JP2023011537A - Catalyst and preparation method of bio-diesel using the catalyst - Google Patents

Catalyst and preparation method of bio-diesel using the catalyst Download PDF

Info

Publication number
JP2023011537A
JP2023011537A JP2022111518A JP2022111518A JP2023011537A JP 2023011537 A JP2023011537 A JP 2023011537A JP 2022111518 A JP2022111518 A JP 2022111518A JP 2022111518 A JP2022111518 A JP 2022111518A JP 2023011537 A JP2023011537 A JP 2023011537A
Authority
JP
Japan
Prior art keywords
catalyst
electric furnace
furnace dust
biodiesel
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022111518A
Other languages
Japanese (ja)
Inventor
亜南 曽
Yanan Zeng
一同 王
Yitong Wang
俊国 李
Junguo Li
亜軍 王
Yajun Wang
宝 劉
Bao Liu
喜 張
Xi Zhang
涛 李
Tao Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Publication of JP2023011537A publication Critical patent/JP2023011537A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

To provide a preparation method of bio-diesel having excellent recycle performance.SOLUTION: The electric furnace dust is ground with a ball mill, passed through a 75 to 400 mesh sieve, and the electric furnace dust that has passed through the sieve is placed in an oven and dried at 75 to 105°C. for 5 to 48 hours to obtain pretreated electric furnace dust, and place the mixture together with a sodium salt in a glass bottle covered with a rubber sheet, and magnetically stir in an oil bath at 55 to 105°C for 0.5 to 5 hours. The resulting sample is dried in an oven at 75 to 105°C. for 4 hours or more and passed through a 75 to 400 mesh sieve to obtain a sodium-electric furnace dust catalyst. The resulting catalyst has both acidity and alkalinity, can be automatically separated from the liquid product by standing still, can be used directly in a reaction of low acid value oil, has excellent catalytic effect, and has a biodiesel production. rate>95% and catalyst recovery rate>90%. The catalyst achieves a biodiesel production rate of over 90% even after 15 reactions.SELECTED DRAWING: None

Description

本発明は、バイオディーゼル用触媒及びバイオディーゼルの調製方法に関し、具体的には、電炉ダストを用いて調製した触媒及び当該触媒を用いたバイオディーゼルの調製方法に関する。 TECHNICAL FIELD The present invention relates to a biodiesel catalyst and a method for preparing biodiesel, and more specifically to a catalyst prepared using electric furnace dust and a method for preparing biodiesel using the catalyst.

現在、人間社会は化石燃料の取得エネルギーに大きく依存している。化石燃料の燃焼により生態環境が破壊され、スモッグ、温室効果、環境汚染などの問題は、人々の生活及び健康に深刻な影響を与える。化石燃料の日々枯渇により、クリーンで環境に優しいグリーンな再生可能エネルギーの開発の重要性が認識されるようになる。バイオディーゼルは、植物油、動物油、飲食廃棄油及び低価アルコールが酸性触媒とアルカリ性触媒の作用下でエステル交換反応により調製された再生可能な燃料であり、近年広く注目されている。バイオディーゼルの物理化学的特性は石油化学ディーゼルを十分に類似し、エンジンに直接添加して使用することができるため、エンジンを改造する必要がない。バイオディーゼルの燃焼過程においては、スート(soot)やポリマー粒子などの不燃性物質の含有量が少なく、ガス中の硫化物や芳香族炭化水素の含有量が少なく、二酸化炭素の排出がほぼゼロというメリットを有し、これにより、バイオディーゼルが石油化学ディーゼルの最適な代替品の一つとなる。 At present, human society is heavily dependent on fossil fuel-derived energy. The burning of fossil fuels destroys the ecological environment, and problems such as smog, greenhouse effect, and environmental pollution seriously affect people's lives and health. The daily depletion of fossil fuels raises awareness of the importance of developing clean, environmentally friendly and green renewable energy sources. Biodiesel is a renewable fuel prepared by transesterification of vegetable oils, animal oils, food and beverage waste oils and low-hydric alcohols under the action of acidic and alkaline catalysts, and has received wide attention in recent years. The physico-chemical properties of biodiesel are sufficiently similar to petrochemical diesel, and it can be used by directly adding it to the engine, without the need to modify the engine. In the biodiesel combustion process, the content of incombustible substances such as soot and polymer particles is low, the content of sulfides and aromatic hydrocarbons in the gas is low, and the emission of carbon dioxide is almost zero. advantages that make biodiesel one of the best alternatives to petrochemical diesel.

バイオディーゼルの転化率を向上させるために、適切な高効率触媒は、バイオディーゼル調製の鍵となる。従来の前処理方法では、遊離脂肪酸のエステル化を完了させる触媒として均一系酸(homogeneous acid)触媒を選択するが、均一系酸は、再利用不可能で、反応速度が遅く、反応温度が高く、必要な時間が長く、均一系酸と生成物との分離精製が複雑で、環境に腐食及び排出の危険性があるなどの問題が存在している。均一系アルカリ(homogeneous base)により触媒されるエステル交換速度は、酸触媒の4000倍であるが、加水分解や鹸化反応が発生しやすい。そのため、両性固体触媒を用いて均一系酸触媒や均一系アルカリ触媒を置き換えることが広く注目されている。例えば、特許CN106179496A、CN106191327A、CN106222314Aには、いくつかの炭素系固体酸触媒の調製方法及びバイオディーゼル合成への応用が開示される。しかし、これらの炭素系固体酸は、表面酸性度の低い傾向があるため、エステル化反応の温度が高く、時間がかかり、触媒の回収が困難で、経済的コストもそれに伴って増加するようになってしまう。 In order to improve the biodiesel conversion rate, a suitable high efficiency catalyst is the key to biodiesel preparation. Conventional pretreatment methods select homogeneous acid catalysts as catalysts to complete the esterification of free fatty acids. , the time required is long, the separation and purification of the homogeneous acid and the product is complicated, and there are risks of corrosion and discharge to the environment. Homogeneous base catalyzed transesterification rates are 4000 times higher than acid catalyzed, but hydrolysis and saponification reactions are more likely to occur. Therefore, there has been widespread interest in using amphoteric solid catalysts to replace homogeneous acid and homogeneous alkali catalysts. For example, patents CN106179496A, CN106191327A, CN106222314A disclose several carbon-based solid acid catalyst preparation methods and their application in biodiesel synthesis. However, these carbon-based solid acids tend to have low surface acidity, so the esterification reaction temperature is high, it takes a long time, the recovery of the catalyst is difficult, and the economic cost increases accordingly. turn into.

本発明は、上記問題を解決するために、高い触媒活性及び再利用率を有する触媒を調製することにより、バイオディーゼルの高転化率を実現するようとする。 In order to solve the above problems, the present invention attempts to realize a high conversion rate of biodiesel by preparing a catalyst with high catalytic activity and recycling rate.

特に断りのない限り、本発明で用いる百分率は、質量百分率である。 Unless otherwise specified, the percentages used in the present invention are mass percentages.

本発明の目的の一つは、鉄含有量の多い磁性触媒の製造方法を提供することであり、前記方法は以下のようなステップを含む。 One of the objects of the present invention is to provide a method for producing a magnetic catalyst with high iron content, said method comprising the following steps.

(1)電炉ダストを前処理するステップ:
(i)電炉ダストをボールミルで研磨し、75~400メッシュの篩を通過させる。
(ii)篩を通過した電炉ダストをオーブンに置いて55~105℃の条件で5h以上乾燥し、前処理した電炉ダストを得る。
(2)電炉ダストを活性化して固体触媒を調製するステップ:
(i)電炉ダストの1.2~1.5倍の質量のナトリウム塩で前処理した電炉ダストを含浸し、オイルバス釜に65~85℃の条件で1~4h磁気撹拌し、得られたサンプルをオーブンで65~85℃の条件で4~12h乾燥し、乾燥後のサンプルを75~400メッシュの篩に通過させ、所望のナトリウム‐電炉ダスト触媒を得る。
(1) Step of pretreating electric furnace dust:
(i) Electric furnace dust is ground in a ball mill and passed through a 75-400 mesh sieve.
(ii) The electric furnace dust passed through the sieve is placed in an oven and dried at 55 to 105° C. for 5 hours or more to obtain pretreated electric furnace dust.
(2) Activating the electric furnace dust to prepare a solid catalyst:
(i) Electric furnace dust pretreated with sodium salt having a mass 1.2 to 1.5 times that of the electric furnace dust is impregnated, magnetically stirred in an oil bath at 65 to 85 ° C. for 1 to 4 hours, and obtained. The sample is dried in an oven at 65-85° C. for 4-12 hours, and the dried sample is passed through a 75-400 mesh sieve to obtain the desired sodium-electric furnace dust catalyst.

さらに、元素換算で、前記電炉ダストの成分は、Fe:53.23~54.84%、Mg:0.45~0.55%、Zn:1.28~1.42%、Ca:1.45~1.65%、Mn:0.95~1.08%、Al:0.20~0.25%、Na:0.20~0.25%を含む。 Furthermore, in terms of elements, the components of the electric furnace dust are Fe: 53.23 to 54.84%, Mg: 0.45 to 0.55%, Zn: 1.28 to 1.42%, Ca: 1.5%. 45-1.65%, Mn: 0.95-1.08%, Al: 0.20-0.25%, Na: 0.20-0.25%.

本発明の他の一つの目的は、触媒を提供することであり、前記触媒は、前記方法によって調製され、前記触媒におけるナトリウム塩の含有量は、48~64重量%であり、電炉ダストの含有量は36~52重量%であり、前記電炉ダストの成分は、Fe:53.23~54.84%、Mg:0.45~0.55%、Zn:1.28~1.42%、Ca:1.45~1.65%、Mn:0.95~1.08%、Al:0.20~0.25%、Na:0.20~0.25%を含む。 Another object of the present invention is to provide a catalyst, the catalyst is prepared by the method, the content of sodium salt in the catalyst is 48-64% by weight, and the content of electric furnace dust is The amount is 36 to 52% by weight, and the components of the electric furnace dust are Fe: 53.23 to 54.84%, Mg: 0.45 to 0.55%, Zn: 1.28 to 1.42%, Ca: 1.45-1.65%, Mn: 0.95-1.08%, Al: 0.20-0.25%, Na: 0.20-0.25%.

本発明のもう一つの目的は、バイオディーゼルの調製における前記電炉ダスト触媒の応用を提供することである。 Another object of the present invention is to provide the application of said electric furnace dust catalyst in the preparation of biodiesel.

本発明のまた一つの目的は、バイオディーゼルの調製方法を提供することであり、前記方法は、具体的に以下のステップを含む。 (1)油と低炭素アルコールをn油:nアルコール=1:(15~25)molのモル比で反応容器に混合し、次に油に対して6~9%の量で前記触媒を添加する。
(2)反応容器を密封し、65~75℃で2~3h反応させる。
(3)反応終了後、上層がアルコールと副生成物であり、中層がバイオディーゼルであり、触媒が下層にあり、静置後、触媒と液体生成物が自動的に分離し、液体生成物を取り外し、触媒を反応容器に残して再利用に備える。
Another object of the present invention is to provide a biodiesel preparation method, which specifically includes the following steps. (1) Mix oil and low-carbon alcohol in a reaction vessel at a molar ratio of n oil: n alcohol = 1: (15-25) mol, then add the catalyst in an amount of 6-9% to the oil. do.
(2) Seal the reaction vessel and react at 65-75° C. for 2-3 hours.
(3) After the reaction is finished, the upper layer is alcohol and by-products, the middle layer is biodiesel, and the catalyst is in the lower layer. Remove, leaving the catalyst in the reaction vessel ready for reuse.

さらに、前記油は、市販又は工業生産の食用(大豆油を含むがこれに限定されない)又は非食用油脂である。 Further, the oil is a commercial or industrially produced edible (including but not limited to soybean oil) or non-edible fat.

さらに、前記低炭素アルコールは、メタノールを含むがこれに限定されない。 Further, said low carbon alcohols include, but are not limited to, methanol.

研究によると、本発明の触媒キャリアの孔径と比表面積が触媒の担持量に大きく影響することが分かれる。触媒の触媒効率を十分に向上させるため、本願は、ナトリウム塩で前処理した電炉ダストを含浸する場合、含浸温度を65~75℃の範囲に制御すると、温度の上昇につれて触媒の孔径と比表面積が増加する傾向があるが、温度が75℃を超える時、粒子の表面形状の変化により比表面積が減少し始め、ナトリウム塩が電炉ダストの内部に入り込んで安定構造を形成することができなくなり、本発明で求められる実際の触媒効果に基づいて、温度を65~85℃に制御することを選択することが適切である。 Studies have shown that the pore size and specific surface area of the catalyst carrier of the present invention greatly affect the amount of catalyst supported. In order to sufficiently improve the catalytic efficiency of the catalyst, the present application found that when impregnating the electric furnace dust pretreated with sodium salt, the impregnation temperature is controlled in the range of 65-75 ° C., and the pore diameter and specific surface area of the catalyst increase as the temperature rises. tends to increase, but when the temperature exceeds 75 ° C, the specific surface area begins to decrease due to changes in the surface shape of the particles, and the sodium salt cannot enter the interior of the electric furnace dust and form a stable structure. It is suitable to choose to control the temperature between 65 and 85° C. based on the actual catalytic effect sought by the present invention.

研究によると、本発明の触媒キャリアの孔径と比表面積は、含浸時間が2時間以内の場合、含浸時間の増加とともに、キャリアの比表面積と孔径が増加する傾向があるが、含浸時間が2時間を超える場合、キャリアの比表面積と孔径が減少し始めることが分かれる。本発明で求められる実際の触媒効果に基づいて時間を1~4hに制御することを選択することが適切である。 According to research, the pore size and specific surface area of the catalyst carrier of the present invention tend to increase as the impregnation time increases when the impregnation time is within 2 hours, but the impregnation time is 2 hours. , the specific surface area and pore size of the carrier begin to decrease. It is appropriate to choose to control the time from 1 to 4 hours based on the actual catalytic effect sought by the present invention.

研究によると、バイオディーゼルの生産率は、反応温度と密接な関係があることが分かれる。本発明のシステムに基づいて、、バイオディーゼルの生産率は、65℃以下の場合、温度の上昇とともに増加し、65℃を超える場合、減少し始める傾向がある。本発明の触媒粒径、比表面積バイオディーゼルの生産率などの要素を総合的に考えて、反応温度を65~75℃に制御することが適切である。 Studies show that the biodiesel production rate is closely related to the reaction temperature. Based on the system of the present invention, the biodiesel production rate increases with increasing temperature below 65°C and tends to start decreasing above 65°C. It is appropriate to control the reaction temperature to 65 to 75° C. by comprehensively considering factors such as the particle size of the catalyst of the present invention, the specific surface area biodiesel production rate, and the like.

研究によると、反応時間が2hより短い場合、バイオディーゼルの生産率は、時間の増加とともに増加し、2hより長い場合、減少する傾向があることは、反応時間が最適反応時間を超えると、反応が逆方向に行い始めることにより、生産率が低下することに起因することが分かれる。本発明の触媒粒径、比表面積バイオディーゼルの生産率などの要素を総合的に考えて、反応時間を2~3hに制御することが適切である。 Studies show that when the reaction time is shorter than 2h, the production rate of biodiesel increases with time, and when it is longer than 2h, it tends to decrease. starts to go in the opposite direction, resulting in a decrease in production rate. It is appropriate to control the reaction time to 2 to 3 hours by comprehensively considering factors such as the catalyst particle size of the present invention, the specific surface area biodiesel production rate, and the like.

先行技術と比べて、本発明は以下のようなメリットを有する。 Compared with the prior art, the present invention has the following advantages.

1.本願は、電炉ダストを原料とし、高温加熱の条件で、ナトリウム塩で含浸した電炉ダストを磁気撹拌して、含浸関連のプロセスパラメータを制御することで関連結晶相の転移を促進することにより、高い触媒活性の触媒が得られると同時に、電炉ダストに三酸化二鉄や四酸化三鉄があるため、ナトリウム塩で含浸して得られた触媒は、酸性とアルカリ性の両方を有する。 1. The present application uses electric furnace dust as a raw material, magnetically stirs the electric furnace dust impregnated with sodium salt under the condition of high temperature heating, and controls the impregnation-related process parameters to promote the transformation of the relevant crystal phases, thereby achieving high While a catalytically active catalyst is obtained, the catalyst obtained by impregnation with sodium salt has both acidity and alkalinity due to diiron trioxide and triiron tetroxide present in the electric furnace dust.

2.本願で合成した電炉ダスト触媒は、反応後に液体生成物と自動的に分離可能で、触媒の回収率≧91%である。 2. The electric furnace dust catalyst synthesized in this application can be automatically separated from the liquid product after the reaction, and the recovery of the catalyst is ≧91%.

3.本願で合成した電炉ダスト触媒は、バイオディーゼル調製への応用において非常に優れた触媒活性及び応用価値を有し、バイオディーゼルの生産率≧93%である。また、当該触媒は、非食用低酸価(low acid value)油脂の反応に直接に使用可能で、同様に前述の触媒効果が得られる。 3. The electric furnace dust catalyst synthesized in this application has excellent catalytic activity and application value in the application of biodiesel preparation, with a biodiesel production rate≧93%. In addition, the catalyst can be used directly in the reaction of non-edible low acid value fats and oils to achieve the aforementioned catalytic effect as well.

4.本願で合成した電炉ダスト触媒は、15回反応後でも90%以上のバイオディーゼルの生産率を確保できる優れたリサイクル能力を有する。 4. The electric furnace dust catalyst synthesized in the present application has an excellent recycling ability that ensures a biodiesel production rate of 90% or more even after 15 reactions.

5.本願は、電炉ダストの再利用により資源のリサイクルと再利用を実現すると同時に、環境汚染も効果的に低減する。 5. The present application realizes recycling and reuse of resources by reusing electric furnace dust, and at the same time, effectively reduces environmental pollution.

6.本願は、ナトリウム塩の含浸濃度、含浸時間及び含浸温度を変更することで、合理的な構成と高い触媒活性を有する触媒を得る。ナトリウム塩の含浸濃度、含浸温度及び含浸時間への制御は、電炉ダストキャリアの比表面積及び孔径を変更し、触媒の安定性を向上することができる。 6. The present application obtains a catalyst with a reasonable composition and high catalytic activity by changing the impregnation concentration of sodium salt, the impregnation time and the impregnation temperature. Controlling the sodium salt impregnation concentration, impregnation temperature and impregnation time can change the specific surface area and pore size of the electric furnace dust carrier and improve the stability of the catalyst.

以下、実施例に合わせて、本発明についてさらに詳細に説明するが、実施例は、本発明の技術案を限定することを意図するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the examples are not intended to limit the technical solution of the present invention.

実施例1~7
Fe:54.84%、Mg:0.55%、Zn:1.42%、Ca:1.65%、Mn:1.08%、Al:0.25%、Na:0.25%の電炉ダストをボールミルで研磨し、研磨したダストを200メッシュの篩に通過させた後、篩に通過したダストをオーブンで105℃の条件で5h乾燥し、均一な粒径を有する乾燥後の電炉ダスト原料を得た。得られた均一な粒径を有する乾燥後の電炉ダスト原料を、炭酸ナトリウムで含浸することで、オイルバス釜に磁気撹拌し、含浸温度と時間を適切に設定し、得られたサンプルを乾燥させて200メッシュの篩にかけてナトリウム-電炉ダスト触媒を得る。ここで、実施例1~9のパラメータ及び効果を表1に示す。
Examples 1-7
Fe: 54.84%, Mg: 0.55%, Zn: 1.42%, Ca: 1.65%, Mn: 1.08%, Al: 0.25%, Na: 0.25% electric furnace After grinding the dust with a ball mill and passing the ground dust through a 200-mesh sieve, the dust that has passed through the sieve is dried in an oven at 105°C for 5 hours to obtain a raw material for electric furnace dust after drying having a uniform particle size. got By impregnating the obtained dried electric furnace dust raw material having a uniform particle size with sodium carbonate, magnetically stirring it in an oil bath, setting the impregnation temperature and time appropriately, and drying the obtained sample. and sieved through a 200-mesh sieve to obtain a sodium-electric furnace dust catalyst. Here, Table 1 shows the parameters and effects of Examples 1 to 9.

表1:実施例1~9のパラメータ及び効果

Figure 2023011537000001
Table 1: Parameters and Effects of Examples 1-9
Figure 2023011537000001

電炉ダスト原料の小粒子金属塩の粒径は約200nmであり、実施例1で得られた触媒の小粒子金属塩の粒径は約300nmであり、実施例2で得られた触媒の小粒子金属塩の粒径は約300nmであると測定された。 The particle size of the small particle metal salt of the electric furnace dust raw material is about 200 nm, the particle size of the small particle metal salt of the catalyst obtained in Example 1 is about 300 nm, and the particle size of the small particle metal salt of the catalyst obtained in Example 2 is about 300 nm. The particle size of the metal salt was measured to be about 300 nm.

実施例10
実施例2を繰り返すが、以下のような相違点がある。電炉ダストの成分を、Fe:54.54%、Mg:0.50%、Zn:1.38%、Ca:1.60%、Mn:1.00%、Al:0.23%、Na:0.24%とする。得られた触媒の小粒子金属塩の粒径は約300nmである。触媒の酸性度は0.15mmol/g、アルカリ性度は0.33mmol/g、キャリア比表面積は2.80m/g、キャリア孔径は7.92nmであると測定された。
Example 10
Example 2 is repeated with the following differences. The components of electric furnace dust are Fe: 54.54%, Mg: 0.50%, Zn: 1.38%, Ca: 1.60%, Mn: 1.00%, Al: 0.23%, Na: 0.24%. The particle size of the obtained small-particle metal salt of the catalyst is about 300 nm. The acidity of the catalyst was determined to be 0.15 mmol/g, the alkalinity 0.33 mmol/g, the carrier specific surface area 2.80 m 2 /g, and the carrier pore size 7.92 nm.

実施例11
実施例2を繰り返すが、以下のような相違点がある。電炉ダストの成分を、Fe:54.50%、Mg:0.48%、Zn:1.34%、Ca:1.57%、Mn:0.98%、Al:0.21%、Na:0.23%とする。得られた触媒の小粒子金属塩の粒径は約300nmである。触媒の酸性度は0.13mmol/g、アルカリ性度は0.31mmol/g、キャリア比表面積は2.78m/g、キャリア孔径は7.86nmであると測定された。
Example 11
Example 2 is repeated with the following differences. The components of electric furnace dust are Fe: 54.50%, Mg: 0.48%, Zn: 1.34%, Ca: 1.57%, Mn: 0.98%, Al: 0.21%, Na: 0.23%. The particle size of the obtained small-particle metal salt of the catalyst is about 300 nm. The acidity of the catalyst was determined to be 0.13 mmol/g, the alkalinity to 0.31 mmol/g, the carrier specific surface area to be 2.78 m 2 /g, and the carrier pore size to be 7.86 nm.

実施例12~28
実施例1~9で調製したナトリウム-電炉ダスト触媒を用いて大豆油を触媒するバイオディーゼル調製の方法は、以下のステップを含む。即ち、アルコールとオイルの比率に応じて、ゴムシールのガラス瓶に大豆油、メタノール、ナトリウム-電炉ダスト触媒を添加して反応させた後、バイオディーゼル-メタノール混合物が得られることであり、ナトリウム-電炉ダスト触媒が静置分離により回収できる。関連プロセスパラメータ及び効果を表2に示す。
Examples 12-28
The method of biodiesel preparation by catalyzing soybean oil with the sodium-furnace dust catalysts prepared in Examples 1-9 includes the following steps. That is, according to the ratio of alcohol and oil, soybean oil, methanol, sodium-electric furnace dust catalyst are added to the rubber-sealed glass bottle and reacted to obtain a biodiesel-methanol mixture, and sodium-electric furnace dust. The catalyst can be recovered by static separation. Relevant process parameters and effects are shown in Table 2.

表2:実施例12~28のプロセスパラメータ及び効果

Figure 2023011537000002
Table 2: Process parameters and effects of Examples 12-28
Figure 2023011537000002

実施例29~32
実施例21の方法、ステップ及びパラメータを繰り返すが、表4に示す触媒を用いる相違点がある。バイオディーゼル生産率が表3に示すようになると測定された。
Examples 29-32
The method, steps and parameters of Example 21 are repeated with the difference using the catalysts shown in Table 4. Biodiesel production rates were measured as shown in Table 3.

表3:実施例42~45のプロセスパラメータ及び効果

Figure 2023011537000003
Table 3: Process parameters and effects of Examples 42-45
Figure 2023011537000003

比較例1~2
Fe:54.84%、Mg:0.55%、Zn:1.42%、Ca:1.65%、Mn:1.08%、Al:0.25%、Na:0.25%の電炉ダストをボールミルで研磨し、研磨したダストを200メッシュの篩に通過させた後、篩に通過したダストをオーブンで105℃の条件で5h乾燥し、均一な粒径を有する乾燥した電炉ダスト原料を得た。得られた均一な粒径を有する乾燥後の電炉ダスト原料を、炭酸ナトリウムで含浸することで、オイルバス釜に磁気撹拌し、含浸温度と時間を適切に設定し、得られたサンプルを乾燥させて200メッシュの篩にかけてナトリウム-電炉ダスト触媒を得る。ここで、比較例1~2のパラメータ及び効果を表4に示す。
Comparative Examples 1-2
Fe: 54.84%, Mg: 0.55%, Zn: 1.42%, Ca: 1.65%, Mn: 1.08%, Al: 0.25%, Na: 0.25% electric furnace After grinding the dust with a ball mill and passing the ground dust through a 200-mesh sieve, the dust that passed through the sieve was dried in an oven at 105°C for 5 hours to obtain a dry electric furnace dust raw material having a uniform particle size. Obtained. By impregnating the obtained dried electric furnace dust raw material having a uniform particle size with sodium carbonate, magnetically stirring it in an oil bath, setting the impregnation temperature and time appropriately, and drying the obtained sample. and sieved through a 200-mesh sieve to obtain a sodium-electric furnace dust catalyst. Here, Table 4 shows the parameters and effects of Comparative Examples 1 and 2.

表4:比較例1~2のプロセスパラメータ及び効果

Figure 2023011537000004
Table 4: Process parameters and effects of Comparative Examples 1-2
Figure 2023011537000004

比較例3~5
ナトリウム-電炉ダスト触媒を用いて大豆油を触媒するバイオディーゼル調製の方法は、以下のステップを含む。即ち、アルコールとオイルの比率に応じて、ゴムシールのガラス瓶に大豆油、メタノール、ナトリウム-電炉ダスト触媒を添加して反応させた後、バイオディーゼル-メタノール混合物が得られることであり、ナトリウム-電炉ダスト触媒が静置分離により回収できる。関連プロセスパラメータ及び効果を表5に示す。
Comparative Examples 3-5
A method of biodiesel preparation catalyzing soybean oil with a sodium-furnace dust catalyst includes the following steps. That is, according to the ratio of alcohol and oil, soybean oil, methanol, sodium-electric furnace dust catalyst are added to the rubber-sealed glass bottle and reacted to obtain a biodiesel-methanol mixture, and sodium-electric furnace dust. The catalyst can be recovered by static separation. Relevant process parameters and effects are shown in Table 5.

表5:比較例3~4のプロセスパラメータ及び効果

Figure 2023011537000005

Table 5: Process parameters and effects of Comparative Examples 3-4
Figure 2023011537000005

Claims (6)

鉄含有量の多い磁性触媒を用いるバイオディーゼルの調製方法であって、前記磁性触媒の調製方法は、電炉ダストの1.2~1.5倍の質量のナトリウム塩で前処理した電炉ダストを含浸し、65~85℃で1~4h磁気撹拌し、得られたサンプルを乾燥し、所望のナトリウム‐電炉ダスト触媒を得るステップを含み、ここで、前記電炉ダストの成分は、元素換算で、Fe:53.23~54.84%、Mg:0.45~0.55%、Zn:1.28~1.42%、Ca:1.45~1.65%、Mn:0.95~1.08%、Al:0.20~0.25%、Na:0.20~0.25%を含むことを特徴とするバイオディーゼルの調製方法。 A biodiesel preparation method using a magnetic catalyst with a high iron content, the method for preparing the magnetic catalyst includes impregnating electric furnace dust pretreated with a sodium salt of 1.2 to 1.5 times the mass of electric furnace dust and magnetically stirring at 65-85° C. for 1-4 h, drying the resulting sample to obtain the desired sodium-electric furnace dust catalyst, wherein the component of said electric furnace dust is Fe : 53.23-54.84%, Mg: 0.45-0.55%, Zn: 1.28-1.42%, Ca: 1.45-1.65%, Mn: 0.95-1 .08%, Al: 0.20-0.25%, Na: 0.20-0.25%. (1)油と低炭素アルコールをn油:nアルコール=1:(15~25)のモル比で反応容器に混合し、次に油の質量に対して6~9%の量に応じて触媒を添加するステップと、
(2)反応容器を密封し、65~75℃で2~3h反応させるステップと、
(3)反応終了後、静置した触媒が液体生成物と自動的に分離し、液体生成物を取り外し、触媒を反応容器に残して再利用に備えるステップと、を具体的に含むことを特徴とする請求項1に記載のバイオディーゼルの調製方法。
(1) Mix oil and low-carbon alcohol in a reaction vessel at a molar ratio of n oil: n alcohol = 1: (15-25), then catalyst in an amount of 6-9% with respect to the mass of oil and
(2) sealing the reaction vessel and reacting at 65-75° C. for 2-3 hours;
(3) After completion of the reaction, the catalyst is automatically separated from the liquid product, the liquid product is removed, and the catalyst is left in the reaction vessel to prepare for reuse. The method for preparing biodiesel according to claim 1.
前記磁性触媒の調製方法は、触媒を調製する前に電炉ダストを前処理するステップをさらに含み、前記ステップは、
(i)電炉ダストをボールミルで研磨するステップと、
(ii)研磨した電炉ダストを乾燥し、前処理した電炉ダストを得るステップと、を含むことを特徴とする請求項1に記載のバイオディーゼルの調製方法。
The method for preparing the magnetic catalyst further comprises pretreating the electric furnace dust before preparing the catalyst, the step comprising:
(i) ball milling the electric furnace dust;
(ii) drying the ground EAF dust to obtain pretreated EAF dust.
得られたサンプルの乾燥ステップの具体的なパラメータは、65~85℃で4~12h乾燥させることであり、前記磁気撹拌の温度制御条件は、オイルバスであることを特徴とする請求項1に記載のバイオディーゼルの調製方法。 The specific parameter of the drying step of the obtained sample is drying at 65 to 85 ° C. for 4 to 12 hours, and the temperature control condition of the magnetic stirring is an oil bath. A method for preparing the described biodiesel. 前記油は、食用油脂又は非食用油脂を含むことを特徴とする請求項2に記載のバイオディーゼルの調製方法。 3. The method for preparing biodiesel according to claim 2, wherein the oil comprises edible or non-edible fat. 前記低炭素アルコールは、メタノールを含むことを特徴とする請求項2に記載のバイオディーゼルの調製方法。 3. The method of claim 2, wherein the low carbon alcohol comprises methanol.
JP2022111518A 2021-07-12 2022-07-12 Catalyst and preparation method of bio-diesel using the catalyst Pending JP2023011537A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110786539.4A CN113477260B (en) 2021-07-12 2021-07-12 Catalyst and method for preparing biodiesel by using same
CN202110786539.4 2021-07-12

Publications (1)

Publication Number Publication Date
JP2023011537A true JP2023011537A (en) 2023-01-24

Family

ID=77938783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022111518A Pending JP2023011537A (en) 2021-07-12 2022-07-12 Catalyst and preparation method of bio-diesel using the catalyst

Country Status (2)

Country Link
JP (1) JP2023011537A (en)
CN (1) CN113477260B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893861B (en) * 2021-11-18 2022-03-04 华北理工大学 Sodium salt-blast furnace dust catalyst and method for preparing biodiesel by using same
CN113926459B (en) * 2021-12-16 2022-05-27 华北理工大学 Magnetic carbon-based catalyst and method for preparing biodiesel by using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024189A (en) * 2007-03-15 2007-08-29 中兴能源技术(武汉)有限公司 Magnetic solid alkalic catalyst, its preparing method and use
CN102335607A (en) * 2011-07-20 2012-02-01 北京工业大学 Preparation method and application of magnetic solid base catalyst for synthesizing biodiesel
EP2522713A2 (en) * 2011-04-20 2012-11-14 Universiti Putra Malaysia A method of producing biodiesel using heterogeneous catalytic system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513335C (en) * 2007-04-30 2009-07-15 兰州大学 Comprehensive treatment method for recovered and used humic acid in garbage infiltration liquid
CN104084120A (en) * 2014-07-26 2014-10-08 青岛博睿林新材料有限公司 Industrial waste-modified ammonia scavenger
CN104998695A (en) * 2015-07-22 2015-10-28 常州亚环环保科技有限公司 Preparation method for blast furnace slag particle supported catalyst
CN112264052B (en) * 2020-10-20 2021-11-23 华北理工大学 Catalyst and method for preparing biodiesel by using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024189A (en) * 2007-03-15 2007-08-29 中兴能源技术(武汉)有限公司 Magnetic solid alkalic catalyst, its preparing method and use
EP2522713A2 (en) * 2011-04-20 2012-11-14 Universiti Putra Malaysia A method of producing biodiesel using heterogeneous catalytic system
CN102335607A (en) * 2011-07-20 2012-02-01 北京工业大学 Preparation method and application of magnetic solid base catalyst for synthesizing biodiesel

Also Published As

Publication number Publication date
CN113477260B (en) 2022-04-22
CN113477260A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
Chua et al. Biodiesel synthesis using natural solid catalyst derived from biomass waste—A review
JP2023011537A (en) Catalyst and preparation method of bio-diesel using the catalyst
Deeba et al. Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production
TWI462777B (en) Method of fabricating cu-zn-al catalyst through synthesizing methanol and dimethyl ether
CN101249449A (en) Novel solid body base catalyst and applications for biological diesel oil synthesizing
Ye et al. Biodiesel production from soybean oil using heterogeneous solid base catalyst
Rashid et al. Production of biodiesel from waste cooking oil using CaO-egg shell waste derived heterogeneous catalyst
CN101249431A (en) Novel solid body base catalyst and applications thereof in biological diesel oil synthesizing
CN100475333C (en) Catalyst for synthesizing bio diesel oil and preparation method thereof
JP7057552B1 (en) A catalyst and a method for producing a biodiesel using this catalyst
Shakeel et al. Development of highly efficient solid acid catalysts supported on mesoporous KIT-6 for esterification of oleic acid
Pan et al. Functional nanomaterials-catalyzed production of biodiesel
CN105274157B (en) A kind of method of static state emulsion method immobilized lipase production biodiesel
CN112044454A (en) Biodiesel magnetic solid base catalyst, preparation method and application
CN113926459B (en) Magnetic carbon-based catalyst and method for preparing biodiesel by using same
CN114989897B (en) Low acid value biodiesel and preparation method thereof
CN101249450A (en) Solid body base catalyst and applications for biological diesel oil synthesizing
CN110605123B (en) Modified dolomite solid base catalyst for biodiesel as well as preparation method and application thereof
CN108187650A (en) It is a kind of using coal slime charcoal as solid alkali biodiesel catalyst of carrier and preparation method thereof
CN106732678A (en) A kind of carbon-based magnetic solid acid catalyst and its application in biodiesel preparation
CN102125876B (en) Method for preparing biodiesel by microwave solid alkali ester exchange method
Ramírez-Arias et al. Biodiesel synthesis: use of activated carbon as support of the catalysts
CN113893861B (en) Sodium salt-blast furnace dust catalyst and method for preparing biodiesel by using same
Tang et al. Highly efficient procedure for biodiesel synthesis using polypyrrole functionalized by sulfonic acid
Yusuff et al. The Potential Of Composite Anthill-Waste Chicken Eggshell as Heterogeneous Catalyst in Biodiesel Production.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228