施形態の場合には、レーザビーム又は電子ビーム7に対する屈折反射を行うミラー6を、鉛直方向に対し当該傾斜角度だけ偏差するように設定し、その結果、レーザビーム又は電子ビーム7は当該傾斜角度だけ上側に反射されている。
他方、第1ミラー31の回動中心軸30は、鉛直方向に設定されていることから、上側に傾斜するように反射されたレーザビーム又は電子ビーム7は、当該傾斜角度だけ上側に傾斜するように突設されている第2ミラー32の収容領域側に、レーザビーム又は電子ビーム7を反射することができる。
これに対し、図5(b)に示す実施形態の場合には、第1ミラー31の回動中心軸30を、鉛直方向に対し、先端側の長手方向の傾斜角度だけ鉛直方向に偏差しており、その結果、レーザビーム又は電子ビーム7を第2ミラー32の収容領域側に反射している。
図5(a)、(b)に示す各実施形態においては、ガルバノスキャナー3のフレーム5が中途部位において屈曲又は湾曲していることから、屈曲又は湾曲している領域から先端側端部に至るまで順次フレーム5が上側に傾斜するが、このような傾斜状態によって、水平方向に即してコンパクトな三次元造形装置の構成を実現することができる。
前記各実施形態の場合には、第2ミラー32のテーブル4の面に対する位置が高くなるが、その結果、粉末層に対する照射角度の変化状態が少ないことに帰する。
一般に、三次元造形においては、第2ミラー32による照射の程度を均一状態とするために、第1ミラー31及び第2ミラー32の回動速度のコントロールが行われており、前記照射角度が小さいほど第1ミラー31及び第2ミラー32の回動速度を小さく設定している。
但し、上記設定によるコントロールによって必ずしも均一な照射が保証される訳ではない。
このような場合、前記各実施形態の場合には、傾斜角度の変化状態が少ないことから、前記コントロールの精度を改良することができる。
基本構成(1)及び(2)においては、図6に示すように、第2ミラー32の反射の中心位置が回動中心軸30及びその近傍の位置であり、かつ第2ミラー32の反射領域が、回動段階における上端及び下端の範囲内にあることを特徴とする実施形態を採用することができる。
第2ミラー32の回動中心軸30の位置は固定されているが、第2ミラー32における反射領域は回動中心軸30の下側又は上側に限定される場合がある。
これに対し、図6に示す実施形態の場合には、反射の中心位置を回動中心軸30及びその近傍の位置とすることによって、正確な反射を実現する一方、反射領域を回動段階における上端及び下端の範囲内にすることによって、第2ミラー32をコンパクトな構成とすることができる。
基本構成(1)及び(2)においては、図7(a)、(b)に示すように、複数個のガルバノスキャナー3を備え、かつ各第2ミラー32の回動中心軸30の中央位置Qを、テーブル4の面の中心位置Pを基準として水平方向に即して等距離に配列していることを特徴とする実施形態を採用することができる。
前記実施形態の場合には、テーブル4の面の中心位置Pを基準として、各第2ミラー32の照射領域を均等に区分した場合、又は各第2ミラー32の照射領域を共通とした場合の何れにおいても、シンプルな制御によって、均一な照射状態を実現することができる。
基本構成(1)及び(2)においては、図8(a)、(b)に示すように、複数個のガルバノスキャナー3を備え、かつ各ガルバノスキャナー3の先端側領域の長手方向を平行であると共に、隣り合うガルバノスキャナー3における先端側領域の長手方向を逆方向に設定しており、各ガルバノスキャナー3においてテーブル4の面の中心位置Pから前記平行方向に対し、水平方向に沿って直交する方向に延設された直線Lに関し、各第2ミラー32を、回動面が前記平行方向に即して、前記直線Lと重複する状態にて配列するか、又は前記先端側領域及び後端側領域と共に前記直線Lから離れた状態にて配列するか、又は前記直線Lに対し、前記後端側領域と反対側に配列するかの何れかであることを特徴とする実施形態を採用することができる。
前記実施形態の場合には、先端側に配列されている第2ミラー32の回動面につき、
a.前記直線Lと重複する状態にて配列、
b.前記先端側領域及び後端側領域と共に前記直線Lから離れた状態にて配列、
c.前記先端側領域と共に、前記直線Lに対し、前記後端側領域と反対側とする配列、
の何れをも選択することができる。
前記a、b、cの何れの配列においても、第2ミラー32による均一な照射及び第2ミラー32のコンパクトな配列を実現する一方、隣り合うガルバノスキャナー3を逆方向に平行状態に設定することによって、テーブル4の面のスペースを有効に活用することができる。
しかも、上記のような逆方向にて平行状態に設定した場合には、隣り合うガルバノスキャナー3の屈曲する方向又は湾曲する方向が相互に逆転状態であって、テーブル4の面のスペースの有効な活用を更に助長することができる。
以下、実施例に即して説明する。
実施例1は、図7(a)、(b)に示す実施形態に立脚した上で、図1(a)、(b)、(c)、(d)、(e)に示すように、2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナー3の先端側の長手方向が前記中心位置Pを基準として、それぞれ180°、120°、90°、72°、60°の等角度による交差状態にて放射状態に配置されていることを特徴としている。
このような特徴点によって、実施例1は、第2ミラー32がテーブル4の面の中心位置Pから等距離だけでなく、等角度に配列されることによって、粉末層に対する均一な照射を実現することができる。
従来技術による直線状のガルバノスキャナー3を放射状に配置した場合には、テーブル4の面の中心位置Pから離れるにしたがって、ガルバノスキャナー3の長手方向の領域間における空隙が増加し、テーブル4の面のスペースを有効に活用する程度が減少することを避けることができない。
然るに、図1(a)、(b)、(c)、(d)、(e)に示すように、実施例1の場合には、テーブル4の面の中心位置Pから各ガルバノスキャナー3の長手方向が離れたとしても、ガルバノスキャナー3のフレーム5が長手方向の中途部位にて屈曲又は湾曲していることを原因として、各ガルバノスキャナー3の長手方向の領域の空隙が増加せず、テーブル4の面のスペースを有効に活用することができる。
しかもこのような屈曲又は湾曲構成によって、テーブル4において小さな面積のテーブル4を採用することが図1(a)、(b)、(c)、(d)、(e)によって裏付けられている。
実施例2は、図7(a)、(b)に示す実施形態に立脚した上で、図2(a)、(b)、(c)、(d)、(e)に示すように、2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナー3の先端側の長手方向が、それぞれ0°の交差角度による平行状態、60°の交差角度による正三角形の辺、90°の交差角度による正方形の辺、108°の交差角度による正五角形の辺、120°の交差角度による正六角形の辺を形成していることを特徴としている。
上記特徴点によって、実施例2においても、実施例1の場合と同様に各第2ミラー32がテーブル4の面の中心位置Pから単に等距離であるだけでなく、等角度に配列されることによって、均一な照射を実現することができる。
しかも、各ガルバノスキャナー3のフレーム5の後端領域側は、平行状態、又は正三角形、正方形、正五角形、正六角形の各辺の外側に突出していることから、従来技術の場合と同一のテーブル4の面を採用した場合に、先端側領域がテーブル4の面の中心位置Pをコンパクトな状態にて囲んだ配置状態、即ち当該中心位置Pに対し近い距離による配置状態を実現することができる。
その結果、従来技術のように直線状の長手方向を有するガルバノスキャナー3を採用し、平行状態、又は正三角形、正方形、正五角形、正六角形の各辺において、テーブル4の面の中心位置Pを囲んだ配置状態の場合に比し、より均一な第2ミラー32による照射状態を実現することができる。
実施例3は、図8(a)、(b)に示す実施形態に立脚した上で、図3(a)、(b)、(c)、(d)、(e)に示すように、2個、又は4個、又は6個のガルバノスキャナー3を前記中心位置Pを基準として点対称に配置するか、若しくは3個又は5個のガルバノスキャナー3のうちの1個を前記中心位置P上に配置し、残2個又は残4個のガルバノスキャナー3を前記中心位置Pから前記平行方向にて延設された直線Lを基準としてそれぞれ線対称に配置していることを特徴としている。
このような特徴点において、実施例3においては、図8に示す実施形態の特徴点を具体的に実現することができる。
現に、図3(a)、(b)、(c)、(d)、(e)に示すように、実施例3においては、逆方向の平行状態に設定されている隣り合うガルバノスキャナー3の屈曲する方向又は湾曲する方向が逆転していることによって、テーブル4の面のスペースの有効な活用を助長しており、かつこの点は、前記各図面によって一目瞭然である。
このように、ガルバノスキャナーの長手方向を後端側領域と先端側領域との中途部位において屈曲又は湾曲している構成を採用している本発明においては、テーブル面のスペースを有効に活用する一方、面積の少ないテーブルに採用することが可能である一方、複数個のガルバノスキャナーの配置構成によって、コンパクトな第2ミラーの配列、及び各第2ミラーによる均一な照射の実現を可能としており、その利用範囲は絶大である。
1 レーザビーム又は電子ビームの発振源
2 ダイナミックフォーカスレンズ
3 ガルバノスキャナー
30 回動中心軸
31 第1ミラー
32 第2ミラー
4 テーブル
5 フレーム
6 レーザビーム又は電子ビームを屈折反射するミラー
7 レーザビーム又は電子ビーム
P テーブル面の中心位置
D テーブル面の中心位置からガルバノスキャナーの長手方向に即して平行方向に延設された点線
L 前記平行方向に直交する方向にてテーブル面の中心位置から延設された直線
Q 回動中心軸30の中央位置
R 屈折反射を行うミラーを支持するフレームにおける部位
本発明は、ダイナミックフォーカスレンズを透過して順次集束するレーザビーム又は電子ビームを、二次元方向に走査するガルバノスキャナーを複数個採用している三次元造形装置を対象としている。
テーブル面上に積層した粉末層に対するレーザビーム又は電子ビームの照射によって焼結面を形成する三次元造形においては、焦点距離を調整し得るダイナミックフォーカスレンズを透過したレーザビーム又は電子ビームをガルバノスキャナーによって焼結面又はその近傍に集束するような走査(スキャニング)が行われている。
特許文献1に示すように、ガルバノスキャナー3は、レーザビーム又は電子ビーム発振源1、ダイナミックフォーカスレンズ2、第1ミラー31及び第2ミラー32を備えているが、レーザビーム又は電子ビーム発振源1の後端側とし、第1ミラー31の収容領域を先端側とするような長手方向を形成しており、かつ当該長手方向に沿ったフレーム内に前記各構成要素を包摂している。
特許文献1の図1、2、3、4においては、第2ミラー32が第1ミラー31の長手方向の延長上に包摂するが如き図示が行われているが、実際には殆ど大抵の場合、特許文献2に示すように、第2ミラー(X軸ガルバノミラー32a、42a、52a、62a)が第1ミラー(Y軸ガルバノミラー32b、42b、52b、62b)の収容領域から前記長手方向から交差する方向(但し、殆ど大抵の場合は直交方向)にて突設されている。
したがって、特許文献1及び同2に示す従前のガルバノスキャナーの場合には、少なくとも後端側領域をレーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とした上で、直線状の長手方向が採用されている。
上記直線状の長手方向を採用する基本的根拠は、レーザビーム又は電子ビームが発振源から第1ミラーに至るまで直進することにある。
しかしながら、レーザビーム又は電子ビームの発振源から第2ミラーに至るまでの距離は、テーブル面の前後左右方向と比肩するようなスケールであって、このようなスケールの長手方向を有するガルバノスキャナーをテーブル面の内側に複数個配置した場合には、長手方向の後端側が水平方向に即してテーブル面から突出するような場合が発生する。
にも拘らず、テーブル面から突出せず、しかもコンパクトであって面積の小さいテーブル面に適用し得るようなガルバノスキャナーの構成については、これまで検討されていない。
日本国特許公報第6713672号公報 日本国特許公報第6793806号公報
本発明は、テーブル面のスペースを有効に活用し、かつ面積の小さいテーブル面においても余裕のあるスペースの下に設置し得るようなガルバノスキャナーを採用している三次元造形装置の構成を提供することを課題としている。
前記課題を解決するため、本発明の基本構成は、
(1)粉末を走行を介してテーブル上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラーの収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビームに対する屈折反射を行うミラーを設置すると共に、前記フレームが当該ミラーを支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、ガルバノスキャナーにおける前記後端側領域に対し、前記先端側領域が上側に傾斜すると共に、前記屈折反射を行うミラーを、当該傾斜角度だけ鉛直方向に対し偏差するように設置し、かつ第2ミラーの突設方向を当該傾斜角度と同一角度にて上側に傾斜し、しかも第1ミラーの回動中心軸を鉛直方向に設定している三次元造形装置
(2)粉末を走行を介してテーブル上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第2ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラーの回動中心軸を設置すると共に、前記フレームが第1ミラーの回動中心軸を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、ガルバノスキャナーにおける前記後端側領域に対し、前記先端側領域が上側に傾斜しており、かつ中途部位において設置されている第1ミラーの回動中心軸を、当該傾斜角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビームが第1ミラーによって当該傾斜方向に反射することを可能としている三次元造形装置
からなる。
特許文献1に示すように、従来技術のガルバノスキャナーにおける長手方向は、直線状、即ち一次元の形状であって、たとえ先端側における第2ミラーの突出領域が当該長手方向に対して交差するとしても、突設領域の寸法は長手方向の寸法よりも明らかに小さいため、長手方向が基本的に一次元の形状であることを左右しない。
これに対し、基本構成(1)及び(2)におけるガルバノスキャナーは、長手方向が中途部位において屈曲又は湾曲しており、異なる方向を形成していることから、二次元状の形状である。
したがって、1個のガルバノスキャナーを採用した場合、テーブル面のスペースを二次元の形状によって有効に活用することができる。
しかも、レーザビーム又は電子ビームの発振源と先端側の第2ミラーとの距離において、基本構成(1)及び(2)のガルバノスキャナーは、明らかに特許文献1及び同2のようなガルバノスキャナーよりも短距離である。
その結果、基本構成(1)及び(2)のガルバノスキャナーは、面積が小さいテーブル面のスペースを有効に活用することができる。
これらの効果は、1個のガルバノスキャナーを採用した場合、又は複数個のガルバノスキャナーを採用した場合においても共通している。
即ち、複数個のガルバノスキャナーを採用している特許文献1及び同2等による従来技術の場合よりも狭い面積のテーブルを有効に活用することができる。
基本構成(1)及び(2)においては、ガルバノスキャナーのフレームが中途部位において屈曲又は湾曲していることから、屈曲又は湾曲している領域から先端側端部に至るまで順次フレームが上側に傾斜するが、このような傾斜状態によって、水平方向に即してコンパクトな三次元造形装置の構成を実現することができる。
基本構成(1)及び(2)の場合には、第2ミラーのテーブル面に対する位置が高くなるが、その結果、粉末層に対する照射角度の変化状態が少ないことに帰する。
一般に、三次元造形においては、第2ミラーによる照射の程度を均一状態とするために、第1ミラー及び第2ミラーの回動速度のコントロールが行われており、前記照射角度が小さいほど第1ミラー及び第2ミラーの回動速度を小さく設定している。
但し、上記設定によるコントロールによって必ずしも均一な照射が保証される訳ではない。
このような場合、基本構成(1)及び(2)においては、傾斜角度の変化状態が少ないことから、前記コントロールの精度を改良することができる。
実施例1の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが屈曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 実施例2の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが屈曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 実施例3の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが湾曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 基本構成(1)及び(2)を1個のガルバノスキャナーに即して説明する平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。 尚、(a)のRは、屈折反射を行うミラーを支持するフレームにおける部位を示しており、この点は図7(a)及び図8(a)の場合も同様である。 基本構成(1)及び(2)において、ガルバノスキャナーにおける後端側領域に対し先端側領域が上側に傾斜している状態を示す後端側の長手方向及び先端側の長手方向の各側面図であって、(a)は、基本構成(1)の場合を示し、(b)は、基本構成(2)の場合を示す。 第2ミラーの反射の中心位置が回動中心軸及びその近傍であって、かつ第2ミラーの反射領域が、回動段階における上端及び下端の範囲内にある実施形態を示す側面図である。 複数個のガルバノスキャナーにおける各第2ミラーの回動中心軸の中央位置を、テーブル面の中心位置を基準として水平方向に即して等距離に配列している実施形態を示す平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。 複数個のガルバノスキャナーの先端側領域の長手方向を平行であると共に、隣り合うガルバノスキャナーにおける先端側領域の長手方向を逆方向に設定している実施形態を2個のガルバノスキャナーに即して説明する平面図であって、(a)は、各ガルバノスキャナーにおいてテーブル面の中心位置から前記長手方向に即した平行方向に対し、水平方向に沿って直交する方向に延設された直線に関し、各第2ミラーの回動中心軸を、前記平行方向に沿って前記直線と重複する状態に配列しており、かつ屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、前記平行方向と直交する方向にて前記直線と重複する状態に配列しており、かつ湾曲しているフレームを採用している基本構成(2)の場合を示す。
基本構成(1)は、図4(a)及び図5(a)に示すように、粉末を走行を介してテーブル4上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビーム7を走査するガルバノスキャナー3を備えた三次元造形装置であって、ガルバノスキャナー3は、レーザビーム又は電子ビーム7の発振源1、レーザビーム又は電子ビーム7を透過するダイナミックフォーカスレンズ2、当該透過方向と直交する方向の回動中心軸30を介して回動する第1ミラー31及び第1ミラー31の回動と独立した状態にて前記第1ミラー31における回動中心軸30の方向と直交状態にあり、かつ水平方向の回動中心軸30を介して回動する第2ミラー32をそれぞれフレーム5内に配列すると共に、レーザビーム又は電子ビーム7の発振源1を収容している領域を後端側とし、第1ミラー31を収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラー32の収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビーム7に対する屈折反射を行うミラー6を設置すると共に、前記フレーム5が当該ミラー6を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、ガルバノスキャナー3における前記後端側領域に対し、前記先端側領域が上側に傾斜すると共に、前記屈折反射を行うミラー6を、当該傾斜角度だけ鉛直方向に対し偏差するように設置し、かつ第2ミラー32の突設方向を当該傾斜角度と同一角度にて上側に傾斜し、しかも第1ミラー31の回動中心軸30を鉛直方向に設定している三次元造形装置である。
尚、図4(a)及び後述する図7(a)に示すように、第2ミラー32先端側の長手方向から突設する方向と、フレーム5において長手方向の後端側領域突設する方向とが同一方向を形成しているが、後述する図8(a)に示すように、双方の突設方向を逆方向に設定することも当然可能である。
図4(a)に示すように、基本構成(1)においては、フレーム5がレーザビーム又は電子ビーム7を屈折反射するミラー6を支持する部位の周囲にて屈曲又は湾曲しているが、このような屈曲又は湾曲に基づく技術的意義については、既に効果の項において説明した通りである。
基本構成(1)においては、図5(a)に示すように、ガルバノスキャナー3における前記後端側領域に対し、前記先端側領域が上側に傾斜すると共に、前記屈折反射を行うミラー6を、当該傾斜角度だけ鉛直方向に対し偏差するように設置しかつ第2ミラー32の突設方向を当該傾斜角度と同一角度にて上側に傾斜し、しかも第1ミラー31の回動中心軸30を鉛直方向に設定している
このような設定による基本構成(1)の効果については、発明の効果の項において既に説明した通りである。
基本構成(2)は、図4(b)及び図5(b)に示すように、粉末を走行を介してテーブル4上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビーム7を走査するガルバノスキャナー3を備えた三次元造形装置であって、ガルバノスキャナー3は、レーザビーム又は電子ビーム7の発振源1、レーザビーム又は電子ビーム7を透過するダイナミックフォーカスレンズ2、当該透過方向と直交する方向の回動中心軸30を介して回動する第1ミラー31及び第1ミラー31の回動と独立した状態にて前記第1ミラー31における回動中心軸30の方向と直交状態にあり、かつ水平方向の回動中心軸30を介して回動する第2ミラー32をそれぞれフレーム5内に配列すると共に、レーザビーム又は電子ビーム7の発振源1を収容している領域を後端側とし、第2ミラー32を収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラー31の回動中心軸30を設置すると共に、前記フレーム5が第1ミラー31の回動中心軸30を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、ガルバノスキャナー3における前記後端側領域に対し、前記先端側領域が上側に傾斜しており、かつ中途部位において設置されている第1ミラー31の回動中心軸30を、当該傾斜角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビーム7が第1ミラー31によって当該傾斜方向に反射することを可能としている三次元造形装置である。
図4(b)に示すように、基本構成(2)は、フレーム5が第1ミラー31の回動中心軸30を支持する部位の周囲にて屈曲又は湾曲しているが、このような屈曲又は湾曲に基づく技術的意義については、既に効果の項において説明した通りである。
基本構成(2)においては、図5(b)に示すように、ガルバノスキャナー3における前記後端側領域に対し、前記先端側領域が上側に傾斜しており、かつ中途部位において設置されている第1ミラー31の回動中心軸30を、当該傾斜角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビーム7が第1ミラー31によって当該傾斜方向に反射することを可能としている
このような反射の可能性に基づく効果については、発明の効果の項において既に説明した通りである。
基本構成(1)及び(2)において、ガルバノスキャナー3のフレーム5が屈曲又は湾曲する角度は、前記先端側領域及び後端側領域を含む屈曲及び湾曲していない直線方向の交差角度を基準とした場合に、通常90°である。
但し、90°に限定する必要はなく、屈曲又は湾曲する角度として前記基準によって60°~120°の範囲の角度においても、基本構成(1)及び(2)の構成及び効果を確保することができる。
基本構成(1)及び(2)において、フレーム5が屈曲又は湾曲する領域は、長手方向の後端側及び先端側から等距離であって、かつ屈曲又は湾曲の中心位置として後端側及び先端側から等距離の位置を選択する場合が多い。
しかしながら、フレーム5が屈曲又は湾曲する領域については、長手方向の後端から長手方向の全距離の1/3以上の領域内にあり、かつ長手方向の先端から長手方向の全距離の1/3以上の領域内を好適に選択することができる。
このような領域であっても、基本構成(1)及び(2)の構成及び効果を発揮することができる。
基本構成(1)において、レーザビーム又は電子ビーム7に対する屈折反射を行うミラー6を、鉛直方向に対し当該傾斜角度だけ偏差するように設定し、その結果、レーザビーム又は電子ビーム7は当該傾斜角度だけ上側に反射されている。
他方、第1ミラー31の回動中心軸30は、鉛直方向に設定されていることから、上側に傾斜するように反射されたレーザビーム又は電子ビーム7は、当該傾斜角度だけ上側に傾斜するように突設されている第2ミラー32の収容領域側に、レーザビーム又は電子ビーム7を反射することができる。
これに対し、基本構成(2)において、第1ミラー31の回動中心軸30を、鉛直方向に対し、先端側の長手方向の傾斜角度だけ鉛直方向に偏差しており、その結果、レーザビーム又は電子ビーム7を第2ミラー32の収容領域側に反射している。
基本構成(1)及び(2)においては、図6に示すように、第2ミラー32の反射の中心位置が回動中心軸30及びその近傍の位置であり、かつ第2ミラー32の反射領域が、回動段階における上端及び下端の範囲内にあることを特徴とする実施形態を採用することができる。
第2ミラー32の回動中心軸30の位置は固定されているが、第2ミラー32における反射領域は回動中心軸30の下側又は上側に限定される場合がある。
これに対し、図6に示す実施形態の場合には、反射の中心位置を回動中心軸30及びその近傍の位置とすることによって、正確な反射を実現する一方、反射領域を回動段階における上端及び下端の範囲内にすることによって、第2ミラー32をコンパクトな構成とすることができる。
基本構成(1)及び(2)においては、図7(a)、(b)に示すように、複数個のガルバノスキャナー3を備え、かつ各第2ミラー32の回動中心軸30の中央位置Qを、テーブル4の面の中心位置Pを基準として水平方向に即して等距離に配列していることを特徴とする実施形態を採用することができる。
前記実施形態の場合には、テーブル4の面の中心位置Pを基準として、各第2ミラー32の照射領域を均等に区分した場合、又は各第2ミラー32の照射領域を共通とした場合の何れにおいても、シンプルな制御によって、均一な照射状態を実現することができる。
基本構成(1)及び(2)においては、図8(a)、(b)に示すように、複数個のガルバノスキャナー3を備え、かつ各ガルバノスキャナー3の先端側領域の長手方向を平行であると共に、隣り合うガルバノスキャナー3における先端側領域の長手方向を逆方向に設定しており、各ガルバノスキャナー3においてテーブル4の面の中心位置Pから前記平行方向に対し、水平方向に沿って直交する方向に延設された直線Lに関し、各第2ミラー32の回動中心軸30を、図8(a)に示すように、前記平行方向に沿って前記直線Lと重複する状態に配列するか、又は図8(b)に示すように、前記平行方向と直交する方向にて前記直線Lと重複する状態に配列していることを特徴とする実施形態を採用することができる。
前記実施形態の場合には、先端側に配列されている第2ミラー32の回動軸30を、前記直線Lと重複する状態に配列することによって、第2ミラー32による均一な照射及び第2ミラー32のコンパクトな配列を実現することができる。
しかも、隣り合うガルバノスキャナー3を逆方向に平行状態に設定することによって、テーブル4の面のスペースを有効に活用することができる。
更には、上記のような逆方向にて平行状態に設定した場合には、隣り合うガルバノスキャナー3の屈曲する方向又は湾曲する方向が相互に逆転状態であって、テーブル4の面のスペースの有効な活用を一層助長することができる。
以下、実施例に即して説明する。
実施例1は、図7(a)、(b)に示す実施形態に立脚した上で、図1(a)、(b)、(c)、(d)、(e)に示すように、2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナー3の先端側の長手方向が前記中心位置Pを基準として、それぞれ180°、120°、90°、72°、60°の等角度による交差状態にて放射状態に配置されていることを特徴としている。
このような特徴点によって、実施例1は、第2ミラー32がテーブル4の面の中心位置Pから等距離だけでなく、等角度に配列されることによって、粉末層に対する均一な照射を実現することができる。
従来技術による直線状のガルバノスキャナー3を放射状に配置した場合には、テーブル4の面の中心位置Pから離れるにしたがって、ガルバノスキャナー3の長手方向の領域間における空隙が増加し、テーブル4の面のスペースを有効に活用する程度が減少することを避けることができない。
然るに、図1(a)、(b)、(c)、(d)、(e)に示すように、実施例1の場合には、テーブル4の面の中心位置Pから各ガルバノスキャナー3の長手方向が離れたとしても、ガルバノスキャナー3のフレーム5が長手方向の中途部位にて屈曲又は湾曲していることを原因として、各ガルバノスキャナー3の長手方向の領域の空隙が増加せず、テーブル4の面のスペースを有効に活用することができる。
しかもこのような屈曲又は湾曲構成によって、テーブル4において小さな面積のテーブル4を採用することが図1(a)、(b)、(c)、(d)、(e)によって裏付けられている。
実施例2は、図7(a)、(b)に示す実施形態に立脚した上で、図2(a)、(b)、(c)、(d)、(e)に示すように、2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナー3の先端側の長手方向が、それぞれ0°の交差角度による平行状態、60°の交差角度による正三角形の辺、90°の交差角度による正方形の辺、108°の交差角度による正五角形の辺、120°の交差角度による正六角形の辺を形成していることを特徴としている。
上記特徴点によって、実施例2においても、実施例1の場合と同様に各第2ミラー32がテーブル4の面の中心位置Pから単に等距離であるだけでなく、等角度に配列されることによって、均一な照射を実現することができる。
しかも、各ガルバノスキャナー3のフレーム5の後端領域側は、平行状態、又は正三角形、正方形、正五角形、正六角形の各辺の外側に突出していることから、従来技術の場合と同一のテーブル4の面を採用した場合に、先端側領域がテーブル4の面の中心位置Pをコンパクトな状態にて囲んだ配置状態、即ち当該中心位置Pに対し近い距離による配置状態を実現することができる。
その結果、従来技術のように直線状の長手方向を有するガルバノスキャナー3を採用し、平行状態、又は正三角形、正方形、正五角形、正六角形の各辺において、テーブル4の面の中心位置Pを囲んだ配置状態の場合に比し、より均一な第2ミラー32による照射状態を実現することができる。
実施例3は、図8(a)、(b)に示す実施形態に立脚した上で、図3(a)、(b)、(c)、(d)、(e)に示すように、2個、又は4個、又は6個のガルバノスキャナー3を前記中心位置Pを基準として点対称に配置するか、若しくは3個又は5個のガルバノスキャナー3のうちの1個を前記中心位置P上に配置し、残2個又は残4個のガルバノスキャナー3を前記中心位置Pから前記平行方向にて延設された直線Lを基準としてそれぞれ線対称に配置していることを特徴としている。
このような特徴点において、実施例3においては、図8に示す実施形態の特徴点を具体的に実現することができる。
現に、図3(a)、(b)、(c)、(d)、(e)に示すように、実施例3においては、逆方向の平行状態に設定されている隣り合うガルバノスキャナー3の屈曲する方向又は湾曲する方向が逆転していることによって、テーブル4の面のスペースの有効な活用を助長しており、かつこの点は、前記各図面によって一目瞭然である。
このように、ガルバノスキャナーの長手方向を後端側領域と先端側領域との中途部位において屈曲又は湾曲している構成を採用している本発明においては、テーブル面のスペースを有効に活用する一方、面積の少ないテーブルに採用することが可能である一方、複数個のガルバノスキャナーの配置構成によって、コンパクトな第2ミラーの配列、及び各第2ミラーによる均一な照射の実現を可能としており、その利用範囲は絶大である。
1 レーザビーム又は電子ビームの発振源
2 ダイナミックフォーカスレンズ
3 ガルバノスキャナー
30 回動中心軸
31 第1ミラー
32 第2ミラー
4 テーブル
5 フレーム
6 レーザビーム又は電子ビームを屈折反射するミラー
7 レーザビーム又は電子ビーム
P テーブル面の中心位置
D テーブル面の中心位置からガルバノスキャナーの長手方向に即して平行方向に延設された点線
L 前記平行方向に直交する方向にてテーブル面の中心位置から延設された直線
Q 回動中心軸30の中央位置
R 屈折反射を行うミラーを支持するフレームにおける部位
本発明は、ダイナミックフォーカスレンズを透過して順次集束するレーザビーム又は電子ビームを、二次元方向に走査するガルバノスキャナーを複数個採用している三次元造形装置を対象としている。
テーブル面上に積層した粉末層に対するレーザビーム又は電子ビームの照射によって焼結面を形成する三次元造形においては、焦点距離を調整し得るダイナミックフォーカスレンズを透過したレーザビーム又は電子ビームをガルバノスキャナーによって焼結面又はその近傍に集束するような走査(スキャニング)が行われている。
特許文献1に示すように、ガルバノスキャナー3は、レーザビーム又は電子ビーム発振源1、ダイナミックフォーカスレンズ2、第1ミラー31及び第2ミラー32を備えているが、レーザビーム又は電子ビーム発振源1の後端側とし、第1ミラー31の収容領域を先端側とするような長手方向を形成しており、かつ当該長手方向に沿ったフレーム内に前記各構成要素を包摂している。
特許文献1の図1、2、3、4においては、第2ミラー32が第1ミラー31の長手方向の延長上に包摂するが如き図示が行われているが、実際には殆ど大抵の場合、特許文献2に示すように、第2ミラー(X軸ガルバノミラー32a、42a、52a、62a)が第1ミラー(Y軸ガルバノミラー32b、42b、52b、62b)の収容領域から前記長手方向から交差する方向(但し、殆ど大抵の場合は直交方向)にて突設されている。
したがって、特許文献1及び同2に示す従前のガルバノスキャナーの場合には、少なくとも後端側領域をレーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とした上で、直線状の長手方向が採用されている。
上記直線状の長手方向を採用する基本的根拠は、レーザビーム又は電子ビームが発振源から第1ミラーに至るまで直進することにある。
しかしながら、レーザビーム又は電子ビームの発振源から第2ミラーに至るまでの距離は、テーブル面の前後左右方向と比肩するようなスケールであって、このようなスケールの長手方向を有するガルバノスキャナーをテーブル面の内側に複数個配置した場合には、長手方向の後端側が水平方向に即してテーブル面から突出するような場合が発生する。
にも拘らず、テーブル面から突出せず、しかもコンパクトであって面積の小さいテーブル面に適用し得るようなガルバノスキャナーの構成については、これまで検討されていない。
日本国特許公報第6713672号公報 日本国特許公報第6793806号公報
本発明は、テーブル面のスペースを有効に活用し、かつ面積の小さいテーブル面においても余裕のあるスペースの下に設置し得るようなガルバノスキャナーを採用している三次元造形装置の構成を提供することを課題としている。
前記課題を解決するため、本発明の基本構成は、
(1)粉末を走行を介してテーブル上に積層するスキージ、当当該積層による粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラーの収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビームに対する屈折反射を行うミラーを設置すると共に、前記フレームが当該ミラーを支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、前記のように屈曲又は湾曲している領域から、前記先端側領域に至る迄前記フレームが上側に傾斜すると共に、前記屈折反射を行うミラーを、当該傾斜を形成している角度だけ鉛直方向に対し偏差するように設置し、かつ第2ミラーの突設方向を当該傾斜を形成している角度と同一角度にて上側に傾斜し、しかも第1ミラーの回動中心軸を鉛直方向に設定している三次元造形装置、
(2)粉末を走行を介してテーブル上に積層するスキージ、当該積層による粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第2ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラーの回動中心軸を設置すると共に、前記フレームが第1ミラーの回動中心軸を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、前記のように屈曲又は湾曲している領域から、前記先端側領域に至る迄前記フレームが上側に傾斜しており、かつ中途部位において設置されている第1ミラーの回動中心軸を、当該傾斜を形成している角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビームが第1ミラーによって当該傾斜を形成している方向に反射することを可能としている三次元造形装置、
からなる。
特許文献1に示すように、従来技術のガルバノスキャナーにおける長手方向は、直線状、即ち一次元の形状であって、たとえ先端側における第2ミラーの突出領域が当該長手方向に対して交差するとしても、突設領域の寸法は長手方向の寸法よりも明らかに小さいため、長手方向が基本的に一次元の形状であることを左右しない。
これに対し、基本構成(1)及び(2)におけるガルバノスキャナーは、長手方向が中途部位において屈曲又は湾曲しており、異なる方向を形成していることから、二次元状の形状である。
したがって、1個のガルバノスキャナーを採用した場合、テーブル面のスペースを二次元の形状によって有効に活用することができる。
しかも、レーザビーム又は電子ビームの発振源と先端側の第2ミラーとの距離において、基本構成(1)及び(2)のガルバノスキャナーは、明らかに特許文献1及び同2のようなガルバノスキャナーよりも短距離である。
その結果、基本構成(1)及び(2)のガルバノスキャナーは、面積が小さいテーブル面のスペースを有効に活用することができる。
これらの効果は、1個のガルバノスキャナーを採用した場合、又は複数個のガルバノスキャナーを採用した場合においても共通している。
即ち、複数個のガルバノスキャナーを採用している特許文献1及び同2等による従来技術の場合よりも狭い面積のテーブルを有効に活用することができる。
基本構成(1)及び(2)においては、ガルバノスキャナーのフレームが中途部位において屈曲又は湾曲していることから、屈曲又は湾曲している領域から先端側領域に至るまで順次フレームが上側に傾斜するが、このような傾斜状態によって、水平方向に即してコンパクトな三次元造形装置の構成を実現することができる。
基本構成(1)及び(2)の場合には、第2ミラーのテーブル面に対する位置が高くなるが、その結果、粉末層に対する照射角度の変化状態が少ないことに帰する。
一般に、三次元造形においては、第2ミラーによる照射の程度を均一状態とするために、第1ミラー及び第2ミラーの回動速度のコントロールが行われており、前記照射角度が小さいほど第1ミラー及び第2ミラーの回動速度を小さく設定している。
但し、上記設定によるコントロールによって必ずしも均一な照射が保証される訳ではない。
このような場合、基本構成(1)及び(2)においては、傾斜角度の変化状態が少ないことから、前記コントロールの精度を改良することができる。
実施例1の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが屈曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 実施例2の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが屈曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 実施例3の構成を示す平面図であって、(a)、(b)、(c)(d)、(e)は、それぞれ2個、3個、4個、5個、6個のガルバノスキャナーを示す。 但し、各フレームが湾曲している場合を示し、かつ各ガルバノスキャナーにおける個別の構成要素の図示は省略されている。 基本構成(1)及び(2)を1個のガルバノスキャナーに即して説明する平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。 尚、(a)のRは、屈折反射を行うミラーを支持するフレームにおける部位を示しており、この点は図7(a)及び図8(a)の場合も同様である。 基本構成(1)及び(2)において、屈曲又は湾曲している領域から先端側領域に至る迄フレームが上側に傾斜している状態を示す後端側の長手方向及び先端側の長手方向の各側面図であって、(a)は、基本構成(1)の場合を示し、(b)は、基本構成(2)の場合を示す。 第2ミラーの反射の中心位置が回動中心軸及びその近傍であって、かつ第2ミラーの反射領域が、回動段階における上端及び下端の範囲内にある実施形態を示す側面図である。 複数個のガルバノスキャナーにおける各第2ミラーの回動中心軸の中央位置を、テーブル面の中心位置を基準として水平方向に即して等距離に配列している実施形態を示す平面図であって、(a)は、屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、湾曲しているフレームを採用している基本構成(2)の場合を示す。 複数個のガルバノスキャナーの先端側領域の長手方向を平行であると共に、隣り合うガルバノスキャナーにおける先端側領域の長手方向を逆方向に設定している実施形態を2個のガルバノスキャナーに即して説明する平面図であって、(a)は、各ガルバノスキャナーにおいてテーブル面の中心位置から前記長手方向に即した平行方向に対し、水平方向に沿って直交する方向に延設された直線に関し、各第2ミラーの回動中心軸を、前記平行方向に沿って前記直線と重複する状態に配列しており、かつ屈曲しているフレームを採用している基本構成(1)の場合を示し、(b)は、前記平行方向と直交する方向にて前記直線と重複する状態に配列しており、かつ湾曲しているフレームを採用している基本構成(2)の場合を示す。
基本構成(1)は、図4(a)及び図5(a)に示すように、粉末を走行を介してテーブル4上に積層するスキージ、当該積層による粉末層に対しレーザビーム又は電子ビーム7を走査するガルバノスキャナー3を備えた三次元造形装置であって、ガルバノスキャナー3は、レーザビーム又は電子ビーム7の発振源1、レーザビーム又は電子ビーム7を透過するダイナミックフォーカスレンズ2、当該透過方向と直交する方向の回動中心軸30を介して回動する第1ミラー31及び第1ミラー31の回動と独立した状態にて前記第1ミラー31における回動中心軸30の方向と直交状態にあり、かつ水平方向の回動中心軸30を介して回動する第2ミラー32をそれぞれフレーム5内に配列すると共に、レーザビーム又は電子ビーム7の発振源1を収容している領域を後端側とし、第1ミラー31を収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラー32の収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビーム7に対する屈折反射を行うミラー6を設置すると共に、前記フレーム5が当該ミラー6を支持する部位Rの周囲にて屈曲又は湾曲している三次元造形装置において、前記のように屈曲又は湾曲している領域から、前記先端側領域に至る迄前記フレーム5が上側に傾斜すると共に、前記屈折反射を行うミラー6を、当該傾斜を形成している角度だけ鉛直方向に対し偏差するように設置し、かつ第2ミラー32の突設方向を当該傾斜を形成している角度と同一角度にて上側に傾斜し、しかも第1ミラー31の回動中心軸30を鉛直方向に設定している三次元造形装置である。
尚、図4(a)及び後述する図7(a)に示すように、第2ミラー32を先端側の長手方向から突設する方向と、フレーム5において長手方向の後端側領域を突設する方向とが同一方向を形成しているが、後述する図8(a)に示すように、双方の突設方向を逆方向に設定することも当然可能である。
図4(a)に示すように、基本構成(1)においては、フレーム5がレーザビーム又は電子ビーム7を屈折反射するミラー6を支持する部位Rの周囲にて屈曲又は湾曲しているが、このような屈曲又は湾曲に基づく技術的意義については、既に効果の項において説明した通りである。
基本構成(1)においては、図5(a)に示すように、ガルバノスキャナー3において前記のように屈曲又は湾曲している領域から、前記先端側領域に至る迄前記フレーム5が上側に傾斜すると共に、前記屈折反射を行うミラー6を、当該傾斜角度だけ鉛直方向に対し偏差するように設置し、かつ第2ミラー32の突設方向を当該傾斜角度と同一角度にて上側に傾斜し、しかも第1ミラー31の回動中心軸30を鉛直方向に設定している。
このような設定による基本構成(1)の効果については、発明の効果の項において既に説明した通りである。
基本構成(2)は、図4(b)及び図5(b)に示すように、粉末を走行を介してテーブル4上に積層するスキージ、当該積層による粉末層に対しレーザビーム又は電子ビーム7を走査するガルバノスキャナー3を備えた三次元造形装置であって、ガルバノスキャナー3は、レーザビーム又は電子ビーム7の発振源1、レーザビーム又は電子ビーム7を透過するダイナミックフォーカスレンズ2、当該透過方向と直交する方向の回動中心軸30を介して回動する第1ミラー31及び第1ミラー31の回動と独立した状態にて前記第1ミラー31における回動中心軸30の方向と直交状態にあり、かつ水平方向の回動中心軸30を介して回動する第2ミラー32をそれぞれフレーム5内に配列すると共に、レーザビーム又は電子ビーム7の発振源1を収容している領域を後端側とし、第2ミラー32を収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラー31の回動中心軸30を設置すると共に、前記フレーム5が第1ミラー31の回動中心軸30を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置において、前記のように屈曲又は湾曲している領域から、前記先端側領域に至る迄前記フレーム5が上側に傾斜しており、かつ中途部位において設置されている第1ミラー31の回動中心軸30を、当該傾斜を形成している角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビーム7が第1ミラー31によって当該傾斜を形成している方向に反射することを可能としている三次元造形装置である。
図4(b)に示すように、基本構成(2)は、フレーム5が第1ミラー31の回動中心軸30を支持する部位の周囲にて屈曲又は湾曲しているが、このような屈曲又は湾曲に基づく技術的意義については、既に効果の項において説明した通りである。
基本構成(2)においては、図5(b)に示すように、ガルバノスキャナー3において前記のように屈曲又は湾曲している領域から、前記先端側領域に至る迄前記フレーム5が上側に傾斜しており、かつ中途部位において設置されている第1ミラー31の回動中心軸30を、当該傾斜角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビーム7が第1ミラー31によって当該傾斜方向に反射することを可能としている。
このような反射の可能性に基づく効果については、発明の効果の項において既に説明した通りである。
基本構成(1)及び(2)において、ガルバノスキャナー3のフレーム5が屈曲又は湾曲する角度は、前記先端側領域及び後端側領域を含む屈曲及び湾曲していない直線方向の交差角度を基準とした場合に、通常90°である。
但し、90°に限定する必要はなく、屈曲又は湾曲する角度として前記基準によって60°~120°の範囲の角度においても、基本構成(1)及び(2)の構成及び効果を確保することができる。
基本構成(1)及び(2)において、フレーム5が屈曲又は湾曲する領域は、長手方向の後端側及び先端側から等距離であって、かつ屈曲又は湾曲の中心位置として後端側及び先端側から等距離の位置を選択する場合が多い。
しかしながら、フレーム5が屈曲又は湾曲する領域については、長手方向の後端から長手方向の全距離の1/3以上の領域内にあり、かつ長手方向の先端から長手方向の全距離の1/3以上の領域内を好適に選択することができる。
このような領域であっても、基本構成(1)及び(2)の構成及び効果を発揮することができる。
基本構成(1)において、レーザビーム又は電子ビーム7に対する屈折反射を行うミラー6を、鉛直方向に対し当該傾斜角度だけ偏差するように設定し、その結果、レーザビーム又は電子ビーム7は当該傾斜角度だけ上側に反射されている。
他方、第1ミラー31の回動中心軸30は、鉛直方向に設定されていることから、上側に傾斜するように反射されたレーザビーム又は電子ビーム7は、当該傾斜角度だけ上側に傾斜するように突設されている第2ミラー32の収容領域側に、レーザビーム又は電子ビーム7を反射することができる。
これに対し、基本構成(2)において、第1ミラー31の回動中心軸30を、鉛直方向に対し、先端側の長手方向の傾斜角度だけ鉛直方向に偏差しており、その結果、レーザビーム又は電子ビーム7を第2ミラー32の収容領域側に反射している。
基本構成(1)及び(2)においては、図6に示すように、第2ミラー32の反射の中心位置が回動中心軸30及びその近傍の位置であり、かつ第2ミラー32の反射領域が、回動段階における上端及び下端の範囲内にあることを特徴とする実施形態を採用することができる。
第2ミラー32の回動中心軸30の位置は固定されているが、第2ミラー32における反射領域は回動中心軸30の下側又は上側に限定される場合がある。
これに対し、図6に示す実施形態の場合には、反射の中心位置を回動中心軸30及びその近傍の位置とすることによって、正確な反射を実現する一方、反射領域を回動段階における上端及び下端の範囲内にすることによって、第2ミラー32をコンパクトな構成とすることができる。
基本構成(1)及び(2)においては、図7(a)、(b)に示すように、複数個のガルバノスキャナー3を備え、かつ各第2ミラー32の回動中心軸30の中央位置Qを、テーブル4の面の中心位置Pを基準として水平方向に即して等距離に配列していることを特徴とする実施形態を採用することができる。
前記実施形態の場合には、テーブル4の面の中心位置Pを基準として、各第2ミラー32の照射領域を均等に区分した場合、又は各第2ミラー32の照射領域を共通とした場合の何れにおいても、シンプルな制御によって、均一な照射状態を実現することができる。
基本構成(1)及び(2)においては、図8(a)、(b)に示すように、複数個のガルバノスキャナー3を備え、かつ各ガルバノスキャナー3の先端側領域の長手方向を平行であると共に、隣り合うガルバノスキャナー3における先端側領域の長手方向を逆方向に設定しており、各ガルバノスキャナー3においてテーブル4の面の中心位置Pから前記平行方向に対し、水平方向に沿って直交する方向に延設された直線Lに関し、各第2ミラー32の回動中心軸30を、図8(a)に示すように、前記平行方向に沿って前記直線Lと重複する状態に配列するか、又は図8(b)に示すように、前記平行方向と直交する方向にて前記直線Lと重複する状態に配列していることを特徴とする実施形態を採用することができる。
前記実施形態の場合には、先端側に配列されている第2ミラー32の回動軸30を、前記直線Lと重複する状態に配列することによって、第2ミラー32による均一な照射及び第2ミラー32のコンパクトな配列を実現することができる。
しかも、隣り合うガルバノスキャナー3を逆方向に平行状態に設定することによって、テーブル4の面のスペースを有効に活用することができる。
更には、上記のような逆方向にて平行状態に設定した場合には、隣り合うガルバノスキャナー3の屈曲する方向又は湾曲する方向が相互に逆転状態であって、テーブル4の面のスペースの有効な活用を一層助長することができる。
以下、実施例に即して説明する。
実施例1は、図7(a)、(b)に示す実施形態に立脚した上で、図1(a)、(b)、(c)、(d)、(e)に示すように、2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナー3の先端側の長手方向が前記中心位置Pを基準として、それぞれ180°、120°、90°、72°、60°の等角度による交差状態にて放射状態に配置されていることを特徴としている。
このような特徴点によって、実施例1は、第2ミラー32がテーブル4の面の中心位置Pから等距離だけでなく、等角度に配列されることによって、粉末層に対する均一な照射を実現することができる。
従来技術による直線状のガルバノスキャナー3を放射状に配置した場合には、テーブル4の面の中心位置Pから離れるにしたがって、ガルバノスキャナー3の長手方向の領域間における空隙が増加し、テーブル4の面のスペースを有効に活用する程度が減少することを避けることができない。
然るに、図1(a)、(b)、(c)、(d)、(e)に示すように、実施例1の場合には、テーブル4の面の中心位置Pから各ガルバノスキャナー3の長手方向が離れたとしても、ガルバノスキャナー3のフレーム5が長手方向の中途部位にて屈曲又は湾曲していることを原因として、各ガルバノスキャナー3の長手方向の領域の空隙が増加せず、テーブル4の面のスペースを有効に活用することができる。
しかもこのような屈曲又は湾曲構成によって、テーブル4において小さな面積のテーブル4を採用することが図1(a)、(b)、(c)、(d)、(e)によって裏付けられている。
実施例2は、図7(a)、(b)に示す実施形態に立脚した上で、図2(a)、(b)、(c)、(d)、(e)に示すように、2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナー3の先端側の長手方向が、それぞれ0°の交差角度による平行状態、60°の交差角度による正三角形の辺、90°の交差角度による正方形の辺、108°の交差角度による正五角形の辺、120°の交差角度による正六角形の辺を形成していることを特徴としている。
上記特徴点によって、実施例2においても、実施例1の場合と同様に各第2ミラー32がテーブル4の面の中心位置Pから単に等距離であるだけでなく、等角度に配列されることによって、均一な照射を実現することができる。
しかも、各ガルバノスキャナー3のフレーム5の後端領域側は、平行状態、又は正三角形、正方形、正五角形、正六角形の各辺の外側に突出していることから、従来技術の場合と同一のテーブル4の面を採用した場合に、先端側領域がテーブル4の面の中心位置Pをコンパクトな状態にて囲んだ配置状態、即ち当該中心位置Pに対し近い距離による配置状態を実現することができる。
その結果、従来技術のように直線状の長手方向を有するガルバノスキャナー3を採用し、平行状態、又は正三角形、正方形、正五角形、正六角形の各辺において、テーブル4の面の中心位置Pを囲んだ配置状態の場合に比し、より均一な第2ミラー32による照射状態を実現することができる。
実施例3は、図8(a)、(b)に示す実施形態に立脚した上で、図3(a)、(b)、(c)、(d)、(e)に示すように、2個、又は4個、又は6個のガルバノスキャナー3を前記中心位置Pを基準として点対称に配置するか、若しくは3個又は5個のガルバノスキャナー3のうちの1個を前記中心位置P上に配置し、残2個又は残4個のガルバノスキャナー3を前記中心位置Pから前記平行方向にて延設された直線Lを基準としてそれぞれ線対称に配置していることを特徴としている。
このような特徴点において、実施例3においては、図8に示す実施形態の特徴点を具体的に実現することができる。
現に、図3(a)、(b)、(c)、(d)、(e)に示すように、実施例3においては、逆方向の平行状態に設定されている隣り合うガルバノスキャナー3の屈曲する方向又は湾曲する方向が逆転していることによって、テーブル4の面のスペースの有効な活用を助長しており、かつこの点は、前記各図面によって一目瞭然である。
このように、ガルバノスキャナーの長手方向を後端側領域と先端側領域との中途部位において屈曲又は湾曲している構成を採用している本発明においては、テーブル面のスペースを有効に活用する一方、面積の少ないテーブルに採用することが可能である一方、複数個のガルバノスキャナーの配置構成によって、コンパクトな第2ミラーの配列、及び各第2ミラーによる均一な照射の実現を可能としており、その利用範囲は絶大である。
1 レーザビーム又は電子ビームの発振源
2 ダイナミックフォーカスレンズ
3 ガルバノスキャナー
30 回動中心軸
31 第1ミラー
32 第2ミラー
4 テーブル
5 フレーム
6 レーザビーム又は電子ビームを屈折反射するミラー
7 レーザビーム又は電子ビーム
P テーブル面の中心位置
D テーブル面の中心位置からガルバノスキャナーの長手方向に即して平行方向に延設された点線
L 前記平行方向に直交する方向にてテーブル面の中心位置から延設された直線
Q 回動中心軸30の中央位置
R 屈折反射を行うミラーを支持するフレームにおける部位

Claims (12)

  1. 粉末を走行を介してテーブル上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第1ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向においては、前記先端側から第2ミラーの収容領域が突設されており、しかも前記長手方向の中途部位において、レーザビーム又は電子ビームに対する屈折反射を行うミラーを設置すると共に、前記フレームが当該ミラーを支持する部位の周囲にて屈曲又は湾曲している三次元造形装置。
  2. 粉末を走行を介してテーブル上に積層するスキージ、当該粉末層に対しレーザビーム又は電子ビームを走査するガルバノスキャナーを備えた三次元造形装置であって、ガルバノスキャナーは、レーザビーム又は電子ビームの発振源、レーザビーム又は電子ビームを透過するダイナミックフォーカスレンズ、当該透過方向と直交する方向の回動中心軸を介して回動する第1ミラー及び第1ミラーの回動と独立した状態にて前記第1ミラーにおける回動中心軸の方向と直交状態にあり、かつ水平方向の回動中心軸を介して回動する第2ミラーをそれぞれフレーム内に配列すると共に、レーザビーム又は電子ビームの発振源を収容している領域を後端側とし、第2ミラーを収容している領域を先端側とする長手方向を形成しており、前記長手方向の中途部位において、第1ミラーの回動中心軸を設置すると共に、前記フレームが第1ミラーの回動中心軸を支持する部位の周囲にて屈曲又は湾曲している三次元造形装置。
  3. フレームの屈曲又は湾曲する角度が、前記先端側領域及び後端側領域を含む屈曲及び湾曲していない直線方向の交差角度を基準として60°~120°であることを特徴とする請求項1、2記載の三次元造形装置。
  4. フレームの屈曲又は湾曲している領域が、長手方向の後端から長手方向の全距離の1/3以上の領域内にあり、かつ長手方向の先端から長手方向の全距離の1/3以上の領域内にあることを特徴とする請求項1、2、3の何れか一項に記載の三次元造形装置。
  5. ガルバノスキャナーにおける前記後端側領域に対し、前記先端側領域が上側に傾斜すると共に、前記屈折反射を行うミラーを、当該傾斜角度だけ鉛直方向に対し偏差するように設置した上で、かつ第2ミラーの突設方向を当該傾斜角度と同一角度にて上側に傾斜し、しかも第1ミラーの回動中心軸を鉛直方向に設定していることを特徴とする請求項1、3、4の何れか一項に記載の三次元造形装置。
  6. ガルバノスキャナーにおける前記後端側領域に対し、前記先端側領域が上側に傾斜しており、かつ中途部位において設置されている第1ミラーの回動中心軸を、当該傾斜角度だけ鉛直方向に対し偏差する方向に設置することによって、レーザビーム又は電子ビームが第1ミラーによって当該傾斜方向に反射することを可能としていることを特徴とする請求項2、3、4の何れか1項に記載の三次元造形装置。
  7. 第2ミラーの反射の中心位置が回動中心軸及びその近傍の位置であり、かつ第2ミラーの反射領域が、回動段階における上端及び下端の範囲内にあることを特徴とする請求項1、2、3、4、5、6の何れか一項に記載の三次元造形装置。
  8. 複数個のガルバノスキャナーを備え、かつ各第2ミラーの回動中心軸の中央位置を、テーブル面の中心位置を基準として水平方向に即して等距離に配列していることを特徴とする請求項1、2、3、4、5、6、7の何れか一項に記載の三次元造形装置。
  9. 2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナーの先端側の長手方向が前記中心位置を基準として、それぞれ180°、120°、90°、72°、60°の等角度による交差状態にて放射状態に配置されていることを特徴とする請求項8記載の三次元造形装置。
  10. 2個、又は3個、又は4個、又は5個、又は6個のガルバノスキャナーの先端側の長手方向が、それぞれ0°の交差角度による平行状態、60°の交差角度による正三角形の辺、90°の交差角度による正方形の辺、108°の交差角度による正五角形の辺、120°の交差角度による正六角形の辺を形成していることを特徴とする請求項8記載の三次元造形装置。
  11. 複数個のガルバノスキャナーを備え、かつ各ガルバノスキャナーの先端側領域の長手方向を平行であると共に、隣り合うガルバノスキャナーにおける先端側領域の長手方向を逆方向に設定しており、各ガルバノスキャナーにおいてテーブル面の中心位置から前記平行方向に対し、水平方向に沿って直交する方向に延設された直線に関し、各第2ミラーを、回動面が前記平行方向に即して、前記直線と重複する状態にて配列するか、又は前記先端側領域及び後端側領域と共に前記直線から離れた状態にて配列するか、又は前記直線に対し、前記後端側領域と反対側に配列するかの何れかであることを特徴とする請求項1、2、3、4、5、6、7の何れか一項に記載の三次元造形装置。
  12. 2個、又は4個、又は6個のガルバノスキャナーを前記中心位置を基準として点対称に配置するか、若しくは3個又は5個のガルバノスキャナーのうちの1個を前記中心位置上に配置し、残2個又は残4個のガルバノスキャナーを前記中心位置から前記平行方向にて延設された直線を基準としてそれぞれ線対称に配置していることを特徴とする請求項11記載の三次元造形装置。
JP2021117448A 2021-07-15 2021-07-15 三次元造形装置 Active JP7021816B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021117448A JP7021816B1 (ja) 2021-07-15 2021-07-15 三次元造形装置
JP2021167474A JP7021818B1 (ja) 2021-07-15 2021-10-12 三次元造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021117448A JP7021816B1 (ja) 2021-07-15 2021-07-15 三次元造形装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021167474A Division JP7021818B1 (ja) 2021-07-15 2021-10-12 三次元造形装置

Publications (2)

Publication Number Publication Date
JP7021816B1 JP7021816B1 (ja) 2022-02-17
JP2023013338A true JP2023013338A (ja) 2023-01-26

Family

ID=80997586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021117448A Active JP7021816B1 (ja) 2021-07-15 2021-07-15 三次元造形装置

Country Status (1)

Country Link
JP (1) JP7021816B1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193434A (ja) * 1989-12-25 1991-08-23 Matsushita Electric Works Ltd 三次元形状の形成方法
JP3252859B2 (ja) * 1991-09-19 2002-02-04 ソニー株式会社 立体形状成形装置および立体形状成形方法
JP2000233451A (ja) * 1999-02-16 2000-08-29 Hyper Photon System:Kk 光造形装置の較正装置
JP2004223790A (ja) * 2003-01-21 2004-08-12 Seiko Instruments Inc 曲線形状をもつ微細造形物を光造形法により滑らかに作製する方法および装置

Also Published As

Publication number Publication date
JP7021816B1 (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
JP2642646B2 (ja) 光走査読取装置
CN113015588A (zh) 三维造型方法和三维造型装置
CN101965579B (zh) 使用展像段的光学图案生成器
JP2021066059A (ja) 三次元造形方法及び三次元造形装置
JP5997522B2 (ja) 光走査装置及びレーザ加工装置
JP2023013338A (ja) 三次元造形装置
JP2023013322A (ja) 三次元造形装置
JP7021818B1 (ja) 三次元造形装置
JPH03249722A (ja) 光ビーム走査装置
JP4246981B2 (ja) レーザ加工装置
JP6978137B1 (ja) 三次元造形装置
JP7083199B1 (ja) 三次元造形装置
EP1195636A2 (en) Optical scanner
JP3922383B2 (ja) 光走査装置
JP2023013333A (ja) 三次元造形装置
JPS5820410B2 (ja) 光学的走査装置
JP3922382B2 (ja) 光走査装置
JP2023013326A (ja) 三次元造形装置
JP2004138748A5 (ja)
JP3381333B2 (ja) 光走査装置
JP3707511B2 (ja) 光走査装置
JP3680871B2 (ja) 自己増幅偏向走査光学系
JP2002258185A (ja) ビーム合成方法・ビーム合成用プリズム・マルチビーム走査用光源装置・マルチビーム走査装置
JPH07262304A (ja) 光走査読取装置及びその反射面
JP3707512B2 (ja) 光走査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7021816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150